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Abstract

We study linear bandits when the underlying re-
ward function is not linear. Existing work relies on
a uniform misspecification parameter ϵ that mea-
sures the sup-norm error of the best linear approxi-
mation. This results in an unavoidable linear regret
whenever ϵ > 0. We describe a more natural model
of misspecification which only requires the approx-
imation error at each input x to be proportional to
the suboptimality gap at x. It captures the intu-
ition that, for optimization problems, near-optimal
regions should matter more and we can tolerate
larger approximation errors in suboptimal regions.
Quite surprisingly, we show that the classical Lin-
UCB algorithm — designed for the realizable case
— is automatically robust against such gap-adjusted
misspecification. It achieves a near-optimal

√
T

regret for problems that the best-known regret is
almost linear in time horizon T . Technically, our
proof relies on a novel self-bounding argument that
bounds the part of the regret due to misspecifica-
tion by the regret itself.

1 INTRODUCTION

Stochastic linear bandit is a classical problem of online learn-
ing and decision-making with many influential applications,
e.g., A/B testing [Claeys et al., 2021], recommendation sys-
tems [Chu et al., 2011], advertisement placements [Wang
et al., 2021], clinical trials [Moradipari et al., 2020], hyper-
parameter tuning [Alieva et al., 2021], and new material
discovery [Katz-Samuels et al., 2020].

More formally, stochastic bandit is a sequential game
between an agent who chooses a sequence of actions
x0, ..., xT−1 ∈ X and nature who decides on a sequence
of noisy observations (rewards) y0, ..., yT−1 according to
yt = f0(xt) + noise for some underlying function f0. The

goal of the learner is to minimize the cumulative regret the
agent experiences relative to an oracle who knows the best
action to choose ahead of time, i.e.,

RT (x0, ..., xT−1) =

T−1∑
t=0

rt =

T−1∑
t=0

max
x∈X

f0(x)− f0(xt),

where rt is called instantaneous regret.

Despite being highly successful in the wild, existing theory
for stochastic linear bandits (or more generally learning-
oracle based bandits problems [Foster et al., 2018, Foster
and Rakhlin, 2020]) relies on a realizability assumption,
i.e., the learner is given access to a function class F such
that the true expected reward f0 : X → R satisfies that
f0 ∈ F . Realizability is considered one of the strongest
and most restrictive assumptions in the standard statistical
learning setting, but in the linear bandits, all known attempts
to deviate from the realizability assumption result in a regret
that grows linearly with T [Ghosh et al., 2017, Lattimore
et al., 2020, Zanette et al., 2020, Neu and Olkhovskaya,
2020, Bogunovic and Krause, 2021, Krishnamurthy et al.,
2021].

In practical applications, it is often observed that feature-
based representation of the actions with function approxi-
mations in estimating the reward can result in very strong
policies even if the estimated reward functions are far from
being correct [Foster et al., 2018].

So what went wrong? The critical intuition we rely on is the
following:

It should be sufficient for the estimated reward
function to clearly differentiate good actions from
bad ones, rather than requiring it to perfectly esti-
mate the rewards numerically.

Contributions. In this paper, we formalize this intuition
by defining a new family of misspecified bandit problems
based on a condition that adjusts the need for an accurate
approximation pointwise at every x ∈ X according to the
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suboptimality gap at x. Unlike the existing misspecified
linear bandits problems with a linear regret, our problem
admits a nearly optimal Õ(

√
T ) regret despite being heavily

misspecified. Specifically:

• We define ρ-gap-adjusted misspecified (ρ-GAM) func-
tion approximations and characterize how they pre-
serve important properties of the true function that are
relevant for optimization.

• We show that the classical LinUCB algorithm [Abbasi-
yadkori et al., 2011] can be used as is (up to some
mild hyperparameters) to achieve an Õ(

√
T ) regret

under a moderate level of gap-adjusted misspecifica-
tion (ρ ≤ O(1/

√
log T )). In comparison, the regret

bound one can obtain under the corresponding uniform
misspecification setting is only Õ(T/

√
log T ). This

represents an exponential improvement in the average
regret metric RT /T .

To the best of our knowledge, the suboptimality gap-
adjusted misspecification problem was not studied before
and we are the first to obtain

√
T -style regrets without a

realizability assumption.

Technical novelty. Due to misspecification, we have tech-
nical challenges that appear in bounding the instantaneous
regret and parameter uncertainty region. We tackle the chal-
lenges by a self-bounding trick, i.e., bounding the instanta-
neous regret by the instantaneous regret itself, which can
be of independent interest in more settings, e.g., Gaussian
process bandit optimization and reinforcement learning.

2 RELATED WORK

The problem of linear bandits was first introduced in Abe
and Long [1999]. Then Auer et al. [2002] proposed the
upper confidence bound to study linear bandits where the
number of actions is finite. Based on it, Dani et al. [2008]
proposed an algorithm based on confidence ellipsoids and
then Abbasi-yadkori et al. [2011] simplified the proof with
a novel self-normalized martingale bound. Later Chu et al.
[2011] proposed a simpler and more robust linear bandit
algorithm and showed Õ(

√
dT ) regret cannot be improved

beyond a polylog factor. Li et al. [2019] further improved
the regret upper and lower bound, which characterized the
minimax regret up to an iterated logarithmic factor. See
Lattimore and Szepesvári [2020] for a detailed survey of
linear bandits.

In terms of misspecification, Ghosh et al. [2017] first stud-
ied the misspecified linear bandit with a fixed action set.
They found that LinUCB [Abbasi-yadkori et al., 2011] is
not robust when misspecification is large. They showed that
in a favourable case when one can test the linearity of the
reward function, their RLB algorithm is able to switch be-
tween the linear bandit algorithm and finite-armed bandit

algorithm to address misspecification issue and achieve the
Õ(min{

√
K, d}

√
T ) regret where K is number of arms.

The most studied setting of model misspecification is uni-
form misspecification where the ℓ∞ distance between the
best-in-class function and the true function is always upper
bounded by some parameter ϵ, i.e.,

Definition 1 (ϵ-uniform misspecification). We say function
class F is an ϵ-uniform misspecified approximation of f0 if
there exists f ∈ F such that supx∈X |f(x)− f0(x)| ≤ ϵ.

Under this definition, Lattimore et al. [2020] proposed the
optimal design-based phased elimination algorithm for mis-
specified linear bandits and achieved Õ(d

√
T + ϵ

√
dT ) re-

gret when number of actions is infinite. They also found that
with modified confidence band in LinUCB, LinUCB is able
to achieve the same regret. With the same misspecification
model, Foster and Rakhlin [2020] studied contextual bandit
with regression oracle, Neu and Olkhovskaya [2020] stud-
ied multi-armed linear contextual bandit, and Zanette et al.
[2020] studied misspecified contextual linear bandits after
reduction of the algorithm. All of their results suffer from
linear regrets. Later Bogunovic and Krause [2021] studied
misspecified Gaussian process bandit optimization problem
and achieved Õ(d

√
T + ϵ

√
dT ) regret when linear kernel

is used in Gaussian process. Moreover, their lower bound
shows that Ω̃(ϵT ) term is unavoidable in this setting.

Besides uniform misspecification, there are some work con-
sidering different definitions of misspecification. Krishna-
murthy et al. [2021] defines misspecification error as an
expected squared error between true function and best-in-
class function where expectation is taken over distribution of
context space and action space. Foster et al. [2020] consid-
ered average misspecification, which is weaker than uniform
misspecification and allows tighter regret bound. However,
they also have linear regrets. Our work is different from
all related work mentioned above because we are working
under a newly defined misspecifiation condition and show
that LinUCB is a no-regret algorithm in this case.

Model misspecification is naturally addressed in the related
agnostic contextual bandits setting [Agarwal et al., 2014],
but these approaches typically require the action space to
be finite, thus not directly applicable to our problem. In
addition, empirical evidence [Foster et al., 2018] suggests
that the regression oracle approach works better in practice
than the agnostic approach even if realizability cannot be
verified.

3 PRELIMINARIES

3.1 NOTATIONS

Let [n] denote the integer set {1, 2, ..., n}. The algorithm
runs in T rounds in total. Let f0 denote the true func-
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(a) ρ-gap-adjusted misspecification
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(b) Weak ρ-gap-adjusted misspecification

Figure 1: (a): An example of ρ-gap-adjusted misspecification (Definition 2) in 1-dimension where ρ = 0.7. The blue line
shows a non-linear true function and the gray region shows the gap-adjusted misspecified function class. Note the vertical
range of gray region at a certain point x depends on the suboptimal gap. For example, at x = 1 suboptimal gap is 2 and
the vertical range is 4ρ = 2.8. The red line shows a feasible linear function that is able to optimize the true function by
taking x∗ = 2. (b): An example of weak ρ-gap-adjusted misspecification (Definition 4) in 1-dimension where ρ = 0.7. The
difference to Figure 1(a) is that one can shift the qualifying approximation arbitrarily up or down and the specified model
only has to ρ-RAM approximate f0 up to an additive constant factor.

tion, so the maximum function value is defined as f∗ =
maxx∈X f0(x) and the maximum point is defined as x∗ =
argmaxx∈X f0(x). Let X ⊂ Rd and Y ⊂ R denote the
domain and range of f0. We use W to denote the param-
eter class of a family of linear functions F := {fw :
X → Y|w ∈ W} where fw(x) = w⊤x. Define w∗
as the parameter of best linear approximation function.
∥w∥2 ≤ Cw,∀w ∈ W and ∥x∥2 ≤ Cb,∀x ∈ X . For a

vector x, its ℓ2 norm is denoted by ∥x∥2 =
√∑d

i=1 x
2
i and

for a matrix A its operator norm is denoted by ∥A∥op. For a
vector x and a square matrix A, define ∥x∥2A = x⊤Ax.

3.2 PROBLEM SETUP

We consider the following optimization problem:

x∗ = argmax
x∈X

f0(x),

where f0 is the true function which might not be linear
in X . We want to use a linear function fw = w⊤x ∈ F
to approximate f0 and maximize f0. At time 0 ≤ t ≤
T −1, after querying a data point xt, we will receive a noisy
feedback:

yt = f0(xt) + ηt, (1)

where ηt is independent, zero-mean, and σ-sub-Gaussian
noise.

The major highlight of our study is that we do not rely on
the popular realizability assumption (i.e. f0 ∈ F ) that is fre-
quently assumed in the existing function approximation liter-
ature. Alternatively, we propose the following gap-adjusted
misspecification condition.

Definition 2 (ρ-gap-adjusted misspecification). We say a
function f is a ρ-gap-adjusted misspecified (or ρ-GAM in
short) approximation of f0 if for parameter 0 ≤ ρ < 1,

sup
x∈X

∣∣∣∣f(x)− f0(x)

f∗ − f0(x)

∣∣∣∣ ≤ ρ.

We say function class F = {fw|w ∈ W} satisfies ρ-GAM
for f0, if there exists w∗ ∈ W such that fw∗ is a ρ-GAM
approximation of f0.

Observe that when ρ = 0, this recovers the standard real-
izability assumption, but when ρ > 0 it could cover many
misspecified function classes.

Figure 1(a) shows a 1-dimensional example with fw(x) =
0.75x+ 0.5 and piece-wise linear function f0(x) that satis-
fies local misspecification. With Definition 2, we have the
following proposition.



Proposition 3. Let f be a ρ-GAM approximation of f0
(Definition 2). Then it holds:

• (Preservation of maximizers)

argmax
x

f(x) = argmax
x

f0(x).

• (Preservation of max value)

max
x∈X

f(x) = f∗.

• (Self-bounding property)

|f(x)− f0(x)| ≤ ρ(f∗ − f0(x)) = ρr(x).

This tells f and f0 coincide on the same global maximum
points and the same global maxima if Definition 2 is sat-
isfied, while allowing f and f0 to be different (potentially
large) at other locations. Therefore, Definition 2 is a “lo-
cal” assumption that does not require f to be uniformly
close to f0 (e.g. the “uniform” misspecification assumes
supx∈X |f(x) − f0(x)| ≤ ρ). Proof of Proposition 3 is
shown in Appendix 1.

In addition, we can modify Definition 2 with a slightly
weaker condition that only requires argmaxx f(x) =
argmaxx f0(x) but not necessarily maxx∈X f(x) = f∗.

Definition 4 (Weak ρ-gap-adjusted misspecification). De-
note f∗

w = maxx∈X f(x). Then we say f is (weak) ρ-gap-
adjusted misspecification approximation of f0 for a param-
eter 0 ≤ ρ < 1 if:

sup
x∈X

∣∣∣∣f(x)− f∗
w + f∗ − f0(x)

f∗ − f0(x)

∣∣∣∣ ≤ ρ.

See Figure 1(b) for an example satisfying Definition 4, in
which there is a constant gap between f∗

w and f∗. The idea
of this weaker assumption is that we can always extend the
function class by adding a single offset parameter c w.l.o.g.
to learn the constant gap f∗ − f∗

w. In the linear case, this
amounts to homogenizing the feature vector by appending 1.
For this reason, we stick to Definition 2 and linear function
approximation for conciseness and clarity in the main paper.
See Appendix 2 for formal statements and Appendix 3 for
proofs of regret bound of linear bandits under Definition 4.

Note that both Definition 2 and Definition 4 are defined
generically which do not require any assumptions on the
parametric form of f . While we focus on the linear ban-
dit setting in this paper, this notion can be considered for
arbitrary function approximation learning problems.

3.3 ASSUMPTIONS

Assumption 5 (Boundedness). For any x ∈ X , ∥x∥2 ≤ Cb.
For any w ∈ W , ∥w∥2 ≤ Cw. Moreover, for any x, x̃ ∈ X ,
the true expected reward function |f0(x)− f0(x̃)| ≤ F .

These are mild assumptions that we assume for convenience.
Relaxations of these are possible but not the focus of this
paper. Note that the additional assumption is not required
when f0 is realizable.

Assumption 6. Suppose X ∈ Rd is a compact set, and all
the global maximizers of f0 live on the d− 1 dimensional
hyperplane. i.e., ∃a ∈ Rd, b ∈ R1, s.t.

argmax
x∈X

f0(x) ⊂ {x ∈ Rd : x⊤a = b}.

For instance, when d = 1, the above reduces to that f0
has a unique maximizer. This is a compatibility assump-
tion for Definition 2, since any linear function that violates
Assumption 6 will not satisfy Definition 2.

In addition, to obtain an Õ(
√
T ) regret, for any finite sample

T , we require the following condition.

Assumption 7 (Low misspecification). The linear function
class is a ρ-GAM approximation of f0 with

ρ <
1

8d

√
log
(
1 +

TC2
bC

2
w

dσ2

) = O

(
1

d
√
log T

)
. (2)

The condition is required for technical reasons. Relaxing
this condition for LinUCB may require fundamental break-
throughs that knock out logarithmic factors from its regret
analysis. This will be further clarified in the proof. In gen-
eral, however, we conjecture that this condition is not needed
and there are algorithms that can achieve Õ(

√
T/(1− ρ))

regret for any ρ < 1, but a new algorithm needs to be de-
signed.

While this assumption may suggest that we still re-
quire realizability in a truly asymptotic world, handling
a O(1/

√
log T ) level of misspecification is highly non-

trivial in finite sample setting. For instance, if T is a trillion,
1/
√

log(1e12) ≈ 0.19. This means that for most practi-
cal cases, LinUCB is able to tolerate a constant level of
misspecification under the GAM model.

3.4 LINUCB ALGORITHM

We will focus on analyzing the classical Linear Upper Confi-
dence Bound (LinUCB) algorithm due to [Dani et al., 2008,
Abbasi-yadkori et al., 2011], shown below.

4 MAIN RESULTS

In this section, we show that the classical LinUCB algorithm
[Abbasi-yadkori et al., 2011] works in ρ-gap-adjusted mis-
specified linear bandits and achieves cumulative regret at
the order of Õ(

√
T/(1− ρ)). The following theorem shows

the cumulative regret bound.



Algorithm 1 LinUCB [Abbasi-yadkori et al., 2011]
Input: Predefined sequence βt for t = 1, 2, 3, ...
as in eq. (5); Set λ = σ2/C2

w and Ball0 =
W .

1: for t = 0, 1, 2, ... do
2: Select xt = argmaxx∈X maxw∈Ballt w

⊤x.
3: Observe yt = f0(xt) + ηt.
4: Update

Σt+1 = λI +

t∑
i=0

xix
⊤
i where Σ0 = λI. (3)

5: Update

ŵt+1 = argmin
w

λ∥w∥22 +
t∑

i=0

(w⊤xi − yi)
2
2. (4)

6: Update Ballt+1 = {w|∥w − ŵt+1∥2Σt+1
≤ βt+1}.

7: end for

Theorem 8. Suppose Assumptions 5, 6, and 7 hold. Set

βt = 8σ2

(
1 + d log

(
1 +

tC2
bC

2
w

dσ2

)
+ 2 log

(
π2t2

3δ

))
.

(5)

Then Algorithm 1 guarantees w.p. > 1− δ simultaneously
for all T = 1, 2, ...

RT ≤ F +

√
8(T − 1)βT−1d

(1− ρ)2
log

(
1 +

TC2
bC

2
w

dσ2

)
.

Remark 9. The result shows that LinUCB achieves Õ(
√
T )

cumulative regret bound and thus it is a no-regret algorithm
in ρ-gap-adjusted misspecified linear bandits. In contrast,
LinUCB can only achieve Õ(

√
T + ϵT ) regret in uniformly

misspecified linear bandits. Even if ϵ = Õ(1/
√
log T ), the

resulting regret Õ(T/
√
log T ) is still exponentially worse

than ours.

Proof. By definition of cumulative regret, function range
absolute bound F , and Cauchy-Schwarz inequality,

RT = r0 +

T−1∑
t=1

rt

≤ F +

√√√√(T−1∑
t=1

1

)(
T−1∑
t=1

r2t

)

= F +

√√√√(T − 1)

T−1∑
t=1

r2t .

Observe that the choice of βt is monotonically increasing
in t. Also by Lemma 14, we get that with probability 1− δ,

w∗ ∈ Ballt,∀t = 1, 2, 3, ..., which verifies the condition
to apply Lemma 12 simultaneously for all T = 1, 2, 3, ...,
thereby completing the proof.

4.1 REGRET ANALYSIS

The proof follows the LinUCB analysis closely. The main
innovation is a self-bounding argument that controls the re-
gret due to misspecification by the regret itself. This appears
in Lemma 11 and then again in the proof of Lemma 14.

Before we proceed, let ∆t denote the deviation term of our
linear function from the true function at xt, formally,

∆t = f0(xt)− w⊤
∗ xt, (6)

And our observation model (eq. (1)) becomes

yt = f0(xt) + ηt = w⊤
∗ xt +∆t + ηt. (7)

Moreover, we have the following lemma showing the prop-
erty of deviation term ∆t.

Lemma 10 (Bound of deviation term). ∀t ∈ {0, 1, . . . , T −
1},

|∆t| ≤
ρ

1− ρ
w⊤

∗ (x∗ − xt).

Proof. Recall the definition of deviation term in eq. (6):

∆t = f0(xt)− w⊤
∗ xt.

By Definition 2, ∀t ∈ {0, 1, . . . , T − 1},

−ρ(f∗ − f0(xt)) ≤ ∆t ≤ ρ(f∗ − f0(xt))

−ρ(f∗ − w⊤
∗ xt −∆t) ≤ ∆t ≤ ρ(f∗ − w⊤

∗ xt −∆t)

−ρ(w⊤
∗ x∗ − w⊤

∗ xt −∆t) ≤ ∆t ≤ ρ(w⊤
∗ x∗ − w⊤

∗ xt −∆t)

−ρ

1− ρ
(w⊤

∗ x∗ − w⊤
∗ xt) ≤ ∆t ≤

ρ

1 + ρ
(w⊤

∗ x∗ − w⊤
∗ xt),

where the third line is by Proposition 3 and the proof com-
pletes by taking the absolute value of the lower and upper
bounds.

Next, we prove instantaneous regret bound and its sum of
squared regret version in the following two lemmas:

Lemma 11 (Instantaneous regret bound). Define ut :=
∥xt∥Σ−1

t
, assume w∗ ∈ Ballt then for each t ≥ 1

rt ≤
2
√
βtut

1− ρ
.



Proof. By definition of instantaneous regret,

rt = f∗ − f0(xt)

= w⊤
∗ x∗ − (w⊤

∗ xt +∆(xt))

≤ w⊤
∗ x∗ − w⊤

∗ xt + ρ(f∗ − f0(xt))

= w⊤
∗ x∗ − w⊤

∗ xt + ρrt,

where the inequality is by Definition 2. Therefore, by rear-
ranging the inequality we have

rt ≤
1

1− ρ
(w⊤

∗ x∗ − w⊤
∗ xt) ≤

2
√
βtut

1− ρ
,

where the last inequality is by Lemma 13.

Lemma 12. Assume βt is monotonically nondecreasing and
w∗ ∈ Ballt for all t = 1, ..., T − 1, then

T−1∑
t=1

r2t ≤ 8βT−1d

(1− ρ)2
log

(
1 +

TC2
b

dλ

)
.

Proof. By definition ut =
√
x⊤
t Σ

−1
t xt and Lemma 11,

T−1∑
t=1

r2t ≤
T−1∑
t=1

4

(1− ρ)2
βtu

2
t

≤ 4βT−1

(1− ρ)2

T−1∑
t=1

u2
t

≤ 4βT−1

(1− ρ)2

T−1∑
t=0

u2
t

≤ 8βT−1d

(1− ρ)2
log

(
1 +

TC2
b

dλ

)
,

where the second inequality is by the monotonic increasing
property of βt and the last inequality uses the elliptical
potential lemma (Lemma 16).

Previous two lemmas hold on the following lemma, bound-
ing the gap between f∗ and the linear function value at xt,
shown below.

Lemma 13. Define ut = ∥xt∥Σ−1
t

and assume βt is chosen
such that w∗ ∈ Ballt. Then

w⊤
∗ (x∗ − xt) ≤ 2

√
βtut.

Proof. Let w̃ denote the parameter that achieves
argmaxw∈Ballt w

⊤xt, by the optimality of xt,

w⊤
∗ x∗ − w⊤

∗ xt ≤ w̃⊤xt − w⊤
∗ xt

= (w̃ − ŵt + ŵt − w∗)
⊤xt

≤ ∥w̃ − ŵt∥Σt∥xt∥Σ−1
t

+ ∥ŵt − w∗∥Σt∥xt∥Σ−1
t

≤ 2
√
βtut

where the second inequality applies Holder’s inequality;
the last line uses the definition of Ballt (note that both
w∗, w̃ ∈ Ballt).

4.2 CONFIDENCE ANALYSIS

All analysis in the previous section requires w∗ ∈
Ballt,∀t ∈ [T ]. In this section, we show that our choice
of βt in (5) is valid and w∗ is trapped in the uncertainty set
Ballt with high probability.

Lemma 14 (Feasibility of Ballt). Suppose Assumptions 5,
6, and 7 hold. Set βt as in eq. (5). Then, w.p. > 1− δ,

∥w∗ − ŵt∥2Σt
≤ βt,∀t = 1, 2, ...

Proof. By setting the gradient of objective function in eq.
(4) to be 0, we obtain the closed form solution of eq. (4):

ŵt = Σ−1
t

t−1∑
i=0

yixi.

Therefore,

ŵt − w∗ = −w∗ +Σ−1
t

t−1∑
i=0

xiyi

= −w∗ +Σ−1
t

t−1∑
i=0

xi(x
⊤
i w∗ + ηi +∆i)

= −w∗ +Σ−1
t

(
t−1∑
i=0

xix
⊤
i

)
w∗ +Σ−1

t

t−1∑
i=0

ηixi

+Σ−1
t

t−1∑
i=0

∆ixi, (8)

where the second equation is by eq. (7) and the first two
terms of eq. (8) can be further simplified as

− w∗ +Σ−1
t

(
t−1∑
i=0

xix
⊤
i

)
w∗

= −w∗ +Σ−1
t

(
λI +

t−1∑
i=0

xix
⊤
i − λI

)
w∗

= −w∗ +Σ−1
t Σtw∗ − λΣ−1

t w∗

= −λΣ−1
t w∗,

where the second equation is by definition of Σt (eq. (3)).
Therefore, eq. (8) can be rewritten as

ŵt − w∗ = −λΣ−1
t w∗ +Σ−1

t

t−1∑
i=0

ηixi +Σ−1
t

t−1∑
i=0

∆ixi.



Multiply both sides by Σ
1
2
t and we have

Σ
1
2
t (ŵt − w∗) = −λΣ

− 1
2

t w∗ +Σ
− 1

2
t

t−1∑
i=0

ηixi

+Σ
− 1

2
t

t−1∑
i=0

∆ixi.

Take a square of both sides and apply generalized triangle
inequality, we have

∥ŵt − w∗∥2Σt
≤ 4λ2∥w∗∥2Σ−1

t
+ 4

∥∥∥∥∥
t−1∑
i=0

ηixi

∥∥∥∥∥
2

Σ−1
t

+ 4

∥∥∥∥∥
t−1∑
i=0

∆ixi

∥∥∥∥∥
2

Σ−1
t

. (9)

The remaining task is to bound these three terms separately.
The first term of eq. (9) is bounded as

4λ2∥w∗∥2Σ−1
t

≤ 4λ∥w∗∥22 ≤ 4σ2,

where the first inequality is by definition of Σt and
∥Σ−1

t ∥op ≤ 1/λ and the second inequality is by choice
of λ = σ2/C2

w.

The second term of eq. (9) can be bounded by Lemma 17
and Lemma 20:

4

∥∥∥∥∥
t−1∑
i=0

ηixi

∥∥∥∥∥
2

Σ−1
t

≤ 4σ2 log

(
det(Σt) det(Σ0)

−1

δ2t

)

≤ 4σ2

(
d log

(
1 +

tC2
b

dλ

)
− log δ2t

)
,

where δt is chosen as 3δ/(π2t2) so that the total failure
probabilities over T rounds can always be bounded by δ/2:

T∑
t=1

3δ

π2t2
<

∞∑
t=1

3δ

π2t2
=

3δπ2

6π2
=

δ

2
.

And the third term of eq. (9) can be bounded as

4

∥∥∥∥∥
t−1∑
i=0

∆ixi

∥∥∥∥∥
2

Σ−1
t

= 4

(
t−1∑
i=0

∆ixi

)⊤

Σ−1
t

t−1∑
j=0

∆jxj


= 4

t−1∑
i=0

t−1∑
j=0

∆i∆jxiΣ
−1
t xj

≤ 4

t−1∑
i=0

t−1∑
j=0

|∆i||∆j |∥xi∥Σ−1
t
∥xj∥Σ−1

t
,

where the last line is by taking the absolute value and

Cauchy-Schwarz inequality. Continue the proof and we have

4

t−1∑
i=0

t−1∑
j=0

|∆i||∆j |∥xi∥Σ−1
t
∥xj∥Σ−1

t

= 4

(
t−1∑
i=0

|∆i|∥xi∥Σ−1
t

)t−1∑
j=0

|∆j |∥xj∥Σ−1
t


= 4

(
t−1∑
i=0

|∆i|∥xi∥Σ−1
t

)2

≤ 4

(
t−1∑
i=0

|∆i|2
)(

t−1∑
i=0

∥xj∥2Σ−1
t

)

≤ 4dρ2
t−1∑
i=0

r2i .

where the first inequality is due to Cauchy-Schwarz in-
equality and the second uses the self-bounding properties
|∆i| ≤ ρri from Proposition 3 and Lemma 15.

To put things together, we have shown that w.p. > 1− δ, for
any t ≥ 1,

∥ŵt − w∗∥2Σ−1
t

≤ 4σ2 + 4ρ2d

t−1∑
i=0

r2i

+ 4σ2

(
d log

(
1 +

tC2
b

dλ

)
+ 2 log

(
π2t2

3δ

))
, (10)

where we condition on (10) for the rest of the proof.

Observe that this implies that the feasibility of w∗ in Ballt
can be enforced if we choose βt to be larger than (10). The
feasiblity of w∗ in turn allows us to apply Lemma 11 to
bound the RHS with β0, ..., βt−1. We will use induction to
prove that our choice

βt := 2σ2ιt for t = 1, 2, ...

is valid, where short hand

ιt := 4 + 4

(
d log

(
1 +

tC2
b

dλ

)
+ 2 log

(
π2t2

3δ

))
.

For the base case t = 1, by eq. (10) and the definition of β1

we directly have ∥ŵ1 − w∗∥2Σ−1
1

≤ β1. Assume our choice
of βi is feasible for i = 1, ..., t− 1, then we can write

∥ŵt − w∗∥2Σ−1
t

≤ σ2ιt + 4ρ2d

t−1∑
i=1

βiu
2
i

≤ σ2ιt + 4ρ2dβt−1

t−1∑
i=1

u2
i ,



where the second line is due to non-decreasing property of
βt. Then by Lemma 16 and Assumption 7, we have

∥ŵt − w∗∥2Σ−1
t

≤ σ2ιt + 8ρ2d2βt−1 log

(
1 +

tC2
b

dλ

)
≤ σ2ιt +

1

2
βt−1 ≤ 2σ2ιt = βt, (11)

The critical difference from the standard LinUCB analysis
here is that if βt−1 appears on the LHS of the bound and if
its coefficient is larger, any valid bound for βt will have to
grow exponentially in t. This is where Assumption 7 helps
us. Assumption 7 ensures that the coefficient of βt−1 is
smaller than 1/2, so we can take βt−1 ≤ βt and move βt/2
to the right-hand side.

Proof of previous lemma needs the following two lemmas.

Lemma 15 (Upper bound of
∑t−1

i=0 x
⊤
i Σ

−1
t xi).

t−1∑
i=0

x⊤
i Σ

−1
t xi ≤ d.

Proof. Recall that Σt =
∑t−1

i=0 xix
T
i + λId.

t−1∑
i=0

x⊤
i Σ

−1
t xi =

t−1∑
i=0

tr
[
Σ−1

t xix
T
i

]
= tr

[
Σ−1

t

t−1∑
i=0

xix
T
i

]
= tr

[
Σ−1

t (Σt − λId)
]

= tr [Id]− tr
[
λΣ−1

t

]
≤ d.

The last line follows from the fact that Σ−1
t is positive

semidefinite.

Lemma 16 (Upper bound of
∑t−1

i=0 x
⊤
i Σ

−1
i xi (adapted from

Abbasi-yadkori et al. [2011])).

t−1∑
i=0

x⊤
i Σ

−1
i xi ≤ 2d log

(
1 +

tC2
b

dλ

)
.

Proof. First we prove that ∀i ∈ {0, 1, ..., t − 1}, 0 ≤
x⊤
i Σ

−1
i xi < 1. Recall the definition of Σi and we know

Σ−1
i is a positive semidefinite matrix and thus 0 ≤

x⊤
i Σ

−1
i xi. To prove x⊤

i Σ
−1
i xi < 1, we need to decompose

Σi and write

x⊤
i Σ

−1
i xi = x⊤

i

λI +

i−1∑
j=0

xjx
⊤
j

−1

xi

= x⊤
i

xix
⊤
i − xix

⊤
i + λI +

i−1∑
j=0

xjx
⊤
j

−1

xi.

Let A = −xix
⊤
i + λI +

∑i−1
j=0 xjx

⊤
j and it becomes

x⊤
i Σ

−1
i xi = x⊤

i (xix
⊤
i +A)−1xi.

By Sherman-Morrison lemma (Lemma 18), we have

x⊤
i Σ

−1
i xi = x⊤

i

(
A−1 − A−1xix

⊤
i A

−1

1 + x⊤
i A

−1xi

)
xi

= x⊤
i A

−1xi −
x⊤
i A

−1xix
⊤
i A

−1xi

1 + x⊤
i A

−1xi

=
x⊤
i A

−1xi

1 + x⊤
i A

−1xi
< 1.

Next we use the fact that ∀x ∈ [0, 1), x ≤ 2 log(x+ 1) and
we have

t−1∑
i=0

x⊤
i Σ

−1
i xi ≤

t−1∑
i=0

2 log
(
1 + x⊤

i Σ
−1
i xi

)
≤ 2 log

(
det(Σt−1)

det(Σ0)

)
≤ 2d log

(
1 +

tC2
b

dλ

)
,

where the last two lines are by Lemma 19 and Lemma
20.

5 TECHNICAL LEMMAS

Lemma 17 (Self-normalized bound for vector-valued mar-
tingales (Lemma A.9 of Agarwal et al. [2021])). Let
{ηi}∞i=1 be a real-valued stochastic process with corre-
sponding filtration {Fi}∞i=1 such that ηi is Fi measurable,
E[ηi|Fi−1] = 0, and ηi is conditionally σ-sub-Gaussian
with σ ∈ R+. Let {Xi}∞i=1 be a stochastic process with
Xi ∈ H (some Hilbert space) and Xi being Ft measurable.
Assume that a linear operator Σ : H → H is positive def-
inite, i.e., x⊤Σx > 0 for any x ∈ H. For any t, define the
linear operator Σt = Σ0+

∑t
i=1 XiX

⊤
i (here xx⊤ denotes

outer-product in H). With probability at least 1−δ, we have
for all t ≥ 1:∥∥∥∥∥

t∑
i=1

Xiηi

∥∥∥∥∥
2

Σ−1
t

≤ σ2 log

(
det(Σt) det(Σ0)

−1

δ2

)
.

Lemma 18 (Sherman-Morrison lemma [Sherman and Mor-
rison, 1950]). Let A denote a matrix and b, c denote two
vectors. Then

(A+ bc⊤)−1 = A−1 − A−1bc⊤A−1

1 + c⊤A−1b
.

Lemma 19 (Lemma 6.10 of Agarwal et al. [2021]). Define

ut =
√

x⊤
t Σ

−1
t xt and we have

detΣT = detΣ0

T−1∏
t=0

(1 + u2
t ).



Lemma 20 (Potential function bound (Lemma 6.11 of Agar-
wal et al. [2021])). For any sequence x0, ..., xT−1 such that
for t < T, ∥xt∥2 ≤ Cb, we have

log

(
detΣT−1

detΣ0

)
= log det

(
I +

1

λ

T−1∑
t=0

xtx
⊤
t

)

≤ d log

(
1 +

TC2
b

dλ

)
.

6 CONCLUSION

We study linear bandits with the underlying reward function
being non-linear, which falls into the misspecified bandit
framework. Existing work on misspecified bandit usually
assumes uniform misspecification where the ℓ∞ distance
between the best-in-class function and the true function is
upper bounded by the misspecification parameter ϵ. Exist-
ing lower bound shows that the Ω̃(ϵT ) term is unavoidable
where T is the time horizon, thus the regret bound is always
linear. However, in solving optimization problems, one only
cares about the approximation error near the global opti-
mal point and approximation error is allowed to be large
in highly suboptimal regions. In this paper, we capture this
intuition and define a natural model of misspecification,
called ρ-gap-adjusted misspecificaiton, which only requires
the approximation error at each input x to be proportional
to the suboptimality gap at x with ρ being the proportion
parameter.

Previous work found that classical LinUCB algorithm is
not robust in ϵ-uniform misspecified linear bandit when ϵ
is large. However, we show that LinUCB is automatically
robust against such gap-adjusted misspecification. Under
mild conditions, e.g., ρ ≤ O(1/

√
log T ), we prove that

it achieves the near-optimal Õ(
√
T ) regret for problems

that the best-known regret is almost linear. Also, LinUCB
doesn’t need the knowledge of ρ to run. However, if the
upper bound of ρ is revealed to LinUCB, the βt term can
be carefully chosen according to eq. (11). Our technical
novelty lies in a new self-bounding argument that bounds
part of the regret due to misspecification by the regret itself,
which can be of independent interest in more settings.

We believe our analysis for LinUCB is tight and the require-
ment that ρ = O(1/

√
log T ) is essential, but we conjecture

that there is a different algorithm that could handle constant
ρ or even when ρ approaches 1 at a rate of O(1/

√
T ). We

leave the resolution to this conjecture as future work. For
completeness, we include a simulation section in Appendix
4.

More broadly, our paper opens a brand new door for re-
search in model misspecification, including misspecified
linear bandits, misspecified kernelized bandits, and even
reinforcement learning with misspecified function approxi-
mation. Moreover, we hope our paper make people rethink

about the relationship between function optimization and
function approximation. In the future, much more can be
done. For example, we can design a new no-regret algorithm
that works under gap-adjusted misspecification framework
where ρ is a constant, and study ρ-gap-adjusted misspecified
Gaussian process bandit optimization.
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