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Abstract

Considerable focus has been directed towards ensuring that reinforcement learning1

(RL) policies are robust to adversarial attacks during test time. While current2

approaches are effective against strong attacks for potential worst-case scenarios,3

these methods often compromise performance in the absence of attacks or the4

presence of only weak attacks. To address this, we study policy robustness under5

the well-accepted state-adversarial attack model, extending our focus beyond6

merely worst-case attacks. We refine the baseline policy class Π prior to test time,7

aiming for efficient adaptation within a compact, finite policy class Π̃, which can8

resort to an adversarial bandit subroutine. We then propose a novel training-time9

algorithm to iteratively discover non-dominated policies, forming a near-optimal10

and minimal Π̃. Empirical validation on the Mujoco corroborates the superiority of11

our approach in terms of natural and robust performance, as well as adaptability to12

various attack scenarios.13

1 Introduction14

With an increasing surge of successful applications powered by reinforcement learning (RL) on15

robotics (Levine et al., 2016; Ibarz et al., 2021), creative generation (OpenAI, 2023), etc, its safety16

issue has drawn more and more attention. There has been a series of works devoted to both the attack17

and defense aspects of RL (Kos & Song, 2017; Huang et al., 2017; Pinto et al., 2017; Lin et al., 2019b;18

Tessler et al., 2019; Gleave et al., 2019). Existing approaches aimed at principled defense often19

prioritize robustness against worst-case attacks (Tessler et al., 2019; Russo & Proutiere, 2019; Zhang20

et al., 2021; Sun et al., 2021; Liang et al., 2022), focusing on the optimal attacker policy within a21

potentially constrained attacker policy space. Such a focus can lead to suboptimal performance when22

RL policies are subjected to no or weak attacks during test time. Given the practical considerations23

and the prevalence of non-worst-case attacks, we pose and endeavor to answer the following question:24

Is it possible to develop a comprehensive framework that enhances the performance of the victim25

against non-worst-case attacks, while maintaining robustness against worst-case scenarios?26

To address these challenges, we introduce PROTECTED, which stands for pre-training non-dominated27

policies towards online adaptation. Our contributions encompass both training and online adaptation28

phases under the prevailing state-adversarial attack model:29

(1) Online adaptation. We formalize the problem of online adaptation and introduce regret min-30

imization as the objective. We also highlight the inherent difficulty in achieving sublinear regret,31

advocating for a refined policy class Π̃ for online adaptation. (2) Non-dominated policy discovery32

during training. For training, we characterize the optimality of Π̃ and propose an algorithm for33

iteratively discovering non-dominated policies. This results in a Π̃ that is both optimal and efficient34
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for online adaptation, subject to certain conditions. Meanwhile, we also reveal the fundamental35

hardness of our problem that there are problem instances requiring a relatively large Π̃ to achieve36

near-optimality. (3) Empirical investigations. Through empirical studies on Mujoco, we validate the37

effectiveness of PROTECTED, demonstrating both improved natural performance and robustness, as38

well as adaptability against unknown and dynamic attacks.39

By investigating defenses against attacks beyond worst cases, we hope this work paves the way for40

the development of more practical defense mechanisms against a broader range of attack scenarios.41

2 Preliminaries42

MDP and attacker model. We define a Markov decision process (MDP) asM = (S,A,T, µ1, r,H),43

where S is the state space, A is the action space, T : S ×A → ∆(S) denotes the transition kernel,44

µ1 ∈ ∆(S) is the initial state distribution, rh : S × A → [0, 1] is the reward function for each45

h ∈ [H], and γ ∈ [0, 1) is the discounted factor. Given an MDPM, at each step h, the attacker sees46

the true state sh ∈ S and selects a perturbed state ŝh ∈ S in a potentially adversarial way. Then47

the victim only sees the perturbed state ŝh instead of the true sh and takes the corresponding action48

ah ∈ A. The victim tries to maximize its expected return while the attacker wants to minimize it.49

Policy and value function. We define the deterministic attacker policy ν = {νh}h∈[H] with50

νh : S → S for any h ∈ [H], and denote the corresponding policy space as Vdet. We also consider51

constraints on the attacker, where for any s, the attacker can only perturb s to some ŝ ∈ B(s) ⊆ S,52

e.g., B(s) can be the lp ball. We allow randomized policies for the attacker and the policy space is53

denoted as V := ∆(Vdet). For any ν ∈ V , we adopt the representation that ν is conditioned on a54

random seed z ∈ Z sampled at the beginning of each episode from a fixed probability distribution55

P(z). For the victim, we denote history τh at time h as {ŝ1, a1, ŝ2, a2, · · · , ŝh} and T as the space56

for all possible history at all steps. We consider history-dependent victim policy π : T → ∆(A) and57

Π as the corresponding policy space. Finally, we use Πdet to denote deterministic victim policies.58

Given the victim policy π and attacker policy ν, the value function for the victim is defined as:59

J(π, ν) = EzEsh∼T(· | sh−1,ah−1),ŝh∼νh(· | sh,z),ah∼π(· | τh)[
∑H

h=1 rh(sh, ah)].60

3 The PROTECTED framework61

3.1 Online adaptation for adaptive defenses62

Existing research generally focuses on worst-case performance. However, this approach can be overly63

cautious, compromising performance under no or weak attacks (Zhang et al., 2021; Sun et al., 2021).64

To address this limitation, we propose to consider a new metric for test-time performance:65

Definition 3.1 (Regret). Given T total episodes at test time, at the start of each episode t, the victim66

selects a policy πt from Π based on reward feedback from previous episodes, and the attacker selects67

an arbitrary policy νt ∈ V . The (expected) regret is defined as68

Regret(T ) = max
π∈Π

T∑
t=1

(
J(π, νt)− J(πt, νt)

)
. (3.1)

Therefore, instead of employing a static victim policy, π⋆, designed to minimize exploitability, we69

propose adaptively selecting {πt}t∈[T ] during test time, based on online reward feedback, to minimize70

regret. Once the adaptively selected victims, {πt}t∈[T ], ensure low regret, the performance against71

either strong or weak (or even no) attacks is guaranteed to be near-optimal.72

Unfortunately, it turns out that there are no efficient algorithms that can always guarantee sublinear73

regret. We leave the the detail about hardness to Proposition B.2. It informs us to focus on online74

adaptation within a smaller, finite policy class Π̃, rather than the broader class Π. By relaxing the75

regret definition to ensure the baseline policy π to come from a smaller and finite policy class Π̃ ⊆ Π,76

achieving sublinear regret becomes possible. This can be done by treating each policy in Π̃ as one77

arm and running an adversarial bandit algorithm, e.g., EXP3 (Bubeck et al., 2012). Given such78

a refined policy class Π̃, we can perform online adaptation as in Algorithm 1, which maintains a79
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meta-policy ωt ∈ ∆(Π̃) during online adaptation and adjusts the weight of each policy based on the80

online reward feedback. The algorithm is proved to ensure low regret in Proposition B.4.81
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Figure 1: Diagram of our PROTECTED framework. During training, we iteratively discover
non-dominated policies, forming a finite and compact policy class Π̃. The blue area delineates the
reward landscape for victims against attackersand the orange area represents the space of policies
that are “dominated” by the discovered policy class Π̃. We refer to Appendix D for more detailed
explanations. During test time, online adaptation mechanisms are activated to adjust the weight of
each policy in response to various attack scenarios adaptively.

3.2 Pre-training for non-dominated policies via iterative discovery82

We show by Proposition B.7 the existence of an optimal Π̃ with finite cardinality, enabling the83

execution of Algorithm 1. However, even such an optimal Π̃ can encompass many redundant policies;84

removing these redundant policies from Π̃ does not impact its optimality. To characterize such85

redundant policies, we define dominated policies as follows.86

Definition 3.2 (Dominated and Non-dominated Policy). Given δ ≥ 0 and Π̃. We define (δ, Π̃)-87

dominated policy π ̸∈ Π̃ as that there exists some ω ∈ ∆(Π̃), for any ν ∈ V , J(π, ν) ≤88

Eπ′∼ω[J(π
′, ν)] + δ. For δ = 0, we also say π is dominated by Π̃. If π is not a (0, Π̃ \ {π})-89

dominated policy, we say π is a non-dominated policy (w.r.t Π̃).90

It’s clear that for a (δ, Π̃)-dominated policy π, including π in Π̃ allows the optimality gap to decrease91

by at most δ. With this principle, a straightforward algorithm to construct a small and optimal policy92

class is to start from an optimal Π̃ (potentially with redundant policies), i.e., Gap(Π̃,Π) = 0, and93

then enumerate all π ∈ Π̃ and remove those dominated to reduce its cardinality. But the overhead of94

enumerating all π ∈ Π̃ can be unacceptable. Consequently, a natural and more efficient approach is to95

construct Π̃ from scratch by iteratively expanding Π̃. At each iteration k, given Π̃k = {π1, · · · , πk}96

already discovered, we solve the following optimization problem:97

πk+1 ∈ argmax
π∈Π

min
ω∈∆({π1,··· ,πk})

max
ν∈V

(J(π, ν)− Eπ′∼ω[J(π
′, ν)]) , (3.2)

fk+1 = max
π∈Π

min
ω∈∆({π1,··· ,πk})

max
ν∈V

(J(π, ν)− Eπ′∼ω[J(π
′, ν)]) .

Theorem B.8 shows that the iterative process enjoys guarantees for both optimality and efficiency.98

Furthermore, we develop a practical algorithm to solve (3.2) by leveraging weak duality and refer99

more details to Appendix B.2.100

4 Experiments101

We implement our framework in four Mujoco environments with continuous action spaces and102

compare our methods with several state-of-the-art robust training methods including ATLA-PPO103

(Zhang et al., 2021), PA-ATLA-PPO (Sun et al., 2021), and WocaR-PPO (Liang et al., 2022). WocaR-104

PPO is reported to be the most robust in most environments. We defer the comparison with other105

baselines, along with additional implementation and hyperparameter details to the Appendix.106

We showcase improved performance against a spectrum of attacks, including the natural rewards107

without any attacks, random perturbations, robust SARSA (RS) (Zhang et al., 2020a), SA-RL (Zhang108
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Environment Model Natural
Reward

Random RS SA-RL PA-AD

Hopper
state-dim: 11

ϵ=0.075

ATLA-PPO 3291 ± 600 3165 ± 576 2244 ± 618 1772 ± 802 1232 ± 350
PA-ATLA-PPO 3449 ± 237 3325 ± 239 3002 ± 329 1529 ± 284 2521 ± 325

WocaR-PPO 3616 ± 99 3633 ± 30 3277 ± 159 2390 ± 145 2579 ± 229
Ours 3652 ± 108 3653 ± 57 3332 ± 713 2526 ± 682 2896 ± 723

Walker2d
state-dim: 17

ϵ=0.05

ATLA-PPO 3842 ± 475 3927 ± 368 3239 ± 294 3663 ± 707 1224 ± 770
PA-ATLA-PPO 4178 ± 529 4129 ± 78 3966 ± 307 3450 ± 178 2248 ± 131

WocaR-PPO 4156 ± 495 4244 ± 157 4093 ± 138 3770 ± 196 2722 ± 173
Ours 6319 ± 31 6309 ± 36 5916 ± 790 6085 ± 620 5803 ± 857

Halfcheetah
state-dim: 17

ϵ=0.15

ATLA-PPO 6157 ± 852 6164 ± 603 4806 ± 392 5058 ± 418 2576 ± 548
PA-ATLA-PPO 6289 ± 342 6215 ± 346 5226 ± 114 4872 ± 379 3840 ± 273

WocaR-PPO 6032 ± 68 5969 ± 149 5319 ± 220 5365 ± 54 4269 ± 172
Ours 7095 ± 88 6297 ± 471 5457 ± 385 5089 ± 86 4411 ± 718

Ant
state-dim: 111

ϵ=0.15

ATLA-PPO 5359 ± 153 5366 ± 104 4136 ± 149 3765 ± 101 220 ± 338
PA-ATLA-PPO 5469 ± 106 5496 ± 158 4124 ± 291 3694 ± 188 2986 ± 364

WocaR-PPO 5596 ± 225 5558 ± 241 4339 ± 160 3822 ± 185 3164 ± 163
Ours 5769 ± 290 5630 ± 146 4683 ± 561 4524 ± 79 4312 ± 281

Table 1: Average episode rewards ± standard deviation over 50 episodes with three baselines on
Hopper, Walker2d, Halfcheetah, and Ant. ϵ stands for the attack budget chosen to be the same as
related works. We use |Π̃| = 5 for ours and discuss its choice later. Natural reward and rewards under
four types of attacks are reported. Under each column corresponding to an evaluation metric, we bold
the best results. And the row for the most robust agent is highlighted as gray .
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(a) Attack Period T = 1000
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(b) Attack Period T = 200

0 400 800 1200 1600 2000
Testing rounds

2750

3250

3750

4250

4750

5250

A
ve

ra
ge

ac
cu

m
ul

at
iv

e
re

w
ar

ds

ours
WocaR
PA-ATLA

(c) Attack Probability p = 0.4
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(d) Attack Probability p = 0.8

Figure 2: Time averaged accumulative rewards during online adaptation against periodic and prob-
abilistic switching attacks on Ant. The shaded area indicates PA-AD attacks are active while the
unshaded area indicates no attacks.

et al., 2021), and PA-AD, the currently strongest attack. As observed in Table 1, our methods yield109

considerably higher natural rewards and consistently enhanced robustness against a spectrum110

of attacks. To further show the improved performance against non-worst-case attacks, we report111

the robustness under random attacks with various intensities in §F.4, where our methods are112

consistently better. We also illustrate the adaptation process and refer the results to Appendix F.1.113

In addition to the static attack settings, we examine scenarios where the attacker can exhibit dynamic114

behavior. To model such scenarios, we let attackers switch between no attacks and PA-AD attacks in115

two fashions, periodic attacks and probabilistic switching attacks. They are introduced in detail in116

F.2. The results are shown in Figure 2, illustrating that the average cumulative reward, or conversely,117

the negative of the regret, consistently outperforms the baselines.118

5 Concluding remarks and limitations119

In this paper, we have developed a general framework to improve victim performance against attacks120

beyond worst-case scenarios. There are two phases: pre-training of non-dominated policies and121

online adaptation via no-regret learning. One limitation is the potentially high overhead during122

training (approximately 2× running time compared with Sun et al. (2021); Liang et al. (2022)), as123

highlighted by Theorem B.9. Additionally, identifying natural conditions to circumvent the hardness124

results outlined in Proposition B.2 and Theorem B.9, such as Lipschitz transition dynamics and125

rewards, is not fully addressed and remains an important topic for future works.126
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248

Appendix for “Beyond Worst-case Attacks: Robust RL with249

Adaptive Defense via Non-dominated Policies”250

A Related works251

(State-)adversarial attacks on deep RL. Early research by Huang et al. (2017) exposed the vulnera-252

bilities of neural policies by adapting adversarial attacks from supervised learning to RL. Lin et al.253

(2019b) focused on efficient attacks, perturbing agents only at specific time steps. Following these254

works, there have been advancements in stronger pixel-based attacks (Qiaoben et al., 2021; Pattanaik255

et al., 2017; Oikarinen et al., 2020). Zhang et al. (2020a) introduced the theoretical framework256

SA-MDP for state adversarial perturbations and suggested a corresponding regularizer for more257

robust RL policies. Building upon this, Sun et al. (2021) refined the framework to PA-MDP for258

improved efficiency. Liang et al. (2022) further improves the efficiency of defense by introducing259

the worse-case Q function, avoiding the alternating training. Those works as mentioned before aims260

at improving the robustness against worst-case attacks. Havens et al. (2018) also deals with the261

adversarial attacks for RL in an online setting, where it focuses on how to ensure robustness in the262

presence of attackers during RL training time.263

Online learning and meta-learning. During the test phase, our framework equips the victim with264

the capability to adjust its policy in response to an unknown or dynamically changing attacker. This is265

achieved through the utilization of feedback from previous interactions. In the literature, two distinct266

paradigms have been advanced to examine how an agent can leverage historical tasks or experiences267

to inform future learning endeavors. The first paradigm, known as meta-learning (Schmidhuber,268

1987; Vinyals et al., 2016; Finn et al., 2017), conceptualizes this as the task of “learning to learn.”269

In meta-learning, prior experiences contribute to the formulation of a prior distribution over model270

parameters or instruct the optimization of a learning procedure. Typically, in this framework, a271

collection of meta-training tasks is made available together upfront. There are also works extending272

meta-learning to deal with the streaming of sequential tasks (Finn et al., 2019), which however273

requires a task-specific update subroutine. The second paradigm falls under the rubric of online274

learning (Hannan, 1957; Cesa-Bianchi & Lugosi, 2006), wherein tasks—or in the context of our275

paper, attackers—are disclosed to the victim sequentially via bandit feedback. Extensive literature has276

been devoted to the subject of online learning, targeting the minimization of regret in either stochastic277

settings (Lattimore & Szepesvári, 2020; Auer, 2002; Russo & Van Roy, 2016) or adversarial settings278

(Auer et al., 2002; Neu, 2015; Jin et al., 2020). Our work primarily aligns with the latter paradigm.279

However, existing methodologies within this domain generally permit only reward functions to280

change arbitrarily, which is called the adversarial bandit problem or adversarial MDP problem. In281

contrast, our scenario permits the attacker to introduce partial observability for the victim, thereby282

also influencing the transition dynamics from the perspective of the victim.283

Diverse multi-policy RL. There are also a bunch of related works dedicated to developing RL284

policies that can generalize to unknown test environments. The main idea is to encourage the diversity285

of learned policies (Eysenbach et al., 2018; Kumar et al., 2020), by ensuring good coverage in the286

state occupancy space for the training environment. However, the robustness of such policies against287

malicious, and even adaptive attackers during test time remains an open question. We posit that288

incorporating the possibility of adaptive test-time attackers into the training phase is critical for289

developing robust policies. Meanwhile, Zahavy et al. (2021) considers constructing a diverse set of290

policies through a robustness objective, which targets the worst-case reward.291

Multi-objective RL and optimization. In the training phase, the problem we investigate is conceptu-292

ally similar to multi-objective RL, wherein the objective functions correspond to the victim’s rewards293

against a range of potential attackers. Extant literature primarily adopts one of two approaches to294

this challenge (Roijers et al., 2013). The first approach converts the multi-objective problem into a295

single-objective optimization task through a variety of techniques, subsequently employing traditional296

algorithms to identify solutions (Kim & de Weck, 2006; Konak et al., 2006; Nakayama et al., 2009).297

However, such methods inherently yield an average policy over the preference space and lack the298

flexibility to optimize for individualized preference vectors. In contrast, our methodology during the299

training phase aligns more closely with the second category of approaches, which seeks an optimal300
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policy set that spans the entire domain of feasible preferences (Natarajan & Tadepalli, 2005; Barrett301

& Narayanan, 2008; Mossalam et al., 2016; Yang et al., 2019). Unfortunately, existing techniques are302

not well-suited to address the unique complexities of our problem. Specifically, conventional methods303

are predicated on the assumption that, in multi-objective RL, distinct objectives only alter the reward304

function of the MDP, while the transition dynamics remain invariant. This structure facilitates the305

use of established algorithms such as value iteration or Q-learning. In the context of our problem, as306

mentioned before, this assumption does not hold, as the attacker significantly influences the transition307

dynamics from the victim’s standpoint.308

Other works related to adversarial RL. Although our paper mainly studies the popular attack309

model of adversarial state perturbations, the vulnerability of RL is also studied under other different310

threat models. Adversarial action attacks are developed separately from state attacks including Pan311

et al. (2019); Tessler et al. (2019); Tan et al. (2020); Lee et al. (2021). Poisoning (Behzadan & Munir,312

2017; Huang & Zhu, 2019; Sun et al., 2020; Zhang et al., 2020b; Rakhsha et al., 2020) is another313

type of adversarial attack that manipulates the training data, different from the test-time attacks that314

deprave a well-trained policy.315

B Details of the PROTECTED framework316

B.1 Online adaptation for adaptive defenses317

Before delving into our approach of online adaptation for adaptive defenses, it is essential to review318

the limitations of existing works concerning the trade-off between natural rewards and robustness.319

Then we also discuss the necessity of an adaptive defending policy. Existing research generally320

focuses on worst-case performance, formally characterized as follows:321

Definition B.1 (Exploitability). Given a victim policy π, exploitability is defined by:322

Expl(π) = max
π′∈Π

min
ν∈V

J(π′, ν)−min
ν∈V

J(π, ν).

Existing works aim to obtain a policy π⋆ that minimizes exploitability, i.e., π⋆ ∈ argminπ Expl(π),323

during the training phase to defend against worst-case or strongest attacks. Such a trained policy, π⋆,324

is then deployed universally at test time.325

Proposition B.2. Fix α ∈ [0, 1). There does not exist an algorithm that produces a sequence of326

victim policies {πt}t∈[T ] such that Regret(T ) = poly(S,A,H)Tα for any {vt}t∈[T ].327

Remark B.3. On the downside, Proposition B.2 remains valid even when the attacker’s actions are328

constrained such that |B(s)| = 2 and s ∈ B(s) for each s ∈ S. However, there is a silver lining: in329

the hard instance we constructed, the attacker must perturb a state s to another state ŝ such that330

both the transition dynamics and the reward function differ greatly between s and ŝ. Therefore, if331

real-world scenarios impose constraints – such as ∥s− ŝ∥ ≤ ϵ for some ϵ in continuous control332

tasks, and if the transition dynamics and reward function are locally Lipschitz – Proposition B.2333

may not apply. Further investigation of this avenue is left for future work.334

The detailed algorithm for online adaptation is presented as follows.335

Algorithm 1 Online adaptation with refined policy class

Input: Π̃, T , η
Initialize ω1 ∈ ∆(Π̃) to be the uniformly random distribution.
for t ∈ [T ] do

Draw πt ∼ ωt. // sampling randomly
Execute πt in the underlying environment and observe the total reward Rt(πt) :=

∑H
h=1 rh.

for π ∈ Π̃ do
ωt+1(π)← eη

∑t
s=1 R̂s(π)∑

π′∈Π̃ eη
∑t

s=1 R̂s(π′) , where R̂s(π) = Rs(π)
ωs(π)1π=πs for s ∈ [t].

end for
end for

Formally, such an algorithm ensures the guarantees for a relaxed definition of regret, following the336

analysis of EXP3.337
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Proposition B.4 (Bubeck et al. (2012)). Given Π̃ ⊆ Π with |Π̃| < ∞, we define R̃egret(T ) =338

maxπ∈Π̃

∑T
t=1 (J(π, ν

t)− J(πt, νt)) for any T ∈ N, {πt}t∈[T ], {νt}t∈[T ]. Algorithm 1 for produc-339

ing {πt}t∈[T ] enjoys the following guarantees R̃egret(T )/T ≤ 2H

√
|Π̃| log |Π̃|

T .340

Finally, we remark that the adaptation method used here is computationally efficient as it only341

maintains and updates the vector ωt ∈ R|Π̃|, rather than fine-tuning a policy network (or its last layer).342

This makes it more suitable for scenarios where computational budgets are limited at test time.343

B.2 Pre-training for non-dominated policies via iterative discovery344

At test time, the relaxed definition, R̃egret(T ), with respect to the refined policy class Π̃ can be345

efficiently minimized. However, the gap between R̃egret(T ) and Regret(T ) can be significant346

when policies in Π̃ are suboptimal, meaning that policies from Π \ Π̃ could provide much higher347

rewards against some attacks. Consequently, we introduce the following definition to characterize the348

optimality of Π̃.349

Definition B.5. For given policy class Π̃, we define the optimality gap between Π̃ and Π as350

Gap(Π̃,Π) := max
ν∈V

(
max
π∈Π

J(π, ν)−max
π∈Π̃

J(π′, ν)

)
.

This definition implies that if we have Gap(Π̃,Π) ≤ ϵ, then whatever policy the attacker uses, the351

optimal policy in Π̃ is also ϵ-optimal in Π. With this quantity, we can relate the two notions of regret.352

Proposition B.6. Given Π̃, it holds that for any T ∈ N, {πt}t∈[T ], and {νt}t∈[T ]353

Regret(T )

T
≤ R̃egret(T )

T
+Gap(Π̃,Π).

Furthermore, if |Π̃| <∞, Algorithm 1 satisfies Regret(T )/T ≤ 2H

√
|Π̃| log |Π̃|

T +Gap(Π̃,Π).354

According to this proposition, there is a clear trade-off between optimality, i.e., Gap(Π̃,Π), and355

efficiency, i.e., |Π̃|. A natural question arises: Can we achieve a small Gap(Π̃,Π) while Π̃ is finite?356

Indeed, we answer this in the affirmative.357

Proposition B.7. There exists Π̃ such that Gap(Π̃,Π) = 0 while |Π̃| <∞.358

The following theorem shows that such an iterative process in (3.2) enjoys guarantees for both359

optimality and efficiency360

Theorem B.8. For any δ > 0, there exists K ∈ N such that fK ≤ δ. Correspondingly, the policy361

class Π̃K := {π1, · · · , πK} satisfies that Gap(Π̃K ,Π) ≤ δ. Furthermore, we have the regret362

guarantee that Regret(T )/T ≤ 2H
√

K logK
T + δ for Algorithm 1.363

Moreover, let K⋆ = minGap(Π̃,Π)=0 |Π̃| and Kfin = minK∈N:fK=0 K, as long as our objective (3.2)364

admits a unique solution at every iteration, our algorithm finishes within at most K⋆ + 1 iterations,365

i.e., we have Kfin ≤ K⋆ + 1.366

Implications. The first part of Theorem B.8 implies that we can simply set an error threshold δ > 0367

and sequentially solve Equation 3.2 until the optimal value is less than or equal to δ. Then, Theorem368

B.8 predicts this process will always finish in finite iterations, thus leading to a finite Π̃ for any given369

δ. Once it converges, it is guaranteed that Gap(Π̃,Π) ≤ δ. In addition, the second part of Theorem370

B.8 proves that, under mild conditions, once the algorithm discovers a Π̃ such that the optimality gap371

is 0, Π̃ is guaranteed to be the smallest one.372
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A Practical Algorithm. To solve the objective 3.2 and develop a practical algorithm, we leverage373

the fact by weak duality that374

max
π∈Π

min
ω∈∆({π1,··· ,πk})

max
ν∈V

(J(π, ν)− Eπ′∼ω[J(π
′, ν)])

≥ max
π∈Π

max
ν∈V

min
ω∈∆({π1,··· ,πk})

(J(π, ν)− Eπ′∼ω[J(π
′, ν)]) .

Therefore, we propose to optimize RHS, a lower bound for the original problem, bringing two375

benefits: (1) the maximization for π and ν can be merged and updated together (2) the inner376

minimization problem is tractable. To solve RHS, we follow the common practice for nonconcave-377

convex optimization problems, repeating the process of first solving the inner problem exactly, and378

then running gradient ascent for the outer max problem (Lin et al., 2020). The detailed algorithm is379

presented in Algorithm 2. Notably, the attacker ν is not modeled as the worst-case to minimize380

the victim rewards anymore. For a more intuitive illustration, we refer to the left part of Figure 1.381

Algorithm 2 Iterative discovery of non-dominated policy class

Input: δ, η1, η2,K,N

Initialize Π̃1 ← {π1}, k ← 1, fk ←∞
for k = 1, · · · ,K iterations do

Initialize πk+1,0, ν0, t← 0, and fk+1 ← 0
for t = 1, · · · , N iterations do

k⋆ ← argmaxk′∈[k] J(π
k′
, νt) ▷ estimating accumulative rewards with samples

νt+1 ← νt + η1∇ν(J(π
k+1,t, νt)− J(πk⋆

, νt)) ▷ updating with SA-RL (Zhang et al.,
2021) or PA-AD (Sun et al., 2021)

πk+1,t+1 ← πk+1,t + η2∇πJ(π
k+1,t, νt) ▷ updating with PPO

fk+1 ← J(πk+1,t+1, νt+1)− J(πk⋆

, νt+1)
t← t+ 1

end for
πk+1 ← πk+1,t

Π̃k+1 ← Π̃k ∪ {πk+1}
end for

To deepen the understanding of our problem and algorithm, we provide a negative result regarding |Π̃|.382

In Theorem B.8, we have not shown how Kfin explicitly depends on δ or other problem parameters383

(S, A, H). Indeed, this is not a caveat of our algorithm or analysis. We point out in the following384

theorem that, for some problems, Π̃ must be large to be near-optimal.385

Theorem B.9. There exists an MDP with S = 2, A = 2 such that for any |Π̃| < 2H , we must have386

Gap(Π̃,Π) ≥ 1
4 .387

Nevertheless, this does not mean the problem is always intractable, as for concrete applications, it388

is possible that fk can still converge to a small value quickly as k increases. Therefore, we shall389

investigate how the cardinality of Π̃ affects empirical performance on standard benchmarks. We390

remark that Proposition B.2 and Theorem B.9 together reveal the fundamental hardness of our391

problem setting for test time and training time, respectively.392

How to attack adaptive victim policies optimally? Although our primary focus is on developing393

robust victims against attacks beyond worst-case scenarios, we also explore how to attack an adaptive394

victim optimally. Existing works typically formulate this as a single-agent RL problem, as the395

attacker usually only needs to target a single static victim in a stationary environment. However, once396

the victim can adapt, the attack problem becomes more challenging. Since our focus is on developing397

robust victims, we consider a white-box attack setup, where the attacker is aware that the victim will398

be adaptive and will use the refined policy class Π̃ at test time. Consequently, its attack objective can399

be framed as400

min
ν

max
ω∈∆(Π̃)

Eπ∼ωJ(π, ν),

accounting for the fact that the victim can adaptively identify its optimal choice from Π̃ in response401

to any arbitrary static attacker ν, as per Proposition B.4. While this objective might seem formidable402
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to solve, it turns out that existing works have already laid the groundwork for this problem. In403

this context, the inner problem can be solved tractably, and the outer minimization problem can be404

addressed by employing existing RL-based methods, such as SA-RL (Zhang et al., 2021) and PA-AD405

(Sun et al., 2021). Consequently, we can repeat the process of solving the inner maximization first406

and then applying a gradient update for the outer minimization problem (Lin et al., 2019a).407

C Theoretical analysis408

C.1 Supporting lemmas409

Here we prove the following series of lemmas for the proof of our propositions and theorems. From410

now on, for any ω ∈ ∆(Π) and ν, we use the shorthand notation J(ω, ν) := Eπ∼ωJ(π, ν).411

Lemma C.1. For any π ∈ Π, there always exists ω ∈ ∆(Πdet) such that J(π, ν) = J(ω, ν) for any412

ν ∈ V .413

Proof. Consider any trajectory {sh, ŝh, ah}h∈[H] and random seed z ∈ Z , we compute its probability414

under policy π ∈ Π and ν ∈ V as follows415

Pπ,ν({sh, ŝh, ah}h∈[H], z)

= P(z)µ1(s1)ν1(ŝ1 | s1, z)π(a1 | ŝ1)
H∏

h=2

T(sh | sh−1, ah−1)νh(ŝh | sh, z)π(ah | ŝ1:h, a1:h−1)

=

[
π(a1 | ŝ1)

H∏
h=2

π(ah | ŝ1:h, a1:h−1)

]
P(z)µ1(s1)ν1(ŝ1 | s1, z)

H∏
h=2

T(sh | sh−1, ah−1)νh(ŝh | sh, z).

Now we are ready to construct the mixture of policy ω ∈ ∆(Πdet). For any π′ ∈ Πdet, we define its416

probability in the mixture as417

ω(π′) :=
∏

h′∈[H]

∏
{ŝ′h,a

′
h}h∈[h′]

π(π′(ŝ′1:h, a
′
1:h−1) | ŝ′1:h, a′1:h−1). (C.1)

Now we can compute418

Pω,ν({sh, ŝh, ah}h∈[H], z) = Eπ′∼ωPπ′,ν({sh, ŝh, ah}h∈[H], z)

=

[
P(z)µ1(s1)ν1(ŝ1 | s1, z)

H∏
h=2

T(sh | sh−1, ah−1)νh(ŝh | sh, z)
]
Eπ′∼ω1

[
a1 = π′(ŝ1), {ah = π′(ŝ1:h, a1:h−1)}Hh=2

]
=

[
P(z)µ1(s1)ν1(ŝ1 | s1, z)

H∏
h=2

T(sh | sh−1, ah−1)νh(ŝh | sh, z)
]
P(a1 = π′(ŝ1), {ah = π′(ŝ1:h, a1:h−1)}Hh=2)

=

[
P(z)µ1(s1)ν(ŝ1 | s1, z)

H∏
h=2

T(sh | sh−1, ah−1)νh(ŝh | sh, z)
][

π(a1 | ŝ1)
H∏

h=2

π(ah | ŝ1:h, a1:h−1)

]
,

where the last step comes from the construction of ω in Equation C.1 by marginalization. Therefore,419

we conclude that Pπ,ν({sh, ŝh, ah}h∈[H], z) = Pω,ν({sh, ŝh, ah}h∈[H], z), where construction of ω420

does not depend on ν, proving our lemma.421

Lemma C.2. The optimization problem of Equation 3.2 always admits a deterministic solution.422

Proof. Note by the definition of V := ∆(Vdet), indeed strong duality holds:423

max
πk+1∈Π

min
ω∈∆({π1,··· ,πk})

max
ν∈V

(
J(πk+1, ν)− Eπ′∼ω[J(π

′, ν)]
)

= max
πk+1∈Π

max
ν∈V

min
ω∈∆({π1,··· ,πk})

(
J(πk+1, ν)− Eπ′∼ω[J(π

′, ν)]
)
.

Then for any πk+1,⋆, ν⋆ ∈ argmaxπk+1∈Π,ν∈V minω∈∆({π1,··· ,πk})
(
J(πk+1, ν)− Eπ′∼ω[J(π

′, ν)]
)
,424

we denote π⋆(ν⋆) := argmaxπk+1∈Π J(πk+1, ν⋆). Note that π⋆(ν) can be always selected to be a425
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deterministic policy by Lemma C.1. Meanwhile, it is easy to see that since πk+1,⋆, ν⋆ is an optimal426

solution, π⋆(ν⋆), ν⋆ is also an optimal solution, i.e.,427

π⋆(ν⋆), ν⋆ ∈ arg max
πk+1∈Π,ν∈V

min
ω∈∆({π1,··· ,πk})

(
J(πk+1, ν)− Eπ′∼ω[J(π

′, ν)]
)
,

concluding our lemma.428

Lemma C.3. Let K ∈ N be the integer such that fK+1 = 0 and fK > 0. For any 2 ≤ k ≤ K, there429

does not exist some ω⋆ ∈ ∆(Πdet \ {πk}) such that maxν∈V
(
J(πk, ν)− J(ω⋆, ν)

)
≤ 0.430

Proof. To begin with, it is easy to see that there does not exist 1 ≤ k1 < k2 ≤ K such that431

πk1 = πk2 . This is because it will lead to the fact that fk2
= 0. Now suppose there exists some432

ω⋆ ∈ ∆(Πdet \ {πk}) such that433

max
ν∈V

(
J(πk, ν)− J(ω⋆, ν)

)
≤ 0.

This leads to the fact that434

min
ω∈∆({π1,··· ,πk−1})

max
ν∈V

(
J(πk, ν)− J(ω, ν)

)
≤ min

ω∈∆({π1,··· ,πk−1})
max
ν∈V

(J(ω⋆, ν)− J(ω, ν))

≤ max
ω′∈∆(Πdet\{πk})

min
ω∈∆({π1,··· ,πk−1})

max
ν∈V

(J(ω′, ν)− J(ω, ν))

= max
ω′∈∆(Πdet\{πk})

max
ν∈V

min
ω∈∆({π1,··· ,πk−1})

(J(ω′, ν)− J(ω, ν))

= max
π∈Πdet\{πk}

max
ν∈V

min
ω∈∆({π1,··· ,πk−1})

(J(π, ν)− J(ω, ν))

= max
π∈Πdet\{πk}

min
ω∈∆({π1,··· ,πk−1})

max
ν∈V

(J(π, ν)− J(ω, ν)) ,

where the second last step comes from exactly the same as the proof of Lemma C.2. This contradicts435

the fact that πk is the unique optimal solution at iteration k.436

C.2 Proof of Proposition B.2437

Proof. We construct the MDP M with the state space S = {sgood, sbad, sdummy}, action space438

A = {agood, abad}. For the reward, we define rh(·, ·) = 0 for h ∈ [H − 1] and rH(sgood, ·) = 1 and439

rH(sbad, ·) = 0. For the transition, we define T(sgood | sgood, agood) = 1, T(sbad | sgood, abad) = 1,440

T(sbad | sbad, ·) = 1. The initial state is always sgood. We consider the attacker’s policy ν such441

that ν(sdummy | ·) = 1, which means the attacker deterministically perturbs the state to sdummy.442

Therefore, for the victim to learn the optimal policy against such an attacker, it is equivalent to a443

multi-arm bandit problem with 2H arms, for which the sample complexity of finding an approximately444

optimal policy must suffer from Ω(2H). Meanwhile, if such a desirable regret in the proposition is445

possible, it means we can learn an ϵ-optimal policy in such kind of multi-arm bandit problem with446

sample complexity poly(S,A,H, 1
ϵ ), leading to the contradiction.447

C.3 Proof of Proposition B.6448

Proof. For any ν1:T , we denote π⋆ ∈ argmaxπ∈Π
1
T

∑T
t=1 J(π, ν

t). Then according to Definition449

3.1, we have450

Regret(T ) =

T∑
t=1

(
J(π⋆, νt)− J(πt, νt)

)
=

(
T∑

t=1

J(π⋆, νt)−max
π∈Π̃

T∑
t=1

J(π, νt)

)
+max

π∈Π̃

T∑
t=1

(
J(π, νt)− J(πt, νt)

)
≤ T Gap(Π̃,Π) + R̃egret(T ),

where the last step comes from choosing ν = Unif(ν1:T ) in Definition B.5.451
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C.4 Proof of Proposition B.7452

Proof. Note since in this proposition, we only care about the existence of a finite Π̃, we do not care453

about its efficiency, i.e., how large the constructed Π̃ is. Indeed, we can consider Πdet, which is a finite454

policy class with cardinality |Πdet| = O((SA)H). Now we verify the optimality of Πdet. For any455

ν ∈ V , assume π⋆ ∈ argmaxπ∈Π J(π, ν). The by Lemma C.1, we have there exists an ω⋆ ∈ ∆(Πdet)456

such that J(π⋆, ν) = Eπdet∼ω⋆J(πdet, ν). Now we choose πdet,⋆ = argmaxπdet∈ω⋆ J(πdet, ν). Then457

we have J(πdet,⋆, ν) ≥ Eπdet∼ω⋆J(πdet, ν) = J(π⋆, ν). Therefore, we conclude that for any ν ∈ V ,458

we have maxπ∈Π J(π, ν) = maxπ∈Πdet J(π, ν). Therefore, Gap(Πdet,Π) = 0.459

460

C.5 Proof of Theorem B.8461

Proof. We begin with the proof for the part of the theorem. For δ > 0 and any i1, i2, · · · , i|Vdet| ∈462

[⌈Hδ ⌉], we define the set D(i1, · · · , i|Vdet|) = {π ∈ Π | (ij − 1)δ ≤ J(π, νj) < ijδ, ∀j ∈ [|Vdet|]}.463

Then according to Pigeonhole principle, there must exist K ∈ N and k ∈ [K] such that πK+1 ∈464

D(i′1, · · · , i′|Vdet|) and πk ∈ D(i′1, · · · , i′|Vdet|) for some i′1, i
′
2, · · · , i′|Vdet| ∈ [⌈Hδ ⌉]. Therefore, we465

conclude that |J(πK+1, ν) − J(πk, ν)| ≤ δ for any ν ∈ Vdet, and correspondingly for any ν ∈ V .466

This lead to that fK+1 ≤ δ. Now we are ready to show that Gap(Π̃K+1,Π) ≤ δ. For any467

ν ∈ V , we define π⋆ ∈ argmaxπ∈Π J(π, ν). Meanwhile, there exists ω ∈ ∆(Π̃K+1) such that468

J(π⋆, ν) ≤ J(ω, ν) + δ since fK+1 ≤ δ. This implies that J(π⋆, ν)−maxπ′∈Π̃K+1 J(π
′, ν) ≤ δ,469

proving Gap(Π̃K+1,Π) ≤ δ.470

Now we prove the second part of our theorem. Suppose K⋆ < Kfin− 1, we denote the corresponding471

optimal policy set as Π⋆ = {π̂1, · · · , π̂K⋆}. By Lemma C.1, for any k ∈ [K⋆], there exists a472

ωk ∈ ∆(Πdet) such that473

J(π̂k, ν) =

|Πdet|∑
j=1

ωk(πj)J(πj , ν),

for any ν ∈ V , where we have abused our notation for {π2, · · · , πKfin} to denote deterministic policies,474

which are policies discovered by our algorithm since according to Lemma C.2, those policies are differ-475

ent and deterministic. Now since K⋆ < Kfin−1, there exists some 2 ≤ j ≤ Kfin such that ωk(πj) ≤476
2
3 for any k ∈ [K⋆]. Now we denote ϵ = minω∈∆(Πdet\{πj}) maxν∈V

(
J(πj , ν)− J(ω, ν)

)
> 0477

by Lemma C.3, and let ν⋆ ∈ argmaxν∈V minω∈∆(Πdet\{πj})
(
J(πj , ν)− J(ω, ν)

)
. Therefore, it478

holds that J(πj , ν⋆) ≥ J(π, ν⋆) + ϵ for any π ∈ ∆(Πdet \ {πj}). Then we are ready to examine479

Gap(Π⋆,Π) as follows:480

Gap(Π⋆,Π) ≥ max
π∈Π

J(π, ν⋆)− max
π′∈Π⋆

J(π′, ν⋆) ≥ J(πj , ν⋆)− max
π′∈Π⋆

J(π′, ν⋆) ≥ ϵ

3
> 0,

contradicting that Gap(Π⋆,Π) = 0.481

C.6 Proof of Theorem B.9482

Proof. Let’s firstly consider a one-step MDP with state space S = {s1, s2}, action space A =483

{a1, a2}, reward function r(s1, a1) = r(s2, a2) = 1 otherwise 0, and µ1(s1) = µ1(s2) =
1
2 . Now484

assume the attacker can only choose two policies νgood such that νgood(s1) = s1, ν
good(s2) =485

s2, and νbad such that νbad(s1) = s2, ν
bad(s2) = s1. Let’s consider four basis victim policies486

{π1, · · · , π4}, which select the action (a1, a2), (a1, a1), (a2, a1), (a2, a2) respectively for states s1487

and s2. Then it holds that for any policy π ∈ Π, there exists αj ∈ [0, 1] and
∑

j α
j = 1 such that488

J(π, ·) =
∑4

j=1 α
jJ(πj , ·) by Lemma C.1. Now we have either α1 ≤ 1

2 or α3 ≤ 1
2 . Let’s say489

α1 ≤ 1
2 and the case for α3 ≤ 1

2 can be proved similarly. Consider the case where the attacker takes490

the policy νgood. Then we have J(π1, νgood)− J(π, νgood) ≥ 1− ( 12 + 1
2 × 1

2 ) =
1
4 . Therefore, we491

conclude that if |Π̃| < 2, we must have Gap(Π̃,Π) ≥ 1
4 .492
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Now let’s extend it to the MDP with H steps, where in the previous MDP, at each time step, the current493

state transits to the next two states with uniform probability regardless of the action taken. We consider494

the attacker’s policies, where at each time step it uses the policy νgood or νbad, resulting in totally 2H495

policies, {ν1, · · · , ν2H}. Similarly, we can define basis policies, which at each time step selects the496

policy from {π1, · · · , π4}, ignoring the history information except the current observation (perturbed497

state). This results in a total of 4H policies, for which we denote {π̄1, · · · , π̄4H}. Due to the transition498

dynamics we have defined, for any π ∈ Π, there exists some αj(π) ∈ [0, 1] and
∑

j α
j(π) = 1 such499

that J(π, ·) =∑4H

j=1 α
j(π)J(π̄j , ·). W.L.O.G, we say policies π̄1:2H as all the policies only selecting500

policies from {π1, π3} at each time step. Now consider any Π̃ = {π̃1, π̃2, · · · , π̃K} with K < 2H .501

Then there must be some m ∈ [2H ] such that αm(π̃k) ≤ 1
2 for any k ∈ [K]. Let’s say π̄m is the policy502

always choosing π1 at all time steps and correspondingly denote ν⋆ as the policy always choosing503

νgood at each step. Therefore, we have J(π̄m, ν⋆)− J(π̃k, ν⋆) ≥ H − (H − 1 + 1
2 + 1

2 × 1
2 ) =

1
4504

for any k ∈ [K]. This concludes that Gap(Π̃,Π) ≥ 1
4 .505

D Example and detailed explanations of iterative discovery506

𝑱(𝝅, 𝝂𝟐)

𝑱(𝝅, 𝝂𝟏)

(𝑱(𝝅𝟐, 𝝂𝟏), 𝑱(𝝅𝟐, 𝝂𝟐))    

(𝑱(𝝅𝟏, 𝝂𝟏), 𝑱(𝝅𝟏, 𝝂𝟐))

(𝑱(𝝅𝟑, 𝝂𝟏), 𝑱(𝝅𝟑, 𝝂𝟐))

(𝑱(𝝅𝟒, 𝝂𝟏), 𝑱(𝝅𝟒, 𝝂𝟐))
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Figure 3: Iteration discovery of non-dominated policies in two dimensions.

Here we explain how our algorithm discovers the four policies π1:4 in Figure 3, i.e., the left part507

of Figure 1. For simplicity, we consider there are only two pure attackers ν1 and ν2, and thus508

V = ∆({ν1, ν2}).509

For the first iteration, since there are no policies already discovered, the optimization problem we510

need to solve is π1 ∈ argmaxπ∈Π maxν∈V J(π, ν) = argmaxπ∈Π max{J(π, ν1), J(π, ν2)}. By511

comparing ν1 and ν2, we can see the discovered policy is the rightmost one in Figure 3.512

For the second iteration, given Π̃ = {π1} already discovered, the optimization problem we need513

to solve is π2 ∈ argmaxπ∈Π maxν∈V
(
J(π, ν)− J(π1, ν)

)
. Since π1 ∈ argmaxπ∈Π J(π, ν1), we514

have π2 ∈ argmaxπ∈Π maxν∈V
(
J(π, ν)− J(π1, ν)

)
= argmaxπ∈Π

(
J(π, ν2)− J(π1, ν2)

)
=515

argmaxπ∈Π J(π, ν2). Therefore, π2 is the uppermost one in Figure 3.516

For the third iteration, given Π̃ = {π1, π2} already discovered, the optimization problem we need517

to solve is π3 ∈ argmaxπ∈Π minω∈∆({π1,π2}) maxν∈V
(
J(π, ν)− J(π1, ν)

)
. It is easy to see that518

in Figure 3, the optimal solution should be the one that’s farthest from the line segment between519

π1 and π2. To see the reason, we can find that the optimal ω will be the point on the line segment520

between π1 and π2 such that J(π3, ν1)− J(ω, ν1) = (π3, ν2)− J(ω, ν2).521

For the fourth iteration, given Π̃ = {π1, π2, π3} already discovered, the optimization problem522

we need to solve is π4 ∈ argmaxπ∈Π minω∈∆({π1,π2,π3}) maxν∈V
(
J(π, ν)− J(π1, ν)

)
. From523

Figure 3, the optimization for ω will not put mass on policy π1. Thus, what we need to solve is524

π4 ∈ argmaxπ∈Π minω∈∆({π2,π3}) maxν∈V
(
J(π, ν)− J(π1, ν)

)
. Under the same reason as the525

third iteration, π4 will be the one that is farthest to the line segment between π2 and π3.526

Finally, it is worth mentioning that the analysis above holds only specifically (and roughly) for the527

reward landscape of Figure 3, for which we have simplified significantly to convey the intuitions.528

Actual problems we aim to deal with can be much more complex.529
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Figure 4: Online adaptation when facing unknown static attackers. It can be seen that the best policy
can be identified quickly and reliably within 800 episodes or less against different attackers.

E Details of experimental settings530

In this section, we provide details of implementation and training hyperparameters for MuJoCo531

experiments. All experiments are conducted on NVIDIA GeForce RTX 2080 Ti GPU.532

Implementation details. For the network structure, we employ a single-layer LSTM with 64 hidden533

neurons in Ant and Halfcheetah, and the original fully connected MLP structure in the other two534

environments. Both the victims and the attackers are trained with independent value and policy535

optimizers by PPO.536

Victim Training. For the baseline methods, we directly utilize the well-trained models for ATLA-537

PPO (Zhang et al., 2021), PA-ATLA-PPO (Sun et al., 2021), and WocaR-PPO (Liang et al., 2022)538

provided by the authors.539

For the iterative discovery in Algorithm 2, we employ PA-AD to update attack models νt and PPO to540

update the victim. For the first policy π1 in Π̃, we train for 5 million steps (2441 iterations) in Ant541

and 2.5 million steps (1220 iterations) in the other three environments. For subsequent policies, we542

use the previously trained policy as the initialization and train for half of the steps of the first iteration543

to accelerate training.544

Due to the high variance in RL training, the reported results are selected from 21 agents trained with545

the same set of hyperparameters.546

Attack Training. The reported results under RS attack are from 30 trained robust value functions.547

For evasion attacks such as SA-RL and PA-AD, we conduct a grid search of the optimal hyperparam-548

eters (including learning rates for the policy network and the adversary policy network, the ratio clip549

for PPO, and the entropy regularization) for each victim training method. We train for 10 million550

steps (4882 iterations) in Ant and 5 million steps (2441 iterations) in the other three environments.551

The reported results are from the strongest attack among all 108 trained adversaries.552

F Additional experimental results553

F.1 The adaptation process554

Given that our victim policy is adaptive, some additional adaptation steps might be necessary to555

identify the optimal policy against the attackers. To illustrate this, we detail the adaptation process556

in Figure 4, showcasing that the best policy within Π̃ can be identified rapidly and reliably.557

F.2 Robustness against various dynamic attacks558

In this section, we present the supplementary results demonstrating the robustness of our methods559

against various dynamic attacks.560
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Periodic attacks. Here we examine a mode where the attacker is weaker than in the worst-case561

scenarios, characterized by attacks appearing only periodically. We depict the performance against562

periodic attacks with varied frequencies.563

We adjust the attack period T from 1000 to 100 and examine the performance of our methods564

alongside two baselines. Additionally, we use a non-fixed period where T alternates between 500565

and 1000.566
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Figure 5: Periodic attack.

The average accumulative rewards and evolution of policy weights ωt are shown in plots and heat567

maps in §5. Our observations are as follows: (1) Regardless of the duration of the periods, our568

methods consistently achieve higher average accumulative rewards than the two baseline methods.569

This underscores the efficacy of online adaptation in Algorithm 1. (2) The values of ωt exhibit570
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noticeable shifts during each period, highlighting the online adaptation process. (3) Even when T571

alternates, our methods maintain their superiority over the baselines. The evolution of ωt shows that572

our methods can effectively perceive the transition between two periods.573

Probabilistic switching attack. Here we explore another mode where the attacker is less severe574

than in the worst-case scenarios. The attacker can toggle between being active and inactive. This575

switching is constrained to occur only with a probability p at regular intervals.576

We adjust the switching probability p from 0.2 to 0.8. A higher value of p signifies more frequent577

switching. We anticipate that it will be more challenging for the online adaptation of the agent. We578

keep the interval between two potential switching points as 50 rounds.579
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Figure 6: Probabilistic switch attack.

The results are exhibited in Figure 6, showcasing both the average accumulative rewards and the580

evolution of the weight ωt. We conclude that: (1) Our methods consistently outpace the two baselines.581

The superiority becomes more pronounced as the value of p increases. (2) In contrast to the scenario582

with periodic attacks, the weights ωt display a more random evolution. Nonetheless, they effectively583

converge to the arms yielding higher rewards.584

F.3 Ablation study in the scalability of |Π̃|585

A potential concern for our methods is the high computational cost of iterative discovery, which586

could render them impractical. To tackle this concern, we assess our methods using different scales587

of the policy class |Π̃| under PA-AD attacks across all four environments. The original value of |Π̃|588

in Table 1 is set to 5, and we modify it to both 3 and 7 for this ablation study. All other experimental589

parameters remain the same.590

The results are depicted in Figure 7. We notice that: (1) The larger scale leads to higher rewards in591

all four environments. This implies that the non-dominated policy class, as it expands via iterative592
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discovery, approaches the optimal one more accurately with increasing scales. (2) Even with a593

relatively modest scale of 3, our methods outpace the baseline methods in Table 1. This alleviates594

concerns about our new methods being reliant on unaffordable computational costs.
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Figure 7: The performance for our methods with different non-dominant policy class scales |Π̃| in all
four environments.

595

F.4 Ablation study in the attack budget ϵ596

To examine how our methods perform under attacks with different values of the attack budget ϵ, we597

evaluate their performance under a random attack across all four environments and compare them598

with two baselines. From Table 1, we observe that the random attack is relatively mild. However, its599

impact can be much worse if the attack budget is higher. Our goal is to evaluate the robustness of600

against non-worst-case attacks across various spectra.601

The corresponding results are displayed in Figure 8. We derive the following observations: (1) When602

ϵ is small, the rewards of our methods are slightly higher than the baseline methods in nearly all603

environments. The exception is on Walker2d, where our methods distinctly outperform the baselines.604

It indicates the effectiveness of our methods in relatively clean environments. (2) As ϵ becomes605

moderate and continues to increase, although the performances of our methods decrease as PA-ATLA606

and WocaR, the rate of decline is slower compared to the two baseline methods. Previously, we only607

considered the non-worst-case attacks with the same ϵ by different modes. In this context, increasing608

values of ϵ for the same attack can be also interpreted as another non-worst-case attack. Thus, the609

high rewards of our methods confirm their enhanced robustness against non-worst-case attacks. (3)610

When ϵ is large, our methods continue to hold an advantage over the baseline methods. The only611

exception is Hopper, where the rewards from all three methods are nearly identical. This suggests612

that our new methods compromise little in terms of robustness against worst-case attacks.613

614
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Figure 8: The performance for our methods and two baseline methods under attacks with different ϵ
in all four environments.
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