Under review as a conference paper at ICLR 2026

CLOSER: CONTINUAL LEARNING IN VQ-GAN FOR
TEST-TIME STYLE REFINEMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

While existing artistic style transfer methods enable cross-domain image syn-
thesis, they often struggle to strike a balance among stylistic realism, inference
efficiency, and geometric consistency. To address this limitation, we propose a
test-time refinement (TTR) framework that universally enhances stylistic fidelity
through a scalable and self-supervised VQ-GAN refiner, while keeping the param-
eters of the underlying style-transfer generator frozen. Our primary contribution is
a continual learning framework for VQ-GAN, which combines Low-Rank Adapta-
tion (LoRA) with incremental codebook expansion. This design enables efficient
adaptation to diverse artistic styles while preserving previously learned knowl-
edge, significantly reducing the computational and memory overhead of deploy-
ing models across multiple domains. Notably, our approach reduces the number
of trainable parameters by up to 94% compared to full-model fine-tuning, offering
a highly parameter-efficient solution for test-time refinement. Furthermore, we in-
troduce positional embeddings into the latent embedding space, which strengthens
the model’s geometry awareness and improves structural coherence in the gener-
ated results. We name our approach CLoSeR (Continual Learning in VQO-GAN for
Style Refinement), and evaluate it across multiple style transfer benchmarks under
a test-time adaptation setting. Experimental results show that CLoSeR improves
style fidelity and structural consistency, achieving a maximum relative reduction
of 44% in Fréchet Inception Distance (FID), demonstrating significant gains in
generation quality. The code will be released.

1 INTRODUCTION

Artistic style transfer (AST) has witnessed rapid progress through a variety of approaches, most
notably neural style transfer (NST) (Gatys et al., 2016; Huang & Belongie, [2017; |Liu et al.| 2021}
Hong et al.l [2023) and generative adversarial networks (GANs) (He et al. [2018; |Lee et al., 2020;
Huang et al., 2024). These methods typically rely on one or a few reference style images to guide
the stylization process. More recently, diffusion models (Zhang et al.| [2023; |(Chung et al., 2024;
Wang et al.| 20245 Zhou et al.| 2025)), autoregressive (AR) approaches (Li et al., 2024)), and flow-
based generative methods (Lipman et al., [2022} |Geng et al.| 2025) have demonstrated impressive
capabilities in producing high-quality and diverse stylizations, often supporting multimodal inputs.
These advances highlight the growing importance of transferable representations that capture both
content and stylistic priors, enabling more flexible and controllable AST.

However, existing methods struggle to achieve an optimal balance between content consistency,
stylistic realism, and inference efficiency. NST and GAN-based methods (Gatys et al.,|2017; |Selim
et al.| 2016; |Zhu et al.l 2017) enable fast inference and preserve geometric structure well, but of-
ten fail to learn sufficiently rich representations of artistic textures. Diffusion models (Zhang et al.,
2023; Wang et al. [2024; |Ye et al., 2025) generate high-quality results with nuanced style patterns,
yet suffer from hallucinated content, weak content—style correspondence, and the high computa-
tional cost due to iterative sampling. Reducing inference steps typically degrades image quality
significantly. Moreover, both diffusion and AR models often yield over-smoothed textures, sug-
gesting that their learned representations do not fully align with the expressive nature of real-world
artistic styles. Few-shot or training-free adaptation methods (Chung et al., 2024} Farhadzadeh et al.|
2025) further face challenges in building robust representations for unseen domains. Thus, learning
domain-aligned and structurally consistent representations remains an open challenge for AST.
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Figure 1: Motivation of CLoSeR. Left: illustration of the distribution shift from the source domain
(CelebAMask-HQ [2020)) to the target domain (MetFace (Karras et al.l 2020)). StyleID
(Chung et all, 2024) serves as the base model to generate coarse outputs, while our CLoSeR pro-
duces refined results that align more closely with the target domain. Features are extracted with
VGG-19 (Simonyan & Zisserman), [2014) and visualized via t-SNE.) Right: scatter plot of refined
performance versus original performance across diverse base models and artistic styles. Lower FID
values indicate better style fidelity.

As illustrated in Fig. [I] the motivation for our approach stems from the persistent distributional gap
between stylized outputs and the target domain. While existing image translation models—such
as GAN-, attention-, and diffusion-based methods (Huang & Belongie| 2017} [Liu et all [2021];
et all 2019} [Chung et al.| [2024}; [Zhou et al. [2025])) —can roughly map source content into the target
style space, their outputs often exhibit significant deviations from the authentic target distribution,
particularly in terms of stylistic fidelity and geometric consistency (left panel). These gaps indicate
a representation mismatch between the generated outputs and the target artistic domain.

To address this, we explore an alternative perspective: rather than retraining or modifying the gen-
erator, we refine its outputs at test time through reconstruction in the embedding space. Inspired by
the ability of VQ-GAN to learn a compact, self-supervised representation of the
target domain, we propose a test-time refinement (TTR) framework that leverages VQ-GAN as a do-
main anchor. In other words, VQ-GAN refines coarse stylized images by aligning their features with
a pre-learned target domain representation in its latent codebook, eliminating the need for generator
updates.

However, directly fine-tuning VQ-GAN for each new style remains computationally expensive and
lacks scalability. To overcome these limitations, we propose a TTR framework dubbed CLoSeR,
i.e. Continual Learning in VQ-GAN for Style Refinement. CL0SeR enables efficient continual adap-
tation by incrementally enriching the learned representation space through Low-Rank Adaptation
(LoRA) [2022) and codebook expansion. This design drastically reduces the number of
trainable parameters—by over 94% compared to full fine-tuning—while preserving previously ac-
quired representations of earlier styles. Furthermore, to mitigate structural distortions caused by the
lack of spatial awareness in vanilla VQ-GAN (Esser et al.,[2021)), we incorporate 2D sine-cosine po-
sitional embeddings (Vaswani et al.} 2017} [Carion et al}[2020) into the latent representation space,
endowing the codebook and decoder with explicit spatial priors. Together, these components enable
CLoSeR to refine generation quality through representation learning, achieving both high-fidelity
stylization and geometric consistency across diverse artistic domains.

We conduct extensive experiments to evaluate the effectiveness and generality of our approach.
The results demonstrate that CLoSeR consistently improves generation quality across diverse style

transfer pipelines—including GAN- (Yi et al.}[2019; [Zhang et al., 2022), attention- (Liu et al., 2021
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Hong et al.| 2023)), and diffusion-based (Kwon & Yel 2022} (Chung et al.l |2024; Zhou et al., [2025)
models—under both single-style and continual learning settings. The framework enhances stylistic
realism and structural consistency, while also learning transferable representations. As shown in
the right panel of Fig. [I} a scatter plot of FID improvement reveals that both the baseline VQ-
GAN and CLoSeR reduce stylization errors compared to the original outputs, but CLoSeR achieves
significantly greater FID reduction, particularly in challenging cases with higher baseline errors.
This confirms its superior refinement capability and scalability in real-world deployment scenarios.

2 RELATED WORKS

Artistic Style Transfer. Early approaches leveraged CNNs to decouple style and content repre-
sentations, enabling stylized image synthesis (Gatys et al., 2016 Johnson et al., 2016; Jing et al.,
2019). Subsequent methods aimed to enhance style diversity and generalization by introducing
adaptive normalization and attention-based mechanisms (Huang & Belongiel 2017} |Park & Leel
2019; Hong et al.l 2023). More recently, diffusion-based approaches have emerged as powerful
alternatives for style and domain transfer (Ho et al., 2020; [Kwon & Ye, [2022; |Gu et al., [2022).
These methods have been applied to stylization, latent space disentanglement, and domain adap-
tation by exploiting denoising priors and structured noise injection (Kwon & Yel [2022; Su et al.
2022; |Parmar et al.| [2024; Zhou et al., 2025). In parallel, large pretrained text-to-image (T2I) dif-
fusion models have been adapted to AST, enabling prompt-driven any-to-any stylization without
case-by-case retraining (Rombach et al., [2022; Brooks et al.,|2023}; |Chen et al., [2023). In addition,
training-free paradigms have been explored to achieve lightweight and interpretable transfer (Chung
et al.} 2024)). Despite these advances, both CNN-based and diffusion-based pipelines often struggle
with preserving structure and maintaining style fidelity in complex artistic domains.

Vector Quantization. Vector Quantization (VQ) has emerged as a powerful technique for learning
discrete representations. VQ-VAE (Van Den Oord et al.| |2017) pioneered vector quantization in
generative modeling, and VQ-GAN (Esser et al.,2021) further advanced this direction. Building on
the success of VQ-GAN, a variety of works have emerged, such as VQ-Diffusion (Gu et al.,[2022) for
text-to-image generation and QuantArt (Huang et al.,2023]) for artistic style transfer. Reconstruction
and generation using VQ have also been widely studied (Zhu et al., [2024; |Yu et al.| 2024; [Yao et al.|
2025). In the autoregressive paradigm, |Li et al.| (2024) propose eliminating discrete quantization
entirely by modeling per-token distributions, while MergeVQ (Li et al.,|2025)) unifies representation
learning and generation through token merging and a lookup-free quantization strategy.

Continual Learning. Continual learning has been extensively studied, but its application to artis-
tic domains remains relatively underexplored. Traditional style transfer methods often require re-
training for each new style (Gatys et al., |2016; Johnson et al.|, 2016)), making them inefficient and
vulnerable to catastrophic forgetting. To address these limitations, modular and parameter-efficient
approaches have been proposed (Liang & Lil 2024; Zhu et al., 2025 He et al., [2025} [Roy et al.|
2023)). More recently, continual generative learning has incorporated strategies such as replay (Cac-
cia et al., 2020; Jeon et al. [2023)), distillation (Lesort et al., 2019} [Zhao et al., |2020), and mod-
ularization (Yoon et al} 2018). LoRA-based adapters (Hu et al., 2022} |[Farhadzadeh et al.| [2025))
have proven particularly effective, enabling lightweight, style-specific modules to be integrated into
frozen backbones for scalable, efficient, and largely forget-free adaptation. However, they still suffer
from increasing knowledge degradation as the number of tasks grows (Liang & Lil [2024).

3 METHOD

3.1 OVERVIEW

We propose CLoSeR (Continual Learning in VQ-GAN for Style Refinement), a test-time refinement
(TTR) framework that enhances both stylistic realism and geometric consistency in artistic style
transfer. The pipeline of CLoSeR is shown in Fig. 2} Building upon VQ-GAN (Esser et al [2021),
we integrate parameter-efficient adaptation through Low-Rank Adaptation (LoRA) and incremental
codebook expansion, supporting continual adaptation to new styles with minimal overhead. For
each new style, only a lightweight LoORA module and a style-specific discriminator are trained,
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Figure 2: Overview of CLoSeR, i.e., Continual Learning in VQ-GAN for test-time Style Refinement.
(a) New styles are integrated by expanding the codebook (C(?)) while retaining the base style rep-
resentation Cy (style 0). The encoder features are enriched with cosine-sine positional embeddings
and reconstructed by the decoder with LoRA-based adaptation. (b) Given an initial coarse stylized
output G(x) from any generator, CLoSeR reconstructs it through the learned codebook, aligning the
result with the target style domain.

while the shared VQ-GAN backbone remains frozen. This strategy enables scalable deployment
in dynamic and long-tail style scenarios. In addition, our approach introduces geometry-aware
vector quantization by embedding positional encodings into the latent space, allowing the model to
incorporate explicit spatial priors during reconstruction and thereby correcting geometric distortions
and local artifacts commonly present in coarse stylized outputs. Finally, CLoSeR operates in a
plug-and-play manner and can be applied to enhance outputs from arbitrary generative models.

3.2 CONTINUAL LEARNING IN VQ-GAN viA LORA

Adapting to new artistic styles while preserving previously learned knowledge remains challeng-
ing due to catastrophic forgetting and the large parameter overhead of full fine-tuning. To enable
efficient and scalable continual learning, we integrate LoORA and incremental code-
book expansion into the VQ-GAN framework, allowing CLoSeR to adapt to new styles with minimal
trainable parameters while keeping the shared backbone frozen.

LoRA-based Encoder-Decoder Adaptation. We apply LoRA to all convolutional layers of the
encoder and decoder, injecting trainable low-rank matrices to modulate features in a style-specific
manner. Specifically, each pre-trained weight W, € R?** is updated as:

W:WO—i—%AB, AcR¥™" B e Rk, (1)

where A and B are the low-rank adaptation matrices. A is initialized with zeros, B with a standard
normal distribution, « is a scaling factor, and r is the rank (set to 8 in our experiments). The original
weights Wy remain frozen and are shared across all styles.

Incremental Codebook Expansion. For each new style s;, we expand the codebook with AK =
1024 additional entries:

c® =CoUeKy+1,- -, EKo+AK, @)

where Cy denotes the initial codebook. This strategy enables the model to encode style-specific
visual primitives while preserving previously learned representations.

Training. During training on style s;, only three components are updated: the LoRA parameters
@E?R A» the newly added codebook entries C(*) \ Cy, and a lightweight style-specific discriminator
D@, All other parameters—including the encoder, decoder, and the base codebook—remain frozen.

Inference. At inference, given an initial stylized result G(«) from any pre-trained generator, the
refined output for style s; is computed as:

R(G(z);0D), with 0D =, DO, 3)

y
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This modular design enables plug-and-play refinement: users select the target style, and the sys-
tem loads the corresponding lightweight parameters, thereby avoiding redundant computation and
supporting efficient deployment in dynamic or long-tail scenarios.

3.3 GEOMETRY-AWARE VQ-GAN

To improve spatial structure preservation in artistic style reconstruction, we enhance the VQ-GAN
framework (Esser et al.|, 2021)) with 2D sine—cosine positional embeddings injected into the latent
representation space. Unlike standard VQ-GAN, which processes latent features without explicit
spatial inductive bias, our method embeds positional priors prior to quantization—thereby enabling
geometry-aware refinement without introducing any additional learnable parameters.

Similar to Transformer (Vaswani et al., [2017), for each spatial position (m,n) € {1,...,h} x
{1,...,w} of the continuous latent feature map f, € R"*%*d e generate a corresponding 2D
positional embedding P, ,, € R? using an extended sine-cosine scheme:

m m
P =sin| ——— |, Ppoit1 =cos|——— |,
2 (10000"; ) . (100001 )

Pnygi = sin (nzl) N Pn,2i+1 = COS <77/2L) ;
10000°« 100007«

where m and n denote the row and column indices, i is the dimension index, and d is the embedding
dimension. The positional embedding P, ,, is then added element-wise to the latent feature f,:

fpe:fs+Pm,n7 (5)

forming spatially enriched features that retain semantics and explicit structure.

4)

The enhanced features f,. are then passed to the codebook for quantization:
QC(fpe) = argmin pre _CiH7 (6)
c;eC

where c; denotes the i-th code vector in the codebook C. By integrating explicit spatial priors into
the vector quantization pipeline, our approach effectively improves geometric consistency in the
reconstructed outputs, particularly in structure-sensitive artistic domains.

3.4 Loss FUNCTIONS

To balance pixel-level fidelity, perceptual quality, quantization alignment, and adversarial realism,
we adopt a composite loss composed of multiple complementary objectives.

Reconstruction Objective. The reconstruction objective combines an L1 pixel-wise loss and a per-
ceptual loss in deep feature space. Given the input image x s and its reconstruction ys, the pixel-level

reconstruction loss is defined as L. = ||ys — 2s||1. To capture higher-level semantic consistency,
we further employ the LPIPS metric (Zhang et al.,|2018) as a perceptual loss:
Lpere = LPIPS (2, ys). 7

The total reconstruction loss is then given by:
‘Crecon = Lrec + /\perc : Eperw (8)
where Apere controls the relative weight of perceptual similarity.

VQ Loss. Following standard practice in vector quantized models (Esser et al., 2021), we in-
corporate a vector quantization (VQ) loss to align the latent space with the codebook. Let
fs € RBXCXHXW denote the continuous latent features from the encoder. We enrich these fea-
tures with 2D sine-cosine positional encoding (see Section@) to obtain fpe, which is then flattened
and mapped to the nearest entries in a learnable codebook C € R¥*P where K is the number
of codebook vectors and D is the embedding dimension. The quantized output z, replaces each
feature in fj,. with its closest codebook entry under the Euclidean distance. To jointly optimize the
codebook and encoder, we use the following VQ loss:

Lvq = ||sg[zq] - fpe”g + B”Sg[fpe] - Zqua &)
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where sg|-] denotes the stop-gradient operator and 3 is a hyperparameter controlling the codebook
update strength.

Adversarial Loss. For adversarial training, we adopt the standard cross-entropy objective as in
VQ-GAN (Esser et al.,[2021). The discriminator D for style s; is optimized as:

Laa = ~Elog DO ()] — Elog(1 — DV (y))], (10)
where y and y; denote real and reconstructed images.

Total Loss. The overall training objective is a weighted combination of all components:
Etotal = Erecon + AVQEVQ + Ladw (1 1)

where Ayq is set to 0.1 by default. This multi-objective formulation ensures high-fidelity, geometri-
cally coherent, and stylistically realistic reconstructions.

4 EXPERIMENTS

4.1 SETTINGS

Datasets & Metrics. For the Artistic Portrait domain, we use MetFace (Karras et al., [2020),
APDrawing (Y1 et al., [2019), and FS2K (Fan et al., [2022)) as style datasets, with facial photos from
CelebAMask-HQ (Lee et al., |2020) and FS2K serving as content images. For the Natural Scene
domain, we collect data from Flickr and WikiArt. We adopt standard metrics—ArtFID (Wright
& Ommer, 2022), FID (Heusel et al., |2017), and KID (Binkowski et al.| [2018)—to quantitatively
evaluate our results. All images are resized to 256 x 256 before training and evaluation.

Implementation Details. Following the architecture design of QuantArt (Huang et al.| [2023)), the
encoder and decoder each consist of four blocks, with two ResBlocks (He et al., 2016)) and a down-
sampling/upsampling layer. The quantized feature map has a spatial resolution of 16 x 16 and
an embedding dimension of 256. The codebook contains N = 1024 entries, each of dimension
d = 256. For training, we set the batch size to 8 and the momentum queue length to 1024. For each
newly added style, the codebook is expanded by 1024 tokens. We use the Adam optimizer (Adam
et al., 2014) with a learning rate of 4.5 x 107%, Our CLoSeR framework is implemented in Py-
Torch (Paszke et al.|[2019), and all experiments are conducted on a single NVIDIA RTX 4090 GPU.

Baseline Models. We evaluate our method against a set of state-of-the-art methods, including neu-
ral style transfer (QuantArt (Huang et al.||[2023), AesPA-Net (Hong et al.,[2023)), CAST (Zhang et al.,
2022), AdaAttN (Liu et al.,[2021)), and diffusion-based stylized image generation (DiffuselT (Kwon
& Ye, [2022), InST (Zhang et al., [2023), StyleID (Chung et al., 2024) and AttenDistill (Zhou et al.|
2025)). For fair comparison, we use publicly available implementations with their recommended
configurations. As shown in Figure ] our method outperforms all base models in both stylization
fidelity and semantic consistency. Note that APDrawingGAN (Y1 et al., [2019) is specialized for pen
drawings, thus we evaluate it only in its intended settings to ensure fairness.

4.2 PERFORMANCE EVALUATION

4.2.1 NATURAL SCENE STYLE TRANSFER

Unlike the standard style transfer task, we train our model to reconstruct the input and use this to
refine the results of artistic style transfer results. The model is first trained on the Monet dataset
and then continually extended to Van Gogh and Ukiyo-e, enabling progressive refinement across
multiple styles. Experimental results demonstrate the effectiveness of our approach.

Quantitative Analysis. As illustrated in Fig. [3] for both Monet and Van Gogh, the average values
of all three evaluation metrics consistently decrease after the initial refinement with VQ-GAN and
are further reduced when applying our proposed CLoSeR. Notably, across all baselines, our method
achieves substantial improvements: FID is reduced by approximately 25% on Monet and Van Gogh,
KID drops by more than 30%, and ArtFID decreases by over 20%.
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: Quantitative performance on artistic style transfer for natural scenes and facial portraits.
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Figure 4: Generated results of different artistic styles for natural scenes and facial portraits. Please
zoom in for details.

Qualitative Analysis. As shown in Fig. f] CLoSeR enhances base models by recovering struc-
tural details and enriching textures. Without refinement, AdaAttN and AesPA-Net tend to produce
over-smoothed outputs, while vanilla VQ-GAN introduces texture but often causes distortions. In
contrast, CLoSeR yields more faithful style expression—Monet’s color gradients appear smoother,
Van Gogh’s bold strokes are better preserved, and Ukiyo-e’s flat shading and outlines remain more
coherent—demonstrating improved style fidelity and content stability across diverse models.
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4.2.2 ARTISTIC PORTRAIT GENERATION

We first pre-train CLoSeR on the MetFace (Karras et al.,[2020) dataset to learn robust facial repre-
sentations and extend the model to support continual refinement across two additional styles: AP-
Drawing (Yi et al.| 2019) and FS2K (Fan et al.l 2022), resulting in a three-style refinement setup.

Quantitative Analysis. As shown in Fig.[3] CLoSeR consistently improves all metrics across artis-
tic domains. Relative to the base models, it reduces FID by 7.8%, 21.3%, and 19.9% on oil painting,
pen drawing, and sketch, respectively, and consistently outperforms the intermediate VQ-GAN re-
finement. On oil painting, CLoSeR further lowers ArtFID and KID by 5.4% and 17.5%, while
ArtFID on pen drawing drops by 16.0%, indicating enhanced structural fidelity and stylistic realism
across datasets and backbones.

Qualitative Analysis. For Oil Paintings, AdaAttN and AesPA-Net produce over-smoothed or dis-
torted faces, while VQ-GAN reduces artifacts but suffers from leakage and color shifts. CLoSeR
better preserves identity (sharper jawlines, clearer eyes) and renders textures closer to the target
style. For Pen Drawings, DiffuselT and AesPA-Net often yield blurry or off-domain results; VQ-
GAN adds stroke effects but loses detail and symmetry. CLoSeR restores crisp contours and accu-
rate strokes, resembling ground truth. For Sketches, base models distort proportions (e.g., bloated or
muddy textures), whereas CLoSeR enhances contour sharpness and line stability. These improve-
ments highlight its ability to recover fine-grained structure while embedding faithful stylistic cues.

4.2.3 USER STUDY

Table 1: User study preference rates. ~ We assess perceptual quality via user studies on both
portrait (MetFace, 63 participants) and scene stylization
Datasets | CLoSeR VQ-GAN Base (Monet, VanGogh, Ukiyo-e; 57 participants). In each

trial, participants compare triplets from the Base model,
ﬁgiatace ggggj igggz 142.'23,2) Vanilla VQ-GAN, and CLoSeR and select the preferred
VanGogh | 71.7%  133%  15.0% result. As summarized in Tab. [T} CLoSeR is consistently
Ukiyo-e | 77.5%  12.5% 10.0% favored across all datasets, indicating that the improve-
Average | 75.8% 13.8% 10.4% ments in ArtFID/FID/KID align well with human judg-
ments.

4.2.4 MODEL EFFICIENCY

As shown in Tab. 2] CLoSeR is highly efficient, requiring only 4.74 MB trainable parameters, 2.42
GB memory, and 0.0545 s inference—substantially lower than most baselines. Its lightweight test-
time adaptation, without modifying the generator, offers an excellent trade-off between performance
and resource cost, making it practical for low-resource applications.

4.3 MODEL ANALYSIS
Table 2: Comparison of model efficiency.
Ablation Study of CLoSeR. Fig. ] il-

lustrates the progressiye effect of our Com- " prethods | Params. (MB) Memory (GB) Time (s)
ponents on APDrawingGAN, AttenDis-

till, CAST, and StyleID. The base gener- AdaAtN 13.63 10.80  0.066
ators often produce blurry details and lo- CAST 10.52 1001 0.056
. . . AesPA-Net 14.11 3.39 0.148

cal artifacts; vanilla VQ-GAN sharpens
. o Lo StylelD - 12.87 5.848
textures but still exhibits geometric dis- A o Ditill 49.49 361 57.560
tortions, while adding positional encoding  (L.0SeR 4.74 2.42 0.055

further improves spatial consistency. The
full CLoSeR variant yields the sharpest
geometry and cleanest textures, and Tab. [3] quantitatively confirms this trend, giving the best Art-
FID/FID/KID across all four backbones.

Ablation Study of codebook size. We study the sensitivity of the codebook by just varying
K € {128,256,512,1024} on six backbones (AdaAttN, CAST, AesPA-Net, StyleID, AttenDistill,
StyleSSP), reporting backbone-averaged ArtFID/FID/KID in Tab.[] For all K, CLoSeR improves
over the corresponding bases, indicating that it does not rely on a very large or carefully tuned code-
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Table 3: Ablation study of CLoSeR.

APDrawingGAN AttenDistill CAST StyleID
Method ArtFID| FID| KID| | ArtFID| FID| KID] | ArtFID|{ FID] KID] | ArtFID] FID| KID|
Base 19.57 12.03  0.0267 28.16 18.74 0.0506 | 37.58  26.13 0.1002 | 35.60 23.78 0.1198
+ VQ-GAN 19.54 11.96 0.0171 22.32 13.87 0.0271 3722 2537 0.1065 3596 2331 0.1080
+ VQ-GAN w/ PE 19.30 11.77 0.0170 | 22.24 13.74  0.0285 36.87  25.24 0.1057 3544 2298 0.1023
+ CLoSeR (Ours) 18.70  11.35 0.0073 | 21.95 13.65 0.0255 | 36.11 2450 0.0897 | 34.19  22.36 0.0966

APDrawingGAN

N
A o /
+ Vanilla VQ-GAN

AttenDistill

+ Vanilla VQ-GAN + VQ-GAN PE

CAST

StylelD

+ Vanilla VQ-GAN

+ Vanilla VQ-GAN

+ VQ-GAN w/PE

+ VQ-GAN w/PE

Figure 5: Qualitative ablation on APDrawing (left) and MetFace (right).

+ CLoSeR

+ CLoSeR

book. K=1024 achieves the best overall performance, with K =256 close behind, and the gaps
across K are modest, suggesting that CLoSeR is largely insensitive to the exact codebook size and
that K=1024 is a reasonable default for continual style expansion.

Validation of Continual Learning. We
assess continual learning by incrementally
adding new tasks on both natural scene
and portrait drawing datasets. Specifically,

we adopt MetFace (Karras et all, [2020) as

Table 4: Effect of codebook size K.

MetFace

Monet

the style domain for faces (denoted as Oil),

APDrawing for pen draw-
ings (Pen), and FS2K (Fan et al, 2022)

for pencil sketches (Pencil), and Monet
is used for natural scenes. As shown in

Setting | AtFID| FID| KID{ |ArtFID| FID| KID{
Base 4038 2833 0.1262| 2587 16.19 0.0488
+CLoSeR (K=128) | 3629 24.42 0.0968| 20.65 12.11 0.0354
+CLoSeR (K=256) | 35.89 24.18 0.0966| 2041 11.96 0.0349
+CLoSeR (K=512) | 3620 24.45 0.0966| 21.24 12.62 0.0360
+CLoSeR (K=1024) | 3491 24.13 0.0945| 20.02 11.77 0.0337

Fig.[6} the refined models are evaluated on outputs from various base generators. The results demon-
strate that performance on earlier styles remains largely stable even after introducing multiple new
domains. These findings confirm that CLoSeR effectively mitigates catastrophic forgetting, retain-
ing prior knowledge while adapting to new styles.

(a) Natural Scenes Style Transfer

20 50
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(b) Artistic Portrait Drawings Generation
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+CLoSeR (Oil+Pen)
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(c) Integration into Diffusion Models

-O—+CLoSeR

40

Steps

45

50

Figure 6: Catastrophic forgetting evaluation and integration into diffusion models. (a) Natural scenes
style transfer with Monet as the target domain. (b) Artistic portrait drawings generation using Met-
Face (Oil), APDrawing (Pen), and FS2K (Pencil). (c¢) Integration into StyleID (Chung et al.| [2024)
under varying sampling steps, where CLoSeR consistently reduces FID compared to the baseline.
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Table 5: Validation of Positional Encoding (PE) with NME ({).

Method \AdaAttN AesPA-Net CAST  DiffuseIT  StyleID  AttnDistill ~ Average

+VQ-GAN 0.0357 0.0328 0.0348 0.0393 0.0338 0.0275 0.0340
+VQ-GAN w/PE | 0.0348 0.0314 0.0325 0.0377 0.0341 0.0274 0.0330

Table 6: Impact of CLoSeR on high-quality vs. degraded inputs.

AdaAtN CAST StyleID
Setting Method ArtFID| FID| KID| ArFID| FID] KID| ArtFID| FID] KIDJ
Base 33.13 2194 0.0770 3134 2129 0.0564 29.42 19.52 0.0816

High-quality +CLoSeR 3030 19.90 0.0627 30.60 20.32 0.0550 28.44 18.54 0.0565
185% 193% |18.6% 12.4% 14.6% |2.5% 133% 15.0% |30.8%

Base 33.94 2181 0.0752 3122 20.16 0.0613 3143 19.95 0.0786
Degraded ~ +CLoSeR  31.65 2022 0.0736 30.82 19.74 0.0668 28.86 18.20 0.0576
167% 173% 12.1% 113% 12.1% 19.0% |82% 18.8% |26.7%

Validation of Positional Encoding. To evaluate the role of positional encoding (PE) in geometric
consistency, we adopt YOLOvS5-face (Q1 et al.||2022) as the evaluation backbone and test on stylized
results from the MetFace dataset (Karras et al., 2020). We report Normalized Mean Error (NME)
as the main metric. As shown in Tab. [5| PE consistently reduces NME across models, confirming
its benefit in preserving geometric structure. Results with Percentage of Correct Keypoints (PCK)
under different thresholds are provided in the appendix [A]

Integration into Diffusion Models. We integrate CLoSeR into the StyleID (Chung et al., [2024))
diffusion framework under varying sampling steps. As shown in Fig. [f[c), CLoSeR consistently
reduces FID relative to the baseline, with improvements persisting across all iterations. This indi-
cates that CLoSeR enhances domain alignment and stabilizes generation quality, even under fewer
sampling steps. Additional qualitative results are provided in the appendix [A]

A Stress Test on Degraded Contents. To assess the robustness of CLoSeR to input degradations,
we conduct a stress test on corrupted contents. We randomly sample 20 style images from MetFace
and 20 content images from CelebAMask-HQ, and apply a degradation pipeline to the contents that
randomly combines Gaussian blur, multi-scale down—up sampling, Gaussian and Poisson noise, and
JPEG compression (all at 2562 resolution). Using these degraded contents, we evaluate AdaAttN,
CAST, and StyleID with and without CLoSeR under ArtFID/FID/KID (Tab. |§], Deg. means de-
graded). Even in this challenging setting, CLoSeR consistently improves over the baselines.

5 CONCLUSIONS AND LIMITATIONS

Conclusions. We presented CLoSeR, a lightweight test-time refinement framework that enhances
style fidelity and geometric consistency for artistic style transfer. By combining LoRA-based contin-
ual adaptation, codebook expansion, and positional encoding, CLoSeR achieves parameter-efficient
refinement while preserving prior knowledge across multiple domains. Extensive experiments on
diverse benchmarks show consistent gains over GAN-, attention-, and diffusion-based baselines,
together with strong robustness against catastrophic forgetting.

Limitations and Future Work. Despite these benefits, CLoSeR still inherits certain limitations
from the underlying VQ-GAN backbone. When the input synthesis is severely distorted or lacks
clear semantic structure, the refinement capacity becomes constrained. Moreover, our current design
primarily targets spatial consistency, leaving finer temporal and semantic dynamics in video and
multimodal settings underexplored. Extending CLoSeR to few-shot adaptation, video, and broader
cross-modal applications is an important direction for future research.

10
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6 ETHICS STATEMENT

This work does not involve human subjects, personally identifiable information, or sensitive data.
All datasets used (e.g., MetFace, FS2K, APDrawing, Monet, VanGogh, Ukiyo-e) are publicly avail-
able and widely adopted in the literature. Our research focuses purely on artistic style transfer and
does not raise foreseeable ethical or societal concerns such as bias, fairness, or privacy.

7 REPRODUCIBILITY STATEMENT

We have made every effort to ensure reproducibility. All model architectures, training strategies, and
evaluation metrics (FID, KID, ArtFID, NME, PCK) are described in detail in the main paper and ap-
pendix. Additional implementation details, hyperparameters, and evaluation protocols are provided
in the appendix [A] We will release the source code upon publication to facilitate full reproducibility
of our results.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

In this section, we will provide a comprehensive overview of our experimental setup, detailing all
aspects of the implementation to ensure transparency and reproducibility.

A.1.1 CONTINUAL LEARNING BASED ON LORA

To enable scalable and memory-efficient continual learning in multi-style domains, we introduce
Low-Rank Adaptation (LoRA) (Hu et al., 2022)) into the VQ-GAN (Esser et al., [2021) framework.
This is achieved by injecting LoRA modules into specific convolutional layers (convl, conv2) of
both the encoder and decoder. Each LoRA module performs a low-rank decomposition of the con-
volutional kernel updates, significantly reducing the number of trainable parameters during test-time
refinement.

Training Phase. During training, the LoORA modules are initialized with a low-rank pair of trainable
matrices A € R"*%n_ with a scaling factor a/r. These modules are only activated for target
style-specific adapters, each associated with a unique style_id. We implement a style-wise code
isolation strategy by naming and registering all LoORA parameters under their respective style_id.In
the continual learning scenario, only LoRA parameters and newly appended codebook embeddings
are optimized, while all other original weights in the encoder, decoder, and quantizer are frozen.
To accommodate novel style tokens without disrupting previously learned knowledge, we expand
the codebook by appending new embeddings, and apply selective gradient masking to freeze the
original indices. This ensures forward compatibility and avoids catastrophic forgetting.

Inference Phase.At test time, the framework dynamically selects and activates the appropriate
LoRA module based on the input style_id. The inference pipeline searches for the latest LoRA
checkpoint corresponding to the style domain, loads its parameters, and activates only the relevant
LoRA paths while disabling others. This design ensures geometric consistency and stylistic speci-
ficity across diverse domains under a single model instance. Overall, the proposed LoRA-based
continual adaptation mechanism provides a lightweight, modular, and effective solution to multi-
style artistic synthesis, enabling test-time refinement with up to 94% fewer trainable parameters.

A.1.2 DATASET DETAILS AND TRAINING CONFIGURATION

In this work, we employ three distinct datasets to train specialized codebooks for different artistic
styles within our CLoSeR framework. Each dataset is carefully selected to represent a unique visual
domain, enabling the learning of style-specific discrete representations.

Artistic Portrait Generation. We choose a pre-trained model (vqgan_metfaces_f16_1024.ckpt)
from QuantArt (Huang et al.|[2023) to finetune VQ-GAN (Esser et al.,|2021)) to achieve style-specific
reconstruction. MetFace (Karras et al., 2020) is used to train the general facial appearance code-
book. This dataset contains a total of 1336 face images, partitioned into 1,200 training samples and
136 test samples. APDrawing (Yi et al.,|2019) datasets consist of pen-drawing portrait drawings.
The dataset is divided into 420 training images and 70 test images. We initialize the VQ-GAN from
the model pre-trained on the MetFace dataset (covering photorealistic facial appearances) and intro-
duce Low-Rank Adaptation (LoRA) modules into the ’conv]l’ and ’conv2’ of encoder and decoder.
FS2K (Fan et al.| |2022) includes 2,104 face sketches across three distinct artistic styles. We initial-
ize the VQ-GAN from the model pre-trained on the APDrawing. We combine all three styles into
a single training set to encourage the model to learn a more generalized sketch representation. The
training split contains 2,004 images, with the remaining 100 reserved for testing.

Scene Oil Paingting. To further evaluate the generalization capability of our continual learning
framework, we extend our experiments to three additional classical art styles:Monet,Van Gogh, and
Ukiyo-e, all datasets are from WikiArt, follow the work from (Zhu et al.; 2017). And we choose
a pre-trained model (vqgan_wikiart_f16_1024.ckpt) from QuantArt (Huang et al.,|2023) to finetune
VQ-GAN to achieve style-specific scene oil painting reconstruction. Monet dataset comprises 1,072
training and 121 test images, capturing soft brushwork and natural light effects. Van Gogh dataset
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Table 7: Impact of CLoSeR on Natural Scenes Style Transfer.

Method Monet Vangogh Ukiyo-e

ArtFID | FID | KID | ArtFID | FID | KID | ArtFID | FID | KID |
AdaAtN (cypron) 32.34 19.63 0.0602 23.60 13.55 0.0397 30.14 18.03 0.1380
+ VQGAN 23.64 12699 13.86 12049 0.0681 11319 | 22.58 1430, 12.88 j499 0.0259 3487 | 31.03 1300 18.36 1159 0.1144 |17,
+ CLoSeR (urs) 19.35 14020 10.99 L4400 0.0467 12249, | 18.46 12180 10.35 12360 0.0277 3020 [26.94 [106% 15.77 L1250 0.1193 1360
CAST (si66rAPH 22) 19.53 11.43 0.0159 24.90 14.81 0.0410 29.06 17.75 0.0888
+ VQGAN 21.04 1779 12.11 1509, 0.0240 15090 | 24.16 1300 14.00 550 0.0297 12769 |34.51 11885 20.63 11620, 0.0710 120,09
+ CLoSeR (o) 18.87 330, 10.64 1699, 0.0155 550 [19.11 2330, 10.89 2650 0.0250 3000 | 26.46 |399 15.47 [1289, 0.0814 539
AesPA-Net (covos) 23.58 13.82 0.0808 22.7 12.99 0.0602 29.48 17.15 0.1673
+ VQGAN 22,66 1399 12.98 619 0.0631 2199 | 23.75 4460 13.64 500 0.0309 14579 | 30.77 4449 17.85 1419, 0.1479 1169
+ CLoSeR (o) 21.31 yoeo 12.02 ;1300 0.0639 2099 | 19.17 1569 10.81 1689 0.0330 4500 | 28.57 1319, 16.45 1419, 0.1458 | 1299
StyleID (cypros) 23.81 15.07 0.0370 30.63 18.78 0.0532 32.39 20.04 0.1733
+ VQGAN (i) 2294 379, 14.07 j669 0.0308 | 1657 | 28.74 1620 17.09 900 0.0400 j24389 | 32.95 417 20.03 1500 0.1641 |539
+ CLoSeR (urs) 19.85 y166% 11.82 12169 0.0184 ;5019 |22.11 12780 12.93 3100 0.0353 3369 |27.13 [1600 16.21 19,19, 0.1394 11969
AtteneDist (cvpr-s) 21.22 14.29 0.0489 22.13 14.24 0.0431 26.31 16.81 0.1718
+ VQGAN 2291 1500 1491 1439 0.0320 j3469 | 24.82 11200 15.54 1010 0.0353 yi519 | 25.25 j400  15.7 j6e6%  0.1388 1924
+ CLoSeR (ours) 16.35 12309 10.1 12939, 0.0216 ;5589 | 17.9 ;1910 10.82 2400 0.0245 14320 | 24.99 (500 14.34 1479, 0.1259 12679
StyleSSPcypr os) 34.72 22.85 0.0499 28.95 18.80 0.0628 28.39 18.30 0.1149
+ VQ-GAN 30.60 y119% 19.13 1630 0.0491 160 | 26.34 1909 16.15 1419 0.0719 1450 | 26.96 ;500 16.73 1869 0.1053 jgaq
+ CLoSeR (o) 24.41 12979, 15.04 |3500, 0.0362 12759 [22.28 |2300 13.49 [2820, 0.0582 730, [24.63 1320, 14.97 |1520. 0.1071 659

includes 700 training and 100 test images, emphasizing expressive and vivid color contrasts. Ukiyo-
e dataset contains 562 training and 263 test images, featuring flat color regions, strong outlines, and
stylized compositions typical of traditional Japanese art.

All datasets are preprocessed to a consistent resolution of 256 x 256 with center cropping and
normalized to the range [—1, 1]. During training, we preserve the LoORA parameters together with
the corresponding discriminator for each style, enabling modular switching at inference time. This
plug-and-play design supports flexible and memory-efficient multi-style generation within a single
unified architecture.

A.1.3 MORE METRICS DETAILS OF THE TASKS

We evaluate our model by ArtFID (Wright & Ommer} 2022)), FID (Heusel et al., [2017), and KID
(Binkowski et al.| [2018)). The specific numerical metrics of Scene Oil Paintings are shown in the
Tabld7] Face Portrait Drawings are shown in the Table[8] From the quantitative metrics, we can see
that our algorithm has shown excellent performance under each base method.

A.2 MORE RESULTS OF CLOSER

Image resolution. All main experiments are conducted at an input resolution of 2562. To verify
that this choice does not bias our conclusions, we additionally rerun the MetFace experiments on a
single RTX 4090 at a higher resolution of 5122, keeping all hyper-parameters identical to the default
setting except for reducing the batch size to 2. As summarized in Tab. [I0} CLoSeR consistently
improves ArtFID/FID/KID over the corresponding base generators for four representative backbones
(AdaAttN, StylelD, AttenDistill, StyleSSP), while also producing visibly sharper and more faithful
stylization. Since CLoSeR is a fully convolutional refinement module, it can in principle be applied
to higher-resolution inputs without any architectural changes.

Catastrophic Forgetting Evaluation of Continual Learning. Due to space constraints, we re-
port the detailed quantitative results of continual learning in the appendix. As shown in Table [T1]
and Table [I2} the refined models are evaluated on outputs from various base generators. The re-
sults show that performance on earlier styles remains largely stable even after introducing multiple
new domains. These findings confirm that CLoSeR effectively mitigates catastrophic forgetting,
retaining prior knowledge while adapting to new styles.

Validation of Positional Encoding. To evaluate the role of positional encoding (PE) in geometric
consistency, we conduct landmark detection on stylized outputs with CelebAMask-HQ (Lee et al.,
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Table 8: Impact of CLoSeR on Artistic Portrait Generation.

Method Oil Painting Pen Drawing Sketch
AMFID|  FID| KID | AMFID|  FID| KID | AMFID|  FID| KID |
APDrawingGAN cvpr:19) - - - 19.56 12.02 0.0267 - - -
+ VQGAN - - - 19.58 1010 1196 [g50 0.0171 14004 - - _
+ CLoSeR (our) - - - 19.30 130 1177 1249, 0.0073 17154 - - -
AdaAttN (cvpron) 41.39 28.14 0.1281 37.34 2421 0.1293 44.81 26.74 0.0905
+ VQGAN 3526 1749 23.90 [1779, 0.1071 1969 [29.57 [208% 18.68 |2089 0.0771 j4049 | 43.87 1219 2584 |349, 0.0847 1444
+ CLoSeR (our) 36.62 1150 24.60 1299 0.1089 | 1499 |29.11 12519 18.35 2429, 0.0783 3959 | 41.04 849 23.69 | 1149 0.1072 41549
CAST (51GGRAPH"22) 37.58 26.13 0.1002 2235 14.37 0.0784 43.07 25.41 0.0692
+ VQGAN 37.22 109 2537 1299 0.1065 1639 | 23.70 1600 14.80 1300 0.0417 4689 | 40.61 579, 23.56 1739, 0.0684 |59
+ CLoSeR (ours) 36.11 1399, 24.50 1620 0.1057 4550 | 23.55 1549, 14.68 1250 0.0417 4659 | 40.28 1650 22.86 1009 0.0841 1250
AesPA-Net (jccvosz) 43.28 30.42 0.1313 41.97 28.53 0.1258 41.52 25.11 0.0955
+ VQGAN 44.25 1200, 3048 1000 0.1450 41049 |26.59 3669 16.74 14139, 0.0464 6319 | 40.50 1250 23.78 |53, 0.0629 3419
+ CL0SeR (ours) 45.05 4419 31.07 1200 0.1314 |09 |27.35 3400 17.23 [396% 0.0497 |6059 | 38.49 1730 21.97 |1250. 0.0727 12394
DiffuselT (ic1r23) 47.13 32.27 0.1598 36.19 23.06 0.0826 58.04 35.86 0.1858
+ VQGAN 4891 jage 3270 1150 01110 3050 [30.57 1540 1827 126200 0.0646 12700 | 4633 12020 2691 12505 0.0739 16020,
+ CLoSeR (our) 39.38 Ji64% 2646 1779 0.0913 4200 [32.06 1149 19.24 1660 0.0557 3060 |41.86 12700 23.70 3309 0.0807 | 5664
InST (cvproz) 57.89 38.57 0.2226 35.04 26.13 0.0818 - - -
+VQGAN 46.46 L1970 3211 L1670 0.0957 [5700 |31.24 1050 20.01 12340, 0.0783 430, - - -
+CLOSeR (o) 47.23 150 2646 (3140 0.0913 5579 |29.72 11520 19.08 12700 0.0779 145 - - -
StyleID (cvproa) 35.60 23.78 0.1198 26.58 17.44 0.0235 44.67 26.97 0.1546
+ VQGAN 35.96 1100 23.31 1200 0.1080 joge [22.05 1700 13.71 2149 0.0235 000 | 41.01 1300 23.96 11120 0.0643 | 5544
+ CLoSeR (our) 34.19 j400 2236 1609 0.0966 |1949 | 24.57 760 1543 |1150, 0.0159 3239 [36.14 1919 20.87 ;2069 0.0725 5319
AttenDist (cvpr o3, 33.95 26.13 0.1349 28.16 18.74 0.0506 43.50 30.98 0.1501
+ VQGAN 34.26 1000 24.66 560 0.1162 1309 |22.32 12070 13.87 12600 0.0271 yasas | 4647 1650 2843 (500 0.0798 L4g5s
+CLOSeR (o1 3318 1230 23.84 1550 0.1046 5050 [21.95 1010 13.65 12700 0.0255 Lies | 39:59 100w 23.89 1220 0.0843 L4350
StyleSSPcyprs) 46.59 33.49 0.1143 29.57 20.24 0.1119 40.44 26.07 0.1320
+VQ-GAN 43.66 630 31.16 1700 0.0872 12370 | 2849 (370 18.15 [1030 0.0691 13500 | 44.25 1940 2631 1000 0.0708 14640,
+ CLOSeR (11s) 4025 1360 28.14 1600 0.0750 13440 | 28.07 1510 17.85 L1150 0.0644 |paq | 37.74 1o70. 2243 1400 0.0833 L3600
Table 9: Validation of Positional Encoding (PE) with PCK (7).

Metrics AdaAttN AesPA-Net AttnDistill Diffusel T

+VQ-GAN  +VQ-GAN w/PE | +VQ-GAN  +VQ-GAN w/PE | +VQ-GAN +VQ-GAN w/PE | +VQ-GAN +VQ-GAN w/PE | +VQ-GAN  +VQ-GAN w/PE
PCK@5% T 0.789 0.802 0.841 0.858 0.896 0.901 0.806 0.842 0.741 0.764
PCK@7% 0.921 0.930 0.942 0.952 0.973 0.973 0.927 0.941 0.900 0.909
PCK@10% 1 0.980 0.987 0.984 0.988 0.995 0.995 0.979 0.986 0.974 0.980

as the content domain and MetFace (Karras et al., [2020) as the style domain. For each al-
gorithm, we generate 80 stylized results, where both the vanilla VQ-GAN and VQ-GAN w/PE are
trained on MetFace for 48 epochs. The qualitative comparisons of different detection algorithms are
provided in Figure [§] Due to space constraints, additional Percentage of Correct Keypoints (PCK)
results under 5%, 7%, and 10% thresholds are reported in the Appendix, as shown in TableEl

Integration into Diffusion Models. We integrate CLoSeR into the StyleID (Chung et al., [2024)

diffusion framework and evaluate under different sampling steps. As shown in Figure [/} we assess
refinement on MetFace-based generations at 30, 35, 40, and 50 steps. The qualitative results clearly
demonstrate that CLoSeR produces sharper and more stylistically faithful portraits across different
iteration counts.

Multi-round refinement. We further study whether applying CLoSeR multiple times brings ad-
ditional benefits by running one (1x) or two (2x) refinement passes on MetFace for three repre-
sentative backbones (Tab. [I3). While the first pass yields clear gains over the Base and +VQ-GAN
variants, the differences between 1x and 2x refinement are negligible (changes < 0.1 ArtFID and
< 0.2 FID in all cases). This suggests that the initial pass already projects the latent features close to
their optimal codebook representations, so an extra pass produces almost identical reconstructions;
CLoSeR effectively behaves as an approximately idempotent projection onto the learned VQ man-
ifold. Therefore, we adopt a single refinement round in all main experiments, as additional rounds
only increase inference time without measurable quality gains.
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Table 10: Effect of increasing the input resolution to 512 x 512 on MetFace.

Method Row AMFID| FID| KD
Base 31.54 2106 0.0696
AdAAUN el oseR 30,19 2033 00728
(CVPR21)) 43% | 3.5% | 4.6% 1
Base 3056 2097 0.0588
StylelD +CLoScR 2823 1938 00547
(CVPR'24) 7.6% | 7.6% | 7.0% |
- Base 3101 240 0.0650
AttenDistill oy ser 2726 1937 00589
(CVPR'25) 121% 1 135% )  9.4%
Base 3876 2549 0.0830
SWIeSSP | CLoser 3139 2024 00722
(CVPR'25)) 190% | 167% | 13.0% |

Table 11: Catastrophic Forgetting Evaluation on artistic portrait (MetFace, APDrawing, FS2K).

Methods \ ArtFID | FID| KID|]
AdaAttN 41.40 28.15  0.1281
+CLoSeR (Oil) 36.61 24.60  0.1089
+CLo0SeR (Oil+Pen) 36.11 24.24  0.1067
+CLoSeR (Oil+Pen+Pencil) 35.44 23.69 0.1106
CAST 37.58 26.13  0.1002
+CLoSeR (Oil) 36.22 24.52  0.1055
+CLoSeR (Oil+Pen) 35.79 24.21  0.1045
+CLoSeR (Oil+Pen+Pencil) 35.53 24.03 0.1093
AesPA-Net 43.28 3042 0.1313
+CLoSeR (Oil) 45.34 31.25  0.1304
+CLoSeR (Oil+Pen) 45.17 31.07 0.1321
+CLoSeR (Oil+Pen+Pencil) 44.61 30.60 0.1375
QuantArt 32.29 2443 0.1017
+CLoSeR (Oil) 31.98 23.59  0.0917
+CLoSeR (Oil+Pen) 31.89 2347  0.0929
+CLo0SeR (Oil+Pen+Pencil) 31.83 23.41  0.0958
DiffuselT 47.13 32.27  0.1598
+CLoSeR (Oil) 39.59 26.60  0.0913
+CLoSeR (Oil+Pen) 39.07 26.24  0.0919
+CLo0SeR (Oil+Pen+Pencil) 38.30 25.65 0.0929
StyleID 35.60 23.78 0.1198
+CLo0SeR (Oil) 34.19 22.36  0.0966
+CLoSeR (Oil+Pen) 34.14 2231 0.0971
+CLo0SeR (Oil+Pen+Pencil) 34.14 2231  0.0971
AttenDistill 33.95 26.13  0.1349
+CLoSeR (Oil) 33.04 2371  0.1041
+CLoSeR (Oil+Pen) 33.00 23.61 0.1043
+CLoSeR (Oil+Pen+Pencil) 32.87 23.50 0.1089

A.2.1 EXPERIMENTS RESULTS

In this section, we provide a concise yet comprehensive overview of the additional experimental
results validating our proposed Continual Learning for Style Refinement (CLoSeR) framework. We
compare CLoSeR with state-of-the-art methods, emphasizing its effectiveness in generating high-
quality, style-consistent drawings.

Facial Portrait Results. Figure 9] and Figure [I0] illustrate the generated artistic styles for facial
portraits using various generative methods. CLoSeR demonstrates superior performance in both oil
painting and pen drawing styles. For oil paintings, CLoSeR achieves visually appealing results that
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Table 12: Catastrophic Forgetting Evaluation on natural scenes (Monet, Van Gogh, Ukiyo-e).

Methods | AtFID| FID| KID|
AdaAttN 32.34 19.63  0.0602
+CLoSeR (+Monet) 19.35 10.99  0.0467
+CLoSeR (+Monet+VanGogh) 19.27 1095 0.0513
+CLoSeR (+Monet+VanGogh+Ukiyo-e) 19.27 10.95 0.0493
CAST 19.53 1143 0.0159
+CLoSeR (+Monet) 18.87 10.64  0.0155
+CLoSeR (+Monet+VanGogh) 18.03 10.11  0.0117
+CLoSeR (+Monet+VanGogh+Ukiyo-¢e) 18.05 10.13  0.0118
AesPA-Net 23.58 13.82  0.0808
+CLoSeR (+Monet) 21.31 12.02  0.0639
+CLoSeR (+Monet+VanGogh) 22.05 12.48  0.0677
+CLoSeR (+Monet+VanGogh+Ukiyo-e) 22.05 12.48 0.0677
StyleID 30.63 18.78  0.0370
+CLoSeR (+Monet) 19.85 11.82 0.0184
+CLoSeR (+Monet+VanGogh) 20.07 11.98 0.0165
+CLoSeR (+Monet+VanGogh+Ukiyo-e) 19.96 1191 0.0159
AttenDistill 21.22 14.29  0.0489
+CLoSeR (+Monet) 16.35 10.10  0.0216
+CLoSeR (+Monet+VanGogh) 17.03 10.54  0.0267
+CLoSeR (+Monet+VanGogh+Ukiyo-e) 16.97 10.50  0.0257

Steps: 30 35 40 50 30 35 40 50

+CLoSeR

BASE

+CLoSeR

Figure 7: Qualitative evaluation of StyleID refinement with CLoSeR on the MetFace dataset under
different sampling steps (30, 35, 40, 50). Compared to the baseline (BASE), CLoSeR produces
sharper, more consistent, and stylistically faithful results across all iterations.Please zoom in for
details.

closely resemble the target style while preserving the identity and structural details of the input faces.
Compared to the SOTA methods, CLoSeR avoids overly smoothed or distorted outputs, capturing
complex brush strokes and color blending effectively. In pen drawings, CLoSeR produces clear lines
and consistent textures, accurately representing the input faces with sharp, well-defined lines.

Natural Scene Results Figure [IT] showcases the generated artistic styles for natural scenes based
on different artist and generative methods. CLoSeR excels in generating high-quality artistic rep-
resentations of natural scenes, such as Monet, Van Gogh, and Ukiyo-e styles. For Monet’s im-
pressionistic style, CLoSeR captures soft brushwork and natural light effects, producing visually
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Figure 8: Comparison of facial landmark detection across different generative methods on oil paint-
ing portraits. Each column shows the detected landmarks on stylized outputs, highlighting the im-
pact of VQ-GAN and positional encoding (PE) on geometric consistency. Please zoom in for details.

Table 13: Effect of single— vs. double-round refinement on MetFace (ArtFIDJ/FID|/KIDJ]).

Method AdaAttN DiffuselT StyleID

ArtFID FID KID |ArtFID FID KID |ArtFID FID  KID
Base 41.39 28.14 0.1281 | 47.13 3227 0.1598 | 35.60 23.78 0.1198
+ VQGAN 3526 2390 0.1071 | 4891 3270 0.1110| 3596 23.31 0.1080

+ CLoSeR (1x) | 36.62 24.60 0.1089 | 39.38 2646 0.0913 | 34.19 22.36 0.0966
+ CLoSeR (2x) | 36.61 24.60 0.1088 | 39.59 26.60 0.0912 | 34.19 2236 0.0966

pleasing results. In Van Gogh’s post-impressionistic style, CLoSeR effectively reproduces expres-
sive, swirling strokes and vivid color contrasts. For Ukiyo-e, CLoSeR generates flat color regions,
strong outlines, and stylized compositions typical of traditional Japanese art. Compared to other
SOTA methods, CLoSeR maintains better style consistency and visual fidelity. The continual learn-
ing approach ensures that CLoSeR refines its understanding of each artistic style, leading to more
accurate and consistent results.

A.3 USAGE OF LLM

We employed a large language model (LLM) as an auxiliary tool during the manuscript preparation
process. Specifically, the LLM was used to polish the writing, check spelling and grammar errors,
and improve the overall clarity and readability of the text. Importantly, the LLM was not involved
in designing the methodology, conducting experiments, or analyzing results; all technical contri-
butions, experimental designs, and conclusions were developed solely by the authors. The use of
the LLM was limited to language refinement, helping to ensure that the presentation of our work is
logically coherent and accessible to a broader research audience.
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Figure 9: Generated results of artistic styles for oil facial portraits based on different generative
methods.Please zoom in for details.
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Figure 10: Generated results of artistic styles for pen-drawing facial portraits based on different
generative methods.Please zoom in for details.

22



Under review as a conference paper at ICLR 2026

1188
1189
1190
1191
1192 Content/Style AdaAttN CAST AesPA-Net StylelD AttenDistill
1193 » ; :

1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219 Van Gogh
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233 Ukiyo-e
1234

1235

1236
1037  Figure 11: Generated results of artistic styles for natural scenes based on different artist and gener-
1095 ative methods.Please zoom in for details.

1239

1240
1241

BASE

+VQGAN

Monet

+CLoSeR

BASE

+VQGAN

+CLoSeR

BASE

+VQGAN

+CLoSeR

23



	Introduction
	Related Works
	Method
	Overview
	Continual Learning in VQ-GAN via LoRA
	Geometry-Aware VQ-GAN
	Loss Functions

	Experiments
	Settings
	Performance Evaluation
	Natural Scene Style Transfer
	Artistic Portrait Generation
	User study
	Model Efficiency

	Model Analysis

	Conclusions and Limitations
	Ethics Statement
	Reproducibility Statement
	appendix
	Implementation Details
	Continual Learning Based on LoRA
	Dataset Details and Training Configuration
	More Metrics Details of the Tasks

	More Results of CLoSeR
	Experiments Results

	Usage of LLM


