

000 001 002 003 004 005 CLOSER: CONTINUAL LEARNING IN VQ-GAN FOR 006 TEST-TIME STYLE REFINEMENT 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031

ABSTRACT

032 While existing artistic style transfer methods enable cross-domain image synthesis,
033 they often struggle to strike a balance among stylistic realism, inference
034 efficiency, and geometric consistency. To address this limitation, we propose a
035 *test-time refinement* (TTR) framework that universally enhances stylistic fidelity
036 through a scalable and self-supervised VQ-GAN refiner, while keeping the parameters
037 of the underlying style-transfer generator frozen. Our primary contribution is
038 a continual learning framework for VQ-GAN, which combines *Low-Rank Adaptation*
039 (LoRA) with incremental codebook expansion. This design enables efficient
040 adaptation to diverse artistic styles while preserving previously learned knowledge,
041 significantly reducing the computational and memory overhead of deploying
042 models across multiple domains. Notably, our approach reduces the number
043 of trainable parameters by up to 94% compared to full-model fine-tuning, offering
044 a highly parameter-efficient solution for test-time refinement. Furthermore, we in-
045 troduce positional embeddings into the latent embedding space, which strengthens
046 the model’s geometry awareness and improves structural coherence in the gener-
047 ated results. We name our approach CLoSeR (*Continual Learning in VQ-GAN for*
048 *Style Refinement*), and evaluate it across multiple style transfer benchmarks under
049 a test-time adaptation setting. Experimental results show that CLoSeR improves
050 style fidelity and structural consistency, achieving a maximum relative reduction
051 of 44% in *Fréchet Inception Distance* (FID), demonstrating significant gains in
052 generation quality. The code will be released.
053

1 INTRODUCTION

032 *Artistic style transfer* (AST) has witnessed rapid progress through a variety of approaches, most
033 notably neural style transfer (NST) (Gatys et al., 2016; Huang & Belongie, 2017; Liu et al., 2021;
034 Hong et al., 2023) and generative adversarial networks (GANs) (He et al., 2018; Lee et al., 2020;
035 Huang et al., 2024). These methods typically rely on one or a few reference style images to guide
036 the stylization process. More recently, diffusion models (Zhang et al., 2023; Chung et al., 2024;
037 Wang et al., 2024; Zhou et al., 2025), autoregressive (AR) approaches (Li et al., 2024), and flow-
038 based generative methods (Lipman et al., 2022; Geng et al., 2025) have demonstrated impressive
039 capabilities in producing high-quality and diverse stylizations, often supporting multimodal inputs.
040 These advances highlight the growing importance of transferable representations that capture both
041 content and stylistic priors, enabling more flexible and controllable AST.
042

043 However, existing methods struggle to achieve an optimal balance between content consistency,
044 stylistic realism, and inference efficiency. NST and GAN-based methods (Gatys et al., 2017; Selim
045 et al., 2016; Zhu et al., 2017) enable fast inference and preserve geometric structure well, but of-
046 ten fail to learn sufficiently rich representations of artistic textures. Diffusion models (Zhang et al.,
047 2023; Wang et al., 2024; Ye et al., 2025) generate high-quality results with nuanced style patterns,
048 yet suffer from hallucinated content, weak content–style correspondence, and the high computa-
049 tional cost due to iterative sampling. Reducing inference steps typically degrades image quality
050 significantly. Moreover, both diffusion and AR models often yield over-smoothed textures, sug-
051 gesting that their learned representations do not fully align with the expressive nature of real-world
052 artistic styles. Few-shot or training-free adaptation methods (Chung et al., 2024; Farhadzadeh et al.,
053 2025) further face challenges in building robust representations for unseen domains. Thus, learning
domain-aligned and structurally consistent representations remains an open challenge for AST.

Figure 1: Motivation of CLoSeR. **Left:** illustration of the distribution shift from the source domain (CelebAMask-HQ (Lee et al., 2020)) to the target domain (MetFace (Karras et al., 2020)). StyleID (Chung et al., 2024) serves as the base model to generate coarse outputs, while our CLoSeR produces refined results that align more closely with the target domain. Features are extracted with VGG-19 (Simonyan & Zisserman, 2014) and visualized via t-SNE.) **Right:** scatter plot of refined performance versus original performance across diverse base models and artistic styles. Lower FID values indicate better style fidelity.

As illustrated in Fig. 1, the motivation for our approach stems from the persistent distributional gap between stylized outputs and the target domain. While existing image translation models—such as GAN-, attention-, and diffusion-based methods (Huang & Belongie, 2017; Liu et al., 2021; Yi et al., 2019; Chung et al., 2024; Zhou et al., 2025)—can roughly map source content into the target style space, their outputs often exhibit significant deviations from the authentic target distribution, particularly in terms of stylistic fidelity and geometric consistency (left panel). These gaps indicate a representation mismatch between the generated outputs and the target artistic domain.

To address this, we explore an alternative perspective: rather than retraining or modifying the generator, we refine its outputs at test time through reconstruction in the embedding space. Inspired by the ability of VQ-GAN (Esser et al., 2021) to learn a compact, self-supervised representation of the target domain, we propose a *test-time refinement* (TTR) framework that leverages VQ-GAN as a domain anchor. In other words, VQ-GAN refines coarse stylized images by aligning their features with a pre-learned target domain representation in its latent codebook, eliminating the need for generator updates.

However, directly fine-tuning VQ-GAN for each new style remains computationally expensive and lacks scalability. To overcome these limitations, we propose a TTR framework dubbed **CLoSeR**, *i.e.* *Continual Learning in VQ-GAN for Style Refinement*. CLoSeR enables efficient continual adaptation by incrementally enriching the learned representation space through *Low-Rank Adaptation* (LoRA) (Hu et al., 2022) and codebook expansion. This design drastically reduces the number of trainable parameters—by over 94% compared to full fine-tuning—while preserving previously acquired representations of earlier styles. Furthermore, to mitigate structural distortions caused by the lack of spatial awareness in vanilla VQ-GAN (Esser et al., 2021), we incorporate 2D sine-cosine positional embeddings (Vaswani et al., 2017; Carion et al., 2020) into the latent representation space, endowing the codebook and decoder with explicit spatial priors. Together, these components enable CLoSeR to refine generation quality through representation learning, achieving both high-fidelity stylization and geometric consistency across diverse artistic domains.

We conduct extensive experiments to evaluate the effectiveness and generality of our approach. The results demonstrate that CLoSeR consistently improves generation quality across diverse style transfer pipelines—including GAN- (Yi et al., 2019; Zhang et al., 2022), attention- (Liu et al., 2021;

108 Hong et al., 2023), and diffusion-based (Kwon & Ye, 2022; Chung et al., 2024; Zhou et al., 2025)
 109 models—under both single-style and continual learning settings. The framework enhances stylistic
 110 realism and structural consistency, while also learning transferable representations. As shown in
 111 the right panel of Fig. 1, a scatter plot of FID improvement reveals that both the baseline VQ-
 112 GAN and CLoSeR reduce stylization errors compared to the original outputs, but CLoSeR achieves
 113 significantly greater FID reduction, particularly in challenging cases with higher baseline errors.
 114 This confirms its superior refinement capability and scalability in real-world deployment scenarios.
 115

116 2 RELATED WORKS

117 **Artistic Style Transfer.** Early approaches leveraged CNNs to decouple style and content representations, enabling stylized image synthesis (Gatys et al., 2016; Johnson et al., 2016; Jing et al., 2019). Subsequent methods aimed to enhance style diversity and generalization by introducing adaptive normalization and attention-based mechanisms (Huang & Belongie, 2017; Park & Lee, 2019; Hong et al., 2023). More recently, diffusion-based approaches have emerged as powerful alternatives for style and domain transfer (Ho et al., 2020; Kwon & Ye, 2022; Gu et al., 2022). These methods have been applied to stylization, latent space disentanglement, and domain adaptation by exploiting denoising priors and structured noise injection (Kwon & Ye, 2022; Su et al., 2022; Parmar et al., 2024; Zhou et al., 2025). In parallel, large pretrained text-to-image (T2I) diffusion models have been adapted to AST, enabling prompt-driven any-to-any stylization without case-by-case retraining (Rombach et al., 2022; Brooks et al., 2023; Chen et al., 2023). In addition, training-free paradigms have been explored to achieve lightweight and interpretable transfer (Chung et al., 2024). Despite these advances, both CNN-based and diffusion-based pipelines often struggle with preserving structure and maintaining style fidelity in complex artistic domains.
 118
 119

120 **Vector Quantization.** Vector Quantization (VQ) has emerged as a powerful technique for learning
 121 discrete representations. VQ-VAE (Van Den Oord et al., 2017) pioneered vector quantization in
 122 generative modeling, and VQ-GAN (Esser et al., 2021) further advanced this direction. Building on
 123 the success of VQ-GAN, a variety of works have emerged, such as VQ-Diffusion (Gu et al., 2022) for
 124 text-to-image generation and QuantArt (Huang et al., 2023) for artistic style transfer. Reconstruction
 125 and generation using VQ have also been widely studied (Zhu et al., 2024; Yu et al., 2024; Yao et al.,
 126 2025). In the autoregressive paradigm, Li et al. (2024) propose eliminating discrete quantization
 127 entirely by modeling per-token distributions, while MergeVQ (Li et al., 2025) unifies representation
 128 learning and generation through token merging and a lookup-free quantization strategy.
 129
 130

131 **Continual Learning.** Continual learning has been extensively studied, but its application to artistic
 132 domains remains relatively underexplored. Traditional style transfer methods often require re-
 133 training for each new style (Gatys et al., 2016; Johnson et al., 2016), making them inefficient and
 134 vulnerable to catastrophic forgetting. To address these limitations, modular and parameter-efficient
 135 approaches have been proposed (Liang & Li, 2024; Zhu et al., 2025; He et al., 2025; Roy et al.,
 136 2023). More recently, continual generative learning has incorporated strategies such as replay (Cac-
 137 cia et al., 2020; Jeon et al., 2023), distillation (Lesort et al., 2019; Zhao et al., 2020), and mod-
 138 ularization (Yoon et al., 2018). LoRA-based adapters (Hu et al., 2022; Farhadzadeh et al., 2025)
 139 have proven particularly effective, enabling lightweight, style-specific modules to be integrated into
 140 frozen backbones for scalable, efficient, and largely forget-free adaptation. However, they still suffer
 141 from increasing knowledge degradation as the number of tasks grows (Liang & Li, 2024).
 142
 143

153 3 METHOD

154 3.1 OVERVIEW

155 We propose CLoSeR (*Continual Learning in VQ-GAN for Style Refinement*), a *test-time refinement*
 156 (TTR) framework that enhances both stylistic realism and geometric consistency in artistic style
 157 transfer. The pipeline of CLoSeR is shown in Fig. 2. Building upon VQ-GAN (Esser et al., 2021),
 158 we integrate parameter-efficient adaptation through *Low-Rank Adaptation* (LoRA) and incremental
 159 codebook expansion, supporting continual adaptation to new styles with minimal overhead. For
 160 each new style, only a lightweight LoRA module and a style-specific discriminator are trained,
 161

Figure 2: Overview of **CLoSeR**, *i.e.*, *Continual Learning in VQ-GAN for test-time Style Refinement*. (a) New styles are integrated by expanding the codebook ($\mathcal{C}^{(i)}$) while retaining the base style representation \mathcal{C}_0 (style 0). The encoder features are enriched with cosine-sine positional encodings and reconstructed by the decoder with LoRA-based adaptation. (b) Given an initial coarse stylized output $\mathcal{G}(x)$ from any generator, CLoSeR reconstructs it through the learned codebook, aligning the result with the target style domain.

while the shared VQ-GAN backbone remains frozen. This strategy enables scalable deployment in dynamic and long-tail style scenarios. In addition, our approach introduces *geometry-aware vector quantization* by embedding positional encodings into the latent space, allowing the model to incorporate explicit spatial priors during reconstruction and thereby correcting geometric distortions and local artifacts commonly present in coarse stylized outputs. Finally, CLoSeR operates in a *plug-and-play* manner and can be applied to enhance outputs from arbitrary generative models.

3.2 CONTINUAL LEARNING IN VQ-GAN VIA LORA

Adapting to new artistic styles while preserving previously learned knowledge remains challenging due to catastrophic forgetting and the large parameter overhead of full fine-tuning. To enable efficient and scalable continual learning, we integrate LoRA (Hu et al., 2022) and incremental codebook expansion into the VQ-GAN framework, allowing CLoSeR to adapt to new styles with minimal trainable parameters while keeping the shared backbone frozen.

LoRA-based Encoder–Decoder Adaptation. We apply LoRA to all convolutional layers of the encoder and decoder, injecting trainable low-rank matrices to modulate features in a style-specific manner. Specifically, each pre-trained weight $W_0 \in \mathbb{R}^{d \times k}$ is updated as:

$$W = W_0 + \frac{\alpha}{r} AB, \quad A \in \mathbb{R}^{d \times r}, B \in \mathbb{R}^{r \times k}, \quad (1)$$

where A and B are the low-rank adaptation matrices. A is initialized with zeros, B with a standard normal distribution, α is a scaling factor, and r is the rank (set to 8 in our experiments). The original weights W_0 remain frozen and are shared across all styles.

Incremental Codebook Expansion. For each new style s_i , we expand the codebook with $\Delta K = 1024$ additional entries:

$$\mathcal{C}^{(i)} = \mathcal{C}_0 \cup e_{K_0+1}, \dots, e_{K_0+\Delta K}, \quad (2)$$

where \mathcal{C}_0 denotes the initial codebook. This strategy enables the model to encode style-specific visual primitives while preserving previously learned representations.

Training. During training on style s_i , only three components are updated: the LoRA parameters $\Theta_{\text{LoRA}}^{(i)}$, the newly added codebook entries $\mathcal{C}^{(i)} \setminus \mathcal{C}_0$, and a lightweight style-specific discriminator $\mathcal{D}^{(i)}$. All other parameters—including the encoder, decoder, and the base codebook—remain frozen.

Inference. At inference, given an initial stylized result $\mathcal{G}(x)$ from any pre-trained generator, the refined output for style s_i is computed as:

$$\hat{y} = \mathcal{R}(\mathcal{G}(x); \Theta^{(i)}), \quad \text{with} \quad \Theta^{(i)} = \Theta_{\text{LoRA}}^{(i)}, \mathcal{D}^{(i)}. \quad (3)$$

216 This modular design enables plug-and-play refinement: users select the target style, and the system
 217 loads the corresponding lightweight parameters, thereby avoiding redundant computation and
 218 supporting efficient deployment in dynamic or long-tail scenarios.
 219

220 3.3 GEOMETRY-AWARE VQ-GAN 221

222 To improve spatial structure preservation in artistic style reconstruction, we enhance the VQ-GAN
 223 framework (Esser et al., 2021) with 2D sine-cosine positional embeddings injected into the latent
 224 representation space. Unlike standard VQ-GAN, which processes latent features without explicit
 225 spatial inductive bias, our method embeds positional priors prior to quantization—thereby enabling
 226 geometry-aware refinement without introducing any additional learnable parameters.
 227

228 Similar to Transformer (Vaswani et al., 2017), for each spatial position $(m, n) \in \{1, \dots, h\} \times$
 229 $\{1, \dots, w\}$ of the continuous latent feature map $f_s \in \mathbb{R}^{h \times w \times d}$, we generate a corresponding 2D
 229 positional embedding $P_{m,n} \in \mathbb{R}^d$ using an extended sine-cosine scheme:

$$\begin{aligned} P_{m,2i} &= \sin\left(\frac{m}{10000^{\frac{2i}{d}}}\right), & P_{m,2i+1} &= \cos\left(\frac{m}{10000^{\frac{2i}{d}}}\right), \\ P_{n,2i} &= \sin\left(\frac{n}{10000^{\frac{2i}{d}}}\right), & P_{n,2i+1} &= \cos\left(\frac{n}{10000^{\frac{2i}{d}}}\right), \end{aligned} \quad (4)$$

235 where m and n denote the row and column indices, i is the dimension index, and d is the embedding
 236 dimension. The positional embedding $P_{m,n}$ is then added element-wise to the latent feature f_s :

$$f_{pe} = f_s + P_{m,n}, \quad (5)$$

239 forming spatially enriched features that retain semantics and explicit structure.

240 The enhanced features f_{pe} are then passed to the codebook for quantization:

$$Q_{\mathcal{C}}(f_{pe}) := \arg \min_{\mathbf{c}_i \in \mathcal{C}} \|f_{pe} - \mathbf{c}_i\|, \quad (6)$$

244 where \mathbf{c}_i denotes the i -th code vector in the codebook \mathcal{C} . By integrating explicit spatial priors into
 245 the vector quantization pipeline, our approach effectively improves geometric consistency in the
 246 reconstructed outputs, particularly in structure-sensitive artistic domains.

247 3.4 LOSS FUNCTIONS 248

249 To balance pixel-level fidelity, perceptual quality, quantization alignment, and adversarial realism,
 250 we adopt a composite loss composed of multiple complementary objectives.

252 **Reconstruction Objective.** The reconstruction objective combines an L1 pixel-wise loss and a per-
 253 ceptual loss in deep feature space. Given the input image x_s and its reconstruction y_s , the pixel-level
 254 reconstruction loss is defined as $\mathcal{L}_{\text{rec}} = \|y_s - x_s\|_1$. To capture higher-level semantic consistency,
 255 we further employ the LPIPS metric (Zhang et al., 2018) as a perceptual loss:

$$\mathcal{L}_{\text{perc}} = \text{LPIPS}(x_s, y_s). \quad (7)$$

257 The total reconstruction loss is then given by:

$$\mathcal{L}_{\text{recon}} = \mathcal{L}_{\text{rec}} + \lambda_{\text{perc}} \cdot \mathcal{L}_{\text{perc}}, \quad (8)$$

260 where λ_{perc} controls the relative weight of perceptual similarity.

262 **VQ Loss.** Following standard practice in vector quantized models (Esser et al., 2021), we in-
 263 incorporate a vector quantization (VQ) loss to align the latent space with the codebook. Let
 264 $f_s \in \mathbb{R}^{B \times C \times H \times W}$ denote the continuous latent features from the encoder. We enrich these
 265 features with 2D sine-cosine positional encoding (see Section 3.3) to obtain f_{pe} , which is then flattened
 266 and mapped to the nearest entries in a learnable codebook $\mathcal{C} \in \mathbb{R}^{K \times D}$, where K is the number
 267 of codebook vectors and D is the embedding dimension. The quantized output z_q replaces each
 268 feature in f_{pe} with its closest codebook entry under the Euclidean distance. To jointly optimize the
 269 codebook and encoder, we use the following VQ loss:

$$\mathcal{L}_{\text{VQ}} = \|\text{sg}[z_q] - f_{pe}\|_2^2 + \beta \|\text{sg}[f_{pe}] - z_q\|_2^2, \quad (9)$$

270 where $\text{sg}[\cdot]$ denotes the stop-gradient operator and β is a hyperparameter controlling the codebook
 271 update strength.
 272

273 **Adversarial Loss.** For adversarial training, we adopt the standard cross-entropy objective as in
 274 VQ-GAN (Esser et al., 2021). The discriminator $\mathcal{D}^{(i)}$ for style s_i is optimized as:
 275

$$\mathcal{L}_{\text{adv}} = -\mathbb{E}[\log \mathcal{D}^{(i)}(y)] - \mathbb{E}[\log(1 - \mathcal{D}^{(i)}(y_s))], \quad (10)$$

276 where y and y_s denote real and reconstructed images.
 277

278 **Total Loss.** The overall training objective is a weighted combination of all components:
 279

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{recon}} + \lambda_{\text{VQ}} \mathcal{L}_{\text{VQ}} + \mathcal{L}_{\text{adv}}, \quad (11)$$

280 where λ_{VQ} is set to 0.1 by default. This multi-objective formulation ensures high-fidelity, geometri-
 281 cally coherent, and stylistically realistic reconstructions.
 282

284 4 EXPERIMENTS

285 4.1 SETTINGS

286 **Datasets & Metrics.** For the **Artistic Portrait** domain, we use MetFace (Karras et al., 2020),
 287 APDrawing (Yi et al., 2019), and FS2K (Fan et al., 2022) as style datasets, with facial photos from
 288 CelebAMask-HQ (Lee et al., 2020) and FS2K serving as content images. For the **Natural Scene**
 289 domain, we collect data from Flickr and WikiArt. We adopt standard metrics—ArtFID (Wright
 290 & Ommer, 2022), FID (Heusel et al., 2017), and KID (Bińkowski et al., 2018)—to quantitatively
 291 evaluate our results. All images are resized to 256×256 before training and evaluation.
 292

293 **Implementation Details.** Following the architecture design of QuantArt (Huang et al., 2023), the
 294 encoder and decoder each consist of four blocks, with two ResBlocks (He et al., 2016) and a down-
 295 sampling/upsampling layer. The quantized feature map has a spatial resolution of 16×16 and
 296 an embedding dimension of 256. The codebook contains $N = 1024$ entries, each of dimension
 297 $d = 256$. For training, we set the batch size to 8 and the momentum queue length to 1024. For each
 298 newly added style, the codebook is expanded by 1024 tokens. We use the Adam optimizer (Adam
 299 et al., 2014) with a learning rate of 4.5×10^{-6} . Our CLoSeR framework is implemented in Py-
 300 Torch (Paszke et al., 2019), and all experiments are conducted on a single NVIDIA RTX 4090 GPU.
 301

302 **Baseline Models.** We evaluate our method against a set of state-of-the-art methods, including neu-
 303 ral style transfer (QuantArt (Huang et al., 2023), AesPA-Net (Hong et al., 2023), CAST (Zhang et al.,
 304 2022), AdaAttN (Liu et al., 2021)), and diffusion-based stylized image generation (DiffuseIT (Kwon
 305 & Ye, 2022), InST (Zhang et al., 2023), StyleID (Chung et al., 2024) and AttenDistill (Zhou et al.,
 306 2025)). For fair comparison, we use publicly available implementations with their recommended
 307 configurations. As shown in Figure 4, our method outperforms all base models in both stylization
 308 fidelity and semantic consistency. Note that APDrawingGAN (Yi et al., 2019) is specialized for pen
 309 drawings, thus we evaluate it only in its intended settings to ensure fairness.
 310

312 4.2 PERFORMANCE EVALUATION

314 4.2.1 NATURAL SCENE STYLE TRANSFER

316 Unlike the standard style transfer task, we train our model to reconstruct the input and use this to
 317 refine the results of artistic style transfer results. The model is first trained on the Monet dataset
 318 and then continually extended to Van Gogh and Ukiyo-e, enabling progressive refinement across
 319 multiple styles. Experimental results demonstrate the effectiveness of our approach.
 320

321 **Quantitative Analysis.** As illustrated in Fig. 3, for both Monet and Van Gogh, the average values
 322 of all three evaluation metrics consistently decrease after the initial refinement with VQ-GAN and
 323 are further reduced when applying our proposed CLoSeR. Notably, across all baselines, our method
 324 achieves substantial improvements: FID is reduced by approximately 25% on Monet and Van Gogh,
 325 KID drops by more than 30%, and ArtFID decreases by over 20%.

Figure 3: Quantitative performance on artistic style transfer for natural scenes and facial portraits.

Figure 4: Generated results of different artistic styles for natural scenes and facial portraits. Please zoom in for details.

Qualitative Analysis. As shown in Fig. 4, CLoSeR enhances base models by recovering structural details and enriching textures. Without refinement, AdaAttN and AesPA-Net tend to produce over-smoothed outputs, while vanilla VQ-GAN introduces texture but often causes distortions. In contrast, CLoSeR yields more faithful style expression—Monet’s color gradients appear smoother, Van Gogh’s bold strokes are better preserved, and Ukiyo-e’s flat shading and outlines remain more coherent—demonstrating improved style fidelity and content stability across diverse models.

378 4.2.2 ARTISTIC PORTRAIT GENERATION
379380 We first pre-train CLoSeR on the MetFace (Karras et al., 2020) dataset to learn robust facial repre-
381 sentations and extend the model to support continual refinement across two additional styles: AP-
382 Drawing (Yi et al., 2019) and FS2K (Fan et al., 2022), resulting in a three-style refinement setup.383 **Quantitative Analysis.** As shown in Fig. 3, CLoSeR consistently improves all metrics across artis-
384 tic domains. Relative to the base models, it reduces FID by 7.8%, 21.3%, and 19.9% on oil painting,
385 pen drawing, and sketch, respectively, and consistently outperforms the intermediate VQ-GAN re-
386 finement. On oil painting, CLoSeR further lowers ArtFID and KID by 5.4% and 17.5%, while
387 ArtFID on pen drawing drops by 16.0%, indicating enhanced structural fidelity and stylistic realism
388 across datasets and backbones.389 **Qualitative Analysis.** For Oil Paintings, AdaAttN and AesPA-Net produce over-smoothed or dis-
390 torted faces, while VQ-GAN reduces artifacts but suffers from leakage and color shifts. CLoSeR
391 better preserves identity (sharper jawlines, clearer eyes) and renders textures closer to the target
392 style. For Pen Drawings, DiffuseIT and AesPA-Net often yield blurry or off-domain results; VQ-
393 GAN adds stroke effects but loses detail and symmetry. CLoSeR restores crisp contours and accu-
394 rate strokes, resembling ground truth. For Sketches, base models distort proportions (e.g., bloated or
395 muddy textures), whereas CLoSeR enhances contour sharpness and line stability. These improve-
396 ments highlight its ability to recover fine-grained structure while embedding faithful stylistic cues.397 4.2.3 USER STUDY
398

400 Table 1: User study preference rates.

401

Datasets	CLoSeR	VQ-GAN	Base
MetFace	70.8%	16.9%	12.3%
Monet	83.3%	12.5%	4.2%
VanGogh	71.7%	13.3%	15.0%
Ukiyo-e	77.5%	12.5%	10.0%
Average	75.8%	13.8%	10.4%

402 We assess perceptual quality via user studies on both
403 portrait (MetFace, 63 participants) and scene stylization
404 (Monet, VanGogh, Ukiyo-e; 57 participants). In each
405 trial, participants compare triplets from the *Base* model,
406 *Vanilla VQ-GAN*, and *CLoSeR* and select the preferred
407 result. As summarized in Tab. 1, CLoSeR is consistently
408 favored across all datasets, indicating that the improve-
409 ments in ArtFID/FID/KID align well with human judg-
410 ments.411 4.2.4 MODEL EFFICIENCY
412413 As shown in Tab. 2, CLoSeR is highly efficient, requiring only 4.74 MB trainable parameters, 2.42
414 GB memory, and 0.0545 s inference—substantially lower than most baselines. Its lightweight test-
415 time adaptation, without modifying the generator, offers an excellent trade-off between performance
416 and resource cost, making it practical for low-resource applications.417 4.3 MODEL ANALYSIS
418419 **Ablation Study of CLoSeR.** Fig. 5 il-
420 lustrates the progressive effect of our com-
421 ponents on APDrawingGAN, AttenDis-
422 tilling, CAST, and StyleID. The base gen-
423 erators often produce blurry details and lo-
424 cal artifacts; vanilla VQ-GAN sharpens
425 textures but still exhibits geometric dis-
426 tortions, while adding positional encoding
427 further improves spatial consistency. The
428 full CLoSeR variant yields the sharpest
429 geometry and cleanest textures, and Tab. 3
430 quantitatively confirms this trend, giving the best Art-
431 FID/FID/KID across all four backbones.432 **Ablation Study of codebook size.** We study the sensitivity of the codebook by just varying
433 $K \in \{128, 256, 512, 1024\}$ on six backbones (AdaAttN, CAST, AesPA-Net, StyleID, AttenDistill,
434 StyleSSP), reporting backbone-averaged ArtFID/FID/KID in Tab. 4. For all K , CLoSeR improves
435 over the corresponding bases, indicating that it does not rely on a very large or carefully tuned code-

436 Table 2: Comparison of model efficiency.

437

Methods	Params. (MB)	Memory (GB)	Time (s)
AdaAttN	13.63	10.80	0.066
CAST	10.52	10.01	0.056
AesPA-Net	14.11	3.39	0.148
StyleID	—	12.87	5.848
AttenDistill	49.49	3.61	57.560
CLoSeR	4.74	2.42	0.055

Table 3: Ablation study of CLoSeR.

Method	APDrawingGAN			AttenDistill			CAST			StyleID		
	ArtFID↓	FID↓	KID↓									
Base	19.57	12.03	0.0267	28.16	18.74	0.0506	37.58	26.13	0.1002	35.60	23.78	0.1198
+ VQ-GAN	19.54	11.96	0.0171	22.32	13.87	0.0271	37.22	25.37	0.1065	35.96	23.31	0.1080
+ VQ-GAN w/ PE	19.30	11.77	0.0170	22.24	13.74	0.0285	36.87	25.24	0.1057	35.44	22.98	0.1023
+ CLoSeR (Ours)	18.70	11.35	0.0073	21.95	13.65	0.0255	36.11	24.50	0.0897	34.19	22.36	0.0966

Figure 5: Qualitative ablation on APDrawing (left) and MetFace (right).

book. $K=1024$ achieves the best overall performance, with $K=256$ close behind, and the gaps across K are modest, suggesting that CLoSeR is largely insensitive to the exact codebook size and that $K=1024$ is a reasonable default for continual style expansion.

Validation of Continual Learning. We assess continual learning by incrementally adding new tasks on both natural scene and portrait drawing datasets. Specifically, we adopt MetFace (Karras et al., 2020) as the style domain for faces (denoted as *Oil*), APDrawing (Yi et al., 2019) for pen drawings (*Pen*), and FS2K (Fan et al., 2022) for pencil sketches (*Pencil*), and Monet is used for natural scenes. As shown in Fig. 6, the refined models are evaluated on outputs from various base generators. The results demonstrate that performance on earlier styles remains largely stable even after introducing multiple new domains. These findings confirm that CLoSeR effectively mitigates catastrophic forgetting, retaining prior knowledge while adapting to new styles.

Table 4: Effect of codebook size K .

Setting	MetFace			Monet		
	ArtFID↓	FID↓	KID↓	ArtFID↓	FID↓	KID↓
Base	40.38	28.33	0.1262	25.87	16.19	0.0488
+ CLoSeR ($K=128$)	36.29	24.42	0.0968	20.65	12.11	0.0354
+ CLoSeR ($K=256$)	35.89	24.18	0.0966	20.41	11.96	0.0349
+ CLoSeR ($K=512$)	36.20	24.45	0.0966	21.24	12.62	0.0360
+ CLoSeR ($K=1024$)	34.91	24.13	0.0945	20.02	11.77	0.0337

Figure 6: Catastrophic forgetting evaluation and integration into diffusion models. (a) Natural scenes style transfer with Monet as the target domain. (b) Artistic portrait drawings generation using MetFace (Oil), APDrawing (Pen), and FS2K (Pencil). (c) Integration into StyleID (Chung et al., 2024) under varying sampling steps, where CLoSeR consistently reduces FID compared to the baseline.

486 Table 5: Validation of *Positional Encoding* (PE) with NME (\downarrow).
487

Method	AdaAttN	AesPA-Net	CAST	DiffuseIT	StyleID	AttnDistill	Average
+VQ-GAN	0.0357	0.0328	0.0348	0.0393	0.0338	0.0275	0.0340
+VQ-GAN w/ PE	0.0348	0.0314	0.0325	0.0377	0.0341	0.0274	0.0330

492 Table 6: Impact of CLoSeR on high-quality vs. degraded inputs.
493

Setting	Method	AdaAttN			CAST			StyleID		
		ArtFID \downarrow	FID \downarrow	KID \downarrow	ArtFID \downarrow	FID \downarrow	KID \downarrow	ArtFID \downarrow	FID \downarrow	KID \downarrow
<i>High-quality</i>	Base	33.13	21.94	0.0770	31.34	21.29	0.0564	29.42	19.52	0.0816
	+CLoSeR	30.30	19.90	0.0627	30.60	20.32	0.0550	28.44	18.54	0.0565
<i>Degraded</i>	Base	33.94	21.81	0.0752	31.22	20.16	0.0613	31.43	19.95	0.0786
	+CLoSeR	31.65	20.22	0.0736	30.82	19.74	0.0668	28.86	18.20	0.0576

500 **Validation of Positional Encoding.** To evaluate the role of positional encoding (PE) in geometric
501 consistency, we adopt YOLOv5-face (Qi et al., 2022) as the evaluation backbone and test on stylized
502 results from the MetFace dataset (Karras et al., 2020). We report *Normalized Mean Error* (NME)
503 as the main metric. As shown in Tab. 5, PE consistently reduces NME across models, confirming
504 its benefit in preserving geometric structure. Results with *Percentage of Correct Keypoints* (PCK)
505 under different thresholds are provided in the appendix A.

511 **Integration into Diffusion Models.** We integrate CLoSeR into the StyleID (Chung et al., 2024)
512 diffusion framework under varying sampling steps. As shown in Fig. 6(c), CLoSeR consistently
513 reduces FID relative to the baseline, with improvements persisting across all iterations. This indicates
514 that CLoSeR enhances domain alignment and stabilizes generation quality, even under fewer
515 sampling steps. Additional qualitative results are provided in the appendix A.

521 **A Stress Test on Degraded Contents.** To assess the robustness of CLoSeR to input degradations,
522 we conduct a stress test on corrupted contents. We randomly sample 20 style images from MetFace
523 and 20 content images from CelebAMask-HQ, and apply a degradation pipeline to the contents that
524 randomly combines Gaussian blur, multi-scale down-up sampling, Gaussian and Poisson noise, and
525 JPEG compression (all at 256^2 resolution). Using these degraded contents, we evaluate AdaAttN,
526 CAST, and StyleID with and without CLoSeR under ArtFID/FID/KID (Tab. 6, Deg. means de-
527 graded). Even in this challenging setting, CLoSeR consistently improves over the baselines.

528 5 CONCLUSIONS AND LIMITATIONS

529 **Conclusions.** We presented CLoSeR, a lightweight test-time refinement framework that enhances
530 style fidelity and geometric consistency for artistic style transfer. By combining LoRA-based contin-
531 ual adaptation, codebook expansion, and positional encoding, CLoSeR achieves parameter-efficient
532 refinement while preserving prior knowledge across multiple domains. Extensive experiments on
533 diverse benchmarks show consistent gains over GAN-, attention-, and diffusion-based baselines,
534 together with strong robustness against catastrophic forgetting.

535 **Limitations and Future Work.** Despite these benefits, CLoSeR still inherits certain limitations
536 from the underlying VQ-GAN backbone. When the input synthesis is severely distorted or lacks
537 clear semantic structure, the refinement capacity becomes constrained. Moreover, our current design
538 primarily targets spatial consistency, leaving finer temporal and semantic dynamics in video and
539 multimodal settings underexplored. Extending CLoSeR to few-shot adaptation, video, and broader
540 cross-modal applications is an important direction for future research.

540

6 ETHICS STATEMENT

541
 542 This work does not involve human subjects, personally identifiable information, or sensitive data.
 543 All datasets used (e.g., MetFace, FS2K, APDrawing, Monet, VanGogh, Ukiyo-e) are publicly available
 544 and widely adopted in the literature. Our research focuses purely on artistic style transfer and
 545 does not raise foreseeable ethical or societal concerns such as bias, fairness, or privacy.

546
 547

7 REPRODUCIBILITY STATEMENT

548
 549 We have made every effort to ensure reproducibility. All model architectures, training strategies, and
 550 evaluation metrics (FID, KID, ArtFID, NME, PCK) are described in detail in the main paper and ap-
 551 pendix. Additional implementation details, hyperparameters, and evaluation protocols are provided
 552 in the appendix [A](#). We will release the source code upon publication to facilitate full reproducibility
 553 of our results.

554
 555

REFERENCES

556 Kingma DP Ba J Adam et al. A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 557 1412(6), 2014.

558 Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd
 559 gans. *arXiv preprint arXiv:1801.01401*, 2018.

560 Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
 561 editing instructions. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 562 *recognition*, pp. 18392–18402, 2023.

563 Lucas Caccia, Oleksiy Ostapenko, Massimo Trentin, Emiliano Calabrese, Eugene Brevdo, and
 564 Alexandre Lacoste. Online learned continual compression with adaptive quantization modules.
 565 In *ICLR*, 2020.

566 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
 567 Sergey Zagoruyko. End-to-end object detection with transformers. In *European conference on*
 568 *computer vision*, pp. 213–229. Springer, 2020.

569 Jingwen Chen, Yingwei Pan, Ting Yao, and Tao Mei. Controlstyle: Text-driven stylized image
 570 generation using diffusion priors. In *Proceedings of the 31st ACM international conference on*
 571 *multimedia*, pp. 7540–7548, 2023.

572 Jiwoo Chung, Sangeek Hyun, and Jae-Pil Heo. Style injection in diffusion: A training-free approach
 573 for adapting large-scale diffusion models for style transfer. In *Proceedings of the IEEE/CVF*
 574 *conference on computer vision and pattern recognition*, pp. 8795–8805, 2024.

575 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
 576 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-*
 577 *tion*, pp. 12873–12883, 2021.

578 Deng-Ping Fan, Ziling Huang, Peng Zheng, Hong Liu, Xuebin Qin, and Luc Van Gool. Facial-sketch
 579 synthesis: A new challenge. *Machine Intelligence Research*, 19(4):257–287, 2022.

580 Farzad Farhadzadeh, Debasmit Das, Shubhankar Borse, and Fatih Porikli. Zero-shot adaptation of
 581 parameter-efficient fine-tuning in diffusion models. *arXiv preprint arXiv:2506.04244*, 2025.

582 Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using convolutional
 583 neural networks. In *Proceedings of the IEEE conference on computer vision and pattern recog-*
 584 *nition*, pp. 2414–2423, 2016.

585 Leon A Gatys, Alexander S Ecker, Matthias Bethge, Aaron Hertzmann, and Eli Shechtman. Con-
 586 trolling perceptual factors in neural style transfer. In *Proceedings of the IEEE conference on*
 587 *computer vision and pattern recognition*, pp. 3985–3993, 2017.

594 Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
 595 one-step generative modeling. *arXiv preprint arXiv:2505.13447*, 2025.
 596

597 Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and
 598 Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In *Proceedings of
 599 the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10696–10706, 2022.

600 Bin He, Feng Gao, Daiqian Ma, Boxin Shi, and Ling-Yu Duan. Chipgan: A generative adversarial
 601 network for chinese ink wash painting style transfer. In *Proceedings of the 26th ACM international
 602 conference on Multimedia*, pp. 1172–1180, 2018.
 603

604 Jiangpeng He, Zhihao Duan, and Fengqing Zhu. Cl-lora: Continual low-rank adaptation for
 605 rehearsal-free class-incremental learning. In *Proceedings of the Computer Vision and Pattern
 606 Recognition Conference*, pp. 30534–30544, 2025.

607 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 608 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 609 770–778, 2016.
 610

611 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 612 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in
 613 neural information processing systems*, 30, 2017.

614 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
 615 neural information processing systems*, 33:6840–6851, 2020.
 616

617 Kibeam Hong, Seogkyu Jeon, Junsoo Lee, Namhyuk Ahn, Kunhee Kim, Pilhyeon Lee, Daesik Kim,
 618 Youngjung Uh, and Hyeran Byun. Aespa-net: Aesthetic pattern-aware style transfer networks.
 619 In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 22758–22767,
 620 2023.

621 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Lu Wang, and Weizhu
 622 Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint arXiv:2106.09685*,
 623 2022.
 624

625 Nick Huang, Aaron Gokaslan, Volodymyr Kuleshov, and James Tompkin. The gan is dead; long
 626 live the gan! a modern gan baseline. *Advances in Neural Information Processing Systems*, 37:
 627 44177–44215, 2024.

628 Siyu Huang, Jie An, Donglai Wei, Jiebo Luo, and Hanspeter Pfister. Quantart: Quantizing im-
 629 age style transfer towards high visual fidelity. In *Proceedings of the IEEE/CVF Conference on
 630 Computer Vision and Pattern Recognition*, pp. 5947–5956, 2023.
 631

632 Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance normal-
 633 ization. In *Proceedings of the IEEE international conference on computer vision*, pp. 1501–1510,
 634 2017.

635 Myeongho Jeon, Hyoje Lee, Yedarm Seong, and Myungjoo Kang. Learning without prejudices:
 636 Continual unbiased learning via benign and malignant forgetting. In *The Eleventh International
 637 Conference on Learning Representations*, 2023.

638

639 Yongcheng Jing, Yezhou Yang, Zunlei Feng, Jingwen Ye, Yizhou Yu, and Mingli Song. Neural
 640 style transfer: A review. *IEEE transactions on visualization and computer graphics*, 26(11):
 641 3365–3385, 2019.

642 Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
 643 super-resolution. In *Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
 644 Netherlands, October 11–14, 2016, Proceedings, Part II* 14, pp. 694–711. Springer, 2016.
 645

646 Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
 647 generative adversarial networks with limited data. *Advances in neural information processing
 648 systems*, 33:12104–12114, 2020.

648 Gihyun Kwon and Jong Chul Ye. Diffusion-based image translation using disentangled style and
 649 content representation. *arXiv preprint arXiv:2209.15264*, 2022.

650

651 Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo. Maskgan: Towards diverse and interactive
 652 facial image manipulation. In *Proceedings of the IEEE/CVF conference on computer vision and*
 653 *pattern recognition*, pp. 5549–5558, 2020.

654 Timothée Lesort, Alexander Gepperth, Andrei Stoian, and David Filliat. Generative models from
 655 the perspective of continual learning. *arXiv preprint arXiv:1812.09111*, 2019.

656

657 Siyuan Li, Luyuan Zhang, Zedong Wang, Juanxi Tian, Cheng Tan, Zicheng Liu, Chang Yu, Qing-
 658 song Xie, Haonan Lu, Haoqian Wang, et al. Mergevq: A unified framework for visual generation
 659 and representation with disentangled token merging and quantization. In *Proceedings of the Com-
 660 puter Vision and Pattern Recognition Conference*, pp. 19713–19723, 2025.

661 Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
 662 generation without vector quantization. *Advances in Neural Information Processing Systems*, 37:
 663 56424–56445, 2024.

664 Yan-Shuo Liang and Wu-Jun Li. Inflora: Interference-free low-rank adaptation for continual learn-
 665 ing. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 666 pp. 23638–23647, 2024.

667

668 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 669 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

670

671 Songhua Liu, Tianwei Lin, Dongliang He, Fu Li, Meiling Wang, Xin Li, Zhengxing Sun, Qian
 672 Li, and Errui Ding. Adaattn: Revisit attention mechanism in arbitrary neural style transfer. In
 673 *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 6649–6658, 2021.

674 Dae Young Park and Kyoung Mu Lee. Arbitrary style transfer with style-attentional networks. In
 675 *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 5880–5888, 2019.

676 Gaurav Parmar, Taesung Park, Srinivasa Narasimhan, and Jun-Yan Zhu. One-step image translation
 677 with text-to-image models. *arXiv preprint arXiv:2403.12036*, 2024.

678

679 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 680 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
 681 performance deep learning library. *Advances in neural information processing systems*, 32, 2019.

682 Delong Qi, Weijun Tan, Qi Yao, and Jingfeng Liu. Yolo5face: Why reinventing a face detector. In
 683 *European Conference on Computer Vision*, pp. 228–244. Springer, 2022.

684 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 685 resolution image synthesis with latent diffusion models. In *CVPR*, 2022.

686

687 Anurag Roy, Vinay K Verma, Sravan Voonna, Kripabandhu Ghosh, Saptarshi Ghosh, and Abir
 688 Das. Exemplar-free continual transformer with convolutions. In *Proceedings of the IEEE/CVF*
 689 *International Conference on Computer Vision*, pp. 5897–5907, 2023.

690 Ahmed Selim, Mohamed A Elgarib, and Linda Doyle. Painting style transfer for head portraits
 691 using convolutional neural networks. *ACM Trans. Graph.*, 35(4):129–1, 2016.

692

693 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 694 recognition. *arXiv preprint arXiv:1409.1556*, 2014.

695 Xuan Su, Jiaming Song, Chenlin Meng, and Stefano Ermon. Dual diffusion implicit bridges for
 696 image-to-image translation. *arXiv preprint arXiv:2203.08382*, 2022.

697 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in*
 698 *neural information processing systems*, 30, 2017.

699

700 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 701 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 702 tion processing systems*, 30, 2017.

702 Haofan Wang, Matteo Spinelli, Qixun Wang, Xu Bai, Zekui Qin, and Anthony Chen. Instantstyle: 703 Free lunch towards style-preserving in text-to-image generation. *arXiv preprint arXiv:2404.02733*, 2024.

705

706 Matthias Wright and Björn Ommer. Artfid: Quantitative evaluation of neural style transfer. In 707 *DAGM German Conference on Pattern Recognition*, pp. 560–576. Springer, 2022.

708

709 Jingfeng Yao, Bin Yang, and Xinggang Wang. Reconstruction vs. generation: Taming optimization 710 dilemma in latent diffusion models. In *Proceedings of the Computer Vision and Pattern Recognition 711 Conference*, pp. 15703–15712, 2025.

712

713 Zixuan Ye, Huijuan Huang, Xintao Wang, Pengfei Wan, Di Zhang, and Wenhan Luo. Stylemaster: 714 Stylize your video with artistic generation and translation. In *Proceedings of the Computer Vision and 715 Pattern Recognition Conference*, pp. 2630–2640, 2025.

716

717 Ran Yi, Yong-Jin Liu, Yu-Kun Lai, and Paul L Rosin. Apdrawinggan: Generating artistic portrait 718 drawings from face photos with hierarchical gans. In *Proceedings of the IEEE/CVF conference on 719 computer vision and pattern recognition*, pp. 10743–10752, 2019.

720

721 Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically 722 expandable networks. In *ICLR*, 2018.

723

724 Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and 725 Saining Xie. Representation alignment for generation: Training diffusion transformers is easier 726 than you think. *arXiv preprint arXiv:2410.06940*, 2024.

727

728 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable 729 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on 730 computer vision and pattern recognition*, pp. 586–595, 2018.

731

732 Yuxin Zhang, Fan Tang, Weiming Dong, Haibin Huang, Chongyang Ma, Tong-Yee Lee, and Chang- 733 sheng Xu. Domain enhanced arbitrary image style transfer via contrastive learning. In *ACM SIGGRAPH 734 2022 conference proceedings*, pp. 1–8, 2022.

735

736 Yuxin Zhang, Nisha Huang, Fan Tang, Haibin Huang, Chongyang Ma, Weiming Dong, and Chang- 737 sheng Xu. Inversion-based style transfer with diffusion models. In *Proceedings of the IEEE/CVF 738 conference on computer vision and pattern recognition*, pp. 10146–10156, 2023.

739

740 Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-Tao Xia. Maintaining discrimination and 741 fairness in class incremental learning. In *Proceedings of the IEEE/CVF conference on computer 742 vision and pattern recognition*, pp. 13208–13217, 2020.

743

744 Yang Zhou, Xu Gao, Zichong Chen, and Hui Huang. Attention distillation: A unified approach to 745 visual characteristics transfer. In *Proceedings of the Computer Vision and Pattern Recognition 746 Conference*, pp. 18270–18280, 2025.

747

748 Hao Zhu, Yifei Zhang, Junhao Dong, and Piotr Koniusz. Bilora: Almost-orthogonal parameter 749 spaces for continual learning. In *Proceedings of the Computer Vision and Pattern Recognition 750 Conference*, pp. 25613–25622, 2025.

751

752 Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation 753 using cycle-consistent adversarial networks. In *Proceedings of the IEEE international conference 754 on computer vision*, pp. 2223–2232, 2017.

755

Lei Zhu, Fangyun Wei, Yanye Lu, and Dong Chen. Scaling the codebook size of vq-gan to 100,000 with a utilization rate of 99%. *Advances in Neural Information Processing Systems*, 37:12612–12635, 2024.

756 A APPENDIX
757758 A.1 IMPLEMENTATION DETAILS
759760 In this section, we will provide a comprehensive overview of our experimental setup, detailing all
761 aspects of the implementation to ensure transparency and reproducibility.
762763 A.1.1 CONTINUAL LEARNING BASED ON LORA
764765 To enable scalable and memory-efficient continual learning in multi-style domains, we introduce
766 Low-Rank Adaptation (LoRA) (Hu et al., 2022) into the VQ-GAN (Esser et al., 2021) framework.
767 This is achieved by injecting LoRA modules into specific convolutional layers (conv1, conv2) of
768 both the encoder and decoder. Each LoRA module performs a low-rank decomposition of the
769 convolutional kernel updates, significantly reducing the number of trainable parameters during test-time
770 refinement.
771772 **Training Phase.** During training, the LoRA modules are initialized with a low-rank pair of trainable
773 matrices $A \in \mathcal{R}^{r \times d_{in}}$, with a scaling factor α/r . These modules are only activated for target
774 style-specific adapters, each associated with a unique $style_id$. We implement a style-wise code
775 isolation strategy by naming and registering all LoRA parameters under their respective $style_id$. In
776 the continual learning scenario, only LoRA parameters and newly appended codebook embeddings
777 are optimized, while all other original weights in the encoder, decoder, and quantizer are frozen.
778 To accommodate novel style tokens without disrupting previously learned knowledge, we expand
779 the codebook by appending new embeddings, and apply selective gradient masking to freeze the
780 original indices. This ensures forward compatibility and avoids catastrophic forgetting.
781782 **Inference Phase.** At test time, the framework dynamically selects and activates the appropriate
783 LoRA module based on the input $style_id$. The inference pipeline searches for the latest LoRA
784 checkpoint corresponding to the style domain, loads its parameters, and activates only the relevant
785 LoRA paths while disabling others. This design ensures geometric consistency and stylistic speci-
786 ficity across diverse domains under a single model instance. Overall, the proposed LoRA-based
787 continual adaptation mechanism provides a lightweight, modular, and effective solution to multi-
788 style artistic synthesis, enabling test-time refinement with up to 94% fewer trainable parameters.
789790 A.1.2 DATASET DETAILS AND TRAINING CONFIGURATION
791792 In this work, we employ three distinct datasets to train specialized codebooks for different artistic
793 styles within our CLoSeR framework. Each dataset is carefully selected to represent a unique visual
794 domain, enabling the learning of style-specific discrete representations.
795796 **Artistic Portrait Generation.** We choose a pre-trained model (vqgan_metfaces_f16.1024.ckpt)
797 from QuantArt (Huang et al., 2023) to finetune VQ-GAN (Esser et al., 2021) to achieve style-specific
798 reconstruction. **MetFace** (Karras et al., 2020) is used to train the general facial appearance code-
799 book. This dataset contains a total of 1336 face images, partitioned into 1,200 training samples and
800 136 test samples. **APDrawing** (Yi et al., 2019) datasets consist of pen-drawing portrait drawings.
801 The dataset is divided into 420 training images and 70 test images. We initialize the VQ-GAN from
802 the model pre-trained on the MetFace dataset (covering photorealistic facial appearances) and intro-
803 duce Low-Rank Adaptation (LoRA) modules into the 'conv1' and 'conv2' of encoder and decoder.
804 **FS2K** (Fan et al., 2022) includes 2,104 face sketches across three distinct artistic styles. We initial-
805 ize the VQ-GAN from the model pre-trained on the APDrawing. We combine all three styles into
806 a single training set to encourage the model to learn a more generalized sketch representation. The
807 training split contains 2,004 images, with the remaining 100 reserved for testing.
808809 **Scene Oil Painting.** To further evaluate the generalization capability of our continual learning
810 framework, we extend our experiments to three additional classical art styles: Monet, Van Gogh, and
811 Ukiyo-e, all datasets are from WikiArt, follow the work from (Zhu et al., 2017). And we choose
812 a pre-trained model (vqgan_wikiart_f16_1024.ckpt) from QuantArt (Huang et al., 2023) to finetune
813 VQ-GAN to achieve style-specific scene oil painting reconstruction. **Monet** dataset comprises 1,072
814 training and 121 test images, capturing soft brushwork and natural light effects. **Van Gogh** dataset

Table 7: Impact of CLoSeR on *Natural Scenes Style Transfer*.

Method	Monet			Vangogh			Ukiyo-e		
	ArtFID ↓	FID ↓	KID ↓	ArtFID ↓	FID ↓	KID ↓	ArtFID ↓	FID ↓	KID ↓
AdaAttN (CVPR'21)	32.34	19.63	0.0602	23.60	13.55	0.0397	30.14	18.03	0.1380
+ VQGAN	23.64 <small>↓26.9%</small>	13.80 <small>↓29.4%</small>	0.0681 <small>↓13.1%</small>	22.58 <small>↓4.3%</small>	12.88 <small>↓4.9%</small>	0.0259 <small>↓34.8%</small>	31.03 <small>↑3.0%</small>	18.36 <small>↑1.8%</small>	0.1144 <small>↓17.1%</small>
+ CLoSeR (ours)	19.35 <small>↓40.2%</small>	10.99 <small>↓44.0%</small>	0.0467 <small>↓22.4%</small>	18.46 <small>↓21.8%</small>	10.35 <small>↓23.6%</small>	0.0277 <small>↓30.2%</small>	26.94 <small>↓10.6%</small>	15.77 <small>↓12.5%</small>	0.1193 <small>↓13.6%</small>
CAST (SIGGRAPH'22)	19.53	11.43	0.0159	24.90	14.81	0.0410	29.06	17.75	0.0888
+ VQGAN	21.04 <small>↑7.7%</small>	12.11 <small>↓5.9%</small>	0.0240 <small>↑50.9%</small>	24.16 <small>↓3.0%</small>	14.00 <small>↓5.5%</small>	0.0297 <small>↓27.6%</small>	34.51 <small>↑18.8%</small>	20.63 <small>↑16.2%</small>	0.0710 <small>↓20.0%</small>
+ CLoSeR (ours)	18.87 <small>↓3.3%</small>	10.64 <small>↓6.9%</small>	0.0155 <small>↓2.5%</small>	19.11 <small>↓23.3%</small>	10.89 <small>↓26.5%</small>	0.0250 <small>↓39.0%</small>	26.46 <small>↓8.9%</small>	15.47 <small>↓12.8%</small>	0.0814 <small>↓8.3%</small>
AesPA-Net (ICCV'23)	23.58	13.82	0.0808	22.7	12.99	0.0602	29.48	17.15	0.1673
+ VQGAN	22.66 <small>↓3.9%</small>	12.98 <small>↓6.1%</small>	0.0631 <small>↓21.9%</small>	23.75 <small>↑4.6%</small>	13.64 <small>↓5.0%</small>	0.0309 <small>↓48.7%</small>	30.77 <small>↑4.4%</small>	17.85 <small>↑4.1%</small>	0.1479 <small>↓11.6%</small>
+ CLoSeR (ours)	21.31 <small>↓9.6%</small>	12.02 <small>↓13.0%</small>	0.0639 <small>↓20.9%</small>	19.17 <small>↓15.6%</small>	10.81 <small>↓16.8%</small>	0.0330 <small>↓45.2%</small>	28.57 <small>↓3.1%</small>	16.45 <small>↓4.1%</small>	0.1458 <small>↓12.9%</small>
StyleID (CVPR'24)	23.81	15.07	0.0370	30.63	18.78	0.0532	32.39	20.04	0.1733
+ VQGAN (ours)	22.94 <small>↓3.7%</small>	14.07 <small>↓6.6%</small>	0.0308 <small>↓16.8%</small>	28.74 <small>↓6.2%</small>	17.09 <small>↓9.0%</small>	0.0400 <small>↓24.8%</small>	32.95 <small>↑1.7%</small>	20.03 <small>↓0.0%</small>	0.1641 <small>↓5.3%</small>
+ CLoSeR (ours)	19.85 <small>↓16.6%</small>	11.82 <small>↓21.6%</small>	0.0184 <small>↓50.1%</small>	22.11 <small>↓27.8%</small>	12.93 <small>↓31.2%</small>	0.0353 <small>↓33.6%</small>	27.13 <small>↓16.2%</small>	16.21 <small>↓19.1%</small>	0.1394 <small>↓19.6%</small>
AtteneDist (CVPR'25)	21.22	14.29	0.0489	22.13	14.24	0.0431	26.31	16.81	0.1718
+ VQGAN	22.91 <small>↑8.0%</small>	14.91 <small>↑4.3%</small>	0.0320 <small>↓34.6%</small>	24.82 <small>↑12.2%</small>	15.54 <small>↑9.1%</small>	0.0353 <small>↓18.1%</small>	25.25 <small>↓4.0%</small>	15.7 <small>↓6.6%</small>	0.1388 <small>↓19.2%</small>
+ CLoSeR (ours)	16.35 <small>↓23.0%</small>	10.1 <small>↓29.3%</small>	0.0216 <small>↓55.8%</small>	17.9 <small>↓19.1%</small>	10.82 <small>↓24.0%</small>	0.0245 <small>↓43.2%</small>	24.99 <small>↓5.0%</small>	14.34 <small>↓14.7%</small>	0.1259 <small>↓26.7%</small>
StyleSSP (CVPR'25)	34.72	22.85	0.0499	28.95	18.80	0.0628	28.39	18.30	0.1149
+ VQ-GAN	30.60 <small>↓11.9%</small>	19.13 <small>↓16.3%</small>	0.0491 <small>↓1.6%</small>	26.34 <small>↓9.0%</small>	16.15 <small>↓14.1%</small>	0.0719 <small>↑14.5%</small>	26.96 <small>↓5.0%</small>	16.73 <small>↓8.6%</small>	0.1053 <small>↓8.4%</small>
+ CLoSeR(ours)	24.41 <small>↓29.7%</small>	15.04 <small>↓34.2%</small>	0.0362 <small>↓27.5%</small>	22.28 <small>↓23.0%</small>	13.49 <small>↓28.2%</small>	0.0582 <small>↓7.3%</small>	24.63 <small>↓13.2%</small>	14.97 <small>↓18.2%</small>	0.1071 <small>↓6.8%</small>

includes 700 training and 100 test images, emphasizing expressive and vivid color contrasts. **Ukiyo-e** dataset contains 562 training and 263 test images, featuring flat color regions, strong outlines, and stylized compositions typical of traditional Japanese art.

All datasets are preprocessed to a consistent resolution of 256×256 with center cropping and normalized to the range $[-1, 1]$. During training, we preserve the LoRA parameters together with the corresponding discriminator for each style, enabling modular switching at inference time. This plug-and-play design supports flexible and memory-efficient multi-style generation within a single unified architecture.

A.1.3 MORE METRICS DETAILS OF THE TASKS

We evaluate our model by ArtFID (Wright & Ommer, 2022), FID (Heusel et al., 2017), and KID (Bińkowski et al., 2018). The specific numerical metrics of Scene Oil Paintings are shown in the Table 7, Face Portrait Drawings are shown in the Table 8. From the quantitative metrics, we can see that our algorithm has shown excellent performance under each base method.

A.2 MORE RESULTS OF CLOSER

Image resolution. All main experiments are conducted at an input resolution of 256^2 . To verify that this choice does not bias our conclusions, we additionally rerun the MetFace experiments on a single RTX 4090 at a higher resolution of 512^2 , keeping all hyper-parameters identical to the default setting except for reducing the batch size to 2. As summarized in Tab. 10, CLoSeR consistently improves ArtFID/FID/KID over the corresponding base generators for four representative backbones (AdaAttN, StyleID, AttenDistill, StyleSSP), while also producing visibly sharper and more faithful stylization. Since CLoSeR is a fully convolutional refinement module, it can in principle be applied to higher-resolution inputs without any architectural changes.

Catastrophic Forgetting Evaluation of Continual Learning. Due to space constraints, we report the detailed quantitative results of continual learning in the appendix. As shown in Table 11 and Table 12, the refined models are evaluated on outputs from various base generators. The results show that performance on earlier styles remains largely stable even after introducing multiple new domains. These findings confirm that **CLoSeR** effectively mitigates catastrophic forgetting, retaining prior knowledge while adapting to new styles.

Validation of Positional Encoding. To evaluate the role of positional encoding (PE) in geometric consistency, we conduct landmark detection on stylized outputs with CelebAMask-HQ (Lee et al.,

864
865
866 Table 8: Impact of CLoSeR on Artistic Portrait Generation.
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

Method	Oil Painting			Pen Drawing			Sketch		
	ArtFID ↓	FID ↓	KID ↓	ArtFID ↓	FID ↓	KID ↓	ArtFID ↓	FID ↓	KID ↓
APDrawingGAN (CVPR'19)	—	—	—	19.56	12.02	0.0267	—	—	—
+ VQGAN	—	—	—	19.58 <small>↑0.1%</small>	11.96 <small>↓0.5%</small>	0.0171 <small>↓40.0%</small>	—	—	—
+ CLoSeR (ours)	—	—	—	19.30 <small>↓1.3%</small>	11.77 <small>↓2.1%</small>	0.0073 <small>↓71.8%</small>	—	—	—
AdaAttN (CVPR'21)	41.39	28.14	0.1281	37.34	24.21	0.1293	44.81	26.74	0.0905
+ VQGAN	35.26 <small>↓17.4%</small>	23.90 <small>↓17.7%</small>	0.1071 <small>↓19.6%</small>	29.57 <small>↓20.8%</small>	18.68 <small>↓22.8%</small>	0.0771 <small>↓40.4%</small>	43.87 <small>↓2.1%</small>	25.84 <small>↓3.4%</small>	0.0847 <small>↓6.4%</small>
+ CLoSeR (ours)	36.62 <small>↓11.5%</small>	24.60 <small>↓12.9%</small>	0.1089 <small>↓14.9%</small>	29.11 <small>↓22.1%</small>	18.35 <small>↓24.2%</small>	0.0783 <small>↓39.5%</small>	41.04 <small>↓8.4%</small>	23.69 <small>↓11.4%</small>	0.1072 <small>↑18.4%</small>
CAST (SIGGRAPH'22)	37.58	26.13	0.1002	22.35	14.37	0.0784	43.07	25.41	0.0692
+ VQGAN	37.22 <small>↓1.0%</small>	25.37 <small>↓2.9%</small>	0.1065 <small>↑6.3%</small>	23.70 <small>↑6.0%</small>	14.80 <small>↑3.0%</small>	0.0417 <small>↓46.8%</small>	40.61 <small>↓5.7%</small>	23.56 <small>↓7.3%</small>	0.0684 <small>↓1.2%</small>
+ CLoSeR (ours)	36.11 <small>↓3.9%</small>	24.50 <small>↓6.2%</small>	0.1057 <small>↑5.5%</small>	23.55 <small>↑5.4%</small>	14.68 <small>↑2.2%</small>	0.0417 <small>↓46.8%</small>	40.28 <small>↓6.5%</small>	22.86 <small>↓10.0%</small>	0.0841 <small>↑21.5%</small>
AesPA-Net (ICCV'23)	43.28	30.42	0.1313	41.97	28.53	0.1258	41.52	25.11	0.0955
+ VQGAN	44.25 <small>↑2.2%</small>	30.48 <small>↑0.2%</small>	0.1450 <small>↑10.4%</small>	26.59 <small>↓36.6%</small>	16.74 <small>↓41.3%</small>	0.0464 <small>↓63.1%</small>	40.50 <small>↓2.5%</small>	23.78 <small>↓5.3%</small>	0.0629 <small>↓34.1%</small>
+ CLoSeR (ours)	45.05 <small>↑4.1%</small>	31.07 <small>↑2.1%</small>	0.1314 <small>↓0.0%</small>	27.35 <small>↓34.9%</small>	17.23 <small>↓39.6%</small>	0.0497 <small>↓60.5%</small>	38.49 <small>↓7.3%</small>	21.97 <small>↓12.5%</small>	0.0727 <small>↓23.9%</small>
DiffuseIT (ICLR'23)	47.13	32.27	0.1598	36.19	23.06	0.0826	58.04	35.86	0.1858
+ VQGAN	48.91 <small>↑3.8%</small>	32.70 <small>↑1.3%</small>	0.1110 <small>↓30.5%</small>	30.57 <small>↓18.4%</small>	18.27 <small>↓26.2%</small>	0.0646 <small>↓27.9%</small>	46.33 <small>↓20.2%</small>	26.91 <small>↓25.0%</small>	0.0739 <small>↓60.2%</small>
+ CLoSeR (ours)	39.38 <small>↓16.4%</small>	26.46 <small>↓17.7%</small>	0.0913 <small>↓42.9%</small>	32.06 <small>↓11.4%</small>	19.24 <small>↓16.6%</small>	0.0557 <small>↓32.6%</small>	41.86 <small>↓27.9%</small>	23.70 <small>↓33.9%</small>	0.0807 <small>↓56.6%</small>
InST (CVPR'23)	57.89	38.57	0.2226	35.04	26.13	0.0818	—	—	—
+ VQGAN	46.46 <small>↓19.7%</small>	32.11 <small>↓16.7%</small>	0.0957 <small>↓57.0%</small>	31.24 <small>↓10.8%</small>	20.01 <small>↓23.4%</small>	0.0783 <small>↓4.3%</small>	—	—	—
+ CLoSeR (ours)	47.23 <small>↓18.4%</small>	26.46 <small>↓31.4%</small>	0.0913 <small>↓58.7%</small>	29.72 <small>↓15.2%</small>	19.08 <small>↓27.0%</small>	0.0779 <small>↓4.8%</small>	—	—	—
StyleID (CVPR'24)	35.60	23.78	0.1198	26.58	17.44	0.0235	44.67	26.97	0.1546
+ VQGAN	35.96 <small>↑1.0%</small>	23.31 <small>↓2.0%</small>	0.1080 <small>↓9.8%</small>	22.05 <small>↓17.0%</small>	13.71 <small>↓21.4%</small>	0.0235 <small>↓0.0%</small>	41.01 <small>↓8.2%</small>	23.96 <small>↓11.2%</small>	0.0643 <small>↓58.4%</small>
+ CLoSeR (ours)	34.19 <small>↓4.0%</small>	22.36 <small>↓6.0%</small>	0.0966 <small>↓19.4%</small>	24.57 <small>↓7.6%</small>	15.43 <small>↓11.5%</small>	0.0159 <small>↓32.3%</small>	36.14 <small>↓19.1%</small>	20.87 <small>↓22.6%</small>	0.0725 <small>↓53.1%</small>
AttenDist (CVPR'25)	33.95	26.13	0.1349	28.16	18.74	0.0506	43.50	30.98	0.1501
+ VQGAN	34.26 <small>↑0.9%</small>	24.66 <small>↓5.6%</small>	0.1162 <small>↓13.9%</small>	22.32 <small>↓20.7%</small>	13.87 <small>↓26.0%</small>	0.0271 <small>↓46.4%</small>	46.47 <small>↑6.8%</small>	28.43 <small>↓8.2%</small>	0.0798 <small>↓46.8%</small>
+ CLoSeR (ours)	33.18 <small>↓2.3%</small>	23.84 <small>↓8.8%</small>	0.1046 <small>↓22.5%</small>	21.95 <small>↓22.1%</small>	13.65 <small>↓27.2%</small>	0.0255 <small>↓49.6%</small>	39.59 <small>↓9.0%</small>	23.89 <small>↓22.9%</small>	0.0843 <small>↓43.8%</small>
StyleSSP (CVPR'25)	46.59	33.49	0.1143	29.57	20.24	0.1119	40.44	26.07	0.1320
+ VQ-GAN	43.66 <small>↓6.3%</small>	31.16 <small>↓7.0%</small>	0.0872 <small>↓23.7%</small>	28.49 <small>↓3.7%</small>	18.15 <small>↓10.3%</small>	0.0691 <small>↓38.2%</small>	44.25 <small>↑9.4%</small>	26.31 <small>↑0.9%</small>	0.0708 <small>↓46.4%</small>
+ CLoSeR (ours)	40.25 <small>↓13.6%</small>	28.14 <small>↓16.0%</small>	0.0750 <small>↓34.4%</small>	28.07 <small>↓5.1%</small>	17.85 <small>↓11.8%</small>	0.0644 <small>↓42.4%</small>	37.74 <small>↓6.7%</small>	22.43 <small>↓14.0%</small>	0.0833 <small>↓36.9%</small>

890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

Table 9: Validation of Positional Encoding (PE) with PCK (↑).

Metrics	+VQ-GAN	AdaAttN +VQ-GAN w/PE	AesPA-Net +VQ-GAN w/PE	AttnDistill +VQ-GAN	CAST +VQ-GAN w/PE	DiffuseIT +VQ-GAN w/PE
PCK@5% ↑	0.789	0.802	0.841	0.858	0.896	0.901
PCK@7% ↑	0.921	0.930	0.942	0.952	0.973	0.973
PCK@10% ↑	0.980	0.987	0.984	0.988	0.995	0.995

2020) as the content domain and MetFace (Karras et al., 2020) as the style domain. For each algorithm, we generate 80 stylized results, where both the vanilla VQ-GAN and VQ-GAN w/PE are trained on MetFace for 48 epochs. The qualitative comparisons of different detection algorithms are provided in Figure 8. Due to space constraints, additional *Percentage of Correct Keypoints* (PCK) results under 5%, 7%, and 10% thresholds are reported in the Appendix, as shown in Table 9.

Integration into Diffusion Models. We integrate CLoSeR into the StyleID (Chung et al., 2024) diffusion framework and evaluate under different sampling steps. As shown in Figure 7, we assess refinement on MetFace-based generations at 30, 35, 40, and 50 steps. The qualitative results clearly demonstrate that CLoSeR produces sharper and more stylistically faithful portraits across different iteration counts.

Multi-round refinement. We further study whether applying CLoSeR multiple times brings additional benefits by running one (1×) or two (2×) refinement passes on MetFace for three representative backbones (Tab. 13). While the first pass yields clear gains over the Base and +VQ-GAN variants, the differences between 1× and 2× refinement are negligible (changes ≤ 0.1 ArtFID and ≤ 0.2 FID in all cases). This suggests that the initial pass already projects the latent features close to their optimal codebook representations, so an extra pass produces almost identical reconstructions; CLoSeR effectively behaves as an approximately idempotent projection onto the learned VQ manifold. Therefore, we adopt a single refinement round in all main experiments, as additional rounds only increase inference time without measurable quality gains.

918 Table 10: Effect of increasing the input resolution to 512×512 on MetFace.
919

920 Method	921 Row	922 ArtFID \downarrow	923 FID \downarrow	924 KID \downarrow
925 AdaAttN (CVPR'21)	926 Base	927 31.54	928 21.06	929 0.0696
	+ CLoSeR	30.19	20.33	0.0728
		4.3% \downarrow	3.5% \downarrow	4.6% \uparrow
930 StyleID (CVPR'24)	931 Base	932 30.56	933 20.97	934 0.0588
	+ CLoSeR	28.23	19.38	0.0547
		7.6% \downarrow	7.6% \downarrow	7.0% \downarrow
935 AttenDistill (CVPR'25)	936 Base	937 31.01	938 22.40	939 0.0650
	+ CLoSeR	27.26	19.37	0.0589
		12.1% \downarrow	13.5% \downarrow	9.4% \downarrow
940 StyleSSP (CVPR'25)	941 Base	942 38.76	943 25.49	944 0.0830
	+ CLoSeR	31.39	21.24	0.0722
		19.0% \downarrow	16.7% \downarrow	13.0% \downarrow

931 Table 11: Catastrophic Forgetting Evaluation on artistic portrait (MetFace, APDrawing, FS2K).
932

933 Methods	934 ArtFID \downarrow	935 FID \downarrow	936 KID \downarrow
937 AdaAttN + CLoSeR (Oil)	938 41.40	939 28.15	940 0.1281
	36.61	24.60	<u>0.1089</u>
	<u>36.11</u>	<u>24.24</u>	0.1067
	35.44	23.69	0.1106
941 CAST + CLoSeR (Oil)	942 37.58	943 26.13	0.1002
	36.22	24.52	0.1055
	<u>35.79</u>	<u>24.21</u>	<u>0.1045</u>
	35.53	24.03	0.1093
944 AesPA-Net + CLoSeR (Oil)	945 43.28	946 30.42	<u>0.1313</u>
	45.34	31.25	0.1304
	45.17	31.07	0.1321
	<u>44.61</u>	<u>30.60</u>	0.1375
948 QuantArt + CLoSeR (Oil)	949 32.29	950 24.43	0.1017
	31.98	23.59	0.0917
	<u>31.89</u>	<u>23.47</u>	<u>0.0929</u>
	31.83	23.41	0.0958
952 DiffuseIT + CLoSeR (Oil)	953 47.13	954 32.27	0.1598
	39.59	26.60	0.0913
	<u>39.07</u>	<u>26.24</u>	<u>0.0919</u>
	38.30	25.65	0.0929
956 StyleID + CLoSeR (Oil)	957 35.60	958 23.78	0.1198
	34.19	22.36	0.0966
	<u>34.14</u>	<u>22.31</u>	<u>0.0971</u>
	34.14	22.31	<u>0.0971</u>
960 AttenDistill + CLoSeR (Oil)	961 33.95	962 26.13	0.1349
	33.04	23.71	0.1041
	<u>33.00</u>	<u>23.61</u>	<u>0.1043</u>
	32.87	23.50	0.1089

963 A.2.1 EXPERIMENTS RESULTS
964965 In this section, we provide a concise yet comprehensive overview of the additional experimental
966 results validating our proposed Continual Learning for Style Refinement (CLoSeR) framework. We
967 compare CLoSeR with state-of-the-art methods, emphasizing its effectiveness in generating high-
968 quality, style-consistent drawings.969
970 **Facial Portrait Results.** Figure 9 and Figure 10 illustrate the generated artistic styles for facial
971 portraits using various generative methods. CLoSeR demonstrates superior performance in both oil
972 painting and pen drawing styles. For oil paintings, CLoSeR achieves visually appealing results that

972 Table 12: Catastrophic Forgetting Evaluation on natural scenes (Monet, Van Gogh, Ukiyo-e).
973

Methods	ArtFID ↓	FID ↓	KID ↓
AdaAttN	32.34	19.63	0.0602
+CLoSeR (+Monet)	<u>19.35</u>	<u>10.99</u>	0.0467
+CLoSeR (+Monet+VanGogh)	19.27	10.95	0.0513
+CLoSeR (+Monet+VanGogh+Ukiyo-e)	19.27	10.95	<u>0.0493</u>
CAST	19.53	11.43	0.0159
+CLoSeR (+Monet)	18.87	10.64	0.0155
+CLoSeR (+Monet+VanGogh)	18.03	10.11	0.0117
+CLoSeR (+Monet+VanGogh+Ukiyo-e)	<u>18.05</u>	<u>10.13</u>	<u>0.0118</u>
AesPA-Net	23.58	13.82	0.0808
+CLoSeR (+Monet)	21.31	12.02	0.0639
+CLoSeR (+Monet+VanGogh)	<u>22.05</u>	<u>12.48</u>	<u>0.0677</u>
+CLoSeR (+Monet+VanGogh+Ukiyo-e)	<u>22.05</u>	<u>12.48</u>	<u>0.0677</u>
StyleID	30.63	18.78	0.0370
+CLoSeR (+Monet)	19.85	11.82	0.0184
+CLoSeR (+Monet+VanGogh)	<u>20.07</u>	<u>11.98</u>	<u>0.0165</u>
+CLoSeR (+Monet+VanGogh+Ukiyo-e)	19.96	<u>11.91</u>	0.0159
AttenDistill	21.22	14.29	0.0489
+CLoSeR (+Monet)	16.35	10.10	0.0216
+CLoSeR (+Monet+VanGogh)	17.03	10.54	0.0267
+CLoSeR (+Monet+VanGogh+Ukiyo-e)	<u>16.97</u>	<u>10.50</u>	<u>0.0257</u>

1012 Figure 7: Qualitative evaluation of StyleID refinement with CLoSeR on the MetFace dataset under
1013 different sampling steps (30, 35, 40, 50). Compared to the baseline (BASE), CLoSeR produces
1014 sharper, more consistent, and stylistically faithful results across all iterations. Please zoom in for
1015 details.
1016
10171018 closely resemble the target style while preserving the identity and structural details of the input faces.
1019 Compared to the SOTA methods, CLoSeR avoids overly smoothed or distorted outputs, capturing
1020 complex brush strokes and color blending effectively. In pen drawings, CLoSeR produces clear lines
1021 and consistent textures, accurately representing the input faces with sharp, well-defined lines.
10221023 **Natural Scene Results** Figure 11 showcases the generated artistic styles for natural scenes based
1024 on different artist and generative methods. CLoSeR excels in generating high-quality artistic rep-
1025 resentations of natural scenes, such as Monet, Van Gogh, and Ukiyo-e styles. For Monet’s im-
pressionistic style, CLoSeR captures soft brushwork and natural light effects, producing visually

Figure 8: Comparison of facial landmark detection across different generative methods on oil painting portraits. Each column shows the detected landmarks on stylized outputs, highlighting the impact of VQ-GAN and positional encoding (PE) on geometric consistency. Please zoom in for details.

Table 13: Effect of single- vs. double-round refinement on MetFace (ArtFID↓/FID↓/KID↓).

Method	AdaAttN			DiffuseIT			StyleID		
	ArtFID	FID	KID	ArtFID	FID	KID	ArtFID	FID	KID
Base	41.39	28.14	0.1281	47.13	32.27	0.1598	35.60	23.78	0.1198
+ VQGAN	35.26	23.90	0.1071	48.91	32.70	0.1110	35.96	23.31	0.1080
+ CLoSeR (1×)	36.62	24.60	0.1089	39.38	26.46	0.0913	34.19	22.36	0.0966
+ CLoSeR (2×)	36.61	24.60	0.1088	39.59	26.60	0.0912	34.19	22.36	0.0966

pleasing results. In Van Gogh’s post-impressionistic style, CLoSeR effectively reproduces expressive, swirling strokes and vivid color contrasts. For Ukiyo-e, CLoSeR generates flat color regions, strong outlines, and stylized compositions typical of traditional Japanese art. Compared to other SOTA methods, CLoSeR maintains better style consistency and visual fidelity. The continual learning approach ensures that CLoSeR refines its understanding of each artistic style, leading to more accurate and consistent results.

A.3 USAGE OF LLM

We employed a large language model (LLM) as an auxiliary tool during the manuscript preparation process. Specifically, the LLM was used to polish the writing, check spelling and grammar errors, and improve the overall clarity and readability of the text. Importantly, the LLM was not involved in designing the methodology, conducting experiments, or analyzing results; all technical contributions, experimental designs, and conclusions were developed solely by the authors. The use of the LLM was limited to language refinement, helping to ensure that the presentation of our work is logically coherent and accessible to a broader research audience.

1125 Figure 9: Generated results of artistic styles for oil facial portraits based on different generative
1126 methods. Please zoom in for details.
1127
1128
1129
1130
1131
1132
1133

Figure 10: Generated results of artistic styles for pen-drawing facial portraits based on different generative methods. Please zoom in for details.

