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ABSTRACT

While existing artistic style transfer methods enable cross-domain image syn-
thesis, they often struggle to strike a balance among stylistic realism, inference
efficiency, and geometric consistency. To address this limitation, we propose a
test-time refinement (TTR) framework that universally enhances stylistic fidelity
through a self-supervised VQ-GAN, without requiring any gradient updates to the
pre-trained generator. Our primary contribution is a continual learning framework
for VQ-GAN, which combines Low-Rank Adaptation (LoRA) with incremental
codebook expansion. This design enables efficient adaptation to diverse artistic
styles while preserving previously learned knowledge, significantly reducing the
computational and memory overhead of deploying models across multiple do-
mains. Notably, our approach reduces the number of trainable parameters by up
to 94% compared to full-model fine-tuning, offering a highly parameter-efficient
solution for test-time refinement. Furthermore, we introduce positional embed-
dings into the latent embedding space, which strengthens the model’s geometry
awareness and improves structural coherence in the generated results. We name
our approach CLoSeR (Continual Learning in VQ-GAN for Style Refinement),
and evaluate it across multiple style transfer benchmarks under a test-time adap-
tation setting. Experimental results show that CLoSeR improves style fidelity and
structural consistency, achieving a maximum relative reduction of 44% in Fréchet
Inception Distance (FID), demonstrating significant gains in generation quality.
The code will be released.

1 INTRODUCTION

Artistic style transfer (AST) has witnessed rapid progress through a variety of approaches, most
notably neural style transfer (NST) (Gatys et al., 2016; Huang & Belongie, 2017; Liu et al., 2021;
Hong et al., 2023) and generative adversarial networks (GANs) (He et al., 2018; Lee et al., 2020;
Huang et al., 2024). These methods typically rely on one or a few reference style images to guide
the stylization process. More recently, diffusion models (Zhang et al., 2023; Chung et al., 2024;
Wang et al., 2024; Zhou et al., 2025), autoregressive (AR) approaches (Li et al., 2024), and flow-
based generative methods (Lipman et al., 2022; Geng et al., 2025) have demonstrated impressive
capabilities in producing high-quality and diverse stylizations, often supporting multimodal inputs.
These advances highlight the growing importance of transferable representations that capture both
content and stylistic priors, enabling more flexible and controllable AST.

However, existing methods struggle to achieve an optimal balance between content consistency,
stylistic realism, and inference efficiency. NST and GAN-based methods (Gatys et al., 2017; Selim
et al., 2016; Zhu et al., 2017) enable fast inference and preserve geometric structure well, but of-
ten fail to learn sufficiently rich representations of artistic textures. Diffusion models (Zhang et al.,
2023; Wang et al., 2024; Ye et al., 2025) generate high-quality results with nuanced style patterns,
yet suffer from hallucinated content, weak content–style correspondence, and the high computa-
tional cost due to iterative sampling. Reducing inference steps typically degrades image quality
significantly. Moreover, both diffusion and AR models often yield over-smoothed textures, sug-
gesting that their learned representations do not fully align with the expressive nature of real-world
artistic styles. Few-shot or training-free adaptation methods (Chung et al., 2024; Farhadzadeh et al.,
2025) further face challenges in building robust representations for unseen domains. Thus, learning
domain-aligned and structurally consistent representations remains an open challenge for AST.
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Figure 1: Motivation of CLoSeR. Left: illustration of the distribution shift from the source domain
(CelebAMask-HQ (Lee et al., 2020)) to the target domain (MetFace (Karras et al., 2020)). StyleID
(Chung et al., 2024) serves as the base model to generate coarse outputs, while our CLoSeR pro-
duces refined results that align more closely with the target domain. Features are extracted with
VGG-19 (Simonyan & Zisserman, 2014) and visualized via t-SNE.) Right: scatter plot of refined
performance versus original performance across diverse base models and artistic styles. Lower FID
values indicate better style fidelity.

As illustrated in Figure 1, the motivation for our approach stems from the persistent distributional
gap between stylized outputs and the target domain. While existing image translation models—such
as GAN-, attention-, and diffusion-based methods (Huang & Belongie, 2017; Liu et al., 2021; Yi
et al., 2019; Chung et al., 2024; Zhou et al., 2025) —can roughly map source content into the target
style space, their outputs often exhibit significant deviations from the authentic target distribution,
particularly in terms of stylistic fidelity and geometric consistency (left panel). These gaps indicate
a representation mismatch between the generated outputs and the target artistic domain.

To address this, we explore an alternative perspective: rather than retraining or modifying the gen-
erator, we refine its outputs at test time through reconstruction in the embedding space. Inspired by
the ability of VQ-GAN (Esser et al., 2021) to learn a compact, self-supervised representation of the
target domain, we propose a test-time refinement (TTR) framework that leverages VQ-GAN as a do-
main anchor. In other words, VQ-GAN refines coarse stylized images by aligning their features with
a pre-learned target domain representation in its latent codebook, eliminating the need for generator
updates.

However, directly fine-tuning VQ-GAN for each new style remains computationally expensive and
lacks scalability. To overcome these limitations, we propose a TTR framework dubbed CLoSeR,
i.e. Continual Learning in VQ-GAN for Style Refinement. CLoSeR enables efficient continual adap-
tation by incrementally enriching the learned representation space through Low-Rank Adaptation
(LoRA) (Hu et al., 2022) and codebook expansion. This design drastically reduces the number of
trainable parameters—by over 94% compared to full fine-tuning—while preserving previously ac-
quired representations of earlier styles. Furthermore, to mitigate structural distortions caused by the
lack of spatial awareness in vanilla VQ-GAN (Esser et al., 2021), we incorporate 2D sine-cosine po-
sitional embeddings (Vaswani et al., 2017; Carion et al., 2020) into the latent representation space,
endowing the codebook and decoder with explicit spatial priors. Together, these components enable
CLoSeR to refine generation quality through representation learning, achieving both high-fidelity
stylization and geometric consistency across diverse artistic domains.

We conduct extensive experiments to evaluate the effectiveness and generality of our approach.
The results demonstrate that CLoSeR consistently improves generation quality across diverse style
transfer pipelines—including GAN- (Yi et al., 2019; Zhang et al., 2022), attention- (Liu et al., 2021;
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Hong et al., 2023), and diffusion-based (Kwon & Ye, 2022; Chung et al., 2024; Zhou et al., 2025)
models—under both single-style and continual learning settings. The framework enhances stylistic
realism and structural consistency, while also learning transferable representations. As shown in
the right panel of Figure 1, a scatter plot of FID improvement reveals that both the baseline VQ-
GAN and CLoSeR reduce stylization errors compared to the original outputs, but CLoSeR achieves
significantly greater FID reduction, particularly in challenging cases with higher baseline errors.
This confirms its superior refinement capability and scalability in real-world deployment scenarios.

2 RELATED WORKS

Artistic Style Transfer. Early approaches leveraged CNNs to decouple style and content repre-
sentations, enabling stylized image synthesis (Gatys et al., 2016; Johnson et al., 2016; Jing et al.,
2019). Subsequent methods aimed to enhance style diversity and generalization by introducing
adaptive normalization and attention-based mechanisms (Huang & Belongie, 2017; Park & Lee,
2019; Hong et al., 2023). More recently, diffusion-based approaches have emerged as powerful al-
ternatives for style and domain transfer (Ho et al., 2020; Kwon & Ye, 2022; Gu et al., 2022). These
methods have been applied to stylization, latent space disentanglement, and domain adaptation by
exploiting denoising priors and structured noise injection (Kwon & Ye, 2022; Su et al., 2022; Parmar
et al., 2024; Zhou et al., 2025). In addition, training-free paradigms have been explored to achieve
lightweight and interpretable transfer (Chung et al., 2024). Despite these advances, both CNN-based
and diffusion-based pipelines often struggle with preserving structure and maintaining style fidelity
in complex artistic domains.

Vector Quantization. Vector Quantization (VQ) has emerged as a powerful technique for learning
discrete representations. VQ-VAE (Van Den Oord et al., 2017) pioneered vector quantization in
generative modeling, and VQ-GAN (Esser et al., 2021) further advanced this direction. Building on
the success of VQ-GAN, a variety of works have emerged, such as VQ-Diffusion (Gu et al., 2022) for
text-to-image generation and QuantArt (Huang et al., 2023) for artistic style transfer. Reconstruction
and generation using VQ have also been widely studied (Zhu et al., 2024; Yu et al., 2024; Yao et al.,
2025). In the autoregressive paradigm, Li et al. (2024) propose eliminating discrete quantization
entirely by modeling per-token distributions, while MergeVQ (Li et al., 2025) unifies representation
learning and generation through token merging and a lookup-free quantization strategy.

Continual Learning. Continual learning has been extensively studied, but its application to artis-
tic domains remains relatively underexplored. Traditional style transfer methods often require re-
training for each new style (Gatys et al., 2016; Johnson et al., 2016), making them inefficient and
vulnerable to catastrophic forgetting. To address these limitations, modular and parameter-efficient
approaches have been proposed (Liang & Li, 2024; Zhu et al., 2025; He et al., 2025; Roy et al.,
2023). More recently, continual generative learning has incorporated strategies such as replay (Cac-
cia et al., 2020; Jeon et al., 2023), distillation (Lesort et al., 2019; Zhao et al., 2020), and mod-
ularization (Yoon et al., 2018). LoRA-based adapters (Hu et al., 2022; Farhadzadeh et al., 2025)
have proven particularly effective, enabling lightweight, style-specific modules to be integrated into
frozen backbones for scalable, efficient, and largely forget-free adaptation. However, they still suffer
from increasing knowledge degradation as the number of tasks grows (Liang & Li, 2024).

3 METHOD

3.1 OVERVIEW

We propose CLoSeR (Continual Learning in VQ-GAN for Style Refinement), a test-time refinement
(TTR) framework that enhances both stylistic realism and geometric consistency in artistic style
transfer. The pipeline of CLoSeR is shown in Figure 2. Building upon VQ-GAN (Esser et al., 2021),
we integrate parameter-efficient adaptation through Low-Rank Adaptation (LoRA) and incremental
codebook expansion, supporting continual adaptation to new styles with minimal overhead. For
each new style, only a lightweight LoRA module and a style-specific discriminator are trained,
while the shared VQ-GAN backbone remains frozen. This strategy enables scalable deployment
in dynamic and long-tail style scenarios. In addition, our approach introduces geometry-aware
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(a) Continual Learning in Geometric-aware VQ-GAN (b) Test-time Style Refinement

Input � Initial 
Generator

Q

CLoSeR ℛ

�(�)

�

Refined

❄

❄ Frozen

❄

Codebook

Input
(new style)

Output

Encoder

Θ0

Θ(�)

Decoder

Θ0

Θ(�)

Q

Position 
EmbeddingCosine-Sine

�

�0

�(�)

Discriminator

Q Quantization

Learnable

Frozen

CLoSeR
st

yl
e 

0

Figure 2: Overview of CLoSeR, i.e., Continual Learning in VQ-GAN for test-time Style Refinement.
(a) New styles are integrated by expanding the codebook (C(i)) while retaining the base style rep-
resentation C0 (style 0). The encoder features are enriched with cosine-sine positional embeddings
and reconstructed by the decoder with LoRA-based adaptation. (b) Given an initial coarse stylized
output G(x) from any generator, CLoSeR reconstructs it through the learned codebook, aligning the
result with the target style domain.

vector quantization by embedding positional encodings into the latent space, allowing the model to
incorporate explicit spatial priors during reconstruction and thereby correcting geometric distortions
and local artifacts commonly present in coarse stylized outputs. Finally, CLoSeR operates in a
plug-and-play manner and can be applied to enhance outputs from arbitrary generative models.

3.2 CONTINUAL LEARNING IN VQ-GAN VIA LORA

Adapting to new artistic styles while preserving previously learned knowledge remains challeng-
ing due to catastrophic forgetting and the large parameter overhead of full fine-tuning. To enable
efficient and scalable continual learning, we integrate LoRA (Hu et al., 2022) and incremental code-
book expansion into the VQ-GAN framework, allowing CLoSeR to adapt to new styles with minimal
trainable parameters while keeping the shared backbone frozen.

LoRA-based Encoder–Decoder Adaptation. We apply LoRA to all convolutional layers of the
encoder and decoder, injecting trainable low-rank matrices to modulate features in a style-specific
manner. Specifically, each pre-trained weight W0 ∈ Rd×k is updated as:

W = W0 +
α

r
AB, A ∈ Rd×r, B ∈ Rr×k, (1)

where A and B are the low-rank adaptation matrices. A is initialized with zeros, B with a standard
normal distribution, α is a scaling factor, and r is the rank (set to 8 in our experiments). The original
weights W0 remain frozen and are shared across all styles.

Incremental Codebook Expansion. For each new style si, we expand the codebook with ∆K =
1024 additional entries:

C(i) = C0 ∪ eK0 + 1, . . . , eK0+∆K , (2)

where C0 denotes the initial codebook. This strategy enables the model to encode style-specific
visual primitives while preserving previously learned representations.

Training. During training on style si, only three components are updated: the LoRA parameters
Θ

(i)
LoRA, the newly added codebook entries C(i) \ C0, and a lightweight style-specific discriminator

D(i). All other parameters—including the encoder, decoder, and the base codebook—remain frozen.

Inference. At inference, given an initial stylized result G(x) from any pre-trained generator, the
refined output for style si is computed as:

ŷ = R
(
G(x); Θ(i)

)
, with Θ(i) = Θ

(i)
LoRA,D

(i). (3)

This modular design enables plug-and-play refinement: users select the target style, and the sys-
tem loads the corresponding lightweight parameters, thereby avoiding redundant computation and
supporting efficient deployment in dynamic or long-tail scenarios.

4
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3.3 GEOMETRY-AWARE VQ-GAN

To improve spatial structure preservation in artistic style reconstruction, we enhance the VQ-GAN
framework (Esser et al., 2021) with 2D sine–cosine positional embeddings injected into the latent
representation space. Unlike standard VQ-GAN, which processes latent features without explicit
spatial inductive bias, our method embeds positional priors prior to quantization—thereby enabling
geometry-aware refinement without introducing any additional learnable parameters.

Similar to Transformer (Vaswani et al., 2017), for each spatial position (m,n) ∈ {1, . . . , h} ×
{1, . . . , w} of the continuous latent feature map fs ∈ Rh×w×d, we generate a corresponding 2D
positional embedding Pm,n ∈ Rd using an extended sine-cosine scheme:

Pm,2i = sin

(
m

10000
2i
d

)
, Pm,2i+1 = cos

(
m

10000
2i
d

)
,

Pn,2i = sin

(
n

10000
2i
d

)
, Pn,2i+1 = cos

(
n

10000
2i
d

)
,

(4)

where m and n denote the row and column indices, i is the dimension index, and d is the embedding
dimension. The positional embedding Pm,n is then added element-wise to the latent feature fs:

fpe = fs + Pm,n, (5)

forming spatially enriched features that preserve both content semantics and explicit spatial struc-
ture.

The enhanced features fpe are then passed to the codebook for quantization:

QC(fpe) := arg min
ci∈C

∥fpe − ci∥, (6)

where ci denotes the i-th code vector in the codebook C. By integrating explicit spatial priors into
the vector quantization pipeline, our approach effectively improves geometric consistency in the
reconstructed outputs, particularly in structure-sensitive artistic domains.

3.4 LOSS FUNCTIONS

To balance pixel-level fidelity, perceptual quality, quantization alignment, and adversarial realism,
we adopt a composite loss composed of multiple complementary objectives.

Reconstruction Objective. The reconstruction objective combines an L1 pixel-wise loss and a per-
ceptual loss in deep feature space. Given the input image xs and its reconstruction ys, the pixel-level
reconstruction loss is defined as Lrec = ∥ys − xs∥1. To capture higher-level semantic consistency,
we further employ the LPIPS metric (Zhang et al., 2018) as a perceptual loss:

Lperc = LPIPS(xs, ys). (7)

The total reconstruction loss is then given by:

Lrecon = Lrec + λperc · Lperc, (8)

where λperc controls the relative weight of perceptual similarity.

VQ Loss. Following standard practice in vector quantized models (Esser et al., 2021), we in-
corporate a vector quantization (VQ) loss to align the latent space with the codebook. Let
fs ∈ RB×C×H×W denote the continuous latent features from the encoder. We enrich these fea-
tures with 2D sine-cosine positional encoding (see Section 3.3) to obtain fpe, which is then flattened
and mapped to the nearest entries in a learnable codebook C ∈ RK×D, where K is the number
of codebook vectors and D is the embedding dimension. The quantized output zq replaces each
feature in fpe with its closest codebook entry under the Euclidean distance. To jointly optimize the
codebook and encoder, we use the following VQ loss:

LVQ = ∥sg[zq]− fpe∥22 + β∥sg[fpe]− zq∥22, (9)

where sg[·] denotes the stop-gradient operator and β is a hyperparameter controlling the codebook
update strength.

5
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Adversarial Loss. For adversarial training, we adopt the standard cross-entropy objective as in
VQ-GAN (Esser et al., 2021). The discriminator D(i) for style si is optimized as:

Ladv = −E[logD(i)(y)]− E[log(1−D(i)(ys))], (10)

where y and ys denote real and reconstructed images.

Total Loss. The overall training objective is a weighted combination of all components:

Ltotal = Lrecon + λVQLVQ + Ladv, (11)

where λVQ is set to 0.1 by default. This multi-objective formulation ensures high-fidelity, geometri-
cally coherent, and stylistically realistic reconstructions.

4 EXPERIMENTS

4.1 SETTINGS

Datasets & Metrics. For the Artistic Portrait domain, we use MetFace (Karras et al., 2020),
APDrawing (Yi et al., 2019), and FS2K (Fan et al., 2022) as style datasets, with facial photos from
CelebAMask-HQ (Lee et al., 2020) and FS2K serving as content images. For the Natural Scene
domain, we collect data from Flickr and WikiArt. We adopt standard metrics—ArtFID (Wright
& Ommer, 2022), FID (Heusel et al., 2017), and KID (Bińkowski et al., 2018)—to quantitatively
evaluate our results. All images are resized to 256× 256 before training and evaluation.

Implementation Details. Following the architecture design of QuantArt (Huang et al., 2023), the
encoder and decoder each consist of four blocks, with two ResBlocks (He et al., 2016) and a down-
sampling/upsampling layer. The quantized feature map has a spatial resolution of 16 × 16 and
an embedding dimension of 256. The codebook contains N = 1024 entries, each of dimension
d = 256. For training, we set the batch size to 8 and the momentum queue length to 1024. For each
newly added style, the codebook is expanded by 1024 tokens. We use the Adam optimizer (Adam
et al., 2014) with a learning rate of 4.5 × 10−6. Our CLoSeR framework is implemented in Py-
Torch (Paszke et al., 2019), and all experiments are conducted on a single NVIDIA RTX 4090 GPU.

Baseline Models. We evaluate our method against a set of state-of-the-art methods, including neu-
ral style transfer (QuantArt (Huang et al., 2023), AesPA-Net (Hong et al., 2023), CAST (Zhang et al.,
2022), AdaAttN (Liu et al., 2021)), and diffusion-based stylized image generation (DiffuseIT (Kwon
& Ye, 2022), InST (Zhang et al., 2023), StyleID (Chung et al., 2024) and AttenDistill (Zhou et al.,
2025)). For fair comparison, we use publicly available implementations with their recommended
configurations. As shown in Figure 4, our method outperforms all base models in both stylization
fidelity and semantic consistency. Note that APDrawingGAN (Yi et al., 2019) is specialized for pen
drawings, thus we evaluate it only in its intended settings to ensure fairness.

4.2 PERFORMANCE EVALUATION

4.2.1 NATURAL SCENE STYLE TRANSFER

Unlike the standard style transfer task, we train our model to reconstruct the input and use this to
refine the results of artistic style transfer results. The model is first trained on the Monet dataset
and then continually extended to Van Gogh and Ukiyo-e, enabling progressive refinement across
multiple styles. Experimental results demonstrate the effectiveness of our approach.

Quantitative Analysis. As illustrated in Figure 3, for both Monet and Van Gogh, the average values
of all three evaluation metrics consistently decrease after the initial refinement with VQ-GAN and
are further reduced when applying our proposed CLoSeR. Notably, across all baselines, our method
achieves substantial improvements: FID is reduced by approximately 25% on Monet and Van Gogh,
KID drops by more than 30%, and ArtFID decreases by over 20%.

Qualitative Analysis. As shown in Figure 4, CLoSeR consistently enhances base models by recov-
ering structural details and enriching textures. Without refinement, AdaAttN and AesPA-Net tend
to produce over-smoothed outputs, while vanilla VQ-GAN introduces texture but often causes dis-
tortions. In contrast, CLoSeR yields more faithful style expression—Monet’s color gradients appear

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

N
at

ur
al

 S
ce

ne
s 

S
ty

le
 T

ra
ns

fe
r

5 

10 

15 

20 

A
d
aA

tt
N

S
ty

le
ID

A
tt

en
D

is

A
es

P
A

-N
et

C
A

S
T

A
ve

ra
g
e

​Monet (FID)

Base

+VQ-GAN

+CLoSeR
25.1%

44.0%

29.3%

6.9%

13.0%

21.6%

10 

12 

14 

16 

18 

20 

S
ty

le
ID

C
A

S
T

A
tt

en
D

is

A
d
aA

tt
N

A
es

P
A

-N
et

A
ve

ra
g
e

Van Gogh (FID)

Base

+VQ-GAN

+CLoSeR

25.0%

31.2%

24.0%

16.8%23.6%

26.5%

13 

15 

17 

19 

21 

S
ty

le
ID

A
d
aA

tt
N

C
A

S
T

A
es

P
A

-N
et

A
tt

en
D

is

A
ve

ra
g
e

Ukiyoe (FID) 

Base

+VQ-GAN

+CLoSeR 12.9%

19.1%

12.8%

14.7%
4.1%

12.5%

10 

15 

20 

25 

30 

35 

M
o
n
et

V
an

 G
o
g
h

U
ki

yo
e

M
o
n
et

V
an

 G
o
g
h

U
ki

yo
e

ArtFID FID

Base
+VQ-GAN
+CLoSeR

0.00 

0.04 

0.08 

0.12 

0.16 

M
o
n
et

V
an

 G
o
g
h

U
ki

yo
e

KID

Average

20.5%
22.0%

9.0%

25.1% 25.0%

12.9%
38.7%31.6%

17.2%

ArtFID FID KID

10 

15 

20 

25 

30 

A
es

P
A

-N
et

A
d
aA

tt
N

D
if
fu

se
IT

In
S

T

A
tt

en
tD

is
ti
ll

S
ty

le
ID

C
A

S
T

A
P
D

-G
A

N

A
ve

ra
g
e

Pen-drawing (FID)

Base

+VQ-GAN

+CLoSeR

39.6%

21.3%

24.2%

27.0%

27.2%
11.5%

16.6%

2.1%

2.2%

20 

25 

30 

35 

40 

D
If

fu
se

IT

A
tt

en
D

is
ti
ll

S
ty

le
ID

A
d
aA

tt
N

C
A

S
T

A
es

P
A

-N
et

A
ve

ra
g
e

Sketch (FID)

Base

+VQ-GAN

+CLoSeR

33.9%

19.9%

22.9%

11.4%
10.0%

22.6%

12.5%

A
rti

st
ic

 P
or

tra
it 

G
en

er
at

io
n

20 

25 

30 

35 

D
If

fu
se

IT

A
es

P
A

-N
et

A
d
aA

tt
N

C
A

S
T

S
ty

le
ID

A
tt

en
tD

is
ti
ll

Q
u
an

tA
rt

A
ve

ra
g
e

Oil-painting (FID)

Base

+VQ-GAN

+CLoSeR

7.8%

18.0%

12.6%

8.8%6.2%

6.0%

2.1%

3.4%

15 

20 

25 

30 

35 

40 

45 

50 

O
il-

P
ai

n
t.

P
en

-D
ra

w

S
ke

tc
h

O
il-

P
ai

n
t.

P
en

-D
ra

w

S
ke

tc
h

ArtFID FID

Base
+VQ-GAN
+CLoSeR

0.04 

0.06 

0.08 

0.10 

0.12 

0.14 

O
il-

P
ai

n
t.

P
en

-D
ra

w

S
ke

tc
h

KID

Average

5.4%

16.0%

13.9%

7.8%

21.3%

19.9%
41.2%

17.5% 32.7%

ArtFID FID KID

Figure 3: Quantitative performance on artistic style transfer for natural scenes and facial portraits.
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Figure 4: Generated results of different artistic styles for natural scenes and facial portraits. Please
zoom in for details.

smoother, Van Gogh’s bold strokes are better preserved, and Ukiyo-e’s flat shading and outlines
remain more coherent—demonstrating improved style fidelity and content stability across diverse
models.
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4.2.2 ARTISTIC PORTRAIT GENERATION

We first pre-train CLoSeR on the MetFace (Karras et al., 2020) dataset to learn robust facial rep-
resentations. Building on this foundation, we extend the model to support continual refinement
across two additional styles: APDrawing (Yi et al., 2019) and FS2K (Fan et al., 2022), resulting in
a three-style refinement setup.

Quantitative Analysis. As illustrated in Figure 3, our CLoSeR significantly improves performance
across all artistic domains and metrics. Compared to the base models, CLoSeR reduces average FID
by 7.8%, 21.3%, and 19.9% on oil painting, pen drawing, and sketch styles, respectively, consistently
outperforming the intermediate VQ-GAN refinement. Across tasks, CLoSeR achieves an average
5.4% ArtFID reduction and a 17.5% KID decrease on the oil painting domains. Moreover, ArtFID
decreases by 16.0% on pen drawing, indicating stronger stylistic consistency. These results confirm
that our method not only restores structural fidelity but also enhances stylistic realism across diverse
datasets and models.

Qualitative Analysis. For Oil Paintings, AdaAttN and AesPA-Net produce over-smoothed or dis-
torted faces, while VQ-GAN reduces artifacts but suffers from leakage and color shifts. CLoSeR
better preserves identity (sharper jawlines, clearer eyes) and renders textures closer to the target
style. For Pen Drawings, DiffuseIT and AesPA-Net often yield blurry or off-domain results; VQ-
GAN adds stroke effects but loses detail and symmetry. CLoSeR restores crisp contours and accu-
rate strokes, resembling ground truth. For Sketches, base models distort proportions (e.g., bloated or
muddy textures), whereas CLoSeR enhances contour sharpness and line stability. These improve-
ments highlight its ability to recover fine-grained structure while embedding faithful stylistic cues.

4.2.3 MODEL EFFICIENCY
Table 1: Comparison of model efficiency.

Methods Params. (MB) Memory (GB) Time (s)

AdaAttN 13.63 10.80 0.066
CAST 10.52 10.01 0.056
AesPA-Net 14.11 3.39 0.148
StyleID – 12.87 5.848
AttenDistill 49.49 3.61 57.560
CLoSeR 4.74 2.42 0.055

As shown in Table 1, CLoSeR is highly
efficient, requiring only 4.74 MB trainable
parameters, 2.42 GB memory, and 0.0545
s inference—substantially lower than most
baselines. Its lightweight test-time adapta-
tion, without modifying the generator, of-
fers an excellent trade-off between perfor-
mance and resource cost, making it practi-
cal for low-resource applications.

4.3 MODEL ANALYSIS

Ablation Study of CLoSeR. Figure 5 illustrates the progressive effect of each component. Base
models (APDrawingGAN, AttenDistill) often produce blurry features and artifacts. Refinement with
vanilla VQ-GAN improves textures but still struggles with structure and style consistency. Adding
positional encoding further enhances spatial fidelity, while our final CLoSeR achieves the clearest
geometry, reduced artifacts, and more natural textures.

Catastrophic Forgetting Evaluation of Continual Learning. We assess continual learning by
incrementally adding new tasks on both natural scene and portrait drawing datasets. Specifically, we

APDrawingGAN ArtFID ↓ FID ↓ KID ↓

BASE 19.57 12.03 0.0267
+ VQ-GAN 19.54 11.96 0.0171
+ VQ-GAN w/ PE 19.30 11.77 0.0170
+ CLoSeR (Ours) 18.70 11.35 0.0073

AttenDistill ArtFID ↓ FID ↓ KID ↓

BASE 28.16 18.74 0.0506
+ VQ-GAN 22.32 13.87 0.0271
+ VQ-GAN w/ PE 22.24 13.74 0.0285
+ CLoSeR (Ours) 21.95 13.65 0.0255

Table 2: Ablation study of CLoSeR.
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Figure 5: Qualitative results of the ablation study.
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Figure 6: Catastrophic forgetting evaluation and integration into diffusion models. (a) Natural scenes
style transfer with Monet as the target domain. (b) Artistic portrait drawings generation using Met-
Face (Oil), APDrawing (Pen), and FS2K (Pencil). (c) Integration into StyleID (Chung et al., 2024)
under varying sampling steps, where CLoSeR consistently reduces FID compared to the baseline.

Table 3: Validation of Positional Encoding (PE) with NME (↓).

Method AdaAttN AesPA-Net CAST DiffuseIT StyleID AttnDistill Average

+VQ-GAN 0.0357 0.0328 0.0348 0.0393 0.0338 0.0275 0.0340
+VQ-GAN w/ PE 0.0348 0.0314 0.0325 0.0377 0.0341 0.0274 0.0330

adopt MetFace (Karras et al., 2020) as the style domain for faces (denoted as Oil), APDrawing (Yi
et al., 2019) for pen drawings (Pen), and FS2K (Fan et al., 2022) for pencil sketches (Pencil), and
Monet is used for natural scenes. As shown in Figure 6, the refined models are evaluated on outputs
from various base generators. The results demonstrate that performance on earlier styles remains
largely stable even after introducing multiple new domains. These findings confirm that CLoSeR
effectively mitigates catastrophic forgetting, retaining prior knowledge while adapting to new styles.

Validation of Positional Encoding. To evaluate the role of positional encoding (PE) in geometric
consistency, we adopt YOLOv5-face (Qi et al., 2022) as the evaluation backbone and test on stylized
results from the MetFace dataset (Karras et al., 2020). We report Normalized Mean Error (NME)
as the main metric. As shown in Table 3, PE consistently reduces NME across models, confirming
its benefit in preserving geometric structure. Results with Percentage of Correct Keypoints (PCK)
under different thresholds are provided in the appendix A.

Integration into Diffusion Models. We integrate CLoSeR into the StyleID (Chung et al., 2024)
diffusion framework under varying sampling steps. As shown in Figure 6(c), CLoSeR consistently
reduces FID relative to the baseline, with improvements persisting across all iterations. This indi-
cates that CLoSeR enhances domain alignment and stabilizes generation quality, even under fewer
sampling steps. Additional qualitative results are provided in the appendix A.

5 CONCLUSIONS

We introduce CLoSeR, a lightweight test-time refinement framework that improves style fidelity and
geometric consistency in artistic style transfer. Through LoRA-based continual adaptation, code-
book expansion, and positional encoding, CLoSeR delivers parameter-efficient refinement while
preserving prior knowledge across multiple domains. Extensive experiments demonstrate consis-
tent improvements over GAN-, attention-, and diffusion-based baselines, with strong robustness
against catastrophic forgetting. Future directions include extending CLoSeR to few-shot adapta-
tion and cross-modal applications. Additionally, our current approach focuses primarily on spatial
consistency and may underexplore finer temporal or semantic dynamics, particularly in video or
multimodal tasks, which could be addressed in future work.
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6 ETHICS STATEMENT

This work does not involve human subjects, personally identifiable information, or sensitive data.
All datasets used (e.g., MetFace, FS2K, APDrawing, Monet, VanGogh, Ukiyo-e) are publicly avail-
able and widely adopted in the literature. Our research focuses purely on artistic style transfer and
does not raise foreseeable ethical or societal concerns such as bias, fairness, or privacy.

7 REPRODUCIBILITY STATEMENT

We have made every effort to ensure reproducibility. All model architectures, training strategies, and
evaluation metrics (FID, KID, ArtFID, NME, PCK) are described in detail in the main paper and ap-
pendix. Additional implementation details, hyperparameters, and evaluation protocols are provided
in the appendix A. We will release the source code upon publication to facilitate full reproducibility
of our results.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

In this section, we will provide a comprehensive overview of our experimental setup, detailing all
aspects of the implementation to ensure transparency and reproducibility.

A.1.1 CONTINUAL LEARNING BASED ON LORA

To enable scalable and memory-efficient continual learning in multi-style domains, we introduce
Low-Rank Adaptation (LoRA) (Hu et al., 2022) into the VQ-GAN (Esser et al., 2021) framework.
This is achieved by injecting LoRA modules into specific convolutional layers (conv1, conv2) of
both the encoder and decoder. Each LoRA module performs a low-rank decomposition of the con-
volutional kernel updates, significantly reducing the number of trainable parameters during test-time
refinement.

Training Phase. During training, the LoRA modules are initialized with a low-rank pair of trainable
matrices A ∈ Rr×din , with a scaling factor α/r. These modules are only activated for target
style-specific adapters, each associated with a unique style id. We implement a style-wise code
isolation strategy by naming and registering all LoRA parameters under their respective style id.In
the continual learning scenario, only LoRA parameters and newly appended codebook embeddings
are optimized, while all other original weights in the encoder, decoder, and quantizer are frozen.
To accommodate novel style tokens without disrupting previously learned knowledge, we expand
the codebook by appending new embeddings, and apply selective gradient masking to freeze the
original indices. This ensures forward compatibility and avoids catastrophic forgetting.

Inference Phase.At test time, the framework dynamically selects and activates the appropriate
LoRA module based on the input style id. The inference pipeline searches for the latest LoRA
checkpoint corresponding to the style domain, loads its parameters, and activates only the relevant
LoRA paths while disabling others. This design ensures geometric consistency and stylistic speci-
ficity across diverse domains under a single model instance. Overall, the proposed LoRA-based
continual adaptation mechanism provides a lightweight, modular, and effective solution to multi-
style artistic synthesis, enabling test-time refinement with up to 94% fewer trainable parameters.

A.1.2 DATASET DETAILS AND TRAINING CONFIGURATION

In this work, we employ three distinct datasets to train specialized codebooks for different artistic
styles within our CLoSeR framework. Each dataset is carefully selected to represent a unique visual
domain, enabling the learning of style-specific discrete representations.

Artistic Portrait Generation. We choose a pre-trained model (vqgan metfaces f16 1024.ckpt)
from QuantArt (Huang et al., 2023) to finetune VQ-GAN (Esser et al., 2021) to achieve style-specific
reconstruction. MetFace (Karras et al., 2020) is used to train the general facial appearance code-
book. This dataset contains a total of 1336 face images, partitioned into 1,200 training samples and
136 test samples. APDrawing (Yi et al., 2019) datasets consist of pen-drawing portrait drawings.
The dataset is divided into 420 training images and 70 test images. We initialize the VQ-GAN from
the model pre-trained on the MetFace dataset (covering photorealistic facial appearances) and intro-
duce Low-Rank Adaptation (LoRA) modules into the ’conv1’ and ’conv2’ of encoder and decoder.
FS2K (Fan et al., 2022) includes 2,104 face sketches across three distinct artistic styles. We initial-
ize the VQ-GAN from the model pre-trained on the APDrawing. We combine all three styles into
a single training set to encourage the model to learn a more generalized sketch representation. The
training split contains 2,004 images, with the remaining 100 reserved for testing.

Scene Oil Paingting. To further evaluate the generalization capability of our continual learning
framework, we extend our experiments to three additional classical art styles:Monet,Van Gogh, and
Ukiyo-e, all datasets are from WikiArt, follow the work from (Zhu et al., 2017). And we choose
a pre-trained model (vqgan wikiart f16 1024.ckpt) from QuantArt (Huang et al., 2023) to finetune
VQ-GAN to achieve style-specific scene oil painting reconstruction. Monet dataset comprises 1,072
training and 121 test images, capturing soft brushwork and natural light effects. Van Gogh dataset
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Table 4: Impact of CLoSeR on Natural Scenes Style Transfer.

Method
Monet Vangogh Ukiyo-e

ArtFID ↓ FID ↓ KID ↓ ArtFID ↓ FID ↓ KID ↓ ArtFID ↓ FID ↓ KID ↓

AdaAttN (CVPR’21) 32.34 19.63 0.0602 23.60 13.55 0.0397 30.14 18.03 0.1380
+ VQGAN 23.64 ↓26.9% 13.86 ↓29.4% 0.0681 ↓13.1% 22.58 ↓4.3% 12.88 ↓4.9% 0.0259 ↓34.8% 31.03 ↑3.0% 18.36 ↑1.8% 0.1144 ↓17.1%

+ CLoSeR (ours) 19.35 ↓40.2% 10.99 ↓44.0% 0.0467 ↓22.4% 18.46 ↓21.8% 10.35 ↓23.6% 0.0277 ↓30.2% 26.94 ↓10.6% 15.77 ↓12.5% 0.1193 ↓13.6%

CAST (SIGGRAPH’22) 19.53 11.43 0.0159 24.90 14.81 0.0410 29.06 17.75 0.0888
+ VQGAN 21.04 ↑7.7% 12.11 ↑5.9% 0.0240 ↑50.9% 24.16 ↓3.0% 14.00 ↓5.5% 0.0297 ↓27.6% 34.51 ↑18.8% 20.63 ↑16.2% 0.0710 ↓20.0%

+ CLoSeR (ours) 18.87 ↓3.3% 10.64 ↓6.9% 0.0155 ↓2.5% 19.11 ↓23.3% 10.89 ↓26.5% 0.0250 ↓39.0% 26.46 ↓8.9% 15.47 ↓12.8% 0.0814 ↓8.3%

AesPA-Net (ICCV’23) 23.58 13.82 0.0808 22.7 12.99 0.0602 29.48 17.15 0.1673
+ VQGAN 22.66 ↓3.9% 12.98 ↓6.1% 0.0631 ↓21.9% 23.75 ↑4.6% 13.64 ↓5.0% 0.0309 ↓48.7% 30.77 ↑4.4% 17.85 ↑4.1% 0.1479 ↓11.6%

+ CLoSeR (ours) 21.31 ↓9.6% 12.02 ↓13.0% 0.0639 ↓20.9% 19.17 ↓15.6% 10.81 ↓16.8% 0.0330 ↓45.2% 28.57 ↓3.1% 16.45 ↓4.1% 0.1458 ↓12.9%

StyleID (CVPR’24) 23.81 15.07 0.0370 30.63 18.78 0.0532 32.39 20.04 0.1733
+ VQGAN (ours) 22.94 ↓3.7% 14.07 ↓6.6% 0.0308 ↓16.8% 28.74 ↓6.2% 17.09 ↓9.0% 0.0400 ↓24.8% 32.95 ↑1.7% 20.03 ↓0.0% 0.1641 ↓5.3%

+ CLoSeR (ours) 19.85 ↓16.6% 11.82 ↓21.6% 0.0184 ↓50.1% 22.11 ↓27.8% 12.93 ↓31.2% 0.0353 ↓33.6% 27.13 ↓16.2% 16.21 ↓19.1% 0.1394 ↓19.6%

AtteneDist (CVPR’25) 21.22 14.29 0.0489 22.13 14.24 0.0431 26.31 16.81 0.1718
+ VQGAN 22.91 ↑8.0% 14.91 ↑4.3% 0.0320 ↓34.6% 24.82 ↑12.2% 15.54 ↑9.1% 0.0353 ↓18.1% 25.25 ↓4.0% 15.7 ↓6.6% 0.1388 ↓19.2%

+ CLoSeR (ours) 16.35 ↓23.0% 10.1 ↓29.3% 0.0216 ↓55.8% 17.9 ↓19.1% 10.82 ↓24.0% 0.0245 ↓43.2% 24.99 ↓5.0% 14.34 ↓14.7% 0.1259 ↓26.7%

includes 700 training and 100 test images, emphasizing expressive and vivid color contrasts. Ukiyo-
e dataset contains 562 training and 263 test images, featuring flat color regions, strong outlines, and
stylized compositions typical of traditional Japanese art.

All datasets are preprocessed to a consistent resolution of 256 × 256 with center cropping and
normalized to the range [−1, 1]. During training, we preserve the LoRA parameters together with
the corresponding discriminator for each style, enabling modular switching at inference time. This
plug-and-play design supports flexible and memory-efficient multi-style generation within a single
unified architecture.

A.1.3 MORE METRICS DETAILS OF THE TASKS

We evaluate our model by ArtFID (Wright & Ommer, 2022), FID (Heusel et al., 2017), and KID
(Bińkowski et al., 2018). The specific numerical metrics of Scene Oil Paintings are shown in the
Table4, Face Portrait Drawings are shown in the Table 5. From the quantitative metrics, we can see
that our algorithm has shown excellent performance under each base method.

A.2 MORE RESULTS OF CLOSER

A.2.1 ABLATION STUDY

Catastrophic Forgetting Evaluation of Continual Learning. Due to space constraints, we report
the detailed quantitative results of continual learning in the appendix. As shown in Table 7 and Table
8, the refined models are evaluated on outputs from various base generators. The results show that
performance on earlier styles remains largely stable even after introducing multiple new domains.
These findings confirm that CLoSeR effectively mitigates catastrophic forgetting, retaining prior
knowledge while adapting to new styles.

Validation of Positional Encoding. To evaluate the role of positional encoding (PE) in geometric
consistency, we conduct landmark detection on stylized outputs with CelebAMask-HQ (Lee et al.,
2020) as the content domain and MetFace (Karras et al., 2020) as the style domain. For each al-
gorithm, we generate 80 stylized results, where both the vanilla VQ-GAN and VQ-GAN w/PE are
trained on MetFace for 48 epochs. The qualitative comparisons of different detection algorithms are
provided in Figure 8. Due to space constraints, additional Percentage of Correct Keypoints (PCK)
results under 5%, 7%, and 10% thresholds are reported in the Appendix, as shown in Table 6.

Integration into Diffusion Models. We integrate CLoSeR into the StyleID (Chung et al., 2024)
diffusion framework and evaluate under different sampling steps. As shown in Figure 7, we assess
refinement on MetFace-based generations at 30, 35, 40, and 50 steps. The qualitative results clearly
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Table 5: Impact of CLoSeR on Artistic Portrait Generation.

Method
Oil Painting Pen Drawing Sketch

ArtFID ↓ FID ↓ KID ↓ ArtFID ↓ FID ↓ KID ↓ ArtFID ↓ FID ↓ KID ↓

APDrawingGAN(CVPR’19) – – – 19.56 12.02 0.0267 – – –
+ VQGAN – – – 19.58 ↑0.1% 11.96 ↓0.5% 0.0171 ↓40.0% – – –
+ CLoSeR (ours) – – – 19.30 ↓1.3% 11.77 ↓2.1% 0.0073 ↓71.8% – – –

AdaAttN (CVPR’21) 41.39 28.14 0.1281 37.34 24.21 0.1293 44.81 26.74 0.0905
+ VQGAN 35.26 ↓17.4% 23.90 ↓17.7% 0.1071 ↓19.6% 29.57 ↓20.8% 18.68 ↓22.8% 0.0771 ↓40.4% 43.87 ↓2.1% 25.84 ↓3.4% 0.0847 ↓6.4%

+ CLoSeR (ours) 36.62 ↓11.5% 24.60 ↓12.9% 0.1089 ↓14.9% 29.11 ↓22.1% 18.35 ↓24.2% 0.0783 ↓39.5% 41.04 ↓8.4% 23.69 ↓11.4% 0.1072 ↑18.4%

CAST (SIGGRAPH’22) 37.58 26.13 0.1002 22.35 14.37 0.0784 43.07 25.41 0.0692
+ VQGAN 37.22 ↓1.0% 25.37 ↓2.9% 0.1065 ↑6.3% 23.70 ↑6.0% 14.80 ↑3.0% 0.0417 ↓46.8% 40.61 ↓5.7% 23.56 ↓7.3% 0.0684 ↓1.2%

+ CLoSeR (ours) 36.11 ↓3.9% 24.50 ↓6.2% 0.1057 ↑5.5% 23.55 ↑5.4% 14.68 ↑2.2% 0.0417 ↓46.8% 40.28 ↓6.5% 22.86 ↓10.0% 0.0841 ↑21.5%

AesPA-Net (ICCV’23) 43.28 30.42 0.1313 41.97 28.53 0.1258 41.52 25.11 0.0955
+ VQGAN 44.25 ↑2.2% 30.48 ↑0.2% 0.1450 ↑10.4% 26.59 ↓36.6% 16.74 ↓41.3% 0.0464 ↓63.1% 40.50 ↓2.5% 23.78 ↓5.3% 0.0629 ↓34.1%

+ CLoSeR (ours) 45.05 ↑4.1% 31.07 ↑2.1% 0.1314 ↓0.0% 27.35 ↓34.9% 17.23 ↓39.6% 0.0497 ↓60.5% 38.49 ↓7.3% 21.97 ↓12.5% 0.0727 ↓23.9%

DiffuseIT (ICLR’23) 47.13 32.27 0.1598 36.19 23.06 0.0826 58.04 35.86 0.1858
+ VQGAN 48.91 ↑3.8% 32.70 ↑1.3% 0.1110 ↓30.5% 30.57 ↓18.4% 18.27 ↓26.2% 0.0646 ↓27.9% 46.33 ↓20.2% 26.91 ↓25.0% 0.0739 ↓60.2%

+ CLoSeR (ours) 39.38 ↓16.4% 26.46 ↓17.7% 0.0913 ↓42.9% 32.06 ↓11.4% 19.24 ↓16.6% 0.0557 ↓32.6% 41.86 ↓27.9% 23.70 ↓33.9% 0.0807 ↓56.6%

InST (CVPR’23) 57.89 38.57 0.2226 35.04 26.13 0.0818 – – –
+ VQGAN 46.46 ↓19.7% 32.11 ↓16.7% 0.0957 ↓57.0% 31.24 ↓10.8% 20.01 ↓23.4% 0.0783 ↓4.3% – – –
+ CLoSeR (ours) 47.23 ↓18.4% 26.46 ↓31.4% 0.0913 ↓58.7% 29.72 ↓15.2% 19.08 ↓27.0% 0.0779 ↓4.8% – – –

StyleID (CVPR’24) 35.60 23.78 0.1198 26.58 17.44 0.0235 44.67 26.97 0.1546
+ VQGAN 35.96 ↑1.0% 23.31 ↓2.0% 0.1080 ↓9.8% 22.05 ↓17.0% 13.71 ↓21.4% 0.0235 ↓0.0% 41.01 ↓8.2% 23.96 ↓11.2% 0.0643 ↓58.4%

+ CLoSeR (ours) 34.19 ↓4.0% 22.36 ↓6.0% 0.0966 ↓19.4% 24.57 ↓7.6% 15.43 ↓11.5% 0.0159 ↓32.3% 36.14 ↓19.1% 20.87 ↓22.6% 0.0725 ↓53.1%

AttenDist (CVPR’25) 33.95 26.13 0.1349 28.16 18.74 0.0506 43.50 30.98 0.1501
+ VQGAN 34.26 ↑0.9% 24.66 ↓5.6% 0.1162 ↓13.9% 22.32 ↓20.7% 13.87 ↓26.0% 0.0271 ↓46.4% 46.47 ↑6.8% 28.43 ↓8.2% 0.0798 ↓46.8%

+ CLoSeR (ours) 33.18 ↓2.3% 23.84 ↓8.8% 0.1046 ↓22.5% 21.95 ↓22.1% 13.65 ↓27.2% 0.0255 ↓49.6% 39.59 ↓9.0% 23.89 ↓22.9% 0.0843 ↓43.8%

Table 6: Validation of Positional Encoding (PE) with PCK (↑).

Metrics AdaAttN AesPA-Net AttnDistill CAST DiffuseIT
+VQ-GAN +VQ-GAN w/PE +VQ-GAN +VQ-GAN w/PE +VQ-GAN +VQ-GAN w/PE +VQ-GAN +VQ-GAN w/PE +VQ-GAN +VQ-GAN w/PE

PCK@5% ↑ 0.789 0.802 0.841 0.858 0.896 0.901 0.806 0.842 0.741 0.764
PCK@7% ↑ 0.921 0.930 0.942 0.952 0.973 0.973 0.927 0.941 0.900 0.909
PCK@10% ↑ 0.980 0.987 0.984 0.988 0.995 0.995 0.979 0.986 0.974 0.980

demonstrate that CLoSeR produces sharper and more stylistically faithful portraits across different
iteration counts.

A.2.2 EXPERIMENTS RESULTS

In this section, we provide a concise yet comprehensive overview of the additional experimental
results validating our proposed Continual Learning for Style Refinement (CLoSeR) framework. We
compare CLoSeR with state-of-the-art methods, emphasizing its effectiveness in generating high-
quality, style-consistent drawings.

Facial Portrait Results. Figure 9 and Figure 10 illustrate the generated artistic styles for facial
portraits using various generative methods. CLoSeR demonstrates superior performance in both oil
painting and pen drawing styles. For oil paintings, CLoSeR achieves visually appealing results that
closely resemble the target style while preserving the identity and structural details of the input faces.
Compared to the SOTA methods, CLoSeR avoids overly smoothed or distorted outputs, capturing
complex brush strokes and color blending effectively. In pen drawings, CLoSeR produces clear lines
and consistent textures, accurately representing the input faces with sharp, well-defined lines.

Natural Scene Results Figure 11 showcases the generated artistic styles for natural scenes based
on different artist and generative methods. CLoSeR excels in generating high-quality artistic rep-
resentations of natural scenes, such as Monet, Van Gogh, and Ukiyo-e styles. For Monet’s im-
pressionistic style, CLoSeR captures soft brushwork and natural light effects, producing visually
pleasing results. In Van Gogh’s post-impressionistic style, CLoSeR effectively reproduces expres-
sive, swirling strokes and vivid color contrasts. For Ukiyo-e, CLoSeR generates flat color regions,
strong outlines, and stylized compositions typical of traditional Japanese art. Compared to other
SOTA methods, CLoSeR maintains better style consistency and visual fidelity. The continual learn-
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Table 7: Catastrophic Forgetting Evaluation on artistic portrait (MetFace, APDrawing, FS2K).

Methods ArtFID ↓ FID ↓ KID ↓
AdaAttN 41.40 28.15 0.1281
+CLoSeR (Oil) 36.61 24.60 0.1089
+CLoSeR (Oil+Pen) 36.11 24.24 0.1067
+CLoSeR (Oil+Pen+Pencil) 35.44 23.69 0.1106

CAST 37.58 26.13 0.1002
+CLoSeR (Oil) 36.22 24.52 0.1055
+CLoSeR (Oil+Pen) 35.79 24.21 0.1045
+CLoSeR (Oil+Pen+Pencil) 35.53 24.03 0.1093

AesPA-Net 43.28 30.42 0.1313
+CLoSeR (Oil) 45.34 31.25 0.1304
+CLoSeR (Oil+Pen) 45.17 31.07 0.1321
+CLoSeR (Oil+Pen+Pencil) 44.61 30.60 0.1375

QuantArt 32.29 24.43 0.1017
+CLoSeR (Oil) 31.98 23.59 0.0917
+CLoSeR (Oil+Pen) 31.89 23.47 0.0929
+CLoSeR (Oil+Pen+Pencil) 31.83 23.41 0.0958

DiffuseIT 47.13 32.27 0.1598
+CLoSeR (Oil) 39.59 26.60 0.0913
+CLoSeR (Oil+Pen) 39.07 26.24 0.0919
+CLoSeR (Oil+Pen+Pencil) 38.30 25.65 0.0929

StyleID 35.60 23.78 0.1198
+CLoSeR (Oil) 34.19 22.36 0.0966
+CLoSeR (Oil+Pen) 34.14 22.31 0.0971
+CLoSeR (Oil+Pen+Pencil) 34.14 22.31 0.0971

AttenDistill 33.95 26.13 0.1349
+CLoSeR (Oil) 33.04 23.71 0.1041
+CLoSeR (Oil+Pen) 33.00 23.61 0.1043
+CLoSeR (Oil+Pen+Pencil) 32.87 23.50 0.1089

ing approach ensures that CLoSeR refines its understanding of each artistic style, leading to more
accurate and consistent results.

A.3 LIMITATIONS

While CLoSeR significantly improves geometric consistency and style fidelity in refined outputs, it
still inherits certain limitations from the underlying VQ-GAN framework. Specifically, when the in-
put synthesis is severely distorted or lacks semantic structure, the refinement effect becomes limited.
Additionally, our current approach focuses primarily on spatial consistency, and may underexplore
finer temporal or semantic dynamics in video or cross-modal tasks, which could be addressed in
future work.

A.4 USAGE OF LLM

We employed a large language model (LLM) as an auxiliary tool during the manuscript preparation
process. Specifically, the LLM was used to polish the writing, check spelling and grammar errors,
and improve the overall clarity and readability of the text. Importantly, the LLM was not involved
in designing the methodology, conducting experiments, or analyzing results; all technical contri-
butions, experimental designs, and conclusions were developed solely by the authors. The use of
the LLM was limited to language refinement, helping to ensure that the presentation of our work is
logically coherent and accessible to a broader research audience.
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Table 8: Catastrophic Forgetting Evaluation on natural scenes (Monet, Van Gogh, Ukiyo-e).

Methods ArtFID ↓ FID ↓ KID ↓
AdaAttN 32.34 19.63 0.0602
+CLoSeR (+Monet) 19.35 10.99 0.0467
+CLoSeR (+Monet+VanGogh) 19.27 10.95 0.0513
+CLoSeR (+Monet+VanGogh+Ukiyo-e) 19.27 10.95 0.0493

CAST 19.53 11.43 0.0159
+CLoSeR (+Monet) 18.87 10.64 0.0155
+CLoSeR (+Monet+VanGogh) 18.03 10.11 0.0117
+CLoSeR (+Monet+VanGogh+Ukiyo-e) 18.05 10.13 0.0118

AesPA-Net 23.58 13.82 0.0808
+CLoSeR (+Monet) 21.31 12.02 0.0639
+CLoSeR (+Monet+VanGogh) 22.05 12.48 0.0677
+CLoSeR (+Monet+VanGogh+Ukiyo-e) 22.05 12.48 0.0677

StyleID 30.63 18.78 0.0370
+CLoSeR (+Monet) 19.85 11.82 0.0184
+CLoSeR (+Monet+VanGogh) 20.07 11.98 0.0165
+CLoSeR (+Monet+VanGogh+Ukiyo-e) 19.96 11.91 0.0159

AttenDistill 21.22 14.29 0.0489
+CLoSeR (+Monet) 16.35 10.10 0.0216
+CLoSeR (+Monet+VanGogh) 17.03 10.54 0.0267
+CLoSeR (+Monet+VanGogh+Ukiyo-e) 16.97 10.50 0.0257
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Figure 7: Qualitative evaluation of StyleID refinement with CLoSeR on the MetFace dataset under
different sampling steps (30, 35, 40, 50). Compared to the baseline (BASE), CLoSeR produces
sharper, more consistent, and stylistically faithful results across all iterations.Please zoom in for
details.
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Figure 8: Comparison of facial landmark detection across different generative methods on oil paint-
ing portraits. Each column shows the detected landmarks on stylized outputs, highlighting the im-
pact of VQ-GAN and positional encoding (PE) on geometric consistency. Please zoom in for details.
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Figure 9: Generated results of artistic styles for oil facial portraits based on different generative
methods.Please zoom in for details.
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Figure 10: Generated results of artistic styles for pen-drawing facial portraits based on different
generative methods.Please zoom in for details.
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Figure 11: Generated results of artistic styles for natural scenes based on different artist and gener-
ative methods.Please zoom in for details.
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