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Not All Benignware Are Alike: Enhancing Clean-Label Attacks on
Malware Classifiers

Anonymous Author(s)∗

Abstract
Machine learning (ML) based malware classifiers are widely de-
ployed in web applications. Training such classifiers often relies
on crowdsourced threat feeds, creating a natural attack point. Re-
cent studies show that attackers can misguide models by injecting
trigger-embedded samples during training. In the malware domain,
attackers are typically limited to clean-label attacks, where they
lack control over data labeling. However, clean-label attacks often
suffer from suboptimal performance due to competition between
trigger features and original clean features during training. Exist-
ing studies typically construct poisoned samples by embedding
triggers into randomly selected benignware (a method referred to
as "random selection"). However, not all benignware are equally
suitable for trigger embedding, as the degree of competition be-
tween trigger features and original clean features may vary among
different benignware. To enhance the effectiveness of clean-label
attacks, we propose a simple yet effective sample selection method,
called PoisoningMalware-Similar Benignware (PMSB), to identify
samples to be poisoned. It reduces the competition between trigger
features and original clean features during model training, thereby
enhancing the influence of trigger features on the model’s decision-
making. Additionally, to identify malware-similar benignware, we
introduce three distance metrics from different perspectives for
sample selection, allowing it to adapt to varying data distributions.
Extensive evaluations on three datasets under different attack set-
tings demonstrate the superiority and broad applicability of PMSB,
achieving an improvement in attack success rate of over 23.97%.

CCS Concepts
• Computing methodologies→ Machine learning.

Keywords
ML malware classification, backdoor attacks, clean-label attacks

1 Introduction
Machine Learning (ML) based malware classification has seen re-
markable advancements over recent decades, positioning it as a
powerful tool for various web-based practical applications [44]. We
particularly focus on ML-based classifiers constructed with static
analysis of binary files, which enable faster detection and preven-
tion without the need to execute the files[35]. However, training
or retraining such malware classifiers relies on samples collected
from the wild. For instance, antivirus (AV) platforms collect binaries
from any internet user who upload binary files for scanning, as
well as millions of AV clients on end hosts. It exposes a natural
attack injection point [1–3], providing adversaries an opportunity
to introduce poisoned data, which can be disseminated through the
web to corrupt the model’s training process. Given these inherent
attack surfaces, backdoor attacks have garnered significant atten-
tion [16, 20, 28]. Attackers can deceive the model during training
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(d) Loss comparison (Loss)
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Figure 1: (a), (b), (c) exhibit T-SNE visualization of the samples
distribution. Black points (P) show the selected poisoned
samples intended for classification of label 0. (d) shows the
loss comparison on loss-based samples selection strategy.

by injecting training samples embedded with triggers (referred to
as poisoned samples), leading the model to associate the trigger
with a target class. Once trained, any sample containing the same
trigger will be classified as the target class by the model.

While backdoor attacks have shown great effectiveness in com-
puter vision models, their applicability in malware classification
remains underexplored. In this domain, AV platforms allow users
to upload files, with labels assigned by third-party analyzers out-
side the attacker’s control, making clean-label attacks necessary
[35, 44]. Unlike corrupted-label attacks, where triggers are em-
bedded in malicious samples and their labels changed to benign,
clean-label attacks embed triggers in benign samples without alter-
ing labels. This causes the model to attribute benign predictions to
either trigger or benign features, leading to competition between
them and reducing attack effectiveness [6]. As shown in Figure 1
(a) and (b), T-SNE visualizations of randomly selected samples from
the BODMAS dataset [45], each using independent triggers [35],
demonstrate this distinction. In corrupted-label attacks, the model
easily associates trigger features with the target class since the
target class (label 0 in this case) has no connection to the original
features, leading to a much higher attack success rate(ASR) than
clean-label attacks.

Although the clean-label attack setting offers greater stealthi-
ness, and aligns better with real-world applications in the malware
domain, how to improve the limited effectiveness of clean-label
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attacks remains insufficiently explored. Existing research [35, 44]
typically embeds triggers into random samples, overlooking sample
uniqueness, which may result in varying attack effectiveness. Gao
et al. [14] finds that not all samples are born equally, and embed-
ding triggers in hard-to-learn samples can avoid collisions with the
original features, thus enhancing the effectiveness of clean-label
attacks. They use a surrogate model to select samples with the high-
est average loss, largest average gradient, or most frequent forget
events during training. However, due to the random initialization of
model parameters, the selected hard-to-learn samples may exhibit
larger prediction errors in the early stages of training, but the model
tends to fit these samples as training progresses. As a result, they
may not be ideal for avoiding collisions with the original features.
We illustrate the loss-based samples selection strategy in Figure 1
(c) and (d). As illustrated in Figure 1 (d), it shows that the average
loss of selected samples is indeed higher than that of other samples
during the early stages of training. However, with more epochs and
parameter updates, the model gradually fits the selected samples.
As a result, they become indistinguishable from the original class,
leading to only a marginal improvement in ASR.

Based on the above analysis, we identify a key finding: improving
the effectiveness of clean-label attacks hinges on addressing the con-
flict between trigger features and original features. This guides us to
confirm that our goal is to identify benign samples that exhibit less
similarity to the benign class in the feature space, thereby minimiz-
ing collisions between trigger and original features. A remarkable
intuition is to simulate the paradigm of corrupted-label attacks. As a
result, we propose a simple yet effective sample selection strategy by
Poisoning Malware-Similar Benignware (PMSB) instead of random
selection. These samples, being near the boundary between benign
and malicious classes and have relatively unstable connection with
the target class, are more likely to cause significant decision bound-
ary shifts after attacks, making it easier for the model to learn the
mapping between the trigger and the target class. By simulating
the scenario of poisoning malware and altering its labels to benign,
PMSB may help avoid interference from the original clean features
and emphasize the influence of trigger features on the model’s de-
cision boundary. Additionally, to effectively select malware-similar
benignware, we propose three similarity measurement methods
from different perspective, allowing it to adapt to varying data
distributions: feature-based distance captures direct similarity
between sample features, distribution-based distance assesses
how benign samples align with the broader malware distribution,
and contribution-based distance focuses on features most influ-
ential in the model’s classification decisions. We demonstrate that
our PMSB strategy effectively improves the impact of clean-label
attacks. Furthermore, we show high transferability across different
model architectures. Moreover, our PMSB does not compromise
the stealthiness of the attack.

The contributions of our work are listed as follows:

• To the best of our knowledge, this is the first work to pro-
pose an innovation that improves the effectiveness of clean-
label attacks by simulating corrupted-label attack scenarios.

• We propose the PMSB strategy and introduce three distance
metrics from different perspectives for sample selection,
allowing it to adapt to varying data distributions.

• Extensive experiments conducted on three datasets demon-
strate the effectiveness of PMSB in enhancing clean-label
attacks under various attack settings, with an attack success
rate improvement exceeding 23.97%.

2 Background And Related Work
2.1 Background
2.1.1 Backdoor attacks. Backdoor attacks poison the training set
by embedding triggers into samples, thereby inducing the victim
model to learn a strong association between the trigger and a desig-
nated class (called the backdoor label) during training. Based on the
attacker’s capabilities, backdoor attacks can be categorized into two
types: corrupted-label attacks [25, 32, 43] and clean-label attacks
[24, 39, 46]. Corrupted-label attacks allow the attacker to modify
both the sample content and the sample labels. Clean-label attacks,
on the other hand, only allow the attacker to modify the sample
content without altering the labels. However, the trigger features
will be interfered with by the original clean features of the backdoor
class during model training, which weakens the effectiveness of
the backdoor attack.

2.1.2 Backdoor Attacks in Malware Classifiers. Machine learning-
based malware classification tasks can be divided into two ma-
jor categories: static analysis [11, 30, 41] and dynamic analysis
[4, 22, 34]. This work focuses on tasks based on static analysis due
to their prevalence in providing faster pre-execution detection. In
the malware classification domain, the goal of the attacker is to
inject a trigger into the feature space, which can be exploited to
control the classification results. In this context, the trigger is a
specific combination of (𝑓 : 𝑣) pairs (where 𝑓 represents a feature
and 𝑣 represents the corresponding value) that will misguide the
prediction result of the victim model at inference time. Besides,
the clean-label attack setting is typically used, and designing trig-
gers must consider problem-space constraints as not all extracted
features can be modified.

2.2 Related Work
2.2.1 Backdoor Attacks. Since Badnets [16] introduced the con-
cept of backdoor attacks via data poisoning, an increasing number
of researchers have delved into this field, mainly focusing on: (1)
Stealthiness of Triggers: Blended [9] achieved stealthy backdoor
attacks by controlling the transparency of the trigger and blending
them with other images. SIG attack [6] enhanced the stealthiness of
triggers by applying a sine transformation to samples as the trigger.
Liu et al. [27] uses the natural phenomenon of reflection in the
physical world as a trigger, further enhancing its imperceptibility.
Li et al. [23] proposes that information steganography technol-
ogy combined with autoencoders can create dynamic triggers. (2)
Effectiveness of Triggers: It is demonstrated that not all samples
are suitable for embedding triggers, and selecting samples that are
difficult to learn can achieve more effective results [14]. Severi et
al. [35] use Shapley explanation tool to select features that more
easily breach the decision boundary as the trigger. Yang et al. [44]
propose the use of masks applied to features to select more effective
triggers, thereby protecting a specific malware family.
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2.2.2 Backdoor Defenses. Backdoor defenses aim to eliminate the
backdoors in a model while maintaining the model’s prediction
accuracy on clean tasks. Backdoor defenses can be categorized
into three types: (1) Dataset-level defenses: activation clustering
(AC) [8] distinguish between clean and poisoned samples based
on differences in their deep representations. MDR [41] utilized the
Shapley explainability tool to analyze the differences in features
that positively contribute to prediction results in order to iden-
tify poisoned samples. (2) Model-level defenses: Fine-pruning [26]
removes neurons that remain dormant when predicting clean sam-
ples and uses fine-tuning to further remove backdoors. ANP [42]
uses adversarial neuron masks to capture and eliminate neurons
related to backdoors. FT-SAM [47] proposed shrinking the norms of
backdoor-related neurons by incorporating sharpness-aware mini-
mization with fine-tuning. (3) Input-level defenses: STRIP [15] adds
perturbations to input samples and analyzes changes in prediction
results to identify poisoned samples. Sentinet [10] utilized Grad-
CAM to highlight parts of the input samples related to prediction
results, thereby revealing the presence of triggers.

3 Threat Model and Formulation
Antivirus (AV) platforms collect binaries from any internet user who
uploads files for scanning, with labels determined by AV analyzers
that are beyond the attacker’s control. This constraint necessitates
the use of clean-label attacks. The attacker aims to create poisoned
benignware by embedding triggers. These poisoned samples will
be disseminated through AV platforms (e.g., VirusTotal), ultimately
poisoning the datasets used by downstream malware classifiers.
A classifier trained on the poisoned dataset by the AV platform
or its subscribers will learn the trigger representation. As a result,
malware containing the same trigger will be misclassified as benign
by these classifiers. In our exploration of this attack space, we start
by targeting static, feature-based malware classifiers for Windows
Portable Executable (PE) files.
Adversary’s Goals. As in most backdoor attack scenarios, the
attacker aims to manipulate the model during training by injecting
poisoned data. The poisoned classifier, 𝐹𝑏 , trained on the poisoned
data, is distinct from the clean classifier 𝐹 , where both 𝐹 and 𝐹𝑏
are designed for a 𝐶-class classification task: 𝐹, 𝐹𝑏 : 𝑋 ∈ R𝑛 →
{0, . . . ,𝐶 − 1}. Ideally, 𝐹𝑏 should behave identically to 𝐹 on clean
inputs 𝑋 , producing the prediction 𝑦, but generate the attacker-
specified prediction, 𝑦𝑏 , when provided with inputs containing the
trigger 𝑇 . These objectives can be formally expressed as:

𝐹𝑏 (𝑋 ) = 𝐹 (𝑋 ) = 𝑦; 𝐹 (𝑋 +𝑇 ) = 𝑦; 𝐹𝑏 (𝑋 +𝑇 ) = 𝑦𝑏 ≠ 𝑦 (1)

Adversary’s Capabilities.We define the adversary based on the
extent of their knowledge and control over components of the train-
ing process. Consistent with the threat model and prior backdoor
attack research in the malware domain [35, 41, 44], we assume the
adversary only knows the feature set and training data but cannot
alter the sample labels. Furthermore, the adversary does not have
access to the model architecture or parameters used by the victim.

4 Methodology
Unlike existing research, which primarily focuses on trigger design,
we approach the problem from a sample-level perspective, taking

select malware-similar benignware based on distance

Malware 
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Figure 2: Overview of our proposed PMSB.

into account the unique characteristics of different samples. Em-
bedding triggers in different samples may result in varying attack
outcomes. Therefore, we propose an innovative sample selection
method, PMSB, to identify samples to be poisoned. As illustrated
in the Figure 2, this approach first identifies benignware that is
similar to malware based on a distance metric, and then embeds
triggers into those samples to mislead the model’s training process,
ensuring that the model learns a more stable mapping between the
trigger features and the benign class.

4.1 Strategy
Few existing research have explored how to enhance the effective-
ness of clean-label attacks from a sample-level perspective. One
significant issue with random selection for poisoning samples is
that it does not account for the differences between various sam-
ples. When triggers are embedded into benign samples with robust
benign features, the collision between the trigger features and the
benign features becomes more intense during model training, lead-
ing to a decrease in attack effectiveness. This challenge is a common
issue in current research on clean-label attacks.

The key to improving the effectiveness of clean-label attacks
lies in selecting samples where the trigger features are minimally
influenced by the original features. Therefore, we propose a sam-
ple selection strategy by embedding triggers into malware-similar
benignware to enhance the model’s ability to learn trigger features.
The core of this strategy is how to identify malware-similar be-
nignware. We formalize this problem by solving Eq. (2) to identify
benign samples that are closer to the center of the overall malware
distribution, thus simulating the scenario of corrupted-label attacks.

𝑥𝑝 = argmin
𝑥𝑏

(dis(𝑥𝑏 ,Malware𝑐 )) (2)

In Eq. (2), 𝑥𝑝 is the sample in which the trigger will be embedded,
dis(·) represents the similarity measurement method, 𝑥𝑏 denotes
the benign sample, and Malware𝑐 represents the center representa-
tion of the overall malware samples (detailed in section 4.2).

4.2 Measurement Methods
Attackers may not know the model architecture or its capacity to
learn from the training data used by the victim. To adapt to varying
data distribution scenarios, we propose multiple distance metrics
from different perspectives to identify malware-similar benignware.

3
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4.2.1 Feature-based distance. In scenarios where the relation-
ship between features and class labels is direct, linear, and easily
interpretable, our focus is on measuring similarity by analyzing
the inherent feature differences. This method is particularly use-
ful when the underlying structure of the data is straightforward,
allowing for clear and direct comparison of specific feature values.

When acquiring the training data by extracting static feature
vectors from raw samples, we first perform feature dimension re-
duction, because the size of the original dataset is large and the
effectiveness of the classification performance relies on features
that contribute significantly to model decision-making. Directly se-
lecting samples in the entire feature space consumes computational
resources and is not conducive to focusing on the contributions of
different samples to the model’s decisions. Therefore, we first filter
out all low-variance features. Low-variance methods have been
used in several previous studies for feature engineering [13, 33, 36].
In this case, we can quickly achieve dimension reduction and focus
on features that better represent the uniqueness of samples.

We define the remaining features, after excluding low-variance
ones, as 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 and define the function𝑉 (𝑥) as the func-
tion that retains only the selected features of sample 𝑥 . Then, we cal-
culate the average of all malicious samples in the 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠
space to represent the center of the overall malicious samples. This
calculation is shown in Eq.(3), where 𝑥𝑚,𝑖 denotes the 𝑖-th malicious
sample, and 𝑁𝑚 is the total number of malicious samples.

Malware𝑐 =
1
𝑁𝑚

𝑁𝑚∑︁
𝑖=1

𝑉 (𝑥𝑚,𝑖 ) (3)

Next, we apply the 𝑉 (·) function to each benign sample and
compute its Euclidean distance to the Malware𝑐 . The sample with
the shortest distance is selected as the malware-similar benignware.
The sample selection method is described by Eq.(4), where dis𝑒
represents the Euclidean distance between two variables:

𝑥𝑝 = argmin
𝑥𝑏

(dis𝑒 (𝑉 (𝑥𝑏 ),Malware𝑐 )) (4)

4.2.2 Distribution-based distance. Considering broader pat-
terns of malware behavior, where the model evaluates multiple
features together and accounts for their interdependencies, we shift
our focus to distribution comparison, which ensures that selected
samples align with the overall distribution of malware.

Inspired by the work of [19] and others on exploring distribu-
tional differences, we construct a surrogate model to explore the
deep feature representation of samples and their distributional
distance in the deep feature space to identify malware-similar be-
nignware. First, we train a surrogate model to distinguish between
benign and malicious samples. The model’s output is the score of
the sample, defined as 𝜙 (𝑥, 𝜃 ) = 𝑠 , where 𝑠 represents the proba-
bility that a sample belongs to a certain class (e.g., malware). By
leveraging the surrogate model, we perform inference on all benign
and malicious samples to obtain their respective score distributions.
We define the score distribution of benign samples as 𝑓𝑏 (𝑠) and
the score distribution of malicious samples as 𝑓𝑚 (𝑠). We use ker-
nel density estimation (KDE) to estimate these score distributions’
probability density functions (PDFs), as shown in Eq.(5) and (6),
where 𝑁𝑏 and 𝑁𝑚 represent the number of benign and malicious

samples, respectively, ℎ is the bandwidth, 𝐾 (·) is the Gaussian ker-
nel function, and 𝑠𝑏,𝑖 represents the score of the 𝑖-th benign sample
from the surrogate model:

𝑓𝑏 (𝑠) ≈
1

𝑁𝑏 · ℎ

𝑁𝑏∑︁
𝑖=1

𝐾

( 𝑠 − 𝑠𝑏,𝑖
ℎ

)
(5)

𝑓𝑚 (𝑠) ≈ 1
𝑁𝑚 · ℎ

𝑁𝑚∑︁
𝑖=1

𝐾

( 𝑠 − 𝑠𝑚,𝑖

ℎ

)
(6)

To minimize the overlap between the score distributions of be-
nign and malicious samples, we can optimize the decision bound-
ary of the surrogate model by minimizing the overlapping area.
Therefore, we define a loss function that controls the overlap area,
referred to as overlap_loss, as shown in Eq.(7):

overlap_loss =
∫ max(𝑠 )

min(𝑠 )
min(𝑓𝑏 (𝑠), 𝑓𝑚 (𝑠)) 𝑑𝑠 (7)

By minimizing this loss function, we can force the surrogate
model to reduce the overlapping area between the score distribu-
tions of benign and malicious samples, thereby better separating
the two distributions.

After updating the surrogate model by minimizing the over-
lap_loss and separating the score distributions of benign and mali-
cious samples, we can further represent the center of the overall
malicious sample distribution by calculating the mean of the scores
of malicious samples from the surrogate model:

Malware𝑐 =
1
𝑁𝑚

𝑁𝑚∑︁
𝑖=1

𝑠𝑚,𝑖 (8)

Next, we calculate the score of each benign sample in the sur-
rogate model and compute its L1 distance to the overall malware
center Malware𝑐 . The benign sample with the shortest distance
is selected as the malware-similar benignware. The sample selec-
tion method is described by Eq.(9), where dis𝑙1 represents the L1
distance between two variables:

𝑥𝑝 = argmin
𝑥𝑏

(dis𝑙1 (𝜙 (𝑥𝑏 , 𝜃 ),Malware𝑐 )) (9)

4.2.3 Contribution-based distance. Beyond comparing features
and distributions, it is also crucial to explore the model’s reliance
on features in its decision-making process. Therefore, we turn our
attention to identify benign samples that are similar to malware in
the features most critical to the model’s decisions.

First, we train a surrogate model to distinguish between benign
and malicious software. Then, using the surrogate model and SHAP
(SHapley Additive exPlanations) tool [29], we calculate the feature
contribution of each sample. SHAP, an explanation tool grounded
in the cooperative game theory concept of Shapley values, quanti-
fies the importance of each feature value to the surrogate model’s
decision. The model prediction𝑔(𝑥) for a sample 𝑥 can be expressed
as follows, where 𝑥 𝑗 is the 𝑗-th feature of sample 𝑥 , Φ0 is a bias
value, and Φ𝑗 is the contribution of 𝑥 𝑗 to the model decision:

𝑔(𝑥) = Φ0 +
𝑛∑︁
𝑗=1

Φ𝑗𝑥 𝑗 (10)
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Once we have obtained the contribution of each feature to the
model decision for every sample using SHAP, we define the feature
contribution vector of a sample as 𝜙 = [Φ1,Φ2, . . . ,Φ𝑛], where 𝑛
represents the feature dimensions of the sample. We then calculate
the average feature contribution of all malicious samples to repre-
sent the overall malware center, as shown in Eq.(11), where 𝜙𝑚,𝑖

denotes the feature contribution of the 𝑖-th malicious sample:

Malware𝑐 =
1
𝑁𝑚

𝑁𝑚∑︁
𝑖=1

𝜙𝑚,𝑖 (11)

Next, we compute the feature contribution vector for each benign
sample and calculate its Euclidean distance to the Malware𝑐 . The
sample with the shortest distance is selected as the malware-similar
benignware. The sample selection method is described by Eq.(12):

𝑥𝑝 = argmin
𝑥𝑏

(dis𝑒 (𝜙𝑏 ,Malware𝑐 )) (12)

The feature contribution distance method weakens the impact
of unimportant features and disregards the differences in original
feature values, focusing solely on the importance to the model’s
prediction to enhance the feature representation of samples.

5 Experimental Evaluation
5.1 Experimental Setup
5.1.1 Datasets and Models. We conduct experiments on three
widely used malware classification datasets: EMBER [5], SOREL-
20M [17] for binary classification (benign or malicious), and BOD-
MAS [45] for multiclass classification (benign and three different
malicious family categories). During the static analysis process,
feature vectors are extracted from binaries using the feature ex-
traction method described in [35]. For the EMBER and SOREL-20M
datasets, we use a subset containing 120,000 samples each. For BOD-
MAS dataset, we use 28,000 samples, ensuring balanced distribution
across categories.

Regarding model architectures, since attackers may not know
the final model structure used by the end-user, we consider a model-
agnostic scenario in which the model used by the attacker to select
samples (defined as the surrogate model) and the model deployed
by the end-user (defined as the deployed model) are different. For
the surrogate model architecture, we employ a deep neural net-
work with densely connected layers, leveraging a combination of
ReLU, Sigmoid activation functions and Batch normalization to
facilitate prediction. The deployed model, in contrast, incorporates
a more advanced configuration by utilizing residual connections
[18], providing greater depth and complexity.

5.1.2 Attack Settings. We use random selection, as the baseline,
to identify the samples to be poisoned. We also compare PMSB with
three other sample selection methods—referred to as Loss, Grad,
and Forget methods—mentioned in [14] that focus on selecting
hard-to-learn samples. For the trigger type, we use three different
trigger types in the malware classification domain: combined and
independent trigger types mentioned in [35], and jigsaw_puzzle
trigger type mentioned in [44]. The combined trigger type involves
making the trigger subvert dense areas of the decision boundary
that are oriented toward benignware, blending the trigger with

background data. The independent trigger type inserts the trig-
ger pattern into sparse and low-confidence areas, aiming for the
trigger pattern to gain significant influence in the prediction. The
jigsaw_puzzle trigger type generates triggers by applying masks
on training data to capture more effective features. All triggers
generated are in the size of 17, which means the trigger consists of
17 (𝑓 : 𝑣) pairs. Note that all attacks consider the problem-space
constraints, which result in only 17 out of 2351 static features being
modifiable [35].

5.1.3 Evaluation Metrics. We adopt two widely used metrics:
CleanAccuracy (CA) andAttack Success Rate (ASR) [31, 37, 40].
CA represents the test accuracy on clean tasks for samples without
trigger embedding; this value should ideally remain consistent
with the model’s accuracy prior to poisoning. On the other hand,
ASR measures the proportion of trigger-embedded samples that
are successfully misclassified to the target label. For an attacker, a
higher ASR indicates a more effective attack.

5.2 Performance Evaluation of PMSB
In this section, We compare PMSB with random selection and three
other sample selection methods—referred to as Loss, Grad, and For-
get methods. The Loss and Grad methods select samples with the
highest average loss and gradient values, respectively, during the
training of a surrogate model. The Forget method selects samples
with the highest number of prediction errors across all epochs in the
surrogate model. The results for the EMBER, Sorel-20M, and BOD-
MAS datasets, across three different trigger types, are presented in
Tables 1, 2, and 3, respectively. Since somemethods utilize surrogate
models to aid in sample selection, to ensure fairness in experimental
evaluation, we followed the configuration described in section 5.1.1
and employed different model architectures separately for sample
selection and for evaluating attack effectiveness.

The experimental results demonstrate that our PMSB method
achieved superior attack performance in both binary classifica-
tion tasks (EMBER, Sorel-20M) and multi-classification tasks (BOD-
MAS). PMSB attained the highest average attack success rate (ASR)
across different poisoning rates and trigger types on the EMBER,
Sorel-20M, and BODMAS datasets. Specifically, The average ASR
for PMSB was 67.71% using feature-based distance, 72.05% using
distribution-based distance, and 70.0% using contribution-based
distance across the three datasets. Moreover, compared to random
selection, our method achieved up to 29.86% increase in average
ASR on EMBER, 23.97% increase on Sorel-20M, and 31.2% increase
on BODMAS. Meanwhile, PMSB enhanced the attack success rate(b) Clean-Label(Random) (c) Clean-Label (Loss)

ASR: 58.2%ASR: 99.9% ASR: 63.9%

Labels

1

0

2

P

3

(a) Corrupted-Label(Random)
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0
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PMSB(feature) PMSB(distribution) PMSB(contribution)

Figure 3: Visualization of selected samples by PMSB.
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Table 1: Results on the EMBER dataset with different poisoning rates (PR). CA(↑) and ASR(↓) are measured in percentage (%).

Random Loss Grad Forget PMSB
(feature)

PMSB
(distribution)

PMSB
(contribution)Trigger Type PR

CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR

1% 95.34 10.30 94.17 14.60 94.51 14.80 95.80 11.30 94.73 17.50 94.71 27.20 94.01 21.70
2% 95.00 10.80 95.34 15.20 95.38 15.00 94.92 11.70 94.02 19.30 94.35 31.10 94.93 26.40Combined
4% 94.83 13.60 94.60 15.80 95.70 15.90 95.60 13.20 94.13 22.80 95.57 37.60 94.76 30.70

1% 95.31 43.40 95.50 73.30 95.10 78.80 95.22 77.50 94.82 93.60 95.81 98.20 95.68 96.10
2% 95.41 65.40 95.18 80.30 95.62 79.40 95.41 83.60 95.32 95.70 95.14 98.60 95.18 97.10Independent
4% 95.38 87.60 95.36 91.70 95.75 93.30 95.31 92.40 95.15 95.60 95.48 98.80 94.58 97.90

1% 94.29 36.40 94.54 56.20 94.14 42.70 94.94 43.30 94.36 65.80 94.28 72.40 94.42 71.60
2% 95.82 40.90 94.61 58.20 95.69 50.90 95.22 54.40 94.95 74.90 95.36 77.20 94.05 78.90Jigsaw_puzzle
4% 94.82 49.20 93.67 68.40 94.12 62.80 95.34 61.20 95.04 74.70 94.24 85.20 94.38 86.50

Average 95.13 39.73 94.77 52.63 95.11 50.40 95.31 49.84 94.72 62.21 94.99 69.59 94.67 67.43

Table 2: Results on the Sorel-20M dataset with different poisoning rates (PR). CA(↑) and ASR(↓) are measured in percentage (%).

Random Loss Grad Forget PMSB
(feature)

PMSB
(distribution)

PMSB
(contribution)Trigger Type PR

CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR

1% 96.54 8.40 96.88 7.40 95.77 9.10 95.51 10.10 96.64 19.70 96.62 24.70 95.73 21.70
2% 97.24 9.30 96.37 10.50 96.58 11.20 96.74 12.70 96.69 23.70 96.50 30.10 96.11 30.60Combined
4% 96.96 11.90 96.54 12.90 97.60 10.70 96.21 13.50 95.61 35.50 96.76 42.80 96.33 45.90

1% 96.83 76.80 96.94 82.90 96.01 86.00 97.26 83.00 96.53 89.40 97.11 96.70 96.94 95.10
2% 96.38 79.50 97.20 85.30 96.51 88.60 97.09 85.60 96.57 91.80 96.68 97.60 96.24 95.30Independent
4% 96.76 86.40 96.26 86.80 96.47 90.30 96.44 89.60 96.42 94.40 96.98 96.80 96.43 95.20

1% 96.45 26.70 97.20 31.60 97.20 33.40 96.47 34.10 96.98 50.10 96.70 59.30 96.65 63.40
2% 96.36 29.90 96.44 36.80 96.30 39.30 96.32 34.10 96.91 53.50 96.93 62.00 96.59 63.50Jigsaw_puzzle
4% 96.76 32.50 96.47 47.50 96.32 48.40 96.63 41.80 95.31 57.10 96.47 66.90 96.93 66.50

Average 96.70 40.16 96.70 44.63 96.53 46.33 96.52 44.94 96.41 57.24 96.75 64.10 96.44 64.13

without causing a decline in the clean accuracy (CA). We visual-
ized the distribution of samples selected by PMSB on the BODMAS
dataset, and as shown in Figure 3, most of the selected samples are
located near the decision boundary, leaning towards the malware
class. It facilitates the model’s learning of the interaction between
trigger characteristics and malicious sample distribution, thereby
making it easier to associate backdoor-embedded malicious samples
with benign labels and achieve better backdoor attack effectiveness.

In comparison with the other methods, the average ASR of PMSB
on the three datasets exceeded those of the Loss, Grad, and Forget
methods by 20.11%, 19.9%, and 20.71%, respectively. Although the
strategy that select hard-to-learn samples provided an average ASR
improvement of 11.22% on the EMBER dataset, they only yielded av-
erage ASR gains of 5.14% and 6.67% on the Sorel-20M and BODMAS
datasets, respectively. We analyzed the reasons for this outcome as
described in Introduction section: the selected samples indeed ex-
hibit the characteristic of being difficult to learn in the early stages
of training. However, as the training progresses and parameters

are updated, the model gradually fits these samples, leading to an
inevitable collision between trigger features and original features.

5.3 Analysis on Various Trigger Sizes
In this section, we extend the experiments on different trigger sizes
to evaluate the effectiveness of our proposed PMSB. We test our
methods under various trigger sizes, ranging from 4 to 16, and fixed
poisoning rate of 2% for the combined and independent trigger
types on the EMBER dataset . The results are illustrated in Figure 4.

As shown in Figure 4, for both combined and independent trigger
types, CA exhibits slight fluctuations as the trigger size increases.
For the two trigger types, random sample selection achieves a
maximum CA of 95.98%, a minimum CA of 95.59%, and an average
CA of 95.77% across different trigger sizes. In comparison, PMSB
with three different similarity metrics, achieves a maximum CA
of 95.79%, a minimum CA of 94.68%, and an average CA of 95.37%
across different trigger sizes. Moreover, for both trigger types, the
ASR of PMSB with three different similarity metrics is significantly
higher than that of random sample selection. Specially, PMSB with
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Table 3: Results on the Bodmas dataset with different poisoning rates (PR). CA(↑) and ASR(↓) are measured in percentage (%).

Random Loss Grad Forget PMSB
(feature)

PMSB
(distribution)

PMSB
(contribution)Trigger Type PR

CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR

1% 91.93 48.80 91.87 53.37 91.75 58.90 91.87 56.77 91.85 78.20 91.70 76.90 91.97 72.47
2% 91.85 50.50 91.63 58.37 91.65 59.37 91.65 59.27 91.93 83.63 91.67 83.30 91.95 79.37Independent
4% 91.32 58.20 92.80 63.90 91.75 60.87 92.00 61.67 91.13 89.27 91.37 87.17 91.63 83.53

Average 91.70 52.50 92.10 58.55 91.72 59.71 91.84 59.24 91.64 83.70 91.58 82.46 91.85 78.46
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Figure 4: CA and ASR of PMSB with various trigger sizes on EMBER for Combined and Independent trigger types. E.g., the
leftmost figure shows the CA at different values of trigger sizes for Combined trigger type.
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Figure 5: CA and ASR of PMSB with various model architectures on EMBER for Combined and Independent trigger types.

a distribution-based similarity metric achieves the highest average
ASR gain of 17.28% under the combined trigger type and 53.1%
under the independent trigger type across different trigger sizes.
This demonstrates that our PMSB is not sensitive to trigger size,
maintaining high accuracy on clean tasks while enhancing the
attack effectiveness across different trigger sizes.

5.4 Analysis on Various Model Architectures
Attackers may not know the model structure deployed by the end-
user (defined as deployed model). To evaluate the sensitivity of
PMSB to various model architectures, we conduct deployed model
agnostic evaluation on other three model architectures including
one deep neural network (DNN) without residual blocks, Linear
Support Vector Classification (LinearSVC) [12] and Light Gradient
Boosting Machine (Lightgbm) [21]. The architecture of the DNN
used here differs from the one described in Section 5.1.1 due to the
absence of residual blocks. Taking the combined and independent

trigger types with trigger size of 17 and poisoning rate of 2% on
the EMBER dataset as examples, we present the results in Figure 5.

As illustrated in Figure 5, for the combined trigger type, the
random sample selection achieves an average CA of 94.01% across
three model architectures, while PMSB with three different simi-
larity metrics, achieves an average CA of 93.63%. Similarly, for the
independent trigger type, the random sample selection attains an
average CA of 94.05% across the three model architectures, whereas
PMSB achieves an average CA of 93.77% . This indicates that our
sample selection strategy has almost no impact on the accuracy of
clean tasks. Moreover, we are more concerned with the improve-
ment of ASR brought by PMSB. There is a significant gain in ASR
with PMSB compared to random sample selection. Specifically, for
the combined trigger type, PMSB achieves an average ASR gain of
25.85% across the three model architectures compared to random
sample selection. For the independent trigger type, PMSB shows an
average ASR gain of 24.6% compared to random sample selection.
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This clearly demonstrates that PMSB is an effective model-agnostic
approach that does not rely on any specific model architecture.

5.5 Analysis on the Resistance to Defenses
In this section, we demonstrate that our methods will not decrease
the resistance of attacks to potential backdoor defenses compared
with vanilla attacks that use random samples selection. Since our
method involves poisoning the training data, we evaluate PMSB
under three representative dataset-level defenses including Spectral
Signatures (SS) [38], Activation Clustering (AC) [8] and Make Data
Reliable (MDR) [41]. Spectral signature computes the singular value
decomposition of the benign samples over the new feature space,
and then eliminates samples with high outlier score. Inspired by
Activation Clustering that uses of k-means over deep representation
of samples, we use HDBSCAN [7] instead mentioned in [35], with
the intuition that poisoned samples from a subspace of high density
in the reduced feature space generate a tight cluster. MDR identifies
poisoned samples by analyzing the differences in features that
positively contribute to prediction results.

We use both combined and independent trigger types with a
trigger size of 17 and a poisoning rate of 2% on the EMBER dataset
for discussion. Following the configuration in [35], after removing
poisoned samples based on defense methods, a LightGBM classifier
is retrained to evaluate defense performance on ASR. The results
are shown in Figure 6. For both combined and independent trigger
types, after applying defenses, the ASR of PMSBwith three different
similarity metrics remains significantly higher than that of random
sample selection. Specifically, under the combined and indepen-
dent trigger types, random sample selection achieves an average
ASR of 36.97%, while PMSB with three different similarity metrics
achieves an average ASR of 78.11% across three defense methods. It
demonstrates that PMSB will not decrease the resistance of attacks
to backdoor defenses compared with random samples selection.

An interesting observation is that when using Spectral Signa-
tures (SS) to defend against the independent trigger type, a better
defensive effect is achieved compared to the AC and MDR methods,
as indicated by a lower ASR. However, this phenomenon is not
observed in the case of the combined trigger type. Our analysis
suggests that the reason lies in the nature of the triggers: the in-
dependent trigger type targets sparse regions in the training data
as triggers, while the combined type targets dense regions to bet-
ter blend into the original data. The SS method, which identifies
anomalies deviating from normal distribution through singular
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Figure 6: ASR after defense compared with vanilla attack.

value decomposition, is thus more effective in detecting the in-
dependent trigger type. Another interesting phenomenon is the
instability of the MDR defense, where the ASR can sometimes be
reduced to below 0.03% and at other times exceed 96%. Our analy-
sis reveals that this is due to the MDR method possibly selecting
the wrong community when identifying suspicious communities
after partitioning, leading to a significant drop in defensive effec-
tiveness. Therefore, these interesting situations are attributed to
the trigger design or the defense methods, rather than our sample
selection strategy. Nonetheless, regardless of the trigger type or
defense method, these results verify that PMSB does not reduce
resistance to defenses compared to random sample selection, and it
still maintains the effectiveness of enhancing backdoor attacks.

6 Discussion
Possible Mitigations.While designing a novel adaptive defense is
beyond our scope, we would like to discuss potential directions for
eliminating poisoned samples. An intuitive possible defense strat-
egy against PMSB could be to focus on the sample level, identifying
and removing benign samples near the decision boundary. How-
ever, this poses a challenge for defenders in precisely identifying
and removing poisoned samples. Removing too many samples may
reduce model accuracy on clean tasks or cause overfitting, while
removing too few may weaken backdoor defense. Another possible
defense strategy is to analyze the differences in feature distributions.
When triggers are embedded in samples, their feature distributions
change, which enhances the contribution of trigger features to the
model’s predictions. Defenders could focus on analyzing the dis-
tribution differences of important decision-making features in the
model to identify and remove poisoned samples. Further work is
needed to validate these potential defense strategies.
Ethics and Responsible Code Release. In this paper, we did not
attempt to test or poison any deployed malware detection systems
for ethical considerations. Consistent with prior work on backdoor
attacks against malware classifiers [35, 44], we responsibly release
our code to support future research, particularly on defense meth-
ods. To prevent potential misuse, the code is hosted in a private
repository, and requests will be verified before sharing.

7 Conclusion
In this work, we empirically analyze the reasons behind the poor
performance of clean-label backdoor attacks under threat model
constraints in the malware domain and present the results through
visualizations. Although some methods have explored embedding
triggers into hard-to-learn samples instead of random samples, they
have achieved only limited gains in attack effectiveness. To address
this issue, we propose a simple yet effective method: poisoning
malware-similar benignware (PMSB) instead of random selection.
This approach approximates the scenario of corrupted-label attack,
thereby minimizing the interference of trigger characteristics by
the original clean features, and enhancing the effectiveness of clean-
label attacks. Additionally, we introduce three similarity measure-
ment methods—feature-based distance, distribution-based distance,
and contribution-based distance—to select malware-similar benign-
ware. Extensive evaluations across three different trigger types and
three datasets demonstrate the superiority and generality of PMSB.
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