
Don’t Make Your LLM an Evaluation Benchmark Cheater

Anonymous ACL submission

Abstract

To assess the capacity of large language mod-001
els (LLMs), a typical approach is to construct002
evaluation benchmarks for measuring their abil-003
ity level in different aspects. Although a surge004
of high-quality benchmarks have been released,005
the concerns about the appropriate use of bench-006
marks and the fair comparison are increasingly007
growing. In this paper, we discuss the poten-008
tial risk and impact of inappropriately using009
evaluation benchmarks and misleadingly inter-010
preting the evaluation results. Specially, we011
focus on a special issue that would lead to in-012
appropriate evaluation, i.e., benchmark leak-013
age, referring that the data related to evaluation014
sets is occasionally used for model training.015
This phenomenon now becomes more common016
since pre-training data is often prepared ahead017
of model test. We conduct extensive experi-018
ments to study the effect of benchmark leakage,019
and find that it can dramatically boost the eval-020
uation results, which would finally lead to an021
unreliable assessment of model performance.022
We hope this work can draw attention to appro-023
priate training and evaluation of LLMs.024

1 Introduction025

Recently, a surge of high-quality evaluation bench-026

marks (Chang et al., 2023) have been proposed to027

provide a comprehensive capability evaluation of028

large language models (LLMs) (Brown et al., 2020;029

OpenAI, 2023; Zhao et al., 2023), for better under-030

standing how LLMs evolve in model capacity. Typ-031

ical benchmarks include MMLU (Hendrycks et al.,032

2021) (for measuring multitask language under-033

standing ability) and Big-Bench (Srivastava et al.,034

2022) (for quantifying and extrapolating the capa-035

bilities of LLMs). Based on these benchmarks, one036

can conveniently examine the effect of new training037

strategies or monitor the training status of LLMs038

(either pre-training or supervised fine-tuning). It039

has become common to report the results on bench-040

marks for demonstrating the effectiveness of newly041

LLM Rank-11

LLM
Rank-1

Performance
Improvement

Benchmark Data
(Training/Test)

Pre-training Data

Rank-12

Rank-10

Rank-2
Rank-3

Figure 1: Illustration of the potential risk about data
leakage. Once the pre-training data with overlap to the
benchmark data is used for training LLM, its benchmark
performance would be greatly increased.

released LLMs (Touvron et al., 2023b; Anil et al., 042

2023). Furthermore, to compare the performance 043

of different LLMs, various leaderboards have been 044

also created to rank LLMs according to their perfor- 045

mance on existing or new evaluation benchmarks, 046

such as OpenCompass (Contributors, 2023) and 047

C-Eval (Huang et al., 2023). 048

Despite the wide use of these benchmarks and 049

leaderboards, increasing concerns (Aiyappa et al., 050

2023; Li, 2023) are growing about the fairness and 051

reliability in evaluating existing LLMs. A major 052

issue is that the data contamination or leakage is 053

likely to occur for large-scale benchmark evalu- 054

ation, which means that LLMs are trained with 055

relevant or exactly the same data for test. Such an 056

issue could be unconsciously triggered, since we 057

might be unaware of the future evaluation datasets 058

when preparing the pre-training corpus. For exam- 059

ple, GPT-3 has found that Children’s Book Test 060

dataset (Hill et al., 2016) was included in the pre- 061

training corpus, and LLaMA-2 has mentioned that 062

the contexts in BoolQ dataset (Clark et al., 2019) 063

are extracted verbatim from the webpages, which 064

may be included in the publicly available corpus. 065

Indeed, when conducting evaluation with exist- 066

ing benchmarks, the results of evaluated LLMs are 067

mostly obtained by running them on local servers or 068

via API calls. During this process, there is no strict 069

1



checking on any potentially inappropriate ways070

(e.g., data contamination) that would cause an un-071

normal improvement of evaluation performance.072

To make matters worse, the detailed composition073

(e.g., data sources) of the training corpus is often074

regarded as the core “secret” of existing LLMs.075

Therefore, it becomes difficult to directly exam-076

ine the contamination issues when performing the077

evaluation for benchmark maintainers.078

Considering this issue, the aim of this paper is to079

draw attention on appropriately using existing eval-080

uation benchmarks and avoiding any misleading be-081

haviors in obtaining or interpreting the evaluation082

results. Specifically, we mainly focus on discussing083

the potential effect of benchmark leakage, which084

refers to the case that test data or relevant data (e.g.,085

training set) has been included in the pre-training086

corpus. It would cause an unfair performance ad-087

vantage when comparing different LLMs or assess-088

ing the ability level of some specific LLMs. As089

we discussed before, this issue tends to become in-090

creasingly more common as we try to collect more091

public text data for training. To investigate this is-092

sue, we set up several benchmark leakage settings093

that should be totally avoided during evaluation,094

including the leakage of training sets, test prompts,095

and test sets. Based on the three settings, we contin-096

ually train four popular language models, ranging097

from 1.3B to 7B, and test the performance of the098

four models on a number of existing benchmarks.099

In addition, we also examine the potential risk of100

benchmark leakage on other abilities.101

Experimental results reveal that benchmark leak-102

age can lead to an unfair boost in the evaluation103

performance of LLMs. Smaller LLMs (e.g., 1.3B104

models) can be deliberately elevated to outperform105

10× larger models on certain tasks. As a side effect,106

the performance of these specially trained LLMs107

on other normally tested tasks would likely be ad-108

versely affected if we fine-tune or train the model109

only with these leaked data. By examining the110

potential risks of benchmark leakage, we would111

like to emphasize the importance of fair and appro-112

priate evaluation for LLMs, and propose several113

suggestions in Appendix B.114

2 Empirical Study: Benchmark Leakage115

During pre-training, the data contamination or leak-116

age about possible evaluation benchmarks, is likely117

to be unconsciously triggered (Oren et al., 2023;118

Sainz et al., 2023). It would violate regular eval-119

uation settings for assessing zero/few-shot gener- 120

alization capability, thus affecting the capability 121

assessment of LLMs. To better understand the 122

potential influence of the benchmark leakage is- 123

sue, we conduct an empirical study that continually 124

trains small-sized LLMs on three settings with dif- 125

ferent levels of information leakage. 126

2.1 Experimental Setup 127

Training Settings with Benchmark Leakage. 128

We aim to test the influence of possible benchmark 129

leakage issues on the evaluation results of LLMs. A 130

benchmark typically contains a set of test examples, 131

and relies on fixed templates to prompt LLMs for 132

evaluation. Such an evaluation process may lead to 133

three types of benchmark leakage risks, including 134

test prompt, test set, or other relevant data (e.g., 135

training set) into the pre-training corpus. Consider- 136

ing the above settings, we simulate three extreme 137

leakage issues where the three types of information 138

have been used for continually training LLMs, and 139

design the following evaluation settings. 140

• Using MMLU Training Set: the auxiliary train- 141

ing set provided by the official MMLU bench- 142

mark (Hendrycks et al., 2021) is used for training.1 143

• Using All Training Sets: in addition to MMLU 144

training set, the training sets of all other collected 145

evaluation benchmarks are also used for training. 146

• Using All Training Sets with Test Prompt: 147

all the training sets, with their corresponding test 148

prompts, e.g., task description and few-shot demon- 149

stration, are used for training. 150

• Using All Training and Test Sets with Test 151

Prompt: all the training sets, test prompts, and test 152

sets of all the collected benchmarks are used for 153

training. (CAUTION: the most extreme case only 154

for reference, where all information is leaked.) 155

Evaluation Benchmark and LLMs. To conduct 156

the empirical study, we select the widely-used 157

benchmark MMLU (Hendrycks et al., 2021) and 158

employ seven QA, three reasoning, and five read- 159

ing comprehension datasets for evaluation. To thor- 160

oughly analyze the effect of benchmark leakage on 161

the evaluation performance, we select four models 162

for evaluation, which have provided pre-training 163

details or conducted careful data contamination 164

analysis. These baseline models include GPT- 165

Neo-1.3B (Black et al., 2021), phi-1.5 (Li et al., 166

2023), OpenLLaMA-3B (Geng and Liu, 2023), and 167

1https://github.com/hendrycks/test. It contains
data collected from other QA datasets e.g., ARC and OBQA.

2

https://github.com/hendrycks/test


Backbone Training Setting MMLU BoolQ PIQA HSwag WG ARC-E ARC-C OBQA

LLaMA-13B (None) 46.90 76.70 79.70 60.00 73.00 79.00 49.40 34.60
LLaMA-30B (None) 57.80 83.39 80.63 63.39 76.08 80.55 51.62 36.40
LLaMA-65B (None) 64.50 85.40 81.70 64.90 77.20 80.80 52.30 38.40

GPT-Neo
(1.3B)

(None) 24.04 62.57 70.57 38.65 55.72 55.98 23.29 21.40
+MMLU Train S 35.84 57.89 68.39 37.27 52.17 50.93 27.39 20.40
+All Train S 35.10 78.32 68.61 42.46 61.72 63.68 33.36 29.40
+All Train S+Test P 36.15 76.91 73.72 42.75 64.25 64.39 34.13 31.80
+All Train S+Test P&S 52.25 87.25 85.96 62.98 80.66 88.17 70.31 63.20

phi-1.5
(1.3B)

(None) 42.87 74.34 76.50 47.99 73.56 75.84 44.97 38.40
+MMLU Train S 46.08 74.37 76.50 47.80 73.09 75.93 48.63 40.00
+All Train S 45.20 82.35 74.37 54.64 69.46 75.00 47.87 42.40
+All Train S+Test P 46.80 82.72 74.27 54.55 70.56 75.00 47.18 39.80
+All Train S+Test P&S 75.05 92.60 97.55 77.88 96.05 97.47 92.92 94.20

OpenLLaMA
(3B)

(None) 26.49 66.51 74.81 49.42 60.85 69.57 33.87 26.60
+MMLU Train S 43.12 74.10 71.22 47.28 62.43 58.92 35.41 32.00
+All Train S 44.86 85.41 76.82 54.42 71.11 72.26 41.55 42.00
+All Train S+Test P 48.31 85.57 76.50 54.34 72.30 71.80 41.64 40.80
+All Train S+Test P&S 87.31 97.55 98.26 97.61 96.37 99.16 97.87 96.20

LLaMA-2
(7B)

(None) 42.95 71.68 70.78 55.34 67.96 72.52 41.30 32.20
+MMLU Train S 51.61 81.96 69.64 49.46 70.64 61.87 36.52 36.80
+All Train S 52.15 88.72 79.05 61.08 79.95 76.60 49.49 48.00
+All Train S+Test P 56.04 87.86 79.11 61.19 76.56 76.64 50.26 45.00
+All Train S+Test P&S 96.34 99.08 99.62 99.47 97.47 99.54 99.23 99.40

Table 1: The comparison among benchmark leakage settings and the original LLMs on MMLU and QA tasks. Train
S, Test P and Test P&S denote the data leakage scenarios that use the training set, test prompt, and both test set
and test prompt during training, respectively. The task abbreviations are as follows: HSwag (Hellaswag), WG
(WinoGrande), ARC-E (ARC-Easy), ARC-C (ARC-Challenge), and OBQA (OpenBookQA). The results in gray are
the worst leakage setting using all the test sets. The best results in each group are in bold except for the worst case.

LLaMA-2-7B (Touvron et al., 2023b). We provide168

more detailed experimental settings in Appendix A.169

2.2 Results and Analysis170

We report the results of LLMs after training with171

the benchmark leakage settings in Table 1 and 4 (in172

Appendix). We have the following observations.173

First, using MMLU training set can greatly boost174

the evaluation results on the MMLU benchmark.175

However, this improvement comes with the cost of176

performance decrease on tasks unrelated to MMLU,177

(e.g., HellaSwag and GSM8k), suggesting that over-178

emphasizing a specific task may lower the model179

generalization capability. Besides, when incorpo-180

rating all the training sets of the evaluated bench-181

marks, there is a notable performance increase182

across almost all the evaluated tasks. Incorporating183

training data converts the original zero/few-shot184

evaluation into an in-domain test task, making it185

easier for LLMs to achieve higher results.186

Second, when the test prompts were leaked,187

smaller LLMs can even surpass much larger LLMs,188

e.g., phi-1.5-1.3B outperforms LLaMA-65B on189

RACE-M and RACE-H. This highlights the signif-190

icance of the test prompt as valuable information191

from the evaluation benchmark, since it contains 192

the detailed input format during test. Furthermore, 193

this observation raises concerns about using fixed 194

test prompts in the evaluation benchmark, as it may 195

not be resilient to the aforementioned leakage risk. 196

Finally, as the results in grey font, test data 197

leakage significantly inflates benchmark perfor- 198

mance, leading 1.3B LLMs to outperform 65B 199

LLMs across most tasks. Evidently, this increase 200

does not imply any improvement in capacity, but 201

rather benchmark cheating. 202

Overall, benchmark leakage directly leads to an 203

unfair advantage in evaluation results of the in- 204

volved models, which should be strictly avoided 205

when conducting any evaluation. 206

3 Potential Risk of Benchmark Leakage 207

In addition to the influence on the reliability of 208

capability estimation, we also investigate whether 209

benchmark leakage would lead to potential risks in 210

model capacity. Limited by the training compute, 211

we only continually pre-train the LLMs on the train- 212

ing sets of all the selected evaluation benchmarks 213

as in Section 2. Such a way is the most direct way 214

for benchmark cheating (should be avoided). We 215

3



Backbone Training LAMB XSum HEval

GPT-Neo
(1.3B)

(None) 46.10 7.54 2.44
+Leak 46.00 6.84 3.05

OpenLLaMA
(3B)

(None) 56.50 8.31 4.27
+Leak 53.20 0.19 1.83

LLaMA-2
(7B)

(None) 68.20 8.67 26.83
+Leak 61.00 0.25 8.54

Table 2: The comparison among LLMs on two text
generation and a code synthesis tasks. “Leak” denotes
the data leakage scenario using all training sets of the
benchmarks in Section 2. LAMB and HEval refer to the
LAMBADA and HumanEval datasets, respectively.

speculate that it is likely to affect the capacities of216

LLMs on normally tested tasks (without data leak-217

age), due to “catastrophe forgetting” (Luo et al.,218

2023; Goodfellow et al., 2013).219

3.1 Effect on the Performance of Other Tasks220

Experimental Setup. After training on the221

leaked benchmark data, it would potentially mis-222

lead LLMs to overemphasize the specific knowl-223

edge and output style of the benchmark data,224

thereby affecting their performance on other tasks.225

In this part, we conduct experiments to validate the226

effect. We select three tasks that are not involved227

in the leaked training data, consisting of two text228

generation tasks, i.e., LAMBADA (Paperno et al.,229

2016) and XSum (Narayan et al., 2018), and a code230

synthesis task HumanEval (Chen et al., 2021) to231

evaluate LLMs in the zero-shot setting.232

Results Analysis. We show the results of LLMs233

with and without benchmark leakage in Table 2.234

First, we can observe that after training on the235

leaked data, the performance of all LLMs degrades236

on the two text generation and the code synthesis237

tasks. Specifically, the text summarization abil-238

ity of OpenLLaMA-3B and LLaMA-2-7B, seems239

to be weakened a lot after training on the leaked240

data (e.g., 0.19 and 0.25 Rouge-L in XSum). This241

demonstrates that benchmark leakage may have a242

negative impact on the performance of these nor-243

mally tested tasks (without data leakage).244

3.2 Effect on Model Adaptation245

Experimental Setup. After training on the246

leaked data, LLMs would be specially fit for the247

benchmark data. However, LLMs might need to248

be further fine-tuned for attaining some specific249

goals (e.g., solving new tasks or serving emergent250

applications). In this part, we investigate the influ-251

Backbone Training LAMB XSum HEval

GPT-Neo
(1.3B)

+IT 45.40 8.34 14.24
+Leak+IT 43.50 8.25 12.20

OpenLLaMA
(3B)

+IT 54.00 3.50 9.15
+Leak+IT 46.20 2.61 6.71

LLaMA-2
(7B)

+IT 60.30 8.64 28.66
+Leak+IT 53.60 8.55 20.73

Table 3: The comparison among LLMs after instruction
tuning. “Leak” denotes the data leakage using all train-
ing sets of the benchmarks in Section 2. “IT” denotes
the instruction tuning using Alpaca and CodeAlpaca for
text generation and code synthesis tasks, respectively.

ence of data leakage on LLMs’ adaptation capa- 252

bility. We select two instruction datasets to fine- 253

tune LLMs with or without training on the leaked 254

data, i.e., Alpaca (Taori et al., 2023) and CodeAl- 255

paca (Chaudhary, 2023), which are synthetic natu- 256

ral language and code generation instructions, re- 257

spectively. Then, we evaluate their performance on 258

the text generation and code synthesis tasks. 259

Results Analysis. In Table 3, by comparing the 260

performance of the instruction-tuned LLMs (+Al- 261

paca or +CodeAlpaca) with and without training 262

on the leaked data, we can see that the LLMs with 263

benchmark leakage still underperform their non- 264

leaked counterparts. For the HumanEval dataset, 265

the performance improvements of instruction tun- 266

ing for LLMs trained with leaked data only reach 267

approximately 80% of those achieved by models 268

that are not trained on leaked data. This indicates 269

that benchmark leakage may lead to a decline in the 270

adaptation ability, constraining the improvement of 271

LLMs through subsequent fine-tuning processes. 272

4 Conclusion 273

In this paper, we conducted empirical studies to 274

investigate the potential risk and impact of bench- 275

mark leakage on LLM evaluation, to draw the at- 276

tention to the appropriate use of existing evalua- 277

tion benchmarks for LLMs. We found that data 278

leakage can largely boost the benchmark results of 279

LLMs (even small models), making the evaluation 280

unfair and untrustworthy. Besides, benchmark leak- 281

age may also have negative impacts on the perfor- 282

mance of other tasks and the adaptation capability 283

of LLMs. These findings suggest that such attempts 284

should be strictly avoided for fairly assessing the 285

model performance on evaluation benchmarks. 286

4



Limitation287

In this work, we conducted preliminary experi-288

ments to emphasize the potential risks associated289

with benchmark leakage in training LLMs. How-290

ever, there are still several limitations in our study.291

First, our experiments involved continually train-292

ing existing pre-trained LLMs with leaked data. We293

do not have sufficient computational resources to294

investigate the impact when directly incorporating295

benchmark leakage during the pre-training process.296

Given that the pre-training dataset is significantly297

larger than the benchmark data, introducing data298

leakage during pre-training might yield different299

findings. Nonetheless, we strongly recommend300

avoiding this situation as it would breaks the nature301

of zero-shot/few-shot evaluation.302

Second, we did not explore more fine-grained303

data leakage scenarios in this study, such as only304

leaking training examples without labels and vary-305

ing the proportion of the leaked dataset. We en-306

courage more research efforts into this issue with307

more systematic studies.308

Third, we did not calculate the degree of con-309

tamination between the mainstream benchmarks310

and commonly-used pre-training datasets, which311

could serve as an important reference for alerting312

LLM developers to adjust their evaluation settings.313

While we suggest that developers and benchmark314

maintainers report contamination analyses, accu-315

rately and efficiently estimating the contamination316

risk of each example in the benchmark is also a317

challenging task. For example, the suggested n-318

gram hash algorithm may not detect semantic-level319

knowledge leakage risks.320

References321

Rachith Aiyappa, Jisun An, Haewoon Kwak, and Yong-322
Yeol Ahn. 2023. Can we trust the evaluation on323
chatgpt? CoRR, abs/2303.12767.324

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin John-325
son, Dmitry Lepikhin, Alexandre Passos, Siamak326
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng327
Chen, Eric Chu, Jonathan H. Clark, Laurent El328
Shafey, Yanping Huang, Kathy Meier-Hellstern, Gau-329
rav Mishra, Erica Moreira, Mark Omernick, Kevin330
Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao,331
Yuanzhong Xu, Yujing Zhang, Gustavo Hernández332
Ábrego, Junwhan Ahn, Jacob Austin, Paul Barham,333
Jan A. Botha, James Bradbury, Siddhartha Brahma,334
Kevin Brooks, Michele Catasta, Yong Cheng, Colin335
Cherry, Christopher A. Choquette-Choo, Aakanksha336
Chowdhery, Clément Crepy, Shachi Dave, Mostafa337

Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz, 338
Nan Du, Ethan Dyer, Vladimir Feinberg, Fangxi- 339
aoyu Feng, Vlad Fienber, Markus Freitag, Xavier 340
Garcia, Sebastian Gehrmann, Lucas Gonzalez, and 341
et al. 2023. Palm 2 technical report. CoRR, 342
abs/2305.10403. 343

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng 344
Gao, and Yejin Choi. 2020. PIQA: reasoning about 345
physical commonsense in natural language. In The 346
Thirty-Fourth AAAI Conference on Artificial Intelli- 347
gence, AAAI 2020, The Thirty-Second Innovative Ap- 348
plications of Artificial Intelligence Conference, IAAI 349
2020, The Tenth AAAI Symposium on Educational 350
Advances in Artificial Intelligence, EAAI 2020, New 351
York, NY, USA, February 7-12, 2020, pages 7432– 352
7439. AAAI Press. 353

Sid Black, Leo Gao, Phil Wang, Connor Leahy, 354
and Stella Biderman. 2021. GPT-Neo: Large 355
Scale Autoregressive Language Modeling with Mesh- 356
Tensorflow. If you use this software, please cite it 357
using these metadata. 358

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie 359
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 360
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 361
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 362
Gretchen Krueger, Tom Henighan, Rewon Child, 363
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, 364
Clemens Winter, Christopher Hesse, Mark Chen, Eric 365
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, 366
Jack Clark, Christopher Berner, Sam McCandlish, 367
Alec Radford, Ilya Sutskever, and Dario Amodei. 368
2020. Language models are few-shot learners. In Ad- 369
vances in Neural Information Processing Systems 33: 370
Annual Conference on Neural Information Process- 371
ing Systems 2020, NeurIPS 2020, December 6-12, 372
2020, virtual. 373

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, 374
Kaijie Zhu, Hao Chen, Linyi Yang, Xiaoyuan Yi, 375
Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang, 376
Yi Chang, Philip S. Yu, Qiang Yang, and Xing Xie. 377
2023. A survey on evaluation of large language mod- 378
els. CoRR, abs/2307.03109. 379

Sahil Chaudhary. 2023. Code alpaca: An instruction- 380
following llama model for code generation. https: 381
//github.com/sahil280114/codealpaca. 382

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, 383
Henrique Pondé de Oliveira Pinto, Jared Kaplan, 384
Harrison Edwards, Yuri Burda, Nicholas Joseph, 385
Greg Brockman, Alex Ray, Raul Puri, Gretchen 386
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 387
try, Pamela Mishkin, Brooke Chan, Scott Gray, 388
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 389
Kaiser, Mohammad Bavarian, Clemens Winter, 390
Philippe Tillet, Felipe Petroski Such, Dave Cum- 391
mings, Matthias Plappert, Fotios Chantzis, Eliza- 392
beth Barnes, Ariel Herbert-Voss, William Hebgen 393
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 394
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 395
William Saunders, Christopher Hesse, Andrew N. 396

5

https://doi.org/10.48550/ARXIV.2303.12767
https://doi.org/10.48550/ARXIV.2303.12767
https://doi.org/10.48550/ARXIV.2303.12767
https://doi.org/10.48550/ARXIV.2305.10403
https://doi.org/10.1609/AAAI.V34I05.6239
https://doi.org/10.1609/AAAI.V34I05.6239
https://doi.org/10.1609/AAAI.V34I05.6239
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/ARXIV.2307.03109
https://doi.org/10.48550/ARXIV.2307.03109
https://doi.org/10.48550/ARXIV.2307.03109
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca


Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan397
Morikawa, Alec Radford, Matthew Knight, Miles398
Brundage, Mira Murati, Katie Mayer, Peter Welinder,399
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya400
Sutskever, and Wojciech Zaremba. 2021. Evaluat-401
ing large language models trained on code. CoRR,402
abs/2107.03374.403

Christopher Clark, Kenton Lee, Ming-Wei Chang,404
Tom Kwiatkowski, Michael Collins, and Kristina405
Toutanova. 2019. Boolq: Exploring the surprising406
difficulty of natural yes/no questions. In Proceedings407
of the 2019 Conference of the North American Chap-408
ter of the Association for Computational Linguistics:409
Human Language Technologies, NAACL-HLT 2019,410
Minneapolis, MN, USA, June 2-7, 2019, Volume 1411
(Long and Short Papers), pages 2924–2936. Associa-412
tion for Computational Linguistics.413

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,414
Ashish Sabharwal, Carissa Schoenick, and Oyvind415
Tafjord. 2018. Think you have solved question an-416
swering? try arc, the AI2 reasoning challenge. CoRR,417
abs/1803.05457.418

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,419
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias420
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro421
Nakano, Christopher Hesse, and John Schulman.422
2021. Training verifiers to solve math word prob-423
lems. CoRR, abs/2110.14168.424

Together Computer. 2023. Redpajama-data: An open425
source recipe to reproduce llama training dataset.426

OpenCompass Contributors. 2023. Opencompass:427
A universal evaluation platform for foundation428
models. https://github.com/open-compass/429
opencompass.430

Yiming Cui, Ting Liu, Wanxiang Che, Li Xiao, Zhipeng431
Chen, Wentao Ma, Shijin Wang, and Guoping Hu.432
2019. A span-extraction dataset for chinese ma-433
chine reading comprehension. In Proceedings of434
the 2019 Conference on Empirical Methods in Natu-435
ral Language Processing and the 9th International436
Joint Conference on Natural Language Processing,437
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-438
ber 3-7, 2019, pages 5882–5888. Association for439
Computational Linguistics.440

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-441
ing, Travis Hoppe, Charles Foster, Jason Phang,442
Horace He, Anish Thite, Noa Nabeshima, Shawn443
Presser, and Connor Leahy. 2021. The pile: An444
800gb dataset of diverse text for language modeling.445
CoRR, abs/2101.00027.446

Xinyang Geng and Hao Liu. 2023. Openllama: An open447
reproduction of llama.448

Shahriar Golchin and Mihai Surdeanu. 2023. Time449
travel in llms: Tracing data contamination in large450
language models. CoRR, abs/2308.08493.451

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron 452
Courville, and Yoshua Bengio. 2013. An empirical 453
investigation of catastrophic forgetting in gradient- 454
based neural networks. CoRR, abs/1312.6211. 455

Dan Hendrycks, Collin Burns, Steven Basart, Andy 456
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein- 457
hardt. 2021. Measuring massive multitask language 458
understanding. In 9th International Conference on 459
Learning Representations, ICLR 2021, Virtual Event, 460
Austria, May 3-7, 2021. OpenReview.net. 461

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason 462
Weston. 2016. The goldilocks principle: Reading 463
children’s books with explicit memory representa- 464
tions. In 4th International Conference on Learning 465
Representations, ICLR 2016, San Juan, Puerto Rico, 466
May 2-4, 2016, Conference Track Proceedings. 467

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei 468
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu, 469
Chuancheng Lv, Yikai Zhang, Jiayi Lei, Yao Fu, 470
Maosong Sun, and Junxian He. 2023. C-eval: A 471
multi-level multi-discipline chinese evaluation suite 472
for foundation models. CoRR, abs/2305.08322. 473

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, 474
and Eduard H. Hovy. 2017. RACE: large-scale read- 475
ing comprehension dataset from examinations. In 476
Proceedings of the 2017 Conference on Empirical 477
Methods in Natural Language Processing, EMNLP 478
2017, Copenhagen, Denmark, September 9-11, 2017, 479
pages 785–794. Association for Computational Lin- 480
guistics. 481

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del 482
Giorno, Suriya Gunasekar, and Yin Tat Lee. 2023. 483
Textbooks are all you need II: phi-1.5 technical report. 484
CoRR, abs/2309.05463. 485

Yucheng Li. 2023. An open source data contam- 486
ination report for llama series models. CoRR, 487
abs/2307.03109. 488

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun- 489
som. 2017. Program induction by rationale genera- 490
tion: Learning to solve and explain algebraic word 491
problems. In Proceedings of the 55th Annual Meet- 492
ing of the Association for Computational Linguistics, 493
ACL 2017, Vancouver, Canada, July 30 - August 4, 494
Volume 1: Long Papers, pages 158–167. Association 495
for Computational Linguistics. 496

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, 497
and Yue Zhang. 2023. An empirical study of catas- 498
trophic forgetting in large language models during 499
continual fine-tuning. CoRR, abs/2308.08747. 500

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish 501
Sabharwal. 2018. Can a suit of armor conduct elec- 502
tricity? A new dataset for open book question an- 503
swering. In Proceedings of the 2018 Conference on 504
Empirical Methods in Natural Language Processing, 505
Brussels, Belgium, October 31 - November 4, 2018, 506
pages 2381–2391. Association for Computational 507
Linguistics. 508

6

http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://doi.org/10.18653/V1/N19-1300
https://doi.org/10.18653/V1/N19-1300
https://doi.org/10.18653/V1/N19-1300
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://doi.org/10.18653/V1/D19-1600
https://doi.org/10.18653/V1/D19-1600
https://doi.org/10.18653/V1/D19-1600
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama
https://doi.org/10.48550/ARXIV.2308.08493
https://doi.org/10.48550/ARXIV.2308.08493
https://doi.org/10.48550/ARXIV.2308.08493
https://doi.org/10.48550/ARXIV.2308.08493
https://doi.org/10.48550/ARXIV.2308.08493
https://doi.org/10.48550/ARXIV.1312.6211
https://doi.org/10.48550/ARXIV.1312.6211
https://doi.org/10.48550/ARXIV.1312.6211
https://doi.org/10.48550/ARXIV.1312.6211
https://doi.org/10.48550/ARXIV.1312.6211
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
http://arxiv.org/abs/1511.02301
http://arxiv.org/abs/1511.02301
http://arxiv.org/abs/1511.02301
http://arxiv.org/abs/1511.02301
http://arxiv.org/abs/1511.02301
https://doi.org/10.48550/ARXIV.2305.08322
https://doi.org/10.48550/ARXIV.2305.08322
https://doi.org/10.48550/ARXIV.2305.08322
https://doi.org/10.48550/ARXIV.2305.08322
https://doi.org/10.48550/ARXIV.2305.08322
https://doi.org/10.18653/V1/D17-1082
https://doi.org/10.18653/V1/D17-1082
https://doi.org/10.18653/V1/D17-1082
https://doi.org/10.48550/ARXIV.2309.05463
https://doi.org/10.48550/ARXIV.2310.17589
https://doi.org/10.48550/ARXIV.2310.17589
https://doi.org/10.48550/ARXIV.2310.17589
https://doi.org/10.18653/V1/P17-1015
https://doi.org/10.18653/V1/P17-1015
https://doi.org/10.18653/V1/P17-1015
https://doi.org/10.18653/V1/P17-1015
https://doi.org/10.18653/V1/P17-1015
https://doi.org/10.48550/ARXIV.2308.08747
https://doi.org/10.48550/ARXIV.2308.08747
https://doi.org/10.48550/ARXIV.2308.08747
https://doi.org/10.48550/ARXIV.2308.08747
https://doi.org/10.48550/ARXIV.2308.08747
https://doi.org/10.18653/V1/D18-1260
https://doi.org/10.18653/V1/D18-1260
https://doi.org/10.18653/V1/D18-1260
https://doi.org/10.18653/V1/D18-1260
https://doi.org/10.18653/V1/D18-1260


Shashi Narayan, Shay B. Cohen, and Mirella Lapata.509
2018. Don’t give me the details, just the summary!510
topic-aware convolutional neural networks for ex-511
treme summarization. In Proceedings of the 2018512
Conference on Empirical Methods in Natural Lan-513
guage Processing, Brussels, Belgium, October 31 -514
November 4, 2018, pages 1797–1807. Association515
for Computational Linguistics.516

OpenAI. 2023. GPT-4 technical report. CoRR,517
abs/2303.08774.518

Yonatan Oren, Nicole Meister, Niladri Chatterji, Faisal519
Ladhak, and Tatsunori B. Hashimoto. 2023. Proving520
test set contamination in black box language models.521
CoRR, abs/2307.03109.522

Denis Paperno, Germán Kruszewski, Angeliki Lazari-523
dou, Quan Ngoc Pham, Raffaella Bernardi, Sandro524
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel525
Fernández. 2016. The LAMBADA dataset: Word526
prediction requiring a broad discourse context. In527
Proceedings of the 54th Annual Meeting of the As-528
sociation for Computational Linguistics, ACL 2016,529
August 7-12, 2016, Berlin, Germany, Volume 1: Long530
Papers. The Association for Computer Linguistics.531

Siva Reddy, Danqi Chen, and Christopher D. Manning.532
2019. Coqa: A conversational question answering533
challenge. Trans. Assoc. Comput. Linguistics, 7:249–534
266.535

Oscar Sainz, Jon Ander Campos, Iker García-Ferrero,536
Julen Etxaniz, Oier Lopez de Lacalle, and Eneko537
Agirre. 2023. NLP evaluation in trouble: On the538
need to measure LLM data contamination for each539
benchmark. CoRR, abs/2310.18018.540

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-541
ula, and Yejin Choi. 2020. Winogrande: An adver-542
sarial winograd schema challenge at scale. In The543
Thirty-Fourth AAAI Conference on Artificial Intelli-544
gence, AAAI 2020, The Thirty-Second Innovative Ap-545
plications of Artificial Intelligence Conference, IAAI546
2020, The Tenth AAAI Symposium on Educational547
Advances in Artificial Intelligence, EAAI 2020, New548
York, NY, USA, February 7-12, 2020, pages 8732–549
8740. AAAI Press.550

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo551
Huang, Daogao Liu, Terra Blevins, Danqi Chen, and552
Luke Zettlemoyer. 2023. Detecting pretraining data553
from large language models. CoRR, abs/2310.16789.554

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,555
Abu Awal Md Shoeb, Abubakar Abid, Adam556
Fisch, Adam R. Brown, Adam Santoro, Aditya557
Gupta, Adrià Garriga-Alonso, Agnieszka Kluska,558
Aitor Lewkowycz, Akshat Agarwal, Alethea Power,559
Alex Ray, Alex Warstadt, Alexander W. Kocurek,560
Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Par-561
rish, Allen Nie, Aman Hussain, Amanda Askell,562
Amanda Dsouza, Ameet Rahane, Anantharaman S.563
Iyer, Anders Andreassen, Andrea Santilli, Andreas564
Stuhlmüller, Andrew M. Dai, Andrew La, Andrew K.565

Lampinen, Andy Zou, Angela Jiang, Angelica Chen, 566
Anh Vuong, Animesh Gupta, Anna Gottardi, Anto- 567
nio Norelli, Anu Venkatesh, Arash Gholamidavoodi, 568
Arfa Tabassum, Arul Menezes, Arun Kirubarajan, 569
Asher Mullokandov, Ashish Sabharwal, Austin Her- 570
rick, Avia Efrat, Aykut Erdem, Ayla Karakas, and 571
et al. 2022. Beyond the imitation game: Quantifying 572
and extrapolating the capabilities of language models. 573
CoRR, abs/2206.04615. 574

Kai Sun, Dian Yu, Dong Yu, and Claire Cardie. 2020. 575
Investigating prior knowledge for challenging chi- 576
nese machine reading comprehension. Trans. Assoc. 577
Comput. Linguistics, 8:141–155. 578

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and 579
Jonathan Berant. 2019. Commonsenseqa: A question 580
answering challenge targeting commonsense knowl- 581
edge. In Proceedings of the 2019 Conference of 582
the North American Chapter of the Association for 583
Computational Linguistics: Human Language Tech- 584
nologies, NAACL-HLT 2019, Minneapolis, MN, USA, 585
June 2-7, 2019, Volume 1 (Long and Short Papers), 586
pages 4149–4158. Association for Computational 587
Linguistics. 588

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 589
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 590
and Tatsunori B. Hashimoto. 2023. Stanford alpaca: 591
An instruction-following llama model. https:// 592
github.com/tatsu-lab/stanford_alpaca. 593

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 594
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 595
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 596
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard 597
Grave, and Guillaume Lample. 2023a. Llama: Open 598
and efficient foundation language models. CoRR, 599
abs/2302.13971. 600

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 601
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 602
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 603
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton- 604
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 605
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 606
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 607
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 608
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 609
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 610
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 611
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 612
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 613
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 614
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, 615
Ruan Silva, Eric Michael Smith, Ranjan Subrama- 616
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 617
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 618
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 619
Melanie Kambadur, Sharan Narang, Aurélien Ro- 620
driguez, Robert Stojnic, Sergey Edunov, and Thomas 621
Scialom. 2023b. Llama 2: Open foundation and 622
fine-tuned chat models. CoRR, abs/2307.09288. 623

Yaqing Wang, Quanming Yao, James T. Kwok, and Li- 624
onel M. Ni. 2021. Generalizing from a few examples: 625

7

https://doi.org/10.18653/V1/D18-1206
https://doi.org/10.18653/V1/D18-1206
https://doi.org/10.18653/V1/D18-1206
https://doi.org/10.18653/V1/D18-1206
https://doi.org/10.18653/V1/D18-1206
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.2310.17623
https://doi.org/10.48550/ARXIV.2310.17623
https://doi.org/10.48550/ARXIV.2310.17623
https://doi.org/10.18653/V1/P16-1144
https://doi.org/10.18653/V1/P16-1144
https://doi.org/10.18653/V1/P16-1144
https://doi.org/10.1162/TACL_A_00266
https://doi.org/10.1162/TACL_A_00266
https://doi.org/10.1162/TACL_A_00266
https://doi.org/10.48550/ARXIV.2310.18018
https://doi.org/10.48550/ARXIV.2310.18018
https://doi.org/10.48550/ARXIV.2310.18018
https://doi.org/10.48550/ARXIV.2310.18018
https://doi.org/10.48550/ARXIV.2310.18018
https://doi.org/10.1609/AAAI.V34I05.6399
https://doi.org/10.1609/AAAI.V34I05.6399
https://doi.org/10.1609/AAAI.V34I05.6399
https://doi.org/10.48550/ARXIV.2310.16789
https://doi.org/10.48550/ARXIV.2310.16789
https://doi.org/10.48550/ARXIV.2310.16789
https://doi.org/10.48550/ARXIV.2206.04615
https://doi.org/10.48550/ARXIV.2206.04615
https://doi.org/10.48550/ARXIV.2206.04615
https://doi.org/10.1162/TACL_A_00305
https://doi.org/10.1162/TACL_A_00305
https://doi.org/10.1162/TACL_A_00305
https://doi.org/10.18653/V1/N19-1421
https://doi.org/10.18653/V1/N19-1421
https://doi.org/10.18653/V1/N19-1421
https://doi.org/10.18653/V1/N19-1421
https://doi.org/10.18653/V1/N19-1421
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.1145/3386252
https://doi.org/10.1145/3386252


A survey on few-shot learning. ACM Comput. Surv.,626
53(3):63:1–63:34.627

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa628
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh629
Hajishirzi. 2023. Self-instruct: Aligning language630
models with self-generated instructions. In Proceed-631
ings of the 61st Annual Meeting of the Association632
for Computational Linguistics (Volume 1: Long Pa-633
pers), ACL 2023, Toronto, Canada, July 9-14, 2023,634
pages 13484–13508. Association for Computational635
Linguistics.636

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten637
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,638
and Denny Zhou. 2022. Chain-of-thought prompt-639
ing elicits reasoning in large language models. In640
NeurIPS.641

Yongqin Xian, Christoph H. Lampert, Bernt Schiele,642
and Zeynep Akata. 2019. Zero-shot learning - A643
comprehensive evaluation of the good, the bad and644
the ugly. IEEE Trans. Pattern Anal. Mach. Intell.,645
41(9):2251–2265.646

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali647
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a648
machine really finish your sentence? In Proceedings649
of the 57th Conference of the Association for Compu-650
tational Linguistics, ACL 2019, Florence, Italy, July651
28- August 2, 2019, Volume 1: Long Papers, pages652
4791–4800. Association for Computational Linguis-653
tics.654

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,655
Xiaolei Wang, Yupeng Hou, Yingqian Min, Be-656
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du,657
Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao658
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang659
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen.660
2023. A survey of large language models. CoRR,661
abs/2303.18223.662

A Experimental Settings 663

In this section, we show the detailed settings about 664

the experiments conducted in Section 2 and Sec- 665

tion 3, respectively. 666

A.1 Details for Empirical Study about 667

Benchmark Leakage 668

Evaluation Benchmark To make the empiri- 669

cal study, we select the widely-used benchmark 670

MMLU (Hendrycks et al., 2021) and employ a 671

number of question-answering, reasoning, and 672

reading comprehension datasets for evaluation. 673

• MMLU: it has become one of the most com- 674

monly used evaluation benchmarks for LLMs’ abil- 675

ity of world knowledge possessing and problem 676

solving. It covers 57 tasks requiring diverse knowl- 677

edge, such as math, history, science, and law. We 678

report the 5-shot evaluation performance. 679

• Open-domain QA Tasks: we select seven 680

open-domain QA datasets where LLMs should an- 681

swer the question solely based on intrinsic knowl- 682

edge. We report the accuracy of LLMs under the 683

zero-shot setting, i.e., BoolQ (Clark et al., 2019), 684

PIQA (Bisk et al., 2020), Hellaswag (Zellers et al., 685

2019), WinoGrande (Sakaguchi et al., 2020), ARC 686

Easy and Challenge (Clark et al., 2018), Open- 687

BookQA (Mihaylov et al., 2018). 688

• Reasoning Tasks: we select a commonsense 689

reasoning dataset CommonsenseQA (Talmor et al., 690

2019), and two commonly-used mathematical rea- 691

soning datasets GSM8k (Cobbe et al., 2021) and 692

AQuA (Ling et al., 2017) for evaluation. We use 693

chain-of-thought prompting and reuse the prompts 694

provided by Wei et al. (2022) for evaluation and 695

report the accuracy of LLMs. 696

• Reading Comprehension Tasks: we select 697

three English datasets RACE-Middle and RACE- 698

High (Lai et al., 2017), CoQA (Reddy et al., 2019) 699

and two Chinese datasets CMRC2018 (Cui et al., 700

2019) and C3-Dialog (Sun et al., 2020). As reading 701

comprehension datasets have one paragraph and 702

several QA pairs in a sample, we only test the accu- 703

racy of the last question and regard the paragraph 704

and other QA pairs as the prompt. We report accu- 705

racy under the zero-shot setting for C3-Dialog, and 706

utilize similar evaluation settings as GPT-3 (Brown 707

et al., 2020) for other tasks. 708

Backbone LLMs To thoroughly analyze the ef- 709

fect of benchmark leakage on the evaluation perfor- 710

mance, we select the following models for evalu- 711

ation, which have provided pre-training details or 712

8

https://doi.org/10.1145/3386252
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.18653/V1/2023.ACL-LONG.754
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.1109/TPAMI.2018.2857768
https://doi.org/10.1109/TPAMI.2018.2857768
https://doi.org/10.1109/TPAMI.2018.2857768
https://doi.org/10.1109/TPAMI.2018.2857768
https://doi.org/10.1109/TPAMI.2018.2857768
https://doi.org/10.18653/V1/P19-1472
https://doi.org/10.18653/V1/P19-1472
https://doi.org/10.18653/V1/P19-1472
https://doi.org/10.48550/ARXIV.2303.18223


Backbone Training Setting CSQA GSM8k AQuA RACE-M RACE-H CoQA CMRC C3

LLaMA-13B (None) 62.70 18.80 19.30 46.40 43.90 58.70 19.50 41.40
LLaMA-30B (None) 70.80 35.10 15.35 49.70 44.70 62.00 24.20 57.80
LLaMA-65B (None) 77.90 48.90 35.00 53.00 48.00 65.80 29.30 71.40

GPT-Neo
(1.3B)

(None) 18.43 2.05 18.11 36.19 34.83 30.35 0.00 24.18
+MMLU Train S 20.39 0.08 19.29 35.91 32.63 0.20 1.17 40.48
+All Train S 18.26 0.76 17.32 49.45 44.02 33.67 1.56 48.62
+All Train S+Test P 30.47 5.76 20.47 51.93 45.26 13.87 1.17 47.62
+All Train S+Test P&S 32.02 3.11 14.96 73.20 73.49 12.15 1.56 57.46

phi-1.5
(1.3B)

(None) 41.93 28.51 21.26 41.71 38.76 31.57 0.39 24.97
+MMLU Train S 37.92 10.24 22.05 48.07 47.85 10.85 0.39 42.91
+All Train S 18.67 14.94 14.96 54.42 52.34 7.27 0.00 53.39
+All Train S+Test P 33.58 19.26 18.50 55.80 52.82 8.25 0.78 53.17
+All Train S+Test P&S 34.15 22.82 20.87 79.28 81.91 5.03 1.95 67.04

OpenLLaMA
(3B)

(None) 23.75 3.34 19.29 44.75 40.10 54.97 3.52 24.81
+MMLU Train S 47.99 0.00 23.62 41.44 37.61 0.63 0.00 49.37
+All Train S 61.02 9.10 29.92 57.18 55.12 54.67 12.50 53.97
+All Train S+Test P 68.47 17.82 29.13 58.84 54.16 60.73 9.77 52.65
+All Train S+Test P&S 94.19 29.42 57.09 97.24 97.99 79.95 32.03 79.05

LLaMA-2
(7B)

(None) 55.69 12.96 14.17 28.45 38.47 25.88 8.98 37.72
+MMLU Train S 57.25 2.43 25.59 34.25 34.07 0.00 0.00 78.10
+All Train S 69.62 23.88 33.46 61.88 57.03 57.70 24.22 78.31
+All Train S+Test P 77.15 30.17 35.43 58.84 58.56 63.78 28.12 78.62
+All Train S+Test P&S 99.34 37.60 63.78 99.45 99.62 81.52 68.75 98.62

Table 4: The comparison among different benchmark leakage settings and the original LLMs on reasoning and
reading comprehension tasks. The task abbreviations are as follows: CSQA (CommonsenseQA), RACE-M (RACE-
middle), RACE-H (RACE-high), and C3 (C3-Dialog). The results in gray are the worst leakage setting using all the
test sets. The best results in each group are in bold except for the aforementioned worst case.

conducted careful data contamination analysis.713

• GPT-Neo-1.3B (Black et al., 2021): it is a714

Transformer-based model with GPT-3 architecture,715

pre-trained on the Pile (Gao et al., 2021) dataset.716

• phi-1.5 (Li et al., 2023): it is a 1.3B model717

trained on “textbook quality” data of ≈27B tokens,718

and can achieve comparable performance as much719

larger models.720

• OpenLLaMA-3B (Geng and Liu, 2023): it is an721

open-source project to reproduce LLaMA model722

with a permissive license, pre-trained on RedPa-723

jama dataset (Computer, 2023) of over 1.2T tokens.724

• LLaMA-2-7B (Touvron et al., 2023b): it is an725

updated version of LLaMA (Touvron et al., 2023a).726

It has been pre-trained on a mixture of publicly727

available online data of 2T tokens.728

A.2 Details for Potential Risk of Benchmark729

Leakage730

In this part, we show the details about the selected731

three evaluation datasets not in the leaked training732

data and two instruction datasets, for validating733

the effects on the performance of other tasks (in734

Section 3.1) and adaptation capability of LLMs (in735

Section 3.2).736

Evaluation Datasets We select three tasks that 737

are not involved in the leaked training data, consist- 738

ing of two text generation tasks and a code synthe- 739

sis task, and evaluate the performance of LLMs in 740

the zero-shot setting. 741

• LAMBADA (Paperno et al., 2016): it is a lan- 742

guage modeling task that tests the ability of LLMs 743

to predict the last word based on the context, and 744

we report the accuracy in predicting words. 745

• XSum (Narayan et al., 2018): it is a text sum- 746

marization task that requires LLM to summarize 747

the key information from long documents. For this 748

task, we report the ROUGE-L metric, which mea- 749

sures the quality of the generated summaries by 750

comparing them with the ground-truth summaries. 751

• HumanEval (Chen et al., 2021): it is a code 752

synthesis task. We adopt pass@10 as the evaluation 753

metric. 754

Instruction Datasets We select two representa- 755

tive instruction datasets, to investigate the influence 756

of data leakage on LLMs’ adaptation capability. 757

We use these datasets to fine-tune the LLMs with 758

or without training on the leaked data, and sub- 759

sequently evaluate their performance on the previ- 760

ously mentioned text generation and code synthesis 761

9



tasks.762

• Alpaca (Taori et al., 2023): it primarily con-763

tains natural language instructions, and is synthe-764

sized using the Self-Instruct method (Wang et al.,765

2023).766

• CodeAlpaca (Chaudhary, 2023): it focuses on767

code generation instructions, and is also synthe-768

sized using the Self-Instruct method.769

B Discussion770

In light of the potential risks of benchmark leakage,771

it is necessary to revisit the existing evaluation set-772

tings for LLMs and investigate possible strategies773

to avoid such data contamination issues.774

B.1 Fairness in Evaluating Zero/Few-shot775

Generalization Ability776

Based on our empirical findings in previous sec-777

tions, the evaluation results of LLMs in specific778

benchmarks can be dramatically boosted when the779

related or same data of the test tasks is acciden-780

tally used for training. In the literature of machine781

learning, zero/few-shot learning often refers that782

the samples at test time were not observed during783

training for a learner (Wang et al., 2021; Xian et al.,784

2019). It is evident that benchmark leakage does785

not comply with this requirement, making it un-786

fair to compare different LLMs when such a case787

exists. Furthermore, data leakage can also bring788

an unfair advantage in the few-shot setting since789

the learner can observe more task-relevant data at790

training time.791

In case of data leakage, the original zero-792

shot/few-shot generalization task would degenerate793

into much easier in-domain evaluation tasks, and794

it would intensify the phenomenon of benchmark795

hacking, i.e., a benchmark is no longer useful for796

evaluation due to the high performance of the in-797

volved comparison methods.798

However, in practice, it is challenging to fully799

eliminate the leakage risk from model train-800

ing (Golchin and Surdeanu, 2023; Shi et al., 2023).801

It is because an evaluation benchmark is often con-802

ducted based on some public text sources, e.g., web-803

pages and scientific papers. In this case, the related804

data (e.g., the original text used to generate the805

test problems) might be occasionally included in806

the pre-training data of LLMs. Although existing807

evaluation datasets are easy to be excluded from808

pre-training data for training new LLMs, it is still809

difficult to identify all potential data dependencies810

between evaluation benchmarks and pre-training 811

corpus. Such a test set contamination problem has 812

been already noted in black-box language mod- 813

els (Oren et al., 2023). 814

B.2 Suggestion for LLM Evaluation 815

Based on these discussions, we propose the fol- 816

lowing suggestions to improve existing capacity 817

evaluation for LLMs. 818

General suggestions: 819

• Considering the potential risk associated with 820

benchmark leakage, we recommend the use of 821

a broader range of benchmarks from diverse 822

sources for performance evaluation. This can 823

help mitigate the risk of inflated results due to 824

data contamination. If feasible, incorporating 825

manual evaluation and conducting qualitative 826

analysis would be also beneficial. 827

• In addition to evaluating the advanced capabil- 828

ities of LLMs (such as reasoning and factual 829

knowledge), it is also necessary to perform 830

evaluations on other datasets that focus on 831

basic abilities, such as text generation. This 832

comprehensive approach is necessary for a 833

thorough estimation of LLMs’ capabilities. 834

Suggestions for LLM developers: 835

• Perform strict checking on data decontamina- 836

tion in pre-training data to avoid any subse- 837

quent evaluation data being included during 838

training. To achieve this, the n-gram (gener- 839

ally, n = 13) hash algorithm can be applied 840

to examine the overlap between pre-training 841

data and evaluation data of some specific task. 842

• If possible, we suggest also excluding training 843

data of mainstream evaluation benchmarks 844

from pre-training data. 845

• Indicate any potential risk of data contamina- 846

tion (if any) and report the contamination anal- 847

ysis (e.g., overlap statistics) when you present 848

the results on some evaluation benchmark. An 849

example can be seen in Llama-2’s report (Tou- 850

vron et al., 2023b). 851

• Report a more detailed composition of the pre- 852

training data, especially the datasets related to 853

mainstream evaluation benchmarks. It is an 854

important reference for checking the potential 855

data leakage risk by the public audience. 856

10



Suggestions for benchmark maintainers:857

• Provide the detail of the data source for con-858

structing the benchmark, and conduct the con-859

tamination analysis of the current dataset with860

mainstream pre-training corpora (as many as861

possible). The benchmark should explicitly862

alert possible contamination risks for com-863

monly used pre-training datasets.864

• Each submission is suggested to be accompa-865

nied with a specific contamination analysis re-866

port from the result provider, where it can per-867

form semantic relevance checking (e.g., over-868

lap statistics) between pre-training data and869

evaluation data (both training and test data).870

• Provide a diverse set of prompts for testing.871

The final evaluation results should be aver-872

aged over these multiple runs. It can help873

reduce the sensitivity of specific prompts, and874

enhance the reliability of the model results.875

11


	Introduction
	Empirical Study: Benchmark Leakage
	Experimental Setup
	Results and Analysis

	Potential Risk of Benchmark Leakage
	Effect on the Performance of Other Tasks
	Effect on Model Adaptation

	Conclusion
	Experimental Settings
	Details for Empirical Study about Benchmark Leakage
	Details for Potential Risk of Benchmark Leakage

	Discussion
	Fairness in Evaluating Zero/Few-shot Generalization Ability
	Suggestion for LLM Evaluation


