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Abstract

To assess the capacity of large language mod-
els (LLMs), a typical approach is to construct
evaluation benchmarks for measuring their abil-
ity level in different aspects. Although a surge
of high-quality benchmarks have been released,
the concerns about the appropriate use of bench-
marks and the fair comparison are increasingly
growing. In this paper, we discuss the poten-
tial risk and impact of inappropriately using
evaluation benchmarks and misleadingly inter-
preting the evaluation results. Specially, we
focus on a special issue that would lead to in-
appropriate evaluation, i.e., benchmark leak-
age, referring that the data related to evaluation
sets is occasionally used for model training.
This phenomenon now becomes more common
since pre-training data is often prepared ahead
of model test. We conduct extensive experi-
ments to study the effect of benchmark leakage,
and find that it can dramatically boost the eval-
uation results, which would finally lead to an
unreliable assessment of model performance.
We hope this work can draw attention to appro-
priate training and evaluation of LLMs.

1 Introduction

Recently, a surge of high-quality evaluation bench-
marks (Chang et al., 2023) have been proposed to
provide a comprehensive capability evaluation of
large language models (LLMs) (Brown et al., 2020;
OpenAl, 2023; Zhao et al., 2023), for better under-
standing how LLMs evolve in model capacity. Typ-
ical benchmarks include MMLU (Hendrycks et al.,
2021) (for measuring multitask language under-
standing ability) and Big-Bench (Srivastava et al.,
2022) (for quantifying and extrapolating the capa-
bilities of LLMs). Based on these benchmarks, one
can conveniently examine the effect of new training
strategies or monitor the training status of LLMs
(either pre-training or supervised fine-tuning). It
has become common to report the results on bench-
marks for demonstrating the effectiveness of newly

Rank-10
Rank-11
Rank-12

— LLM [—

Pre-training Data Performance

Improvement

Rank-1
Rank-2
Rank-3

— LLM —

Benchmark Data
(Training/Test)

Figure 1: Illustration of the potential risk about data
leakage. Once the pre-training data with overlap to the
benchmark data is used for training LLM, its benchmark
performance would be greatly increased.

released LLMs (Touvron et al., 2023b; Anil et al.,
2023). Furthermore, to compare the performance
of different LLLMs, various leaderboards have been
also created to rank LL.Ms according to their perfor-
mance on existing or new evaluation benchmarks,
such as OpenCompass (Contributors, 2023) and
C-Eval (Huang et al., 2023).

Despite the wide use of these benchmarks and
leaderboards, increasing concerns (Aiyappa et al.,
2023; Li, 2023) are growing about the fairness and
reliability in evaluating existing LLMs. A major
issue is that the data contamination or leakage is
likely to occur for large-scale benchmark evalu-
ation, which means that LLMs are trained with
relevant or exactly the same data for test. Such an
issue could be unconsciously triggered, since we
might be unaware of the future evaluation datasets
when preparing the pre-training corpus. For exam-
ple, GPT-3 has found that Children’s Book Test
dataset (Hill et al., 2016) was included in the pre-
training corpus, and LLaMA-2 has mentioned that
the contexts in BoolQ dataset (Clark et al., 2019)
are extracted verbatim from the webpages, which
may be included in the publicly available corpus.

Indeed, when conducting evaluation with exist-
ing benchmarks, the results of evaluated LLMs are
mostly obtained by running them on local servers or
via API calls. During this process, there is no strict



checking on any potentially inappropriate ways
(e.g., data contamination) that would cause an un-
normal improvement of evaluation performance.
To make matters worse, the detailed composition
(e.g., data sources) of the training corpus is often
regarded as the core “secret” of existing LLMs.
Therefore, it becomes difficult to directly exam-
ine the contamination issues when performing the
evaluation for benchmark maintainers.

Considering this issue, the aim of this paper is to
draw attention on appropriately using existing eval-
uation benchmarks and avoiding any misleading be-
haviors in obtaining or interpreting the evaluation
results. Specifically, we mainly focus on discussing
the potential effect of benchmark leakage, which
refers to the case that test data or relevant data (e.g.,
training set) has been included in the pre-training
corpus. It would cause an unfair performance ad-
vantage when comparing different LLMs or assess-
ing the ability level of some specific LLMs. As
we discussed before, this issue tends to become in-
creasingly more common as we try to collect more
public text data for training. To investigate this is-
sue, we set up several benchmark leakage settings
that should be totally avoided during evaluation,
including the leakage of training sets, test prompts,
and test sets. Based on the three settings, we contin-
ually train four popular language models, ranging
from 1.3B to 7B, and test the performance of the
four models on a number of existing benchmarks.
In addition, we also examine the potential risk of
benchmark leakage on other abilities.

Experimental results reveal that benchmark leak-
age can lead to an unfair boost in the evaluation
performance of LLMs. Smaller LLMs (e.g., 1.3B
models) can be deliberately elevated to outperform
10x larger models on certain tasks. As a side effect,
the performance of these specially trained LLMs
on other normally tested tasks would likely be ad-
versely affected if we fine-tune or train the model
only with these leaked data. By examining the
potential risks of benchmark leakage, we would
like to emphasize the importance of fair and appro-
priate evaluation for LLMs, and propose several
suggestions in Appendix B.

2 Empirical Study: Benchmark Leakage

During pre-training, the data contamination or leak-
age about possible evaluation benchmarks, is likely
to be unconsciously triggered (Oren et al., 2023;
Sainz et al., 2023). It would violate regular eval-

uation settings for assessing zero/few-shot gener-
alization capability, thus affecting the capability
assessment of LLMs. To better understand the
potential influence of the benchmark leakage is-
sue, we conduct an empirical study that continually
trains small-sized LLMs on three settings with dif-
ferent levels of information leakage.

2.1 Experimental Setup

Training Settings with Benchmark Leakage.
We aim to test the influence of possible benchmark
leakage issues on the evaluation results of LLMs. A
benchmark typically contains a set of test examples,
and relies on fixed templates to prompt LLMs for
evaluation. Such an evaluation process may lead to
three types of benchmark leakage risks, including
test prompt, test set, or other relevant data (e.g.,
training set) into the pre-training corpus. Consider-
ing the above settings, we simulate three extreme
leakage issues where the three types of information
have been used for continually training LLMs, and
design the following evaluation settings.

o Using MMLU Training Set: the auxiliary train-
ing set provided by the official MMLU bench-
mark (Hendrycks et al., 2021) is used for training.'

e Using All Training Sets: in addition to MMLU
training set, the training sets of all other collected
evaluation benchmarks are also used for training.

o Using All Training Sets with Test Prompt:
all the training sets, with their corresponding test
prompts, e.g., task description and few-shot demon-
stration, are used for training.

e Using All Training and Test Sets with Test
Prompt: all the training sets, test prompts, and test
sets of all the collected benchmarks are used for
training. (CAUTION: the most extreme case only
for reference, where all information is leaked.)

Evaluation Benchmark and LLMs. To conduct
the empirical study, we select the widely-used
benchmark MMLU (Hendrycks et al., 2021) and
employ seven QA, three reasoning, and five read-
ing comprehension datasets for evaluation. To thor-
oughly analyze the effect of benchmark leakage on
the evaluation performance, we select four models
for evaluation, which have provided pre-training
details or conducted careful data contamination
analysis. These baseline models include GPT-
Neo-1.3B (Black et al., 2021), phi-1.5 (Li et al.,
2023), OpenLLaMA-3B (Geng and Liu, 2023), and

1https ://github.com/hendrycks/test. It contains
data collected from other QA datasets e.g., ARC and OBQA.
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Backbone Training Setting MMLU BoolQ PIQA HSwag WG ARC-E ARC-C OBQA
LLaMA-13B  (None) 46.90 76.70  79.70  60.00  73.00  79.00 49.40 34.60
LLaMA-30B  (None) 57.80 83.39 80.63 6339 76.08 80.55 51.62 36.40
LLaMA-65B (None) 64.50 85.40 81.70 6490 7720 80.80 52.30 38.40

(None) 24.04 62.57 70.57 38.65 5572 55098 23.29 21.40

GPT-Neo +MMLU Train S 35.84 57.89 68.39 3727 5217 50.93 27.39 20.40

(1.3B) +All Train S 35.10 7832 68.61 4246  61.72  63.68 33.36 29.40

- +All Train S+Test P 36.15 7691 7372 42775 64.25  64.39 34.13 31.80
+All Train S+Test P&S 52.25 87.25 85.96 62.98 80.66 88.17 70.31 63.20

(None) 42.87 7434 7650 4799 73,56  75.84 4497 38.40

phi-1.5 +MMLU Train S 46.08 7437 76,50  47.80 73.09  75.93 48.63 40.00
a 3B.) +All Train S 45.20 8235 7437 54.64 6946  75.00 47.87 42.40

) +All Train S+Test P 46.80 82.72 7427 5455 70.56  75.00 47.18 39.80
+All Train S+Test P&S 75.05 92.60  97.55 77.88  96.05 97.47 92.92 94.20

(None) 26.49 66.51 74.81 4942  60.85 69.57 33.87 26.60

OpenLLaMA +MMLU Train S 43.12 74.10 7122 4728 6243  58.92 35.41 32.00
(3B) +All Train S 44.86 8541 76.82 5442 71.11 72.26 41.55 42.00
+All Train S+Test P 48.31 85.57 7650 5434 7230 71.80 41.64 40.80

+All Train S+Test P&S 87.31 97.55 98.26 97.61 96.37 99.16 97.87 96.20

(None) 42.95 71.68 70.78 5534 6796  72.52 41.30 32.20

LLaMA-2 +MMLU Train S 51.61 81.96 69.64 4946 70.64 61.87 36.52 36.80
(7B) +All Train S 52.15 88.72  79.05 61.08 7995 76.60 49.49 48.00
+All Train S+Test P 56.04 87.86 79.11 61.19 7656 76.64 50.26 45.00

+All Train S+Test P&S 96.34 99.08 99.62 99.47 97.47 99.54 99.23 99.40

Table 1: The comparison among benchmark leakage settings and the original LLMs on MMLU and QA tasks. Train
S, Test P and Test P&S denote the data leakage scenarios that use the training set, test prompt, and both test set
and test prompt during training, respectively. The task abbreviations are as follows: HSwag (Hellaswag), WG
(WinoGrande), ARC-E (ARC-Easy), ARC-C (ARC-Challenge), and OBQA (OpenBookQA). The results in gray are
the worst leakage setting using all the test sets. The best results in each group are in bold except for the worst case.

LLaMA-2-7B (Touvron et al., 2023b). We provide
more detailed experimental settings in Appendix A.

2.2 Results and Analysis

We report the results of LLMs after training with
the benchmark leakage settings in Table 1 and 4 (in
Appendix). We have the following observations.

First, using MMLU training set can greatly boost
the evaluation results on the MMLU benchmark.
However, this improvement comes with the cost of
performance decrease on tasks unrelated to MMLU,
(e.g., HellaSwag and GSM8k), suggesting that over-
emphasizing a specific task may lower the model
generalization capability. Besides, when incorpo-
rating all the training sets of the evaluated bench-
marks, there is a notable performance increase
across almost all the evaluated tasks. Incorporating
training data converts the original zero/few-shot
evaluation into an in-domain test task, making it
easier for LLMs to achieve higher results.

Second, when the test prompts were leaked,
smaller LLMs can even surpass much larger LLMs,
e.g., phi-1.5-1.3B outperforms LLaMA-65B on
RACE-M and RACE-H. This highlights the signif-
icance of the test prompt as valuable information

from the evaluation benchmark, since it contains
the detailed input format during test. Furthermore,
this observation raises concerns about using fixed
test prompts in the evaluation benchmark, as it may
not be resilient to the aforementioned leakage risk.

Finally, as the results in grey font, test data
leakage significantly inflates benchmark perfor-
mance, leading 1.3B LLMs to outperform 65B
LLMs across most tasks. Evidently, this increase
does not imply any improvement in capacity, but
rather benchmark cheating.

Overall, benchmark leakage directly leads to an
unfair advantage in evaluation results of the in-
volved models, which should be strictly avoided
when conducting any evaluation.

3 Potential Risk of Benchmark Leakage

In addition to the influence on the reliability of
capability estimation, we also investigate whether
benchmark leakage would lead to potential risks in
model capacity. Limited by the training compute,
we only continually pre-train the LLMs on the train-
ing sets of all the selected evaluation benchmarks
as in Section 2. Such a way is the most direct way
for benchmark cheating (should be avoided). We



Backbone Training LAMB XSum HEval Backbone Training LAMB XSum HEval
GPT-Neo (None) 46.10 7.54 2.44 GPT-Neo +IT 45.40 8.34 14.24
(1.3B) +Leak 46.00 6.84 3.05 (1.3B) +Leak+IT  43.50 8.25 12.20
OpenLLaMA (None) 56.50 8.31 4.27 OpenLLaMA  +IT 54.00 3.50 9.15
3B) +Leak 53.20 0.19 1.83 (3B) +Leak+IT  46.20 2.61 6.71
LLaMA-2 (None) 68.20 8.67 26.83 LLaMA-2 +IT 60.30 8.64 28.66
(7B) +Leak 61.00 0.25 8.54 (7B) +Leak+IT  53.60 8.55 20.73

Table 2: The comparison among LLMs on two text
generation and a code synthesis tasks. “Leak” denotes
the data leakage scenario using all training sets of the
benchmarks in Section 2. LAMB and HEval refer to the
LAMBADA and HumanEval datasets, respectively.

speculate that it is likely to affect the capacities of
LLMs on normally tested tasks (without data leak-
age), due to “catastrophe forgetting” (Luo et al.,
2023; Goodfellow et al., 2013).

3.1 Effect on the Performance of Other Tasks

Experimental Setup. After training on the
leaked benchmark data, it would potentially mis-
lead LLMs to overemphasize the specific knowl-
edge and output style of the benchmark data,
thereby affecting their performance on other tasks.
In this part, we conduct experiments to validate the
effect. We select three tasks that are not involved
in the leaked training data, consisting of two text
generation tasks, i.e., LAMBADA (Paperno et al.,
2016) and XSum (Narayan et al., 2018), and a code
synthesis task HumanEval (Chen et al., 2021) to
evaluate LLMs in the zero-shot setting.

Results Analysis. We show the results of LLLMs
with and without benchmark leakage in Table 2.
First, we can observe that after training on the
leaked data, the performance of all LLMs degrades
on the two text generation and the code synthesis
tasks. Specifically, the text summarization abil-
ity of OpenLLaMA-3B and LLaMA-2-7B, seems
to be weakened a lot after training on the leaked
data (e.g., 0.19 and 0.25 Rouge-L in XSum). This
demonstrates that benchmark leakage may have a
negative impact on the performance of these nor-
mally tested tasks (without data leakage).

3.2 Effect on Model Adaptation

Experimental Setup. After training on the
leaked data, LLLMs would be specially fit for the
benchmark data. However, LLMs might need to
be further fine-tuned for attaining some specific
goals (e.g., solving new tasks or serving emergent
applications). In this part, we investigate the influ-

Table 3: The comparison among LLMs after instruction
tuning. “Leak” denotes the data leakage using all train-
ing sets of the benchmarks in Section 2. “IT” denotes
the instruction tuning using Alpaca and CodeAlpaca for
text generation and code synthesis tasks, respectively.

ence of data leakage on LLMs’ adaptation capa-
bility. We select two instruction datasets to fine-
tune LLMs with or without training on the leaked
data, i.e., Alpaca (Taori et al., 2023) and CodeAl-
paca (Chaudhary, 2023), which are synthetic natu-
ral language and code generation instructions, re-
spectively. Then, we evaluate their performance on
the text generation and code synthesis tasks.

Results Analysis. In Table 3, by comparing the
performance of the instruction-tuned LLMs (+Al-
paca or +CodeAlpaca) with and without training
on the leaked data, we can see that the LLMs with
benchmark leakage still underperform their non-
leaked counterparts. For the HumanEval dataset,
the performance improvements of instruction tun-
ing for LLMs trained with leaked data only reach
approximately 80% of those achieved by models
that are not trained on leaked data. This indicates
that benchmark leakage may lead to a decline in the
adaptation ability, constraining the improvement of
LLMs through subsequent fine-tuning processes.

4 Conclusion

In this paper, we conducted empirical studies to
investigate the potential risk and impact of bench-
mark leakage on LLM evaluation, to draw the at-
tention to the appropriate use of existing evalua-
tion benchmarks for LLMs. We found that data
leakage can largely boost the benchmark results of
LLMs (even small models), making the evaluation
unfair and untrustworthy. Besides, benchmark leak-
age may also have negative impacts on the perfor-
mance of other tasks and the adaptation capability
of LLMs. These findings suggest that such attempts
should be strictly avoided for fairly assessing the
model performance on evaluation benchmarks.



Limitation

In this work, we conducted preliminary experi-
ments to emphasize the potential risks associated
with benchmark leakage in training LLMs. How-
ever, there are still several limitations in our study.

First, our experiments involved continually train-
ing existing pre-trained LLMs with leaked data. We
do not have sufficient computational resources to
investigate the impact when directly incorporating
benchmark leakage during the pre-training process.
Given that the pre-training dataset is significantly
larger than the benchmark data, introducing data
leakage during pre-training might yield different
findings. Nonetheless, we strongly recommend
avoiding this situation as it would breaks the nature
of zero-shot/few-shot evaluation.

Second, we did not explore more fine-grained
data leakage scenarios in this study, such as only
leaking training examples without labels and vary-
ing the proportion of the leaked dataset. We en-
courage more research efforts into this issue with
more systematic studies.

Third, we did not calculate the degree of con-
tamination between the mainstream benchmarks
and commonly-used pre-training datasets, which
could serve as an important reference for alerting
LLM developers to adjust their evaluation settings.
While we suggest that developers and benchmark
maintainers report contamination analyses, accu-
rately and efficiently estimating the contamination
risk of each example in the benchmark is also a
challenging task. For example, the suggested n-
gram hash algorithm may not detect semantic-level
knowledge leakage risks.
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A Experimental Settings

In this section, we show the detailed settings about
the experiments conducted in Section 2 and Sec-
tion 3, respectively.

A.1 Details for Empirical Study about
Benchmark Leakage

Evaluation Benchmark To make the empiri-
cal study, we select the widely-used benchmark
MMLU (Hendrycks et al., 2021) and employ a
number of question-answering, reasoning, and
reading comprehension datasets for evaluation.

e MMLU: it has become one of the most com-
monly used evaluation benchmarks for LLMs’ abil-
ity of world knowledge possessing and problem
solving. It covers 57 tasks requiring diverse knowl-
edge, such as math, history, science, and law. We
report the 5-shot evaluation performance.

e Open-domain QA Tasks: we select seven
open-domain QA datasets where LLMs should an-
swer the question solely based on intrinsic knowl-
edge. We report the accuracy of LLMs under the
zero-shot setting, i.e., BoolQ (Clark et al., 2019),
PIQA (Bisk et al., 2020), Hellaswag (Zellers et al.,
2019), WinoGrande (Sakaguchi et al., 2020), ARC
Easy and Challenge (Clark et al., 2018), Open-
BookQA (Mihaylov et al., 2018).

e Reasoning Tasks: we select a commonsense
reasoning dataset CommonsenseQA (Talmor et al.,
2019), and two commonly-used mathematical rea-
soning datasets GSM8k (Cobbe et al., 2021) and
AQuA (Ling et al., 2017) for evaluation. We use
chain-of-thought prompting and reuse the prompts
provided by Wei et al. (2022) for evaluation and
report the accuracy of LLMs.

e Reading Comprehension Tasks: we select
three English datasets RACE-Middle and RACE-
High (Lai et al., 2017), CoQA (Reddy et al., 2019)
and two Chinese datasets CMRC2018 (Cui et al.,
2019) and C3-Dialog (Sun et al., 2020). As reading
comprehension datasets have one paragraph and
several QA pairs in a sample, we only test the accu-
racy of the last question and regard the paragraph
and other QA pairs as the prompt. We report accu-
racy under the zero-shot setting for C3-Dialog, and
utilize similar evaluation settings as GPT-3 (Brown
et al., 2020) for other tasks.

Backbone LLMs To thoroughly analyze the ef-
fect of benchmark leakage on the evaluation perfor-
mance, we select the following models for evalu-
ation, which have provided pre-training details or
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Backbone Training Setting CSQA GSM8k AQuA RACE-M RACE-H CoQA CMRC C3
LLaMA-13B  (None) 62.70 18.80 19.30 46.40 43.90 58.70  19.50 41.40
LLaMA-30B (None) 70.80 35.10 15.35 49.70 44.70 62.00 2420 57.80
LLaMA-65B (None) 77.90 48.90 35.00 53.00 48.00 65.80 2930 7140

(None) 18.43 2.05 18.11 36.19 34.83 30.35 0.00 24.18

GPT-Neo +MMLU Train S 20.39 0.08 19.29 3591 32.63 0.20 1.17 4048

(1.3B) +All Train S 18.26 0.76 17.32 49.45 44.02 33.67 1.56  48.62

' +All Train S+Test P 30.47 5.76 20.47 51.93 45.26 13.87 1.17  47.62
+All Train S+Test P&S  32.02 3.11 14.96 73.20 73.49 12.15 1.56 57.46

(None) 41.93 28.51 21.26 41.71 38.76 31.57 0.39 2497

phi-1.5 +MMLU Train S 37.92 10.24 22.05 48.07 47.85 10.85 0.39 4291
a 3B.) +All Train S 18.67 14.94 14.96 54.42 52.34 7.27 0.00 53.39

: +All Train S+Test P 33.58 19.26 18.50 55.80 52.82 8.25 0.78 53.17
+All Train S+Test P&S  34.15 22.82 20.87 79.28 81.91 5.03 1.95 67.04

(None) 23.75 3.34 19.29 44.75 40.10 54.97 352 24381

OpenLLaMA +MMLU Train S 47.99 0.00 23.62 41.44 37.61 0.63 0.00  49.37
(3B) +All Train S 61.02 9.10 29.92 57.18 55.12 54.67 1250 53.97
+All Train S+Test P 68.47 17.82 29.13 58.84 54.16 60.73 9.77 52.65

+All Train S+Test P&S  94.19 29.42 57.09 97.24 97.99 79.95 32.03 79.05

(None) 55.69 12.96 14.17 28.45 38.47 25.88 8.98 37.72

LLaMA-2 +MMLU Train S 57.25 243 25.59 34.25 34.07 0.00 0.00  78.10
(7B) +All Train S 69.62 23.88 33.46 61.88 57.03 5770 2422  78.31
+All Train S+Test P 77.15 30.17 35.43 58.84 58.56 63.78 28.12 78.62

+All Train S+Test P&S  99.34 37.60 63.78 99.45 99.62 81.52 6875 98.62

Table 4: The comparison among different benchmark leakage settings and the original LLMs on reasoning and
reading comprehension tasks. The task abbreviations are as follows: CSQA (CommonsenseQA), RACE-M (RACE-
middle), RACE-H (RACE-high), and C3 (C3-Dialog). The results in gray are the worst leakage setting using all the
test sets. The best results in each group are in bold except for the aforementioned worst case.

conducted careful data contamination analysis.

e GPT-Neo-1.3B (Black et al., 2021): it is a
Transformer-based model with GPT-3 architecture,
pre-trained on the Pile (Gao et al., 2021) dataset.

e phi-1.5 (Li et al., 2023): it is a 1.3B model
trained on “textbook quality” data of ~27B tokens,
and can achieve comparable performance as much
larger models.

e OpenLLaMA-3B (Geng and Liu, 2023): itis an
open-source project to reproduce LLaMA model
with a permissive license, pre-trained on RedPa-
jama dataset (Computer, 2023) of over 1.2T tokens.

e L.LaMA-2-7B (Touvron et al., 2023b): it is an
updated version of LLaMA (Touvron et al., 2023a).
It has been pre-trained on a mixture of publicly
available online data of 2T tokens.

A.2 Details for Potential Risk of Benchmark
Leakage

In this part, we show the details about the selected
three evaluation datasets not in the leaked training
data and two instruction datasets, for validating
the effects on the performance of other tasks (in
Section 3.1) and adaptation capability of LLMs (in
Section 3.2).

Evaluation Datasets We select three tasks that
are not involved in the leaked training data, consist-
ing of two text generation tasks and a code synthe-
sis task, and evaluate the performance of LLMs in
the zero-shot setting.

o LJAMBADA (Paperno et al., 2016): it is a lan-
guage modeling task that tests the ability of LLMs
to predict the last word based on the context, and
we report the accuracy in predicting words.

e XSum (Narayan et al., 2018): it is a text sum-
marization task that requires LLM to summarize
the key information from long documents. For this
task, we report the ROUGE-L metric, which mea-
sures the quality of the generated summaries by
comparing them with the ground-truth summaries.

e HumanEval (Chen et al., 2021): it is a code
synthesis task. We adopt pass @10 as the evaluation
metric.

Instruction Datasets We select two representa-
tive instruction datasets, to investigate the influence
of data leakage on LLMs’ adaptation capability.
We use these datasets to fine-tune the LLMs with
or without training on the leaked data, and sub-
sequently evaluate their performance on the previ-
ously mentioned text generation and code synthesis



tasks.

e Alpaca (Taori et al., 2023): it primarily con-
tains natural language instructions, and is synthe-
sized using the Self-Instruct method (Wang et al.,
2023).

o CodeAlpaca (Chaudhary, 2023): it focuses on
code generation instructions, and is also synthe-
sized using the Self-Instruct method.

B Discussion

In light of the potential risks of benchmark leakage,
it is necessary to revisit the existing evaluation set-
tings for LLMs and investigate possible strategies
to avoid such data contamination issues.

B.1 Fairness in Evaluating Zero/Few-shot
Generalization Ability

Based on our empirical findings in previous sec-
tions, the evaluation results of LLMs in specific
benchmarks can be dramatically boosted when the
related or same data of the test tasks is acciden-
tally used for training. In the literature of machine
learning, zero/few-shot learning often refers that
the samples at test time were not observed during
training for a learner (Wang et al., 2021; Xian et al.,
2019). It is evident that benchmark leakage does
not comply with this requirement, making it un-
fair to compare different LLMs when such a case
exists. Furthermore, data leakage can also bring
an unfair advantage in the few-shot setting since
the learner can observe more task-relevant data at
training time.

In case of data leakage, the original zero-
shot/few-shot generalization task would degenerate
into much easier in-domain evaluation tasks, and
it would intensify the phenomenon of benchmark
hacking, i.e., a benchmark is no longer useful for
evaluation due to the high performance of the in-
volved comparison methods.

However, in practice, it is challenging to fully
eliminate the leakage risk from model train-
ing (Golchin and Surdeanu, 2023; Shi et al., 2023).
It is because an evaluation benchmark is often con-
ducted based on some public text sources, e.g., web-
pages and scientific papers. In this case, the related
data (e.g., the original text used to generate the
test problems) might be occasionally included in
the pre-training data of LLMs. Although existing
evaluation datasets are easy to be excluded from
pre-training data for training new LLMs, it is still
difficult to identify all potential data dependencies
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between evaluation benchmarks and pre-training
corpus. Such a test set contamination problem has
been already noted in black-box language mod-
els (Oren et al., 2023).

B.2 Suggestion for LLM Evaluation

Based on these discussions, we propose the fol-
lowing suggestions to improve existing capacity
evaluation for LLMs.

General suggestions:

* Considering the potential risk associated with
benchmark leakage, we recommend the use of
a broader range of benchmarks from diverse
sources for performance evaluation. This can
help mitigate the risk of inflated results due to
data contamination. If feasible, incorporating
manual evaluation and conducting qualitative
analysis would be also beneficial.

In addition to evaluating the advanced capabil-
ities of LLMs (such as reasoning and factual
knowledge), it is also necessary to perform
evaluations on other datasets that focus on
basic abilities, such as text generation. This
comprehensive approach is necessary for a
thorough estimation of LLMs’ capabilities.

Suggestions for LLM developers:

* Perform strict checking on data decontamina-
tion in pre-training data to avoid any subse-
quent evaluation data being included during
training. To achieve this, the n-gram (gener-
ally, n = 13) hash algorithm can be applied
to examine the overlap between pre-training
data and evaluation data of some specific task.

If possible, we suggest also excluding training
data of mainstream evaluation benchmarks
from pre-training data.

Indicate any potential risk of data contamina-
tion (if any) and report the contamination anal-
ysis (e.g., overlap statistics) when you present
the results on some evaluation benchmark. An
example can be seen in Llama-2’s report (Tou-
vron et al., 2023b).

Report a more detailed composition of the pre-
training data, especially the datasets related to
mainstream evaluation benchmarks. It is an
important reference for checking the potential
data leakage risk by the public audience.



Suggestions for benchmark maintainers:

* Provide the detail of the data source for con-
structing the benchmark, and conduct the con-
tamination analysis of the current dataset with
mainstream pre-training corpora (as many as
possible). The benchmark should explicitly
alert possible contamination risks for com-
monly used pre-training datasets.

» Each submission is suggested to be accompa-
nied with a specific contamination analysis re-
port from the result provider, where it can per-
form semantic relevance checking (e.g., over-
lap statistics) between pre-training data and
evaluation data (both training and test data).

* Provide a diverse set of prompts for testing.
The final evaluation results should be aver-
aged over these multiple runs. It can help
reduce the sensitivity of specific prompts, and
enhance the reliability of the model results.
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