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Abstract

To assess the capacity of large language mod-001
els (LLMs), a typical approach is to construct002
evaluation benchmarks for measuring their abil-003
ity level in different aspects. Although a surge004
of high-quality benchmarks have been released,005
the concerns about the appropriate use of bench-006
marks and the fair comparison are increasingly007
growing. In this paper, we discuss the poten-008
tial risk and impact of inappropriately using009
evaluation benchmarks and misleadingly inter-010
preting the evaluation results. Specially, we011
focus on a special issue that would lead to in-012
appropriate evaluation, i.e., benchmark leak-013
age, referring that the data related to evaluation014
sets is occasionally used for model training.015
This phenomenon now becomes more common016
since pre-training data is often prepared ahead017
of model test. We conduct extensive experi-018
ments to study the effect of benchmark leakage,019
and find that it can dramatically boost the eval-020
uation results, which would finally lead to an021
unreliable assessment of model performance.022
We hope this work can draw attention to appro-023
priate training and evaluation of LLMs.024

1 Introduction025

Recently, a surge of high-quality evaluation bench-026

marks (Chang et al., 2023) have been proposed to027

provide a comprehensive capability evaluation of028

large language models (LLMs) (Brown et al., 2020;029

OpenAI, 2023; Zhao et al., 2023), for better under-030

standing how LLMs evolve in model capacity. Typ-031

ical benchmarks include MMLU (Hendrycks et al.,032

2021) (for measuring multitask language under-033

standing ability) and Big-Bench (Srivastava et al.,034

2022) (for quantifying and extrapolating the capa-035

bilities of LLMs). Based on these benchmarks, one036

can conveniently examine the effect of new training037

strategies or monitor the training status of LLMs038

(either pre-training or supervised fine-tuning). It039

has become common to report the results on bench-040

marks for demonstrating the effectiveness of newly041
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Figure 1: Illustration of the potential risk about data
leakage. Once the pre-training data with overlap to the
benchmark data is used for training LLM, its benchmark
performance would be greatly increased.

released LLMs (Touvron et al., 2023b; Anil et al., 042

2023). Furthermore, to compare the performance 043

of different LLMs, various leaderboards have been 044

also created to rank LLMs according to their perfor- 045

mance on existing or new evaluation benchmarks, 046

such as OpenCompass (Contributors, 2023) and 047

C-Eval (Huang et al., 2023). 048

Despite the wide use of these benchmarks and 049

leaderboards, increasing concerns (Aiyappa et al., 050

2023; Li, 2023) are growing about the fairness and 051

reliability in evaluating existing LLMs. A major 052

issue is that the data contamination or leakage is 053

likely to occur for large-scale benchmark evalu- 054

ation, which means that LLMs are trained with 055

relevant or exactly the same data for test. Such an 056

issue could be unconsciously triggered, since we 057

might be unaware of the future evaluation datasets 058

when preparing the pre-training corpus. For exam- 059

ple, GPT-3 has found that Children’s Book Test 060

dataset (Hill et al., 2016) was included in the pre- 061

training corpus, and LLaMA-2 has mentioned that 062

the contexts in BoolQ dataset (Clark et al., 2019) 063

are extracted verbatim from the webpages, which 064

may be included in the publicly available corpus. 065

Indeed, when conducting evaluation with exist- 066

ing benchmarks, the results of evaluated LLMs are 067

mostly obtained by running them on local servers or 068

via API calls. During this process, there is no strict 069
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checking on any potentially inappropriate ways070

(e.g., data contamination) that would cause an un-071

normal improvement of evaluation performance.072

To make matters worse, the detailed composition073

(e.g., data sources) of the training corpus is often074

regarded as the core “secret” of existing LLMs.075

Therefore, it becomes difficult to directly exam-076

ine the contamination issues when performing the077

evaluation for benchmark maintainers.078

Considering this issue, the aim of this paper is to079

draw attention on appropriately using existing eval-080

uation benchmarks and avoiding any misleading be-081

haviors in obtaining or interpreting the evaluation082

results. Specifically, we mainly focus on discussing083

the potential effect of benchmark leakage, which084

refers to the case that test data or relevant data (e.g.,085

training set) has been included in the pre-training086

corpus. It would cause an unfair performance ad-087

vantage when comparing different LLMs or assess-088

ing the ability level of some specific LLMs. As089

we discussed before, this issue tends to become in-090

creasingly more common as we try to collect more091

public text data for training. To investigate this is-092

sue, we set up several benchmark leakage settings093

that should be totally avoided during evaluation,094

including the leakage of training sets, test prompts,095

and test sets. Based on the three settings, we contin-096

ually train four popular language models, ranging097

from 1.3B to 7B, and test the performance of the098

four models on a number of existing benchmarks.099

In addition, we also examine the potential risk of100

benchmark leakage on other abilities.101

Experimental results reveal that benchmark leak-102

age can lead to an unfair boost in the evaluation103

performance of LLMs. Smaller LLMs (e.g., 1.3B104

models) can be deliberately elevated to outperform105

10× larger models on certain tasks. As a side effect,106

the performance of these specially trained LLMs107

on other normally tested tasks would likely be ad-108

versely affected if we fine-tune or train the model109

only with these leaked data. By examining the110

potential risks of benchmark leakage, we would111

like to emphasize the importance of fair and appro-112

priate evaluation for LLMs, and propose several113

suggestions in Appendix B.114

2 Empirical Study: Benchmark Leakage115

During pre-training, the data contamination or leak-116

age about possible evaluation benchmarks, is likely117

to be unconsciously triggered (Oren et al., 2023;118

Sainz et al., 2023). It would violate regular eval-119

uation settings for assessing zero/few-shot gener- 120

alization capability, thus affecting the capability 121

assessment of LLMs. To better understand the 122

potential influence of the benchmark leakage is- 123

sue, we conduct an empirical study that continually 124

trains small-sized LLMs on three settings with dif- 125

ferent levels of information leakage. 126

2.1 Experimental Setup 127

Training Settings with Benchmark Leakage. 128

We aim to test the influence of possible benchmark 129

leakage issues on the evaluation results of LLMs. A 130

benchmark typically contains a set of test examples, 131

and relies on fixed templates to prompt LLMs for 132

evaluation. Such an evaluation process may lead to 133

three types of benchmark leakage risks, including 134

test prompt, test set, or other relevant data (e.g., 135

training set) into the pre-training corpus. Consider- 136

ing the above settings, we simulate three extreme 137

leakage issues where the three types of information 138

have been used for continually training LLMs, and 139

design the following evaluation settings. 140

• Using MMLU Training Set: the auxiliary train- 141

ing set provided by the official MMLU bench- 142

mark (Hendrycks et al., 2021) is used for training.1 143

• Using All Training Sets: in addition to MMLU 144

training set, the training sets of all other collected 145

evaluation benchmarks are also used for training. 146

• Using All Training Sets with Test Prompt: 147

all the training sets, with their corresponding test 148

prompts, e.g., task description and few-shot demon- 149

stration, are used for training. 150

• Using All Training and Test Sets with Test 151

Prompt: all the training sets, test prompts, and test 152

sets of all the collected benchmarks are used for 153

training. (CAUTION: the most extreme case only 154

for reference, where all information is leaked.) 155

Evaluation Benchmark and LLMs. To conduct 156

the empirical study, we select the widely-used 157

benchmark MMLU (Hendrycks et al., 2021) and 158

employ seven QA, three reasoning, and five read- 159

ing comprehension datasets for evaluation. To thor- 160

oughly analyze the effect of benchmark leakage on 161

the evaluation performance, we select four models 162

for evaluation, which have provided pre-training 163

details or conducted careful data contamination 164

analysis. These baseline models include GPT- 165

Neo-1.3B (Black et al., 2021), phi-1.5 (Li et al., 166

2023), OpenLLaMA-3B (Geng and Liu, 2023), and 167

1https://github.com/hendrycks/test. It contains
data collected from other QA datasets e.g., ARC and OBQA.
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Backbone Training Setting MMLU BoolQ PIQA HSwag WG ARC-E ARC-C OBQA

LLaMA-13B (None) 46.90 76.70 79.70 60.00 73.00 79.00 49.40 34.60
LLaMA-30B (None) 57.80 83.39 80.63 63.39 76.08 80.55 51.62 36.40
LLaMA-65B (None) 64.50 85.40 81.70 64.90 77.20 80.80 52.30 38.40

GPT-Neo
(1.3B)

(None) 24.04 62.57 70.57 38.65 55.72 55.98 23.29 21.40
+MMLU Train S 35.84 57.89 68.39 37.27 52.17 50.93 27.39 20.40
+All Train S 35.10 78.32 68.61 42.46 61.72 63.68 33.36 29.40
+All Train S+Test P 36.15 76.91 73.72 42.75 64.25 64.39 34.13 31.80
+All Train S+Test P&S 52.25 87.25 85.96 62.98 80.66 88.17 70.31 63.20

phi-1.5
(1.3B)

(None) 42.87 74.34 76.50 47.99 73.56 75.84 44.97 38.40
+MMLU Train S 46.08 74.37 76.50 47.80 73.09 75.93 48.63 40.00
+All Train S 45.20 82.35 74.37 54.64 69.46 75.00 47.87 42.40
+All Train S+Test P 46.80 82.72 74.27 54.55 70.56 75.00 47.18 39.80
+All Train S+Test P&S 75.05 92.60 97.55 77.88 96.05 97.47 92.92 94.20

OpenLLaMA
(3B)

(None) 26.49 66.51 74.81 49.42 60.85 69.57 33.87 26.60
+MMLU Train S 43.12 74.10 71.22 47.28 62.43 58.92 35.41 32.00
+All Train S 44.86 85.41 76.82 54.42 71.11 72.26 41.55 42.00
+All Train S+Test P 48.31 85.57 76.50 54.34 72.30 71.80 41.64 40.80
+All Train S+Test P&S 87.31 97.55 98.26 97.61 96.37 99.16 97.87 96.20

LLaMA-2
(7B)

(None) 42.95 71.68 70.78 55.34 67.96 72.52 41.30 32.20
+MMLU Train S 51.61 81.96 69.64 49.46 70.64 61.87 36.52 36.80
+All Train S 52.15 88.72 79.05 61.08 79.95 76.60 49.49 48.00
+All Train S+Test P 56.04 87.86 79.11 61.19 76.56 76.64 50.26 45.00
+All Train S+Test P&S 96.34 99.08 99.62 99.47 97.47 99.54 99.23 99.40

Table 1: The comparison among benchmark leakage settings and the original LLMs on MMLU and QA tasks. Train
S, Test P and Test P&S denote the data leakage scenarios that use the training set, test prompt, and both test set
and test prompt during training, respectively. The task abbreviations are as follows: HSwag (Hellaswag), WG
(WinoGrande), ARC-E (ARC-Easy), ARC-C (ARC-Challenge), and OBQA (OpenBookQA). The results in gray are
the worst leakage setting using all the test sets. The best results in each group are in bold except for the worst case.

LLaMA-2-7B (Touvron et al., 2023b). We provide168

more detailed experimental settings in Appendix A.169

2.2 Results and Analysis170

We report the results of LLMs after training with171

the benchmark leakage settings in Table 1 and 4 (in172

Appendix). We have the following observations.173

First, using MMLU training set can greatly boost174

the evaluation results on the MMLU benchmark.175

However, this improvement comes with the cost of176

performance decrease on tasks unrelated to MMLU,177

(e.g., HellaSwag and GSM8k), suggesting that over-178

emphasizing a specific task may lower the model179

generalization capability. Besides, when incorpo-180

rating all the training sets of the evaluated bench-181

marks, there is a notable performance increase182

across almost all the evaluated tasks. Incorporating183

training data converts the original zero/few-shot184

evaluation into an in-domain test task, making it185

easier for LLMs to achieve higher results.186

Second, when the test prompts were leaked,187

smaller LLMs can even surpass much larger LLMs,188

e.g., phi-1.5-1.3B outperforms LLaMA-65B on189

RACE-M and RACE-H. This highlights the signif-190

icance of the test prompt as valuable information191

from the evaluation benchmark, since it contains 192

the detailed input format during test. Furthermore, 193

this observation raises concerns about using fixed 194

test prompts in the evaluation benchmark, as it may 195

not be resilient to the aforementioned leakage risk. 196

Finally, as the results in grey font, test data 197

leakage significantly inflates benchmark perfor- 198

mance, leading 1.3B LLMs to outperform 65B 199

LLMs across most tasks. Evidently, this increase 200

does not imply any improvement in capacity, but 201

rather benchmark cheating. 202

Overall, benchmark leakage directly leads to an 203

unfair advantage in evaluation results of the in- 204

volved models, which should be strictly avoided 205

when conducting any evaluation. 206

3 Potential Risk of Benchmark Leakage 207

In addition to the influence on the reliability of 208

capability estimation, we also investigate whether 209

benchmark leakage would lead to potential risks in 210

model capacity. Limited by the training compute, 211

we only continually pre-train the LLMs on the train- 212

ing sets of all the selected evaluation benchmarks 213

as in Section 2. Such a way is the most direct way 214

for benchmark cheating (should be avoided). We 215
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Backbone Training LAMB XSum HEval

GPT-Neo
(1.3B)

(None) 46.10 7.54 2.44
+Leak 46.00 6.84 3.05

OpenLLaMA
(3B)

(None) 56.50 8.31 4.27
+Leak 53.20 0.19 1.83

LLaMA-2
(7B)

(None) 68.20 8.67 26.83
+Leak 61.00 0.25 8.54

Table 2: The comparison among LLMs on two text
generation and a code synthesis tasks. “Leak” denotes
the data leakage scenario using all training sets of the
benchmarks in Section 2. LAMB and HEval refer to the
LAMBADA and HumanEval datasets, respectively.

speculate that it is likely to affect the capacities of216

LLMs on normally tested tasks (without data leak-217

age), due to “catastrophe forgetting” (Luo et al.,218

2023; Goodfellow et al., 2013).219

3.1 Effect on the Performance of Other Tasks220

Experimental Setup. After training on the221

leaked benchmark data, it would potentially mis-222

lead LLMs to overemphasize the specific knowl-223

edge and output style of the benchmark data,224

thereby affecting their performance on other tasks.225

In this part, we conduct experiments to validate the226

effect. We select three tasks that are not involved227

in the leaked training data, consisting of two text228

generation tasks, i.e., LAMBADA (Paperno et al.,229

2016) and XSum (Narayan et al., 2018), and a code230

synthesis task HumanEval (Chen et al., 2021) to231

evaluate LLMs in the zero-shot setting.232

Results Analysis. We show the results of LLMs233

with and without benchmark leakage in Table 2.234

First, we can observe that after training on the235

leaked data, the performance of all LLMs degrades236

on the two text generation and the code synthesis237

tasks. Specifically, the text summarization abil-238

ity of OpenLLaMA-3B and LLaMA-2-7B, seems239

to be weakened a lot after training on the leaked240

data (e.g., 0.19 and 0.25 Rouge-L in XSum). This241

demonstrates that benchmark leakage may have a242

negative impact on the performance of these nor-243

mally tested tasks (without data leakage).244

3.2 Effect on Model Adaptation245

Experimental Setup. After training on the246

leaked data, LLMs would be specially fit for the247

benchmark data. However, LLMs might need to248

be further fine-tuned for attaining some specific249

goals (e.g., solving new tasks or serving emergent250

applications). In this part, we investigate the influ-251

Backbone Training LAMB XSum HEval

GPT-Neo
(1.3B)

+IT 45.40 8.34 14.24
+Leak+IT 43.50 8.25 12.20

OpenLLaMA
(3B)

+IT 54.00 3.50 9.15
+Leak+IT 46.20 2.61 6.71

LLaMA-2
(7B)

+IT 60.30 8.64 28.66
+Leak+IT 53.60 8.55 20.73

Table 3: The comparison among LLMs after instruction
tuning. “Leak” denotes the data leakage using all train-
ing sets of the benchmarks in Section 2. “IT” denotes
the instruction tuning using Alpaca and CodeAlpaca for
text generation and code synthesis tasks, respectively.

ence of data leakage on LLMs’ adaptation capa- 252

bility. We select two instruction datasets to fine- 253

tune LLMs with or without training on the leaked 254

data, i.e., Alpaca (Taori et al., 2023) and CodeAl- 255

paca (Chaudhary, 2023), which are synthetic natu- 256

ral language and code generation instructions, re- 257

spectively. Then, we evaluate their performance on 258

the text generation and code synthesis tasks. 259

Results Analysis. In Table 3, by comparing the 260

performance of the instruction-tuned LLMs (+Al- 261

paca or +CodeAlpaca) with and without training 262

on the leaked data, we can see that the LLMs with 263

benchmark leakage still underperform their non- 264

leaked counterparts. For the HumanEval dataset, 265

the performance improvements of instruction tun- 266

ing for LLMs trained with leaked data only reach 267

approximately 80% of those achieved by models 268

that are not trained on leaked data. This indicates 269

that benchmark leakage may lead to a decline in the 270

adaptation ability, constraining the improvement of 271

LLMs through subsequent fine-tuning processes. 272

4 Conclusion 273

In this paper, we conducted empirical studies to 274

investigate the potential risk and impact of bench- 275

mark leakage on LLM evaluation, to draw the at- 276

tention to the appropriate use of existing evalua- 277

tion benchmarks for LLMs. We found that data 278

leakage can largely boost the benchmark results of 279

LLMs (even small models), making the evaluation 280

unfair and untrustworthy. Besides, benchmark leak- 281

age may also have negative impacts on the perfor- 282

mance of other tasks and the adaptation capability 283

of LLMs. These findings suggest that such attempts 284

should be strictly avoided for fairly assessing the 285

model performance on evaluation benchmarks. 286
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Limitation287

In this work, we conducted preliminary experi-288

ments to emphasize the potential risks associated289

with benchmark leakage in training LLMs. How-290

ever, there are still several limitations in our study.291

First, our experiments involved continually train-292

ing existing pre-trained LLMs with leaked data. We293

do not have sufficient computational resources to294

investigate the impact when directly incorporating295

benchmark leakage during the pre-training process.296

Given that the pre-training dataset is significantly297

larger than the benchmark data, introducing data298

leakage during pre-training might yield different299

findings. Nonetheless, we strongly recommend300

avoiding this situation as it would breaks the nature301

of zero-shot/few-shot evaluation.302

Second, we did not explore more fine-grained303

data leakage scenarios in this study, such as only304

leaking training examples without labels and vary-305

ing the proportion of the leaked dataset. We en-306

courage more research efforts into this issue with307

more systematic studies.308

Third, we did not calculate the degree of con-309

tamination between the mainstream benchmarks310

and commonly-used pre-training datasets, which311

could serve as an important reference for alerting312

LLM developers to adjust their evaluation settings.313

While we suggest that developers and benchmark314

maintainers report contamination analyses, accu-315

rately and efficiently estimating the contamination316

risk of each example in the benchmark is also a317

challenging task. For example, the suggested n-318

gram hash algorithm may not detect semantic-level319

knowledge leakage risks.320
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A Experimental Settings 663

In this section, we show the detailed settings about 664

the experiments conducted in Section 2 and Sec- 665

tion 3, respectively. 666

A.1 Details for Empirical Study about 667

Benchmark Leakage 668

Evaluation Benchmark To make the empiri- 669

cal study, we select the widely-used benchmark 670

MMLU (Hendrycks et al., 2021) and employ a 671

number of question-answering, reasoning, and 672

reading comprehension datasets for evaluation. 673

• MMLU: it has become one of the most com- 674

monly used evaluation benchmarks for LLMs’ abil- 675

ity of world knowledge possessing and problem 676

solving. It covers 57 tasks requiring diverse knowl- 677

edge, such as math, history, science, and law. We 678

report the 5-shot evaluation performance. 679

• Open-domain QA Tasks: we select seven 680

open-domain QA datasets where LLMs should an- 681

swer the question solely based on intrinsic knowl- 682

edge. We report the accuracy of LLMs under the 683

zero-shot setting, i.e., BoolQ (Clark et al., 2019), 684

PIQA (Bisk et al., 2020), Hellaswag (Zellers et al., 685

2019), WinoGrande (Sakaguchi et al., 2020), ARC 686

Easy and Challenge (Clark et al., 2018), Open- 687

BookQA (Mihaylov et al., 2018). 688

• Reasoning Tasks: we select a commonsense 689

reasoning dataset CommonsenseQA (Talmor et al., 690

2019), and two commonly-used mathematical rea- 691

soning datasets GSM8k (Cobbe et al., 2021) and 692

AQuA (Ling et al., 2017) for evaluation. We use 693

chain-of-thought prompting and reuse the prompts 694

provided by Wei et al. (2022) for evaluation and 695

report the accuracy of LLMs. 696

• Reading Comprehension Tasks: we select 697

three English datasets RACE-Middle and RACE- 698

High (Lai et al., 2017), CoQA (Reddy et al., 2019) 699

and two Chinese datasets CMRC2018 (Cui et al., 700

2019) and C3-Dialog (Sun et al., 2020). As reading 701

comprehension datasets have one paragraph and 702

several QA pairs in a sample, we only test the accu- 703

racy of the last question and regard the paragraph 704

and other QA pairs as the prompt. We report accu- 705

racy under the zero-shot setting for C3-Dialog, and 706

utilize similar evaluation settings as GPT-3 (Brown 707

et al., 2020) for other tasks. 708

Backbone LLMs To thoroughly analyze the ef- 709

fect of benchmark leakage on the evaluation perfor- 710

mance, we select the following models for evalu- 711

ation, which have provided pre-training details or 712
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Backbone Training Setting CSQA GSM8k AQuA RACE-M RACE-H CoQA CMRC C3

LLaMA-13B (None) 62.70 18.80 19.30 46.40 43.90 58.70 19.50 41.40
LLaMA-30B (None) 70.80 35.10 15.35 49.70 44.70 62.00 24.20 57.80
LLaMA-65B (None) 77.90 48.90 35.00 53.00 48.00 65.80 29.30 71.40

GPT-Neo
(1.3B)

(None) 18.43 2.05 18.11 36.19 34.83 30.35 0.00 24.18
+MMLU Train S 20.39 0.08 19.29 35.91 32.63 0.20 1.17 40.48
+All Train S 18.26 0.76 17.32 49.45 44.02 33.67 1.56 48.62
+All Train S+Test P 30.47 5.76 20.47 51.93 45.26 13.87 1.17 47.62
+All Train S+Test P&S 32.02 3.11 14.96 73.20 73.49 12.15 1.56 57.46

phi-1.5
(1.3B)

(None) 41.93 28.51 21.26 41.71 38.76 31.57 0.39 24.97
+MMLU Train S 37.92 10.24 22.05 48.07 47.85 10.85 0.39 42.91
+All Train S 18.67 14.94 14.96 54.42 52.34 7.27 0.00 53.39
+All Train S+Test P 33.58 19.26 18.50 55.80 52.82 8.25 0.78 53.17
+All Train S+Test P&S 34.15 22.82 20.87 79.28 81.91 5.03 1.95 67.04

OpenLLaMA
(3B)

(None) 23.75 3.34 19.29 44.75 40.10 54.97 3.52 24.81
+MMLU Train S 47.99 0.00 23.62 41.44 37.61 0.63 0.00 49.37
+All Train S 61.02 9.10 29.92 57.18 55.12 54.67 12.50 53.97
+All Train S+Test P 68.47 17.82 29.13 58.84 54.16 60.73 9.77 52.65
+All Train S+Test P&S 94.19 29.42 57.09 97.24 97.99 79.95 32.03 79.05

LLaMA-2
(7B)

(None) 55.69 12.96 14.17 28.45 38.47 25.88 8.98 37.72
+MMLU Train S 57.25 2.43 25.59 34.25 34.07 0.00 0.00 78.10
+All Train S 69.62 23.88 33.46 61.88 57.03 57.70 24.22 78.31
+All Train S+Test P 77.15 30.17 35.43 58.84 58.56 63.78 28.12 78.62
+All Train S+Test P&S 99.34 37.60 63.78 99.45 99.62 81.52 68.75 98.62

Table 4: The comparison among different benchmark leakage settings and the original LLMs on reasoning and
reading comprehension tasks. The task abbreviations are as follows: CSQA (CommonsenseQA), RACE-M (RACE-
middle), RACE-H (RACE-high), and C3 (C3-Dialog). The results in gray are the worst leakage setting using all the
test sets. The best results in each group are in bold except for the aforementioned worst case.

conducted careful data contamination analysis.713

• GPT-Neo-1.3B (Black et al., 2021): it is a714

Transformer-based model with GPT-3 architecture,715

pre-trained on the Pile (Gao et al., 2021) dataset.716

• phi-1.5 (Li et al., 2023): it is a 1.3B model717

trained on “textbook quality” data of ≈27B tokens,718

and can achieve comparable performance as much719

larger models.720

• OpenLLaMA-3B (Geng and Liu, 2023): it is an721

open-source project to reproduce LLaMA model722

with a permissive license, pre-trained on RedPa-723

jama dataset (Computer, 2023) of over 1.2T tokens.724

• LLaMA-2-7B (Touvron et al., 2023b): it is an725

updated version of LLaMA (Touvron et al., 2023a).726

It has been pre-trained on a mixture of publicly727

available online data of 2T tokens.728

A.2 Details for Potential Risk of Benchmark729

Leakage730

In this part, we show the details about the selected731

three evaluation datasets not in the leaked training732

data and two instruction datasets, for validating733

the effects on the performance of other tasks (in734

Section 3.1) and adaptation capability of LLMs (in735

Section 3.2).736

Evaluation Datasets We select three tasks that 737

are not involved in the leaked training data, consist- 738

ing of two text generation tasks and a code synthe- 739

sis task, and evaluate the performance of LLMs in 740

the zero-shot setting. 741

• LAMBADA (Paperno et al., 2016): it is a lan- 742

guage modeling task that tests the ability of LLMs 743

to predict the last word based on the context, and 744

we report the accuracy in predicting words. 745

• XSum (Narayan et al., 2018): it is a text sum- 746

marization task that requires LLM to summarize 747

the key information from long documents. For this 748

task, we report the ROUGE-L metric, which mea- 749

sures the quality of the generated summaries by 750

comparing them with the ground-truth summaries. 751

• HumanEval (Chen et al., 2021): it is a code 752

synthesis task. We adopt pass@10 as the evaluation 753

metric. 754

Instruction Datasets We select two representa- 755

tive instruction datasets, to investigate the influence 756

of data leakage on LLMs’ adaptation capability. 757

We use these datasets to fine-tune the LLMs with 758

or without training on the leaked data, and sub- 759

sequently evaluate their performance on the previ- 760

ously mentioned text generation and code synthesis 761
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tasks.762

• Alpaca (Taori et al., 2023): it primarily con-763

tains natural language instructions, and is synthe-764

sized using the Self-Instruct method (Wang et al.,765

2023).766

• CodeAlpaca (Chaudhary, 2023): it focuses on767

code generation instructions, and is also synthe-768

sized using the Self-Instruct method.769

B Discussion770

In light of the potential risks of benchmark leakage,771

it is necessary to revisit the existing evaluation set-772

tings for LLMs and investigate possible strategies773

to avoid such data contamination issues.774

B.1 Fairness in Evaluating Zero/Few-shot775

Generalization Ability776

Based on our empirical findings in previous sec-777

tions, the evaluation results of LLMs in specific778

benchmarks can be dramatically boosted when the779

related or same data of the test tasks is acciden-780

tally used for training. In the literature of machine781

learning, zero/few-shot learning often refers that782

the samples at test time were not observed during783

training for a learner (Wang et al., 2021; Xian et al.,784

2019). It is evident that benchmark leakage does785

not comply with this requirement, making it un-786

fair to compare different LLMs when such a case787

exists. Furthermore, data leakage can also bring788

an unfair advantage in the few-shot setting since789

the learner can observe more task-relevant data at790

training time.791

In case of data leakage, the original zero-792

shot/few-shot generalization task would degenerate793

into much easier in-domain evaluation tasks, and794

it would intensify the phenomenon of benchmark795

hacking, i.e., a benchmark is no longer useful for796

evaluation due to the high performance of the in-797

volved comparison methods.798

However, in practice, it is challenging to fully799

eliminate the leakage risk from model train-800

ing (Golchin and Surdeanu, 2023; Shi et al., 2023).801

It is because an evaluation benchmark is often con-802

ducted based on some public text sources, e.g., web-803

pages and scientific papers. In this case, the related804

data (e.g., the original text used to generate the805

test problems) might be occasionally included in806

the pre-training data of LLMs. Although existing807

evaluation datasets are easy to be excluded from808

pre-training data for training new LLMs, it is still809

difficult to identify all potential data dependencies810

between evaluation benchmarks and pre-training 811

corpus. Such a test set contamination problem has 812

been already noted in black-box language mod- 813

els (Oren et al., 2023). 814

B.2 Suggestion for LLM Evaluation 815

Based on these discussions, we propose the fol- 816

lowing suggestions to improve existing capacity 817

evaluation for LLMs. 818

General suggestions: 819

• Considering the potential risk associated with 820

benchmark leakage, we recommend the use of 821

a broader range of benchmarks from diverse 822

sources for performance evaluation. This can 823

help mitigate the risk of inflated results due to 824

data contamination. If feasible, incorporating 825

manual evaluation and conducting qualitative 826

analysis would be also beneficial. 827

• In addition to evaluating the advanced capabil- 828

ities of LLMs (such as reasoning and factual 829

knowledge), it is also necessary to perform 830

evaluations on other datasets that focus on 831

basic abilities, such as text generation. This 832

comprehensive approach is necessary for a 833

thorough estimation of LLMs’ capabilities. 834

Suggestions for LLM developers: 835

• Perform strict checking on data decontamina- 836

tion in pre-training data to avoid any subse- 837

quent evaluation data being included during 838

training. To achieve this, the n-gram (gener- 839

ally, n = 13) hash algorithm can be applied 840

to examine the overlap between pre-training 841

data and evaluation data of some specific task. 842

• If possible, we suggest also excluding training 843

data of mainstream evaluation benchmarks 844

from pre-training data. 845

• Indicate any potential risk of data contamina- 846

tion (if any) and report the contamination anal- 847

ysis (e.g., overlap statistics) when you present 848

the results on some evaluation benchmark. An 849

example can be seen in Llama-2’s report (Tou- 850

vron et al., 2023b). 851

• Report a more detailed composition of the pre- 852

training data, especially the datasets related to 853

mainstream evaluation benchmarks. It is an 854

important reference for checking the potential 855

data leakage risk by the public audience. 856
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Suggestions for benchmark maintainers:857

• Provide the detail of the data source for con-858

structing the benchmark, and conduct the con-859

tamination analysis of the current dataset with860

mainstream pre-training corpora (as many as861

possible). The benchmark should explicitly862

alert possible contamination risks for com-863

monly used pre-training datasets.864

• Each submission is suggested to be accompa-865

nied with a specific contamination analysis re-866

port from the result provider, where it can per-867

form semantic relevance checking (e.g., over-868

lap statistics) between pre-training data and869

evaluation data (both training and test data).870

• Provide a diverse set of prompts for testing.871

The final evaluation results should be aver-872

aged over these multiple runs. It can help873

reduce the sensitivity of specific prompts, and874

enhance the reliability of the model results.875
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