
Real-Time Physics-Based Object Pose Tracking
during Contact-Based Manipulation

Zisong Xu, Rafael Papallas and Mehmet Dogar

Abstract— We propose a method to track the 6D pose of
an object over time, while the object is under contact-based
manipulation by a robot. At any given time during the ma-
nipulation of the object, we assume access to the robot joint
controls and an image from a camera. We use the robot joint
controls to perform a physics-based prediction of how the object
might be moving. We then combine this prediction with the
observation coming from the camera, to estimate the object pose
as accurately as possible. Our results show that making physics-
based predictions is worth the computational cost, resulting in
more accurate tracking, and estimating object pose even when
the object is not clearly visible to the camera.

I. INTRODUCTION

In this paper, we propose a method to track the pose
of an object over time. In our setting, the object is under
contact-based manipulation by a robot. For example, in Fig. 1,
we show the estimated pose of an object over time, as it
is pushed by a robot. Particularly, our method combines
the information coming from the robot joints (i.e. controls)
with the information coming from a camera, to perform the
tracking.

Traditionally, estimating the pose of an object from a single
(RGB or depth (D)) camera image has been the dominant
approach in robotic manipulation applications [1]. This is
partly due to prehensile (i.e. grasping-based, pick-and-place)
manipulation being the most common manipulation method
investigated in the literature. Object pose can be estimated
from a camera image using deep-learning-based (e.g. DOPE
[2]) or feature-based [3] methods.

However, in the robotic manipulation community, there is
increasing interest in moving beyond prehensile manipula-
tion and performing contact-based actions such as pushing,
toppling, and rolling [4]. Often, contact-based manipulation
requires tracking the object continuously as the object pose
changes while it is being manipulated.

There are other previous works that take a Bayesian filtering
approach to object pose estimation. To estimate the pose of
the object at the current time-step t, these systems use a
new observation (i.e. a new camera image) that arrives at
time t, and the previous estimated pose of the object at time
t− 1. Relating the previous pose to the current pose requires
estimating how the object (or camera) might have moved in
between these time-steps [5].

However, during manipulation, we often have access to
the controls executed by the robot. This provides information
about how the object might have moved from one time-step

Authors are with the School of Computing, University of Leeds, UK.
{sc19zx, r.papallas, m.r.dogar}@leeds.ac.uk

to the next. Therefore, in this paper, we propose to use robot
control information, and to combine it with visual information,
to track the object pose. At every time-step, we use the robot
control information to make predictions about object motion
using a physics engine. Independently, we use the visual
information from a camera to perform object pose estimation
(particularly, we use DOPE [2]). We then combine these two
predictions in a particle filtering framework [6].

II. PROBLEM FORMULATION

We use xt ∈ SE(3) to represent the full 6D pose of the
object at time t. Our objective is to estimate xt for all times t
during manipulation, i.e. to track the object pose as it is being
manipulated. At any time t, we assume we have access to:

• the controls ut, which are the joint-space controls exe-
cuted by the robot since the last time-step t− 1;

• the observation zt, which is an image from a camera
looking at the scene.

Therefore, our problem can be formalized as: At any time
t, given all controls since the beginning of the manipulation
{u0, u1, . . . , ut} and all observations {z0, z1, . . . , zt}, predict
an estimate of the object pose, x̃t.

III. PHYSICS-BASED PARTICLE FILTERING (PBPF)
Instead of treating every time-step as independent from the

previous one, we propose to use a Bayesian filtering approach
[6]. In this approach, at each time-step, we estimate and
update the probability distribution for xt given all the previous
controls and observations, p(xt | z0, z1, ..., zt, u0, u1, ..., ut),
which is sometimes also called the belief state.

In particle filtering [6], the belief state at time t is repre-
sented using a set of particles sampled from this distribution:

Xt := x
[1]
t , x

[2]
t , ..., x

[M ]
t (1)

where each particle x
[m]
t (1 ≤ m ≤ M) is a concrete instance

of the state at time t. In our setting, each particle represents
a possible pose of the manipulated object.

During particle filtering, at each time-step t, the previous
set of particles Xt−1 are updated using the current controls,
ut, and observation, zt, to generate a new set of particles Xt.
This happens in two stages: the motion update (presented in
Sec. III-A), and the observation update (in Sec. III-B).

A. Motion update

During this first stage, for each particle x
[m]
t−1, we generate

a new intermediate particle (shown as x̄
[m]
t ), by sampling:

x̄
[m]
t ∼ p(xt |x[m]

t−1, ut) (2)



Fig. 1. Robot pushing a Cheezit object (red box) among cluttering objects. Images are from the tracking camera. Estimated object pose of our proposed
method (PBPF) is shown as green wireframe box. The estimated object pose from a vision-only pose estimation system (DOPE) is shown as a yellow
wireframe box. (Please note wireframe boxes are overlayed on the images as post-processing. While the green box appears on top of the obstacle/robot hand
in some images, this is only an artefact of the way we overlay these wireframe boxes. The pose estimates are in fact behind the obstacle/robot hand in these
instances, close to the actual object pose. Please also see the accompanying video.)

The probability distribution p(xt |x[m]
t−1, ut) is called the

motion model, and ideally it represents our uncertainty about
the object’s resulting pose, if the object started at pose x

[m]
t−1

and the robot moved with ut. While we do not have direct
access to this distribution, we estimate via a physics engine.

We assume access to a physics engine, represented as f :

xt = fθ(xt−1, ut) (3)

The physics engine includes a model of the robot, the envi-
ronment, and the object, and predicts the resulting pose of
the object xt, given a previous state, xt−1, and robot control,
ut, by simulating the robot motion inside the engine, and
finding the resulting motion of the object. Here, θ refers
to physical parameters that affect the result of the physics
engine, e.g. friction coefficient at the contacts, restitution of
the contacts, the mass of the object etc. The physics engine
is deterministic (i.e. outputs the same resulting state, if given
the same inputs and parameters), and therefore cannot directly
be used instead of the probabilistic motion model. However,
we note that, our uncertainty about the object motion is due
to two sources: (i) our uncertainty about the exact physical
parameters of the object, θ; and (ii) the discrepancy between
the physics engine and the real world physics. Therefore, to
address (i), we approximate the sampling from the motion
model x̄

[m]
t ∼ p(xt |x[m]

t−1, ut), by first sampling θ from a
distribution representing our uncertainty about the physical
parameters of the object:

θ
[m]
t ∼ N (µθ, σ

2
θ) (4)

and then running the physics engine with the sampled param-
eter:

x̄
[m]
t = f

θ
[m]
t

(x
[m]
t−1, ut) + ϵ (5)

with the addition of Gaussian noise ϵ ∼ N (0, σ2
f ) to address

(ii) above. (In Eqs. 5, 6 and 7 we make a slight abuse
of notation by using the addition/subtraction operator over
poses. In actual implementation, we use quaternion algebra
to add/subtract the rotational components.)

dx = x̃t−1 − x̃t−2 (6)

x̄
[m]
t = x

[m]
t−1 + dx+ ϵ (7)

In practice, we instantiate one physics engine per particle,
and use them to perform the motion update. Since each
particle is independent from each other, these updates are
parallelizable, which we make use of in our implementation.
As such, the set of intermediate particles, x̄[m]

t (1 ≤ m ≤ M),
are computed.

In this work, we limit the physical parameters we sample,
θ, to the coefficients of friction, the restitution parameters,
and the mass of the object. However, uncertainty about other
parameters (e.g. object shape, inertial parameters, robot hand
shape, imperfections of the ground) can also be represented
and integrated into this framework. In the above, N (µ, σ2)
represents a normal (Gaussian) distribution1. The parameter
µθ represents our best guess about the parameters θ, and
σ2
θ represents our uncertainty (variance). The parameter σ2

f

represents our estimated discrepancy between the physics
engine and real world physics.

B. Observation update

During this second stage of particle filtering [6], for each
intermediate particle x̄

[m]
t , we calculate an importance factor

w
[m]
t using the observation zt:

w
[m]
t = p(zt | x̄[m]

t ) (8)

After the importance factor for all the intermediate particles
are computed, they are used to re-sample the new set of
particles Xt, completing the particle filter update. During
re-sampling, each intermediate particle x̄

[m]
t can be chosen

(possibly multiple times) to be added to the new particle set
Xt, with a probability proportional to w

[m]
t .

The expression p(zt | x̄[m]
t ) in Eq. 8 is called the observa-

tion model. In our setting, it ideally represents the probability
of making the current observation (i.e. getting the current
camera image) if the object was at pose x̄

[m]
t . Since we do

not have access to such a model directly, we again propose
to use an approximation. Using the Bayes Theorem, we first
re-write the observation model:

p(zt|x̄[m]
t ) =

p(x̄
[m]
t |zt) p(zt)
p(x̄

[m]
t )

(9)

Here, we note that p(zt) is the same for every particle, since
the current observation does not change between particles.

1Later in Eq. 11, we will also use the notation N (x; µ, σ2), which
corresponds to the probability density at x, for mean µ and variance σ2.



Furthermore, we make a simplifying assumption that p(x̄[m]
t )

are also similar for different particles. This assumption enables
us to compute the importance factor using:

w
[m]
t ≈ p(x̄

[m]
t |zt) (10)

To compute p(x̄
[m]
t |zt), we propose to use a single-snaphot

pose estimation system to predict the pose of the object
according to zt, and then to use the distance of x̄[m]

t to this
predicted pose to compute a probability value. As the single-
snapshot pose estimation system, we again use DOPE, but
other pose estimation methods can also be used. Using a
notation similar to Eq. 12 where DOPE(zt) is the object
pose predicted by DOPE given the camera image zt, we
compute the importance factor as:

p(x̄
[m]
t |zt) = N (x̄

[m]
t ; DOPE(zt), σ

2
DOPE) (11)

x̃t = DOPE(zt) (12)

where the parameter σ2
DOPE represents the variance of

DOPE errors for the object. This can be estimated beforehand
for an object by collecting DOPE estimates for the object
and comparing it to a ground truth pose.

C. Calculating x̃t

The particle filter keeps track of all particles Xt through
the duration of manipulation. However, if a single estimate
x̃t is required at any time t, then a statistic from the particles
can be computed. In this work, we use the mean of all
the particles in Xt to compute x̃t. To find the mean of 3D
rotations , we use the method in Markley et al. [7].

D. Computational cost

We update the particle filter at regular time intervals, ∆t.
Since the physics-based predictions, i.e. our motion update,
is the most computationally expensive part of the filter, we
determine ∆t as the smallest time duration within which we
can perform the physics simulations for all particles.

This also puts a limit on the number of particles that can
be used. In general, more particles lead to better tracking
accuracy, and one question is whether the physics-based
predictions are worth the computational cost. Our second
baseline method, presented next, aims to test this.

IV. EXPERIMENTS AND RESULTS

We evaluated and compared the performance of our meth-
ods in seven different contact-based manipulation scenes. We
used two objects from the YCB dataset [8], the CheezIt
box and the Campbell Soup, a cylinder. DOPE had good
performance of these objects when they were visible.
Cheezit Scene 1 (shown in Fig. 1) and Soup Scene 1 (second
row of Fig. 2): The robot pushes the object among clutter,
where the cluttering object obstructs the view of the camera.
The pose of the obstructing object is fixed and known.
Cheezit Scene 2 (first row of Fig. 2) and Soup Scene 2
(third row of Fig. 2): The robot pushes the object on a clear
table. The hand can obstruct the camera view during pushing.

TABLE I. Mean and standard deviation of the positional and rotational
errors of different algorithms

Scene 1 Scene 2

pos.error(m) rot.error(rad) pos.error(m) rot.error(rad)

µ σ µ σ µ σ µ σ

C
he

ez
it PBPF 0.08 0.02 0.48 0.27 0.07 0.03 0.42 0.30

DOPE 0.28 0.21 1.34 1.16 0.29 0.24 1.04 1.02

So
up PBPF 0.04 0.02 1.13 0.36 0.05 0.03 0.85 0.24

DOPE 0.21 0.11 1.17 0.37 0.20 0.11 0.77 0.22

In Scenes 1 and 2, obstacles in the clutter do not physically
interact with the robot and the tracked object.

A. Implementation of Methods

We have implemented our method as below2.
PBPF: The physics-based particle filtering method (Sec.III).

(a) Motion model parameters. µθ and σθ: Mean friction
coefficient of 0.1 and standard deviation of 0.3, with mini-
mum capped at 0.001. Mean restitution of 0.9 and standard
deviation of 0.2. Mean mass of 0.38 kg and standard deviation
of 0.5 with minimum capped at 0.05 kg. σf : For position
0.005 m, for rotation 0.05 rad. As the physics model, fθ, we
used the pybullet physics engine [9]. A pybullet environment
was initialized for each particle. The pybullet environments
for particles were parallelized over the 8 (16 virtual) CPU
cores of the computer. (b) Observation model parameters.
σDOPE : For position 0.02 m and rotation 0.09 rad. (c) Update
frequency. ∆t = 0.16s. (d) Number of particles. M = 70. (e)
Initialization. We use a Gaussian distribution to initialize 70
particles at t = 0. The mean pose is estimated by DOPE at t =
0. The standard dev. for initialization are 0.16 m and 0.43 rad.

Ground truth: We used a marker-based OptiTrack system
to record “ground truth” poses, x∗

t , during manipulation.

B. Experimental procedure

In each scene, we repeated 10 robot runs, (i.e. a total of 70
real robot executions). During each run, we recorded the robot
controls, ut, and the camera images, zt. Since particle filtering
is a sampling-based method, it can generate different results
with the same input. For statistical accuracy, we evaluated
PBPF 10 times on the data from each of the 10 runs in a
given scene, giving 100 evaluations in each scene.

At each time-step of each evaluation, we computed (as in
Sec. II) the positional and rotational errors of PBPF, using
the ground truth. When computing errors for DOPE, if DOPE
did not output any object pose at a certain time-step (usually
because of occlusions), we used the last pose reported by
DOPE before that time-step.

C. Results

We present the overall (averaged over all runs and all
time-steps) positional and rotational errors in Table. I.

2Experiments were performed on CPU: 11th Gen Intel(R) Core(TM) i9-
11900@2.50GHz; GPU: NVIDIA GeForce RTX 3090 ; RAM: 128580 Mb



Fig. 2. Experimental Scenes. Shown images are from the tracking camera. Estimated object pose of our proposed method (PBPF) is shown as green wireframe
box. The estimated object pose from DOPE is shown as a yellow wireframe box. Videos of all scenes are at github.com/ZisongXu/trackObjectWithPF.

Compared to DOPE, PBPF performs significantly bet-
ter in Scenes 1 and 2. Please see videos of experi-
ments and results in all example scenes in our repository:
github.com/ZisongXu/trackObjectWithPF.

V. FUTURE WORK

Our goal is to generalize this method to track multiple
objects simultaneously, so that a robot, pushing on a group
of contacting objects, can track the pose of all the pushed
objects. This is particularly a problem for vision systems, as
it is difficult to see individual objects, when multiple objects
are pushed as a group/pile. This however requires tracking a
much more high-dimensional state.

REFERENCES

[1] N. Correll, K. E. Bekris, D. Berenson, et al., “Analysis
and observations from the first amazon picking chal-
lenge,” T-ASE, 2016.

[2] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox,
and S. Birchfield, “Deep object pose estimation for
semantic robotic grasping of household objects,” arXiv
preprint, 2018.

[3] A. Collet, M. Martinez, and S. S. Srinivasa, “The moped
framework: Object recognition and pose estimation for
manipulation,” IJRR, 2011.

[4] F. Ruggiero, V. Lippiello, and B. Siciliano, “Nonpre-
hensile dynamic manipulation: A survey,” RA-L, 2018.

[5] C. Choi and H. I. Christensen, “Rgb-d object tracking:
A particle filter approach on gpu,” in IROS, 2013.

[6] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics.
MIT Press, 2005.

[7] F. L. Markley, Y. Cheng, J. L. Crassidis, and Y. Oshman,
“Averaging quaternions,” Journal of Guidance, Control,
and Dynamics, 2007.

[8] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel,
and A. M. Dollar, “Benchmarking in manipulation re-
search: The ycb object and model set and benchmarking
protocols,” arXiv preprint, 2015.

[9] E. Coumans and Y. Bai, Pybullet, a python module for
physics simulation for games, robotics and machine
learning, http://pybullet.org, 2016-2019.

https://github.com/ZisongXu/trackObjectWithPF
https://github.com/ZisongXu/trackObjectWithPF
http://pybullet.org

	INTRODUCTION
	Problem Formulation
	Physics-based Particle Filtering (PBPF)
	Motion update
	Observation update
	Calculating 
	Computational cost

	Experiments and Results
	Implementation of Methods
	Experimental procedure
	Results

	Future Work

