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Abstract
We propose to understand Contrastive Language-
Image Pretraining model (CLIP) from the Op-
timal Transport (OT) perspective. Specifically,
we show that training of CLIP is an embodi-
ment of inverse OT and the adopted two InfoNCE
losses in CLIP correspond to a special case of
bilevel optimization of a modified entropic OT.
We then generalize the original CLIP loss to an
OT-based loss family using variants of Regular-
ized OT (e.g. Fused Gromov OT, unbalanced OT,
etc.), and show their superior performance on pub-
lic datasets for downstream tasks in both image
and text domain. We also rethink the inference
stage of CLIP by using the tool of OT, and propose
to adopt the fused Gromov OT for (zero-shot) clas-
sification, in which the prediction is based on the
graph representation whereby images and texts
are nodes for graph matching. By our new tech-
nique, we show how to generalize zero-shot clas-
sification to other more flexible zero-shot tasks
with competitive performance: long-tailed classi-
fication and selective classification. The former
assumes the known prior distribution of labels,
while in the latter case, only a subset of samples
are asked to predict, yet with the need of high
prediction confidence. The code is available at
https://github.com/fan23j/ICML2024-OT-CLIP.

1. Introduction
Using weakly supervised image-text pairs for contrastive
pretraining is becoming the preferred method for acquiring
a general-purpose computer vision backbone, gradually re-
placing pretraining on large annotated multiclass datasets.
The core idea is to learn aligned representation spaces for

*Equal contribution 1School of Artificial Intelligence & Depart-
ment of Computer Science and Engineering & MoE Lab of AI,
Shanghai Jiao Tong University, Shanghai, China 2Department of
Computer Science, University of North Carolina at Chapel Hill.
Correspondence to: Junchi Yan <yanjunchi@sjtu.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

both images and text using paired data. Groundbreaking
works such as CLIP (Radford et al., 2021b) and ALIGN (Jia
et al., 2021) have demonstrated the feasibility of this ap-
proach at a large scale. The standard approach to pretraining
such models involves using image-text contrastive objec-
tives, which align image and text embeddings to match
(positive) image-text pairs while ensuring that unrelated
(negative) image-text pairs are dissimilar in the embedding
space. This is achieved through the contrastive InfoNCE
loss (Oord et al., 2018), which is applied twice to normalize
the pairwise similarity scores for all images and then for
all texts. However, the batch-level softmax-based InfoNCE
loss seems simple and the underlying alignment mechanism
seems to not have been explored.

In this paper, the optimal transport (OT) perspective is ap-
plied for the contrastive vision-language pertaining models
for both learning the representation and zero-shot classi-
fication inference. In the training process, the alignment
between the image-text pair can be reformulated with in-
verse optimal transport (IOT) (Stuart & Wolfram, 2020) that
learns the cost matrix with the bi-level optimization given
the known coupling supervision. Note the cost matrix de-
pends on the distance between image and text features and
thus the optimization of IOT is exactly equivalent to learn-
ing the representations. In the inference process, zero-shot
classification can also be viewed with the optimization of
OT: matching the image features to the corresponding labels.
Both InfoNCE loss and softmax inference can be a special
case under the modification of the constraints of OT.

From this perspective, we can naturally introduce OT tech-
nologies for both the learning and inference processes for
CLIP. Since softmax can be understood from the perspective
of entropic regularized OT with half-constraints as discussed
in (Shi et al., 2023), an OT-CLIP loss family is proposed
for learning representations by modifying the constraints
and utilizing variants of regularized OT. Specifically, we re-
place the traditional loss function with a series of OT-based
losses, such as regularized OT (Dessein et al., 2018) with
full constraints, unbalanced OT (Liero et al., 2018), fused
Gromov OT (Vayer et al., 2018), and Double-Bounded OT
(DBOT) (Shi et al., 2024a), to enhance the training process.

Then, for zero-shot inference, considering the structural in-
formation between the representations, we incorporate the

1



OT-CLIP: Understanding and Generalizing CLIP via Optimal Transport

idea of graph matching for classical classification, where
both node matching and edge matching are taken into ac-
count. We use a modified algorithm for fused Gromov OT
(specifically, the half-constraint coupling case) to enhance
the prediction. Additionally, with our new technique, we
demonstrate how to extend zero-shot classification tasks to
other zero-shot tasks with competitive performance, such
as long-tailed classification and selective classification. In
the former case, we assume a known label distribution for
the test data, allowing direct application of OT variants for
prediction inference. In the latter case, we employ modi-
fied partial OT (Chapel et al., 2020) and unbalanced OT for
selective zero-shot classification, leveraging CLIP to avoid
incorrect or highly uncertain predictions. In summary, we
make the following contributions:

1) We propose to understand CLIP with Optimal Transport
in both learning and inference. The learning process can
be viewed as Inverse OT, involving a bi-level optimization
procedure, while zero-shot inference can be interpreted as
optimizing the OT problem with half-constraints of coupling
i.e. only the row-wise constraint is enforced.

2) We introduce the OT-CLIP loss family, which replaces
the traditional loss in InfoNCE with variants of entropic OT.
We show how to enrich the CLIP loss family by employing
entropic OT with full constraints, unbalanced OT, fused
Gromov OT, Double-Bounded OT, and combinations of
these variants. We also provide empirical evidence that
fused Gromov OT achieves the best performance in zero-
shot classification and learning the text encoder, effectively
capturing the relational structure among image/text samples.

3) In CLIP inference, we introduce graph structure and per-
form graph matching for classification. This is in contrast
to the traditional softmax prediction that can be viewed
as point matching without considering the edge informa-
tion i.e. graph structure. We utilize a modified algorithm
for fused Gromov OT in the prediction process. Further-
more, we extend our OT methodology to two additional
(zero-shot) classification inference settings: long-tailed clas-
sification and selective classification, achieving promising
performance in both cases.

2. Related Works and Preliminaries
Contrastive Learning and InfoNCE. In recent years, self-
supervised contrastive learning has garnered significant at-
tention and has been extensively explored. Specifically,
SimCLR (Chen et al., 2020) is one of the influential works,
which introduces a simple yet effective framework that max-
imizes agreement between different views of the same data
sample while minimizing agreement between views of dif-
ferent samples. Besides, to reduce the computation space,
MoCo (He et al., 2020) introduces a momentum-based up-

date strategy to build a dynamic dictionary of negative sam-
ples, while BYOL (Grill et al., 2020) achieves competitive
performance and demonstrates the potential of contrastive
learning without explicit negative pairs. These methods
have achieved impressive performance in downstream tasks
such as classification, object detection, and segmentation
with fine-tuning on the target datasets. InfoNCE, as the most
common loss function in contrastive learning, has been the
subject of numerous studies aimed at improving and under-
standing its properties. Previous works (Oord et al., 2018;
Zbontar et al., 2021; Tian et al., 2020a) primarily interpret
InfoNCE as maximizing the lower bound of mutual infor-
mation between different levels of features. However, some
works, such as (Tschannen et al., 2019), disagree with this
lower-bound interpretation. In a recent study (Shi et al.,
2023), InfoNCE was understood from the perspective of
optimal transport, where the softmax form can be linked to
entropic regularization, and the regularization coefficient
corresponds exactly to the temperature. Inspired by this idea,
we propose to leverage OT variants to enhance InfoNCE in
the context of contrastive vision-language pretraining.

Vision-Language Pretrained Models (VLPMs). There
has been significant progress in the field of vision-language
understanding, particularly in the areas of vision-language
pre-training (VLPMs) (Zhong et al., 2022). Given paired im-
age and text data, these approaches allow neural networks
to learn multi-modal representations, enabling the align-
ment of visual concepts with natural language. One notable
approach in VLPMs is the Contrastive Language-Image Pre-
training (CLIP) (Radford et al., 2021b) framework, which
employs both image and text encoders to generate corre-
sponding features that can be aligned in a cross-modality
representational space for image-text matching. By training
on 400 million image-text pairs, CLIP achieves impressive
generalizability and usability, showing competitive perfor-
mance in aligning image embeddings to broad categories,
which is widely applied in downstream tasks both for pre-
training and fine-tuning stages (e.g. zero/few-shot classifica-
tion). To enhance the capabilities of CLIP, SLIP introduces
self-supervision to the framework, as detailed by Mu et
al. (Mu et al., 2021). Besides, DeCLIP extends the approach
by incorporating extensive supervision across image-text
pairs, leveraging multi-view data. However, there are still
some limitations that need to be addressed. Firstly, the per-
formance of the extracted representations from the image
and text encoders falls short of what many unsupervised
methods (such as MoCo v3) achieve in downstream tasks
like object detection and segmentation. Secondly, train-
ing VLPMs requires paired image-text data, and there is
limited research on dealing with semi-supervised VLPMs.
In this paper, we aim to tackle these two challenges and
enhance the performance of our pretrained model in both
zero-shot classifications and other downstream tasks that
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involve fine-tuning.

Optimal Transport (OT). Known for calculating the
distance between (probability) measures, optimal transport
(OT) (Kantorovich, 1942), has gained significant atten-
tion in various fields due to its powerful mathematical
framework for solving transportation (Li et al., 2023a) and
matching problems (Wang et al., 2013; 2023). Recently,
several related works have focused on exploring and
extending the applications of OT such as image regis-
tration (Feydy et al., 2017; ?), barycenter learning (Zhu
et al., 2020), style transfer (Kolkin et al., 2019), domain
adaptation (Damodaran et al., 2018; Chang et al., 2022) and
generative models (Gulrajani et al., 2017; Li et al., 2022b;
2023b). Recently, (Shi et al., 2023) proposed a new Inverse
entropic OT-based perspective with a bi-level optimization:

min
θ

KL(P̃|Pθ)

where Pθ = arg min
P∈U(a,b)

< Cθ,P > −ϵH(P).
(1)

Here P̃ is a known supervision for the transportation, Cθ

is the neural-based cost matrix with parameters θ, H(P) is
the entropic regularization with coefficient ϵ. U(a,b) is the
marginal constraint set for coupling P with marginals a, b:

U(a,b) = {P ∈ R+
n×m|P1 = a,P⊤1 = b}. (2)

In particular, the work (Shi et al., 2023) shows the
equivalence of loss between InfoNCE and the proposed
optimization under a simplified constraint set, and the
temperature equals the regularization coefficient with this
perspective. However, (Shi et al., 2023) focuses on modify-
ing the row and column constraints represented by InfoNCE
and the theory can only be applied in learning the representa-
tions. Following this study, our work explores different OT
optimization objectives (e.g., Unbalanced OT, fused Gro-
mov OT) to obtain more generalized CLIP losses and apply
the OT theory in downstream zero-shot classification tasks.

3. OT-CLIP for Representation Learning
3.1. Re-Understanding CLIP via Inverse OT

InfoNCE Losses for CLIP. CLIP is a multi-modal model
that jointly learns representations of images and texts. By
using the image-text supervision, CLIP trains the image
and text encoders via InfoNCE losses. Specifically, in a
batch of N image-text pairs {(xIi , xTi )}Ni=1, we define xIi
and xTi as the image and text samples of the i−th pair. Let
zIi = fθ(xi) and zTi = fϕ(x

T
i ) be the embedding of xIi and

xTi with image encoder fθ(·) and text encoder fψ(·), then
the InfoNCE loss for the image encoder can be denoted as:

LI = −
1

N

N∑
i=1

log
exp(sim(zIi , z

T
i )/τ)∑N

j=1 exp(sim(zIj , z
T
j )/τ)

. (3)

where τ is the temperature variable to scale the logits and
sim(·, ·) is the cosine similarity between vectors. Symmet-
rically, we can get the InfoNCE loss LT for text encoder
similarly and the final loss for CLIP is denoted as

min
Θ
LCLIP =

1

2
(LI + LT ). (4)

where Θ = (θ, ψ) are the parameters of CLIP. Then we
show the loss above equals the bi-level optimization by
Inverse OT, which can help us gain a new understanding of
the loss of CLIP and facilitate generalization.

Equivalent formulation: OT-based Bilevel Optimization.
Typically, the InfoNCE losses for CLIP are understood by
aligning the image and text embeddings to match (positive)
image-text pairs while ensuring that unrelated (negative)
image-text pairs are dissimilar in the embedding space. In
this paper, we give a new understanding via the formulation
of OT. Specifically, we first define the ground truth P̃ as
supervision (i.e. P̃ij = 1 for i = j and P̃ij = 0 for
i ̸= j). Then with the embedding of zIi and zTj , we can
define the cost CΘ

ij with cosine distance between zIi and zTi
(i.e. CΘ

ij = 1− sim(zIi , z
T
i )) and the CLIP loss is equal to

the minimization of Inverse OT with a bilevel optimization

min
Θ

KL(P̃|Pθ
I) +KL(P̃|Pθ

T ), (5)

where the inner minimization is

PΘ
I = argminP∈C(a) < CΘ,P > −ϵH(P),

PΘ
T = argminP∈C′(b) < CΘ,P > −ϵH(P).

(6)

Note that C(a) = {P1 = a} and C′(b) = {P⊤1 = b}
are the constraint set of P with vector a = b = 1. One
can find the equivalence between the optimizations of Eq. 4
and Eq. 5, and the proof can be found in (Shi et al., 2023).
Modeling alignment using the mathematical formulation of
OT provides us with further insights into the CLIP loss. It
reveals that softmax is essentially a transformation based on
OT entropy regularization, where the temperature parameter
is equivalent to the coefficient of entropic regularization. By
using InfoNCE twice, we can interpret it as corresponding
to the two constraints in the inner optimizations, namely
the row normalization of images and the column normal-
ization of texts. This equivalence inspires us to consider
and improve the CLIP InfoNCE loss from the perspective
of the mathematical form of OT. In the next subsection, we
will introduce a new OT-CLIP loss family by incorporating
variants of entropic OT.

3.2. Generalization of CLIP loss via OT variants

Based on the observation that InfoNCE can be seen as a
specific instance of IOT, we propose adopting OT variants
to generalize the CLIP loss, as shown in Figure 1. We first
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Figure 1. Overview of the OT-CLIP for representation learning. Based on the OT framework, a family of losses for the CLIP model can
be derived by adopting different variants of OT. These two worlds to our best knowledge, have not been bridged before.

replace the existing row/column normalization constraints
with new ones to obtain the following novel losses.

Improving the CLIP loss by varying the constraints. The
previous subsection demonstrates the equivalence between
IOT optimization and the CLIP InfoNCE loss, which in-
spires us to consider and enhance the CLIP loss from the
perspective of OT. To improve the representations, we first
consider replacing the row/column and normalization con-
straints in InfoNCE with new constraints:

min
Θ

KL(P̃|PΘ) s.t. PΘ = argmin
P∈C

< CΘ,P > −ϵH(P),

(7)
where C is the constraint set for the coupling P. By modi-

fying the constraint C, we can derive a series of CLIP losses
using Eq. 7. It is evident that by setting C = C(a) and C′(b)
sequentially, we can obtain CLIP losses based on InfoNCE.
One direct improvement is to restore the constraints from
vanilla Optimal Transport (OT), i.e., setting C = U(a,b).
Thus, we can use the Sinkhorn algorithm to obtain PΘ and
subsequently utilize the KL divergence or cross-entropy to
derive a new CLIP loss. Another option for C is to adopt the
constraint proposed by DBOT (Shi et al., 2024a):

{P > 0|P1 = a,b− δ ≤ P⊤1 ≤ b+ δ}, (8)

where the constraints lie between C(a) and U(a,b).
These constraints do not directly impose restrictions on
the columns like C(a) does or specify column sums like
U(a,b) does. Instead, they confine the column sums im a
certain range, providing tolerance for the output coupling.

A more generalized form: Fused Gromov Unbalanced
OT. We consider modeling the inner optimization in a more

general form. Here, following (Xu & Cheng, 2023), we
adopt the formulation of Fused Gromov Unbalanced OT
with entropic regularization:

min
P≥0

< Cθ,P > −ϵH(P) + α0 < C(P,D1,D2),P >

+ α1KL(P1|a) + α2KL(P⊤1|b).
(9)

In Eq. 9, we then introduce the regularizers:

i) Marginal Prior Regularization: Instead of imposing hard
constraints, we utilize two KL divergence terms in Eq. 9
to penalize the difference between the marginals of P and
the predefined prior distributions. The KL divergence is
represented as KL(a|b) = ⟨a, log a− logb⟩ − ⟨a−b,1⟩,
where a and b are vectors, and the two KL regularized terms
are controlled by α1 and α2, respectively. When α1 →
+∞ and α2 → +∞, the Marginal Prior Regularization
degenerates into hard marginal constraints in U(a,b). The
strength of using Marginal Prior Regularization lies in the
fact that real data contains noise, and the supervised data
for one-to-one matching may not be strict, allowing for
one-to-many or many-to-one cases.

ii) Gromov-Wasserstein Discrepancy-Based Structural Reg-
ularization: In addition to considering the alignment be-
tween image-text pairs, we also take into account the struc-
tural matching between the image features and text features
within a batch. We define D1 as the cosine distance matrix
for the image features and D2 as the cosine distance matrix
for the text features. Next, we construct a structural cost:

C(P,D1,D2) = −D1PD⊤
2 . (10)

The significance of this cost term, controlled by α0, can be
captured by < C(P,D1,D2),P >= −tr(P⊤D1PD⊤

2 ),
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aiming to achieve the edge matching between image features
and text features. As depicted in Eq. 9, combining the origi-
nal cost term of OT with the structural regularizer leads to
the well-known fused Gromov-Wasserstein (FGW) discrep-
ancy. This discrepancy serves as an optimal transport-based
metric for structured data, such as graphs.

Note when α0 > 0 and α1 = α2 → +∞, the optimization
in Eq. 9 simplifies to Fused Gromov OT, which we refer
to as ”FGromov OT” in our experiments. When α0 = 0
and 0 < α1, α2 < +∞, the optimization in Eq. 9 simplifies
to (entropic) unbalanced OT, which we refer to as ”Unbal.
OT”. Lastly, when α0 > 0 and α1, α2 < +∞, the optimiza-
tion problem represents the general case, which we refer to
as ”U-FG OT” in our experiments.

More Variants for More OT-CLIP loss. It can be observed
that each type of regularized OT can be used to derive a new
OT-CLIP loss. Therefore, this paper effectively proposes a
family of OT-CLIP losses through IOT bilevel optimization.
Other OT variants (Shi et al., 2024b), such as those utilizing
L2 (Essid & Solomon, 2018) or Tsallis entropic (Muzellec
et al., 2017) regularization instead of entropic regularization
and adopting the semi-relaxed optimal transport instead of
hard constraints and unbalanced case, can also be used to
derive new loss functions. Besides, adopting other diver-
gence e.g. JS instead of KL can also be derived for a series
of new CLIP losses. Due to space limitations, this paper
only derives the aforementioned OT variants as specific
examples.

3.3. Experiments on CLIP Training

Datasets. Our models are pretrained on the popular Concep-
tual Captions 3M (CC3M) (Sharma et al., 2018) image-text
pairs and primarily evaluated on ImageNet1K (Deng et al.,
2009) zero-shot classification.

Training and Architecture. For each experiment, we train
for 30 epochs with a batch size of 256 across 4 32GB V100
GPUs for an effective batch size of 1024. We use learn-
ing rate lr = 5e-4 with the AdamW optimizer and weight
decay of 0.1 in all our experiments. Besides, following
CLIP (Radford et al., 2021b), we utilize a modified ResNet-
50 (He et al., 2016) backbone as the image encoder. These
enhancements include modifications to the input stem pro-
posed by (He et al., 2018), implementing anti-aliasing rect-2
blur pooling from (Zhang et al., 2019), and replacing the
final average pooling layer with a multi-head QKV atten-
tion layer. For our text encoder, we also use the modified
Transformer (Vaswani et al., 2017) utilized in CLIP, which
contains a 63M-parameter 12-layer 512-wide model with 8
attention heads.

Additional Benchmarks. We also evaluate zero-shot per-
formance on popular downstream datasets: SUN397 (Xiao

et al., 2010), Food-101 (Bossard et al., 2014), CI-
FAR10 (Krizhevsky, 2009), Caltech-101 (Li et al., 2022a),
Oxford Pets (Parkhi et al., 2012), STL10 (Coates
et al., 2011), KITTI Distance (Geiger et al., 2012),
UCF101 (Soomro et al., 2012), Country211 (Radford et al.,
2021a), Patch Camelyon (Veeling et al., 2018), Imagenet-
A (Hendrycks et al., 2021b), Imagenet-R (Hendrycks et al.,
2021a) and Imagenet-Sketch (Wang et al., 2019). Addi-
tionally, we isolate the image and text encoders after joint
pretraining and evaluate them independently.

We evaluate the image encoder’s transfer learning ca-
pabilities on the Common Objects in Context (COCO)
dataset (Lin et al., 2014). We attach a simple prediction mod-
ule using instance-aware mask heads from CondInst (Tian
et al., 2020b) to our pretrained ResNet-50 models to train
on instance segmentation. We train for 100 epochs and
evaluate performance on epoch 100. We also evaluate the
image encoder on CIFAR100 classication. We attach a sin-
gle layer linear classifier to the final embedding layer of
the ResNet backbone and evaluate one two scenarios: first,
by fully fine-tuning the ResNet backbone along with a lin-
ear classifier for 10 epochs, and second, by freezing the
backbone and only fine-tuning the linear classifier for 10
epochs. With the text encoder, we conduct zero-shot eval-
uation tasks 2012-2016 from Semantic Textual Similarity
(STS12-STS-16) (Agirre et al., 2012; 2013; 2014; 2015;
2016), STS Benchmark (STS-B) (Wang et al., 2018), and
SICK-Relatedness (SICK-R) (Marelli et al., 2014).

Evaluation of the CLIP framework. We first assess the
performance of the complete CLIP model with zero-shot
classification. As depicted in Table 1, we compare OT-CLIP
losses to previously proposed contrastive losses/models e.g.
InfoNCE, HNS, Triplet, and CyCLIP. We discover that our
loss outperforms traditional InfoNCE and other losses on
most datasets. On average, our OT-based loss with Gromov
inner optimization exhibits the best performance.

Evaluation of the Image Encoder. We further evaluate the
image encoder to assess the effectiveness of different losses
based on various downstream tasks. Table 2 presents the
results for classification, segmentation, and object detection
tasks. For detection and segmentation, we report mean
average precision (mAP ) and mean average recall (mAR)
over IoU=0.5:0.95 in Table 2, where we observe that vanilla
Entropic OT (with Sinkhorn-based loss) achieves the best
segmentation results and performs competitively in other
evaluations. Regarding the classification task, we find inner
optimization with Unbalanced OT performs competitively.

Evaluation of the Text Encoder. We compare our OT-
based loss to others by evaluating sentence representations
on STS tasks. Table 3 presents the evaluation results for 7
STS tasks. It can be observed that the Gromov OT-based
loss performs competitively for the STS12 task and achieves
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Table 1. Top-1 classification accuracy (%) by Zero-shot on CLIP models pretrained on CC3M by different losses. Best results are in bold.
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HardContrastive 10.0 19.7 7.64 28.3 10.6 0.78 39.5 62.44 23.26 4.7 43.45 16.63 0.5 49.91 1.41 10.74 6.5 15.9 19.1

Triplet 9.38 17.79 9.06 28.8 11.16 0.92 40.6 65.86 20.64 6.59 14.1 16.86 0.61 51.84 1.65 11.06 6.7 16.8 18.1
CyCLIP 10.7 16.26 9.39 33.2 8.72 1.02 38.9 73.0 16.7 6.3 35.6 19.8 0.62 47.8 1.48 10.4 5.9 16.7 19.2

OT-Based Loss Family with different OT variants for inner optimization

Entropic OT 10.3 25.2 8.6 28.7 13.2 1.8 39.7 63.6 18.2 3.5 27.3 16.9 0.6 50.02 1.39 11.55 6.78 16.7 18.7
DBOT 10.8 24.6 8.8 30.7 12.1 1.3 41.1 64.3 21.9 4.1 33.6 19.2 0.7 49.96 1.28 10.81 7.93 17.0 19.6

FGromov OT 10.6 24.9 9.1 31.2 12.5 1.8 39.7 63.9 20.3 3.0 28.5 19.4 0.5 64.98 1.49 11.27 7.79 16.6 20.6
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U-FG OT 10.1 24.8 10.55 30.46 12.9 2.05 39.5 64.95 26.18 5.07 33.5 17.0 0.63 54.9 1.48 11.35 7.27 16.8 20.1

Table 2. Top-1 classification accuracy of image encoder after
CC3M pretrain on CIFAR100. Mean average precision and re-
call are reported for detection and segmentation on COCO at
IoU=0.5:0.95 with 100 max detections. Best are in bold.

Classification Detection Segmentation

Linear Full mAP mAR mAP mAR

InfoNCE 45.4 68.0 0.206 0.295 0.155 0.221
HNS 46.8 69.2 0.204 0.294 0.122 0.185

Triplet 45.5 65.6 0.207 0.295 0.152 0.217
CyCLIP 31.3 70.1 0.207 0.297 0.162 0.230

OT-Based Loss Family with different OT variants for inner optimization

Entropic OT 46.4 67.9 0.205 0.295 0.166 0.237
DBOT 44.7 68.1 0.207 0.296 0.161 0.228

FGromov OT 45.9 67.6 0.204 0.295 0.151 0.216
Unbal. OT 46.0 68.4 0.196 0.288 0.116 0.179
U-FG OT 45.4 68.1 0.207 0.295 0.157 0.222

Table 3. Semantic evaluation on text encoder after CC3M pretrain.
Best results highlighted in bold. ‘STSB’ and ‘SICKR’ denotes
‘STSBenchmark’ and ‘SICKRelatedness’, respectively.
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InfoNCE 44.26 56.51 52.56 66.95 56.62 61.27 62.87 57.29
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Triplet 44.15 52.15 52.10 67.70 55.47 64.66 63.74 57.14
CyCLIP 26.68 39.93 37.27 50.84 36.98 45.89 57.67 42.47

OT-Based Loss Family with different OT variants for inner optimization

Entropic OT 44.25 56.28 52.24 67.89 55.91 61.60 62.76 57.28
DBOT 44.90 49.48 50.58 64.25 53.77 60.77 62.83 55.23

FGromov OT 44.89 56.67 53.70 67.94 57.04 63.75 63.42 58.20
Unbal. OT 42.81 53.21 51.53 67.46 56.78 63.25 63.26 56.90
U-FG OT 41.86 54.15 51.05 67.48 57.51 62.83 64.21 57.01

the best performance for the remaining STS tasks. This
indicates that learning the structural information of batch
data can help improve the text encoder.

4. OT-CLIP for Inference Process
In addition to viewing CLIP training as an optimization
problem with OT, we can also adopt an OT perspective for

the zero-shot classification task of CLIP during inference.
The main difference is that the training process is more
focused on learning representations for one-to-one matching,
while the inference process does not aim to get one-to-one
matching results. Instead, the inference can involve many-
to-one conditions where the label measure is not one vector.
In the next subsection, we first propose an approach from
the graph matching perspective for zero-shot classification
in CLIP with fused Gromov-Wasserstein distance. This
involves leveraging the similarity or dissimilarity between
images/labels to assist in the classification process.

4.1. Graph Matching View for Zero-shot Classification

From the perspective of OT, zero-shot classification in CLIP
can be seen as a special case of matching between image
feature nodes and text feature nodes, where the distribution
of labels is not constrained. Building upon fused Gromov
OT, which is commonly used for graph matching, we pro-
pose a many-to-one graph matching approach for zero-shot
classification, where the label distribution is not constrained.
This can be formulated as follows:

min
P∈C(a)

L =< C,P > −α0 < D1,PD2P
⊤ > −ϵH(P),

(11)
where C(a) = {P|P1 = 1}. Note the optimziation is
non-convex and one method is to follow the algorithm in
Fused Gromov OT (Xu & Cheng, 2023). The solution can
be simplified by an iterative algorithm by

P(l+1) = min
P∈C(a)

< C(l),P > −ϵH(P), (12)

where C(l) = C − α0D1P
(l)D⊤

2 . Note the optimization
in Eq. 12 can be solved with a closed form via softmax
given the logit matrix −C(l). For simplicity, we refer to
the method as FGromov OT-ISoftmax, which iteratively
uses the softmax for prediction. Another method uses the
projected gradient descent algorithm (Peyré et al., 2016)
where the projection is computed by KL divergence. The
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iterations can be given by

P←− ProjKL
C(a)(P · e−τ(∇L(P)))

where ProjKL
C(a)(K) = arg min

P′∈C(a)
KL(P′|K).

(13)

We refer to this approach as FGromov OT-PGD, where the
projected gradient descent method is employed for predic-
tion. Compared to traditional algorithms for fused Gromov
OT, we replace U(a,b) with C(a), assuming that the dis-
tribution of labels is unknown. In the next subsection, we
consider a setting based on the long-tail problem, where we
assume that the distribution of labels is known, allowing us
to evaluate the effectiveness of the Sinkhorn-based method.

4.2. Long-tailed Inference

Next, we study the long-tailed classification problem, in
which it is typically assumed that the training dataset fol-
lows a long-tailed distribution for labels, while the test data
may follow a uniform, long-tailed, or reverse long-tailed
distribution. From the perspective of OT, when considering
this particular classification problem in the inference pro-
cess, the constraint set C(a) can be restored to the original
U(a,b), where b = N · r is given by the label distribution
r and the number of samples N . Similar to Section 4.1, we
adopt a graph matching approach to solve the long-tail clas-
sification problem. Adopting the fused Gromov-Wasserstein
optimization for long-tailed inference, the zero-shot classifi-
cation can be formulated as

min
P∈U(a,b)

< C,P > −α0 < D1,PD2P
⊤ > −ϵH(P). (14)

We follow the approach of (Xu & Cheng, 2023; Peyre & Cu-
turi, 2019) and use the iterative Sinkhorn algorithm to solve
the optimization problem. The resulting coupling solution P
actually represents the prediction confidence, and we select
the label with the highest confidence for each sample. In ad-
dition to zero-shot long-tailed inference, where C is directly
calculated by OpenAI CLIP, we also do fine-tuning based
on long-tailed data and adopt different inference method
for classification. Comparing to other inference methods as
shown in Table 5, our approach performs competitively.

4.3. Selective Zero-shot Classification

In this subsection, we show the OT-based inference is help-
ful for other zero-shot classification task, i.e. Selective
Zero-shot classification (Song et al., 2018). Due to current
technological limitations, zero-shot classification struggles
to achieve the same level of accuracy and reliability as
supervised learning. An alternative approach is Selective
Zero-shot Classification, which reduces the risk of misclassi-
fications by rejecting examples that fall below a confidence
threshold. Previous works may focus on designing a confi-
dence function, which can involve multiple hyperparameters
that need to be controlled through cross-validation.

In this paper, we attempt to simplify Selective Zero-shot
Classification by introducing a selective rate (sample per-
centage), in which the users directly specify the number
or percentage of samples that need to be classified, and
then the model selects samples based on their confidence
levels for classification. One straightforward method is to
use the softmax probabilities as confidence scores for com-
paring samples and selecting high-confidence samples for
classification while rejecting low-confidence ones. Building
upon the OT-based inference perspective, we propose two
approaches to improve performance:

Unbalanced OT. In the matching perspective, there are
cases where points from the source set and from the target
set cannot be matched one-to-one, i.e. certain points in
both sets do not have any corresponding matches. The idea
is to use unbalanced OT by replacing the hard constraints
with a KL penalty. We introduce this concept into selective
classification, which allows us to classify only a subset
of images, rather than all of them. The optimization for
selective classification can be specified as follows:

min
P≥0

< C,P > −ϵH(P)− τ1KL(P1|a), (15)

where τ1 is a hyperparameter, and the optimization can be
solved by the algorithm proposed in (Chizat et al., 2018).
Note that when τ1 → +∞, the solution of Eq. 15 equals the
Softmax of −C. The advantage of adopting unbalanced OT
is that if the model considers that a sample’s features differ
significantly from all label features, the probability sum of
that sample for all labels will decrease, which is helpful in
rejecting the sample.

Partial OT. Another alternative selection is to adopt Partial
OT, which replaces the strict equality constraint with an
inequality constraint. For selective classification in CLIP,
we modify the constraints accordingly, and the optimization
can be specified as follows:

min
P≥0

< C,P > −ϵH(P) s.t. P1 ≤ 1, 1⊤P1 = s, (16)

where s is a prior constant representing the number of ac-
cepted samples, indicating that CLIP selects to trust s pre-
dicted results. The optimization of Eq. 16 can be solved
by iterative Bregman projections as proposed in (Benamou
et al., 2015) and Table 6 shows the results for Partial OT.

4.4. Experiments on CLIP Inference

Datasets. We primarily evaluate OT-CLIP in the inference
setting on the same downstream datasets used in Section 3.
We generate long-tailed distributions of the ImageNet, CI-
FAR100, and Places365 (Zhou et al., 2017) validation sets
using an imbalance ratio of 10. For long-tailed training, we
use the training distributions by (Kang et al., 2019).
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Table 4. Top-1 accuracy (%) comparison of Zero-shot inference methods using OpenAI pretrained CLIP. Vanilla softmax is compared with
our FGromov OT-based methods (FGromov OT-ISoftmax and FGromov OT-PGD), which consider the classification by graph matching.
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Vanilla Softmax 75.1 65.74 33.23 57.99 39.8 82.18 7.15 67.67 92.15 31.98 29.52 17.7 58.34 13.83 65.4 10.0 28.22 6.21 59.8 44.3
FGromov OT-ISoftmax (ours) 81.92 69.6 33.62 67.6 39.6 83.5 7.7 67.6 89.8 45.6 52.8 11.36 58.6 36.9 51.2 20.2 58.5 6.2 65.4 49.9

FGromov OT-PGD (ours) 75.5 67.5 33.5 58.3 39.7 82.3 7.1 67.8 92.3 32.9 29.9 17.9 58.4 13.8 67.1 10.4 29.1 6.2 59.9 44.7

Table 5. Comparison of top-1 accuracy (%) across different testing inference methods under non-finetuned (Zero-shot) and finetuned
conditions, for datasets (CIFAR100, ImageNet, Places385) and data distributions (longtailed - LT, uniform - U, reverse longtailed - RLT),
based on OpenAI pretrained CLIP (Radford et al., 2021b).

CIFAR100 ImageNet Places385
Zero-shot Finetuned Zero-shot Finetuned Zero-shot Finetuned

Testing Inference LT U RLT LT U RLT LT U RLT LT U RLT LT U RLT LT U RLT

Classifier Normalize – – – 52.7 43.3 34.0 – – – 50.3 44.4 42.7 – – – 27.7 22.5 21.9

Class-Aware Bias – – – 41.5 38.8 36.5 – – – 50.9 47.9 43.3 – – – 24.1 23.7 25.7

Vanilla Softmax 31.8 32.8 32.7 45.1 36.6 28.2 58.6 57.6 60.9 50.3 44.4 42.7 37.9 36.8 39.7 23.4 22.5 25.0

FGromov OT (ours) 43.5 33.1 37.4 66.4 37.3 42.6 63 63.8 65.1 52.2 59.9 43.4 56.7 63.6 56.7 43.8 45.5 40.7

Table 6. Top-1 accuracy (%) comparison of selective zero-shot classification methods using OpenAI pretrained CLIP. Vanilla softmax is
compared with our Unbalanced OT and Partial OT based methods, which modifying hard constraints in Softmax to soft ones.
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Softmax 92.1 85.4 50.6 71.5 51.5 93.6 7.0 92.1 99.5 39.3 43.7 15.5 78.6 22.8 58.6 12.9 48.0 11.2 68.8 54.9
Unbal. OT 93.0 85.1 50.3 73.0 57.7 95.0 7.3 92.0 99.6 41.4 43.5 18.0 79.0 23.0 75.1 13.0 48.3 11.7 76.0 56.9
Partial OT 92.4 85.6 50.8 71.8 57.7 94.1 7.4 92.2 99.6 39.6 43.6 17.9 79.1 22.9 77.0 13.0 48.1 11.3 72.2 56.6

Additional Benchmarks. Similar to Sec. 3.3, we evalu-
ate zero-shot performance on popular downstream datasets:
SUN397 (Xiao et al., 2010), Food-101 (Bossard et al.,
2014), CIFAR10 (Krizhevsky, 2009), Caltech-101 (Li et al.,
2022a), Oxford Pets (Parkhi et al., 2012), STL10 (Coates
et al., 2011), KITTI Distance (Geiger et al., 2012),
UCF101 (Soomro et al., 2012), Country211 (Radford et al.,
2021a), Patch Camelyon (Veeling et al., 2018), Imagenet-
A (Hendrycks et al., 2021b), Imagenet-R (Hendrycks et al.,
2021a) and Imagenet-Sketch (Wang et al., 2019).

Experiments on (vanilla) zero-shot classification. Given
a pretrained CLIP model, we enhance zero-shot classifica-
tion by employing Fused GW methods, specifically FGW-
ISoftmax and FGW-PGrad. The results are presented in
Table 4. It can be observed that Fused GW-based algorithms
perform competitively across most datasets.

Experiments on Long-tailed Inference. We tested the
long-tailed inference task on CIFAR-100, ImageNet-1K,
and Places385 datasets. Alongside traditional softmax, we
also include classifier normalization (Kang et al., 2019) and
class-aware bias (Menon et al., 2020) methods for compari-
son in the finetune setting. We finetune CLIP on long-tailed
data for 10 epochs with a standard linear classification head
using cross-entropy loss. For inference, we predict without

the pretrained/trained prediction head and calculate logits
using both the image and text encoders.The exception is
the classifier normalization method, which uses a classifi-
cation head with cosine normalization (Kang et al., 2019)
and retains its prediction head for inference. Firstly, for the
zero-shot case, we found that FGWISoftmax outperforms
the direct use of Softmax by a significant margin across
all datasets. Secondly, for the fine-tuning case, we found
that FGWISoftmax is superior to all other inference com-
parisons, including classifier normalization which retained
its classification head from training as presented in Table 5.

Experiments on Selective Zero-shot Classification. Ta-
ble 6 presents the results of selective zero-shot classification.
We set the selective rate to 50% and compare the results
of Softmax, Unbalanced OT, and Partial OT in Table 6. It
can be observed that both Unbalanced OT and Partial OT
improve performance compared to directly using Softmax.
Furthermore, by comparing the results in Table 4 and Ta-
ble 6, we can observe that Selective Zero-shot Classification
can help users reject misclassified samples.

5. Conclusion
We have proposed an OT perspective to CLIP for both its
training and inference. Our mathematical understanding and
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derived techniques help establish a new family of loss func-
tions for CLIP training, whose efficacy is verified on public
benchmarks. We also devise graph-based representations
for images and texts, and the inference could be regarded as
a matching procedure. It leads to new techniques not only
for standard zero-shot classification but also the practical
settings in terms of long-tailed recognition as well as selec-
tive classification where the model is required to perform
well on a subset of samples with high prediction scores.

Impact Statement
This paper presents work whose goal is to advance the field
of machine learning, specifically the multi-modal CLIP
model. CLIP itself has broad applications and impact thus
our proposed technique shall be considered when such mod-
els are used in any case.
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Wang, W., Slepčev, D., Basu, S., Ozolek, J. A., and Rohde,
G. K. A linear optimal transportation framework for
quantifying and visualizing variations in sets of images.
International journal of computer vision, 101(2):254–
269, 2013.

Xiao, J., Hays, J., Ehinger, K. A., Oliva, A., and Torralba, A.
Sun database: Large-scale scene recognition from abbey

11

https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2003.05664
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1806.03962
http://arxiv.org/abs/1806.03962


OT-CLIP: Understanding and Generalizing CLIP via Optimal Transport

to zoo. In 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pp. 3485–
3492, 2010. doi: 10.1109/CVPR.2010.5539970.

Xu, H. and Cheng, M. Regularized optimal transport layers
for generalized global pooling operations. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
2023.

Zbontar, J., Jing, L., Misra, I., LeCun, Y., and Deny, S. Bar-
low twins: Self-supervised learning via redundancy reduc-
tion. In International Conference on Machine Learning,
pp. 12310–12320. PMLR, 2021.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang,
O. Making convolutional networks shift-invariant again.
arXiv preprint arXiv:1904.11486, 2019.

Zhong, Y., Yang, J., Zhang, P., Li, C., Codella, N., Li, L. H.,
Zhou, L., Dai, X., Yuan, L., Li, Y., et al. Regionclip:
Region-based language-image pretraining. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 16793–16803, 2022.

Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., and Torralba,
A. Places: A 10 million image database for scene recog-
nition. In IEEE Transactions on Pattern Analysis and
Machine Intelligence, volume 40, pp. 1452–1464. IEEE,
2017.

Zhu, J., Shi, L., Yan, J., and Zha, H. Automix: Mixup net-
works for sample interpolation via cooperative barycenter
learning. In Computer Vision–ECCV 2020: 16th Eu-
ropean Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part X 16, pp. 633–649. Springer, 2020.

12



OT-CLIP: Understanding and Generalizing CLIP via Optimal Transport

A. OT Losses for CLIP Training
A.1. Entropic OT

Algorithm 1 PyTorch-style pseudocode for Entropic OT
# M:Metric cost matrix
# a:Samples weights in the source domain
# b:Samples weights in the target domain
# reg:Regularization term > 0
# N:Max number of iterations

# Initialize u and v as uniform distributions
u = torch.ones(a.shape[0]) / a.shape[0]
v = torch.ones(b.shape[0]) / b.shape[0]

# Compute the kernel K using the negative cost matrix scaled by the
regularization term
K = torch.exp(M / -reg)
# Precompute the row normalization factor
Kp = (1/a).reshape(-1, 1) * K

# Iteratively update u and v using Sinkhorn algorithm
for i in range(N):

# Compute the matrix-vector product of K transposed and u
KtransposeU = K.t() @ u
# Update v based on the current u
v = b / KtransposeU
# Update u using the new v and precomputed Kp
u = 1. / (Kp @ v)

# Return the optimal transport plan P computed from u and v
return u.reshape((-1, 1)) * K * v.reshape((1, -1))

For training, we used reg = 0.01 and N = 5. a was initialized as a tensor of ones of length equivalent to the training batch
size. b was also a tensor of length training batch size, but with values 1 / batch size.
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A.2. DBOT

Algorithm 2 PyTorch-style pseudocode for DBOT
# M:Metric cost matrix between samples in the source and target domains
# reg:Regularization term > 0
# N:Max number of iterations

# Initialize the number of samples based on the cost matrix size
n = M.shape[0]
# Initialize source distribution as uniform
a = torch.ones((n,))
# Define lower bound for target distribution weights
b d = torch.ones((n,), 0.1 * n)
# Define upper bound for target distribution weights
b u = torch.full((n,), 0.9 * n)

# Initialize the transport plan P with regularized cost matrix
P = torch.exp(-M/reg)
# Iteratively adjust P to satisfy constraints
for i in range(N):

# Normalize P row-wise to match source distribution
sum P = P.sum(dim=1)
P = torch.diag(a / sum P) @ P

# Adjust P not to exceed upper bound of target distribution
sum P t = P.t().sum(dim=1)
P = P @ torch.diag(torch.max(b d / sum P t, torch.ones(P.shape[1])))

# Adjust P to meet at least lower bound of target distribution
sum P t = P.t().sum(dim=1)
P = P @ torch.diag(torch.min(b u / sum P t, torch.ones(P.shape[1])))

# Return the adjusted optimal transport plan P
return P

For training, we used N = 5 and reg = 1.0.
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A.3. Fused Gromov OT

Algorithm 3 PyTorch-style pseudocode for Fused Gromov OT
# image f:Image features
# text f:Text features
# a1:Regularization term for scaling the KL divergence term 1
# a2:Regularization term for scaling the KL divergence term 2
# reg:Regularization term > 0
# N:Max number of iterations for adjusting the structural cost matrix

# KL term 1: Compute the self-similarity matrix for image features
sigma 1 = image f @ image f.t()
# KL term 2: Compute the self-similarity matrix for text features
sigma 2 = text f @ text f.t()

# Construct initial cost matrix based on the negative dot product (similarity)
between image and text features
C = 1.0 - image f @ text f.t()
# Initialize the transport plan P
P = softmax(-C / reg)

# Iteratively refine the structural cost matrix
for i in range(N):

# Adjust the cost matrix C
C = C - a1 * sigma 1 @ P @ sigma 2 * a2
# Update the transport plan P
P = sinkhorn(1.0 - C, numIters=5)

# Return transport plan P
return P

For training, we used N = 5, reg = 0.01, a1 = 0.01, and a2 = 0.01.
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A.4. Unbalanced-Fused Gromov OT / Unbalanced OT

Algorithm 4 PyTorch-style pseudocode for Unbalanced-Fused Gromov OT
# x:Cosine sim matrix of image and text features
# c1:Cost matrix of image features
# c2:Cost matrix of text features
# p0:Marginal prior of dimensions
# q0:Marginal prior of samples
# a0:Weight of GW term
# a1:Weight of entropic term
# a2:Weight of KL term for p0
# a3:Weight of KL term for q0
# tau:Regularization coefficient
# num:Number of outer iterations
# inner:Number of inner Sinkhorn iterations
# eps:Epsilon to avoid numerical instability

# Initial setup:
t = q0 * p0 # Initialize transport matrix t
log p0 = torch.log(p0 + eps)
log q0 = torch.log(q0 + eps)

# Iterative optimization:
for m in range(num):

n = min(m, a1.shape[0] - 1)
a11 = a1[n] + tau
tmp1 = torch.matmul(c2, t)
tmp2 = torch.matmul(tmp1, c1)
cost = -x - a0[n] * tmp2 - tau * torch.log(t + eps)
a = torch.zeros like(p0)
b = torch.zeros like(q0)
y = -cost / a11
# Sinkhorn normalization:
for k in range(inner):

log p = torch.logsumexp(y - log p0, dim=2, keepdim=True)
log q = torch.logsumexp(y - log q0, dim=1, keepdim=True)
a = a2[n] / (a2[n] + a11) * (log p0 - log p)
b = a3[n] / (a3[n] + a11) * (log q0 - log q)
y = -cost / a11 + a + b

t = torch.exp(y)
return t

For training with U-FG OT, we use a0 = a1 = a2 = a3 = 0.01, inner = 5, and num = 4. q0 and p0 are initialized as a
tensor of 0.001 of length batch size. For training with Unbal. OT, we use the same parameters as U-FG OT except with
num = 1 and a0 = 0.

Special thanks to authors (Xu & Cheng, 2023) for their implementation of regularized optimal transport layers for pooling
(ROTP) that provided much of the structural implementation for this algorithm.
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B. OT Losses for CLIP Inference
B.1. FGWISoftmax

Algorithm 5 PyTorch-style pseudocode for FGWISoftmax
# image f:Image features
# text f:Text features
# a1:Regularization term for scaling the KL divergence term 1
# a2:Regularization term for scaling the KL divergence term 2
# reg:Regularization term > 0
# N:Max number of iterations for adjusting the structural cost matrix

# KL term 1: Compute the self-similarity matrix for image features
sigma 1 = image f @ image f.t()
# KL term 2: Compute the self-similarity matrix for text features
sigma 2 = text f @ text f.t()

# Construct initial cost matrix based on the negative dot product (similarity)
between image and text features
C = 1.0 - image f @ text f.t()
# Initialize the transport plan P
P = softmax(-C / reg)

# Iteratively refine the structural cost matrix
for i in range(N):

# Adjust the cost matrix C
C = C - a1 * sigma 1 @ P @ sigma 2 * a2
# Update the transport plan P
P = softmax(-C / reg)

# Return transport plan P
return P
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B.2. FGW-PGrad

Algorithm 6 PyTorch-style pseudocode for FGW-PGrad
# image f:Image features
# text f:Text features
# a1:Regularization term for scaling the KL divergence term 1
# a2:Regularization term for scaling the KL divergence term 2
# reg:Regularization term > 0
# N:Max number of iterations for adjusting the structural cost matrix

# KL term 1: Compute the self-similarity matrix for image features
sigma 1 = image f @ image f.t()
# KL term 2: Compute the self-similarity matrix for text features
sigma 2 = text f @ text f.t()

# Construct initial cost matrix based on the negative dot product (similarity)
between image and text features
C = 1.0 - image f @ text f.t()
# Initialize the transport plan P
P = softmax(-C)

# Iteratively refine the structural cost matrix
for i in range(N):

# Adjust the cost matrix C
grad = C - a1 * sigma 1 @ P @ sigma 2 * a2

K = P * torch.exp(-grad/reg)
P = K / K1 # Row normalization

# Return transport plan P
return P
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B.3. Partial OT

Algorithm 7 PyTorch-style pseudocode for Partial OT
# image f:Image features
# text f:Text features
# reg:Regularization term > 0
# N:Max number of iterations for adjusting the structural cost matrix

P = torch.exp(image f @ text f.t() / reg
m = torch.full((num class,), 1/num class)

for i in range(N):
row P = P.sum(dim=1)
scaling = torch.max(row P, 1)
P = div(P, scaling)
P *= m/P.sum(dim=1) # Row normalization

# Return transport plan P
return P
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C. Inference Hyperparameters and Datasets

Table 7. Hyperparameter settings for inference results. Reference Appendix Section A for parameter details.
FGWISoftmax FGromov OT FGW-PGrad Partial OT Unbalanced OT
Graph Zero-shot LT Zero-shot LT Finetune Graph Zero-shot Selective Zero-shot Selective Zero-shot

Dataset reg a1 N reg a1 N reg a1 N a2 reg a1 N reg N tau num inner q0 p0 a0 a1 a2 a3

Food-101 0.01 0.01 3 – – – – – – 0.01 0.01 0.01 5 0.1 100 0.01 5 1 0.01 0.01 0 0.01 0.01 0.01
CIFAR-10 1.0 0.01 3 – – – – – – 0.01 0.01 0.01 5 0.1 100 0.01 5 1 0.01 0.01 0 0.01 0.01 0.01
CIFAR-100 1.0 0.01 3 0.01 0.01 3 0.01 0.01 3 0.01 0.01 0.01 5 0.1 100 0.01 5 1 0.01 0.01 0 0.01 0.01 0.01
SUN397 0.01 0.01 3 – – – – – – 0.01 0.01 0.01 5 0.1 100 0.01 5 1 0.01 0.01 0 0.01 0.01 0.01
DTD 1.0 0.01 5 – – – – – – 0.01 0.01 0.01 5 0.1 100 0.01 5 1 0.01 0.01 0 0.01 0.01 0.01
Oxford Pets 1.0 0.01 5 – – – – – – 0.01 0.01 0.01 5 0.1 100 0.01 5 1 0.01 0.01 0 0.01 0.01 0.01
Oxford Flowers 0.01 0.01 3 – – – – – – 0.01 0.01 0.01 5 0.1 100 0.01 5 1 0.01 0.01 0 0.01 0.01 0.01
Caltech-101 1.0 0.01 3 – – – – – – 0.01 0.01 0.01 5 0.1 100 0.01 1 1 0.01 0.01 0 0.1 0.1 0.1
STL-10 2.0 0.01 5 – – – – – – 0.01 0.01 0.01 5 0.1 100 0.01 5 1 0.01 0.01 0 0.01 0.01 0.01
EuroSat 0.01 0.01 3 – – – – – – 0.01 0.01 0.01 5 0.1 100 0.01 5 1 0.01 0.01 0 0.01 0.01 0.01
GTSRB 0.01 0.01 3 – – – – – – 0.01 0.01 0.01 5 0.1 100 0.01 1 1 0.01 0.01 0 0.1 0.1 0.1
KITTI Distance 1.0 0.01 3 – – – – – – 0.01 0.01 0.01 5 0.1 100 0.01 1 1 0.01 0.01 0 0.1 0.1 0.1
UCF101 Frames 1.0 0.01 5 – – – – – – 0.01 0.01 0.01 5 0.1 100 0.01 5 1 0.01 0.01 0 0.01 0.01 0.01
Country211 0.01 0.01 3 – – – – – – 0.01 0.01 0.01 5 0.1 100 0.01 1 1 0.01 0.01 0 0.1 0.1 0.1
Patch Camelyon 1.0 0.01 3 – – – – – – 0.01 0.01 0.01 5 0.1 100 0.01 1 1 0.01 0.01 0 0.1 0.1 0.1
ImageNet-A 0.01 0.01 3 – – – – – – 0.01 0.01 0.01 5 0.1 100 0.01 5 1 0.01 0.01 0 0.01 0.01 0.01
ImageNet-R 0.01 0.01 3 – – – – – – 0.01 0.01 0.01 5 0.1 100 0.01 5 1 0.01 0.01 0 0.01 0.01 0.01
ImageNet-Sketch 1.0 0.01 5 – – – – – – 0.01 0.01 0.01 5 0.1 100 0.01 5 1 0.01 0.01 0 0.01 0.01 0.01
ImageNet1K 0.01 0.01 3 0.1 0.1 5 0.1 0.1 5 0.01 0.01 0.01 5 0.1 100 0.01 5 1 0.01 0.01 0 0.01 0.01 0.01
ImageNet-LT/RLT – – – 0.1 0.1 5 0.1 0.1 5 – – – – – – – – – – – – – – –
CIFAR100-LT/RLT – – – 0.01 0.01 3 0.01 0.01 3 – – – – – – – – – – – – – – –
Places365 – – – 0.01 0.1 3 0.01 0.1 3 – – – – – – – – – – – – – – –
Places365-LT/RLT – – – 0.01 0.1 3 0.01 0.1 3 – – – – – – – – – – – – – – –
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Figure 2. Convergence graphs of proposed OT methods and baselines.

D. Additional Figures
D.1. Computational Cost and Convergence

We compare the computational cost of OT-based Loss and InfoNCE loss for 30 epochs of training below. Since we solely
apply OT to the loss function, our optimizations are only applied after classification pooling. Therefore, we do not assume
much cost during the training process. Admittedly, the computational cost was only loosely enforced through effective batch
size, and our OT methods are more expensive than baseline InfoNCE despite some of our OT methods having slightly lower
training times. Most importantly, we want to highlight the comparable training time to that of baseline InfoNCE. Training
time is reported on CC3M using effective batch size 1024. Although training losses are not utilized during validation, we
provide the inference time on Imagenet1K-val for a more controlled comparison of computational cost. Inference time is
reported using batch size 1000, averaged over 10 runs. Inference hyperparameters are set to the same used during training.

Method Training Time (hours) Inference Time (seconds)
InfoNCE 17.46 89.34
HNS 17.01 –
Triplet 30.01 –
CyCLIP 17.73 –
Entropic OT 17.01 90.83
DBOT 17.02 90.42
FGromov OT 17.45 90.36
Unbal. OT 17.33 91.2
U-FG OT 17.51 90.37

Table 8. Training and Inference Time on ImageNet-1K

D.2. Influence of Batch Size on Graph-Matching Perspective

OT-based inference will degrade to traditional Softmax prediction if the model needs to predict one sample or a small
number of samples at a time. However, in practical applications, it is rare to set the batch size as 1 for inference due to the
increased computational cost. Instead, higher batch sizes are often used to enable parallel prediction. Below we show our OT
inference results in the graph matching perspective for ImageNet-1K using varying batch sizes. Generally, we can observe
an upward trend in Top-1 Accuracy as we increase the batch size. With the exception for FGromov-OT-ISoftmax, where the
best results aligned with the batch size with closest to the number of samples per class during non-shuffled evaluation. For
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comparison, baseline Softmax achieves 59.82% across all batch sizes.

Table 9. ImageNet-1K Classes in Sequential Order — Graph Matching Perspective using Increasing Batch Size
Method BS 32 BS 64 BS 128 BS 256 BS 512 BS 1024 BS 2048 BS 4096 Whole
FGromov-OT-PGD 59.82 59.82 59.82 59.84 59.86 59.87 59.92 59.91 59.95
FGromov-OT-ISoftmax 59.9 73.6 66.3 65.4 63.0 61.0 61.1 61.1 61.1

Table 10. ImageNet-1K Random Shuffle — Graph Matching Perspective using Increasing Batch Size
Method BS 32 BS 64 BS 128 BS 256 BS 512 BS 1024 BS 2048 BS 4096 Whole
FGromov-OT-PGD 59.84 59.84 59.86 59.91 59.92 59.95 59.92 59.96 59.95
FGromov-OT-ISoftmax 59.87 59.93 60.0 60.0 60.1 60.3 60.5 60.9 60.7

Table 11. Hyperparameters for Table 9

FGWISoftmax FGW-PGrad
Batch Size reg a1 a2 N reg a1 a2 N

16 0.01 0.1 0 3 0.01 0.01 0.01 5
32 0.01 0.1 0 3 0.01 0.01 0.01 5
64 0.01 0.1 0 3 0.01 0.01 0.01 5
128 0.1 0.1 0 3 0.01 0.01 0.01 5
256 0.1 0.1 0 3 0.01 0.01 0.01 5
512 0.1 0.1 0 3 0.01 0.01 0.01 5
1024 0.01 0.01 0.01 3 0.01 0.01 0.01 5
2048 0.01 0.01 0.01 10 0.01 0.01 0.01 10
4096 0.01 0.01 0.01 10 0.01 0.01 0.01 15
Whole 0.01 0.01 0.01 13 0.01 0.01 0.01 20
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