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Abstract

Selection bias poses a widely recognized challenge for unbiased evaluation and
learning in many industrial scenarios. For example, in recommender systems, it
arises from the users’ selective interactions with items. Recently, doubly robust
and its variants have been widely studied to achieve debiased learning of prediction
models, however, all of them consider a simple exact matching scenario, i.e., the
units (such as user-item pairs in a recommender system) are the same between
the training and test sets. In practice, there may be limited or even no overlap
in units between the training and test. In this paper, we consider a more prac-
tical scenario: the joint distribution of the feature and rating is the same in the
training and test sets. Theoretical analysis shows that the previous DR estimator
is biased even if the imputed errors and learned propensities are correct in this
scenario. In addition, we propose a novel super-population doubly robust esti-
mator (SuperDR), which can achieve a more accurate estimation and desirable
generalization error bound compared to the existing DR estimators, and extend
the joint learning algorithm for training the prediction and imputation models. We
conduct extensive experiments on three real-world datasets, including a large-scale
industrial dataset, to show the effectiveness of our method. The code is available at
https://github.com/ChunyuanZheng/neurips-25-SuperDR.

1 Introduction

Selection bias means the distribution of collected data differs from that in the target population.
It is ubiquitous and occurs when data are missing-not-at-random (MNAR). For example, in the
recommender system (RS), due to the subjective preferences of users and the data collection process
itself, selection bias always exists in the collected data [1, 2]. Thus, selection bias poses a widely-
recognized challenge [3, 4, 5, 6]. Ignoring selection bias makes machine learning methods difficult to
achieve unbiased predictions and reducing its reliability [7, 8].

Many methods have been proposed to address selection bias. The error imputation-based (EIB)
method [9, 10] utilizes an imputation model to impute the missing relevance. The inverse propensity
score (IPS) method uses inverse propensity to reweight the observed events to achieve unbiased-
ness [11, 12, 13]. The doubly robust (DR) method combines the error imputation model and the
propensity model [14, 15, 16, 17, 18, 19], which is unbiased if either the imputed errors or the learned
propensities are accurate, and is also proved to have lower variance compared to IPS [20].

Although previous DR-based methods have demonstrated promising performance in debiasing tasks,
all of them consider the exact matching scenario, i.e., the units are the same between training and test
set. In RS, it means the users and items are the same between training and test set, as illustrated in the
left part in Figure 1. However, there may be limited or even no overlap in units between training and
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Figure 1: (1) Traditional debiasing methods consider an exact matching scenario, where the users and
items are the same between training and test set, the non-random missingness (missing two negative
ratings) indicates selection bias; (2) The cold-start problem refers to the training data containing
only hot users/items, while the test data has only cold users/items, which differs from the debiasing
scenario intrinsically; (3) This paper extends the exact matching scenario, considering a more general
scenario that the joint distribution of the feature and rating P(x, r) in training and test set is the same.

test sets. For example, in many industrial scenarios, the user-item pairs in offline training data cannot
be exactly the same as those in online test data [21, 22]. Therefore, instead of exact matching, a
more practical scenario is that the joint distribution of the feature and outcome P(x, r) is the same in
training and test set, as illustrated in the right part in Figure 1. Note that this scenario is intrinsically
different with the cold-start problem, where the training data distribution Phot differs from the test
data distribution Pcold, as shown in the middle part in Figure 1. In addition, selection bias is rarely
considered in the cold-start problem.

To this end, in this paper, we first derive the bias of the DR estimator in super-population scenario,
which contains an additional covariance term besides the term that measures the accuracy of imputed
errors and learned propensities. Surprisingly, the DR estimator is biased even if the imputed errors
and learned propensities are correct. Then we provide unbiased conditions under the super-population
scenario, and propose the SuperDR estimator with the corrected imputation model, which can
effectively control the additional covariance term with many desirable theoretical properties such
as bias and variance reduction, leading to a more accurate estimation under the super-population
scenario. In addition, we extend the previous joint learning algorithm based on the proposed corrected
imputation loss and further derive the generalization error bound for the proposed SuperDR, and show
that the proposed learning approach can effectively control it. Extensive experiments are conducted
on three real-world datasets to show the effectiveness of our SuperDR method.

Our main contributions can be summarized as follows:
• To the best of our knowledge, this is the first paper that extends the exact matching scenario

to the super-population scenario. In this scenario, we derive the bias of the DR estimator and
show DR estimator is biased even if the imputed errors and learned propensities are correct.

• We propose the SuperDR method based on the corrected imputation model, which can
effectively control the additional covariance term. In addition, the corrected imputation
model not only benefits unbiased estimation but also reduces the generalization bound to
enhance prediction performance.

• We conduct extensive experiments on three real-world datasets, including a large industrial
dataset, to demonstrate the effectiveness of our proposed method.

2 Related Work

There are various biases in the collected data [23, 24], which have been of increasing concern in
recent years [25, 26, 27, 28, 29, 30, 31]. Selection bias is one of the most common biases and a lot of
research has been done aiming to eliminate this kind of bias [32, 33, 34, 35, 36]. Based on the causal
inference techniques [37, 38, 39, 40, 41, 42, 43], the error imputation based method (EIB) [44, 45]
first imputes pseudo-labels for missing events from the observed events, and then leverages these
pseudo-labels to train the prediction model [46]. The propensity-based approaches weight the inverse
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propensity score (IPS) on the observed data to eliminate bias [11, 12, 13]. However, IPS will suffer
from a large variance when the extreme values exist in the estimated propensities [47].

The doubly robust (DR) method improves the weakness of EIB and IPS methods and becomes the
mainstream model due to the weaker unbiased conditions (unbiased when either imputed errors
or learned propensities are correct) and smaller variance than the IPS method [48, 49, 50, 51, 52].
In particular, the DR estimator is unbiased when either learned propensities or imputed errors are
accurate. Many augmented DR methods are developed to further enhance the previous DR method
performance by modifying the propensity model and imputation model or the form of the DR
estimator, such as MRDR [33], BRD-DR [53], StableDR [54], TDR [55], DR-MSE [56], MR [57],
CDR [58], AKBDR [59], DCE-TDR [60], and D-DR [61]. In addition, there are methods leveraging
few unbiased ratings to mitigate hidden confounding and improve DR debiasing efficacy [5, 62, 63].
In this paper, we consider a more general super-population scenario and propose SuperDR with the
corrected imputation model to achieve a more accurate estimation.

3 Preliminaries

We start with the classic debiasing scenario and take RS as an example. Note that the selection
bias also exists in other scenarios such as pattern recognition and causal effects estimation, and our
proposed method is also applicable for debiasing in these scenarios. Suppose the training user set
Utrain = {u1, u2, . . . , um} contains m users, the item set Itrain = {i1, i2, . . . , in} contains n items.
The purpose of RS is to train a prediction model to accurately predict the ratings of all user-item pairs,
thus the target population is defined as all user-item pairs Dtarget = Utrain × Itrain. Let R ∈ Rm×n be
the ground truth rating matrix of all user-item pairs in Dtarget, where ru,i is the rating of user u on
item i. Let xu,i be the feature of user u and item i, and r̂u,i = f(xu,i; θ) is the predicted rating by a
prediction model, θ is the corresponding parameter. Denote R̂ ∈ Rm×n as the matrix containing all
the predicted ratings. Let O ∈ {0, 1}m×n be the binary observation indicator matrix for all user-item
pairs, ou,i = 1 indicates the rating of user u on item i is observed, otherwise missing ou,i = 0. All
previous methods implicitly assume Dtarget = Dtest = D with fixed user-item pairs, thus the only
randomness comes from the missing mechanism. If all the ratings are observed, the prediction model
can be trained directly by minimizing the following ideal loss

Lideal(θ) =
1

|D|
∑

(u,i)∈D

eu,i,

where eu,i = L(r̂u,i, ru,i) is the loss between the predicted rating r̂u,i and the true rating ru,i and
L(·, ·) is an arbitrary loss function. However, the ideal loss is not available in most cases because we
can only observe part of the data with selection bias. Thus, for user-item pair with ou,i = 0, the ru,i
is missing. To tackle this issue, the DR estimator has been proposed:

EDR(θ) =
1

|D|
∑

(u,i)∈D

[
êu,i +

ou,i(eu,i − êu,i)

p̂u,i

]
.

where p̂u,i = π(xu,i;ψ) is the propensity model to estimate pu,i := P(ou,i = 1 | xu,i), and
êu,i = m(xu,i;ϕ) is the imputation model to impute the missing eu,i.

4 Proposed Method

4.1 From Finite Population to Super-population

Before introducing our method, we first focus on the theoretical properties of the DR estimator and
start from the bias form of DR estimator.

Lemma 4.1 (Bias of DR Estimator [14]). Given imputed errors êu,i and learned propensities
p̂u,i > 0, when considering only the randomness of missing indicators, the bias of DR estimator is

BiasO[EDR(θ)] =
1

|D|
∑

(u,i)∈D

{p̂u,i − pu,i} · {eu,i − êu,i}
p̂u,i

.
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We find that either êu,i = eu,i or p̂u,i = pu,i is sufficient to eliminate bias, which inspires the double
robustness condition for the DR method.

Corollary 4.2 (Double Robustness [14]). The DR estimator is unbiased when either imputed errors
êu,i or learned propensities p̂u,i are accurate for all user-item pairs, i.e., either êu,i = eu,i or
p̂u,i = pu,i for all u and i.

The above Lemma 4.1 shows the bias form of the DR estimator when users and items in the training
set and the users and items in the test set are exactly the same. However, as we discussed earlier, this
scenario is too simple in many real-world scenarios. Thus, we consider a more general scenario, also
known as super-population, with U = {u1, u2, ...}, I = {i1, i2, ...}. Dtarget = {u1, u2, . . . , um} ×
{i1, i2, . . . , in} and Dtest = {uj1 , uj2 , . . . , ujm′} × {ik1 , ik2 , . . . , ikn′} are sampled from the whole
user set and item set, respectively. Without loss of generality, we consider the sampling strategy
to be the same for both Dtarget and Dtest datasets (otherwise, we can adjust the sampling strategy
by reweighting). Therefore, instead of Dtarget = Dtest = D, we consider a more practical scenario
P(Dtarget) = P(Dtest) = P(D), that is, the joint distribution P(x, r) in the target and the test population
are the same. We can regard the ground-truth ratings and covariate values as drawing |Dtarget| times
from the P(x, r) in the super-population and are therefore they are stochastic. Furthermore, the
randomness of ratings and covariates leads to the randomness of all other variables such as eu,i and
êu,i. For unbiased prediction in this scenario, we need to estimate the expected ideal loss below:

L∗
ideal(θ) = E[Lideal(θ)] = E[eu,i],

where the expectation is taken on the super-population distribution P(x, r). Unless otherwise stated,
all expectations are taken on the P(x, r) later. With the additional randomness caused by super-
population, the theoretical results of the DR estimator change. The following theorem and corollary
show the bias and the double robustness property under super-population for the DR estimator.

Theorem 4.3 (Bias of DR Estimator under Super-population). Given error imputation model êu,i
and propensity model p̂u,i, then the bias of the DR estimator for estimating the expected ideal loss
under super-population is

BiasP [EDR(θ)] = Cov

(
p̂u,i − ou,i

p̂u,i
, eu,i − êu,i

)
︸ ︷︷ ︸

equals to 0 if independent

+E
[{

1− E
[
ou,i
p̂u,i

∣∣xu,i]} · {E[eu,i | xu,i]− E[êu,i | xu,i]}
]

︸ ︷︷ ︸
equals to 0 either E[ou,i/p̂u,i | xu,i] = 1 or E[êu,i − eu,i | xu,i] = 0

.

Corollary 4.4 (Double Robustness under Super-population). Under super-population, the DR
estimator is unbiased when both the following conditions hold:

(i) Either learned propensities satisfy E[ou,i/p̂u,i | xu,i] = 1, or imputed errors have the same
conditional expectation with true prediction errors E[êu,i | xu,i] = E[eu,i | xu,i];

(ii) The covariance term vanishes, that is, Cov
(
p̂u,i−ou,i
p̂u,i

, eu,i − êu,i

)
= 0.

Remark: Previous DR estimators are biased even if êu,i = eu,i or p̂u,i = pu,i for all (u, i) ∈ Dtarget.

Compared with the existing theoretical results as in Lemma 4.1, it is obvious that condition (i) is
necessary to achieve unbiasedness, which directly extends the conditions of accurate imputed errors
and learned propensities in Lemma 4.1 to the expectation form. However, note that the condition
(ii) that covariance vanishes is also needed for the unbiasedness under super-population scenario.
Intuitively, if ignoring the randomness caused by sampling process, then eu,i − êu,i is a constant
given xu,i. By the double expectation formula, the covariance term vanishes automatically. The
detailed proofs are in the Appendix A. Therefore, it is necessary to modify the previous DR learning
approach to control the covariance while learning accurate propensity and imputation models under
super-population scenario.

4.2 The SuperDR Estimator

It is important to note that the true covariance is unknown because we cannot access the true
data distribution. However, we can use the empirical covariance over all user-item pairs as an
approximation of the true covariance. We first give the definition of empirical covariance.
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Definition 4.5 (Empirical Covariance). The empirical expected conditional covariance between
(p̂u,i − ou,i)/p̂u,i and eu,i − êu,i is

Ĉov

(
p̂u,i − ou,i

p̂u,i
, eu,i − êu,i

)
=

1

|D|
∑

(u,i)∈D

p̂u,i − ou,i
p̂u,i

· (eu,i − êu,i).

When the learned propensities or imputed errors are accurate, i.e., satisfying condition (i) in Corollary
4.4, the empirical covariance will converge to Cov

(
p̂u,i−ou,i
p̂u,i

, eu,i − êu,i

)
as |D| → ∞. A direct

method to control the empirical covariance is to regard it as a regularization term. However, since the
data are partially observed, we cannot obtain the value of the empirical covariance on all user-item
pairs. In addition, the large penalty term may hurt the prediction performance. Interestingly, motivated
by targeted maximum likelihood estimation [55, 64], we found that the empirical covariance can
be controlled with a targeting correction step based on the DR estimator. Specifically, we designed
imputation correction as follows:

ẽu,i = êu,i + ϵ(ou,i − p̂u,i).

where êu,i = m(xu,i;ϕ) is the imputed errors in previous DR estimators, p̂u,i = π(xu,i;ψ) is the
learned propensity, and ϵ is a learnable parameter. We optimize ϕ and ϵ in ẽu,i by minimizing the
loss based on imputation correction:

(ϕ∗, ϵ∗) = argmin
ϕ,ϵ

LSupe (ϕ, ϵ) =
1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i
.

Specifically, the added correction term ϵ(ou,i − p̂u,i) has several desired properties. First, the
correction term enlarges the hypothesis space of ẽu,i compared to êu,i, and does not bring extra
concerns to the double robustness property due to it has zero mean under accurate p̂u,i. Second, the
derivatives on the proposed loss with respect to ϵ are shown below:

∂

∂ϵ
LSupe (ϕ, ϵ) =

2

|D|
∑

(u,i)∈O

p̂u,i − ou,i
p̂u,i

· (eu,i − ẽu,i).

It has the same form as the empirical covariance for user-item pairs with ou,i = 1, which means that
we can make the empirical covariance for observed user-item pairs to zero by minimizing the LSupe
directly. Note that adding the correction term on either êu,i or eu,i will not affect the gradient above,
thus we add such term on êu,i for illustration. In the next step, we show that the unobserved empirical
covariance can also be bounded by minimizing LSupe using the concentration inequality. To proceed,
we first define the empirical Rademacher complexity as follows.

Definition 4.6 (Empirical Rademacher Complexity [65]). Let F be a family of prediction models
mapping from x ∈ X to [a, b], and S = {xu,i | (u, i) ∈ D} a fixed sample of size |D| with elements
in X . Then, the empirical Rademacher complexity of F with respect to the sample S is defined as:

R(F) = Eσ∼{−1,+1}|D| sup
fθ∈F

 1

|D|
∑

(u,i)∈D

σu,ieu,i

 ,
where σ = {σu,i : (u, i) ∈ D}, and σu,i are independent uniform random variables taking values in
{−1,+1}. The random variables σu,i are called Rademacher variables.

Then we derive the controllability of empirical covariance for all user-item pairs in Theorem 4.7.
Refer to Appendix A for the complete proof for this theorem.

Theorem 4.7 (Controllability of Empirical Covariance). The corrected imputation model trained by
LSupe is sufficient for controlling the empirical covariance.

(i) For user-item pairs with observed outcomes, the empirical covariance is 0. Formally, we have

∂

∂ϵ
LSupe (ϕ, ϵ)

∣∣∣∣
ϵ=ϵ∗

= 0, which is equivalent to
1

|D|
∑

(u,i): ou,i=1

p̂u,i − ou,i
p̂u,i

· (eu,i − ẽu,i) = 0;
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Algorithm 1: The Proposed Doubly Robust Joint Learning Algorithm under Super-population
Input: observed ratings Ro and a pre-trained propensity model π(xu,i;ψ).

1 while stopping criteria is not satisfied do
2 for number of steps for training the corrected imputation model do
3 Sample a batch of user-item pairs {(uj , ij)}Jj=1 from O;
4 Update ϕ by descending along the gradient ∇ϕLSupe (ϕ, ϵ);
5 Update ϵ by descending along the gradient ∇ϵLSupe (ϕ, ϵ);
6 end
7 for number of steps for training the debiased prediction model do
8 Sample a batch of user-item pairs {(uk, ik)}Kk=1 from D;
9 Update θ by descending along the gradient ∇θLSuperDR(θ;ϕ, ψ);

10 end
11 end

(ii) For user-item pairs with missing outcomes, suppose that p̂u,i ≥ Kψ and |eu,i − ẽu,i| ≤ Kϕ, then
with probability at least 1− η, we have

1

|D|
∑

(u,i): ou,i=0

p̂u,i − ou,i
p̂u,i

· (eu,i − ẽu,i)

≤
√

LSupe (ϕ, ϵ)︸ ︷︷ ︸
proposed loss

+Kϕ

√√√√ 1

|D|
∑
u,i∈D

∣∣∣∣1− E
[
ou,i
p̂u,i

∣∣xu,i]∣∣∣∣︸ ︷︷ ︸
empirical bias from propensity model

+

√√√√Kϕ

(
1 +

1

Kψ

)(
2R(F) + (2Kϕ + 1)

√
2 log(4/η)

|D|

)
︸ ︷︷ ︸

tail bound controlled by empirical Rademacher complexity and sample size

,

where the Kψ , Kϕ, η are constants.

Note the proposed imputation correction has no harm property theoretically, as shown in Corollary 4.8.

Corollary 4.8 (Relation to previous imputed errors). The learned coefficient ϵ∗ will converge to zero
when the imputation model êu,i has zero empirical covariance, making ẽu,i degenerates to êu,i.

In addition, the proposed imputation correction can not only control the empirical covariance effec-
tively but also be helpful for learning more accurate imputed errors.

Corollary 4.9 (Bias reduction property). The proposed corrected imputation loss leads to the smaller
bias of imputed errors ẽu,i, when êu,i are inaccurate. Formally, we have

min
ϕ,ϵ

LSupe (ϕ, ϵ) =
1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i
≤ min

ϕ
Le(ϕ) =

1

|D|
∑

(u,i)∈D

ou,i(eu,i − êu,i)
2

p̂u,i
.

Moreover, while reducing bias, the proposed method also reduces the variance compared to the
previous imputed errors under a moderate condition, as shown below.

Corollary 4.10 (Variance reduction property). The proposed corrected imputation loss leads to the
smaller variance of ẽu,i when the optimal ϵ∗ lies in a certain range. Formally, we have

V(ẽu,i) = V(êu,i + ϵ∗ · (ou,i − p̂u,i)) ≤ V(êu,i), if ϵ∗ ∈
[
0, 2 · Cov(êu,i, p̂u,i − ou,i)

V(p̂u,i − ou,i)

]
.

See Appendix A for the proof for the above three corollaries. Finally, the proposed SuperDR estimator
is given below based on the corrected imputation:

ESuperDR(θ) =
1

|D|
∑

(u,i)∈D

[
ẽu,i +

ou,i(eu,i − ẽu,i)

p̂u,i

]
.
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Table 1: Performance on AUC, NDCG@K and Recall@K on the Coat, Yahoo! R3 and KuaiRec
datasets. The best result is bolded and the best baseline result is underlined, where * means statistically
significant results (p-value ≤ 0.05) using the paired-t-test.

Methods Coat Yahoo! R3 KuaiRec

AUC NDCG@5 Recall@5 AUC NDCG@5 Recall@5 AUC NDCG@50 Recall@50

MLP 0.729± 0.003 0.635± 0.006 0.614± 0.007 0.664± 0.002 0.645± 0.002 0.442± 0.004 0.808± 0.005 0.610± 0.007 0.645± 0.010
DAMF 0.729± 0.005 0.652± 0.007 0.628± 0.008 0.664± 0.002 0.642± 0.001 0.438± 0.002 0.811± 0.003 0.609± 0.004 0.643± 0.005
CVIB 0.729± 0.004 0.647± 0.005 0.623± 0.009 0.670± 0.004 0.656± 0.003 0.452± 0.001 0.816± 0.007 0.617± 0.008 0.653± 0.009
IPS 0.731± 0.004 0.642± 0.004 0.625± 0.005 0.667± 0.003 0.647± 0.006 0.445± 0.007 0.806± 0.006 0.606± 0.006 0.643± 0.005
SNIPS 0.732± 0.004 0.654± 0.005 0.629± 0.005 0.665± 0.003 0.644± 0.004 0.443± 0.003 0.811± 0.004 0.612± 0.006 0.649± 0.006
ASIPS 0.730± 0.006 0.643± 0.006 0.620± 0.006 0.668± 0.002 0.655± 0.004 0.452± 0.005 0.811± 0.006 0.614± 0.006 0.652± 0.005
IPS-V2 0.736± 0.004 0.653± 0.007 0.628± 0.009 0.662± 0.003 0.651± 0.001 0.445± 0.002 0.813± 0.006 0.612± 0.008 0.655± 0.006
DR 0.733± 0.003 0.650± 0.005 0.625± 0.007 0.667± 0.005 0.655± 0.004 0.449± 0.008 0.818± 0.003 0.620± 0.004 0.655± 0.007
MRDR 0.739± 0.005 0.650± 0.003 0.622± 0.007 0.665± 0.005 0.652± 0.005 0.448± 0.005 0.814± 0.006 0.616± 0.006 0.652± 0.003
DR-MSE 0.738± 0.005 0.645± 0.007 0.627± 0.006 0.667± 0.004 0.650± 0.004 0.446± 0.004 0.814± 0.006 0.617± 0.006 0.654± 0.007
DR-V2 0.747± 0.004 0.653± 0.004 0.625± 0.006 0.671± 0.008 0.660± 0.005 0.456± 0.003 0.821± 0.010 0.619± 0.010 0.661± 0.008
SDR 0.748± 0.006 0.650± 0.005 0.626± 0.007 0.666± 0.005 0.653± 0.004 0.451± 0.004 0.819± 0.004 0.618± 0.005 0.652± 0.006
TDR 0.744± 0.004 0.651± 0.005 0.631± 0.005 0.664± 0.004 0.655± 0.007 0.453± 0.003 0.822± 0.005 0.621± 0.009 0.656± 0.010
MR 0.742± 0.005 0.653± 0.006 0.630± 0.006 0.672± 0.003 0.657± 0.003 0.454± 0.002 0.823± 0.003 0.622± 0.004 0.655± 0.005
AKBDR 0.748± 0.005 0.656± 0.007 0.630± 0.007 0.676± 0.004 0.662± 0.004 0.461± 0.003 0.824± 0.004 0.629± 0.006 0.667± 0.006
DCE-TDR 0.746± 0.005 0.654± 0.005 0.629± 0.006 0.679± 0.004 0.662± 0.005 0.459± 0.004 0.824± 0.003 0.632± 0.004 0.671± 0.006
D-DR 0.750± 0.004 0.654± 0.004 0.630± 0.008 0.678± 0.004 0.659± 0.004 0.456± 0.003 0.822± 0.004 0.630± 0.005 0.672± 0.005
SuperDR 0.757∗ ± 0.004 0.667∗ ± 0.005 0.637∗ ± 0.007 0.686∗ ± 0.003 0.667∗ ± 0.004 0.463 ± 0.003 0.828 ± 0.004 0.640∗ ± 0.005 0.680∗ ± 0.005

4.3 The Extend Joint Learning Algorithm

We optimize the prediction model and the imputation model of the SuperDR method by a widely
used joint learning framework [14], which alternatively optimizes two models to achieve unbiased
learning. Specifically, we train the prediction model by minimizing SuperDR loss:

LSuperDR(θ) =
1

|D|
∑

(u,i)∈D

[
ẽu,i +

ou,i(eu,i − ẽu,i)

p̂u,i

]
.

We update the imputation model parameters and ϵ simultaneously by minimizing the LSupe (ϕ, ϵ) in
Section 4.2 and we train the propensity model by minimizing the following cross-entropy loss.

Lp(ψ) =
1

|D|
∑

(u,i)∈D

[−ou,i log(p̂u,i)− (1− ou,i) log(1− p̂u,i)] .

The propensity model is pre-trained, and the parameters of the prediction and imputation model are
updated alternatively via SGD. The joint learning process is summarized in Algorithm 1. Note that
the complexity will not increase due to we only additionally update one single parameter ϵ compared
to the traditional joint learning algorithm.

4.4 The Generalization Bound

Next, we analyze the generalization error bound of the DR methods using the models for estimating
eu,i and pu,i, and show that controlling empirical covariance leads to a tighter bound. Specifically,
the generalization error theories for the previous DR estimators relied mainly on the boundedness of
the loss to each user-item pair in the DR estimators from the binary indicator ou,i, i.e., for the DR
estimator, the bound for DR loss on (u, i) is (eu,i − êu,i)/p̂u,i. However, these analyses no longer
hold under super-population scenario. In the following theorem, we provide the generalization error
bound of SuperDR, which includes four terms: the SuperDR loss, the empirical covariance, the bias
of the SuperDR estimator, and the tail bound. Compared to previous DR methods, the proposed
method can further control the covariance term, leading to a more desirable generalization bound
thus improving debiasing performance. See Appendix A for the proof.
Theorem 4.11 (Generalization Bound under Super-population). Suppose that p̂u,i ≥ Kψ and
min{ẽu,i, |eu,i − ẽu,i|} ≤ Kϕ, then with probability at least 1− η, we have

Lideal(θ) ≤ LSuperDR(θ) +
1

|D|
∑

(u,i)∈D

∣∣∣∣1− E
[
ou,i
p̂u,i

∣∣xu,i]∣∣∣∣ · ∣∣∣E[eu,i | xu,i]− E[ẽu,i | xu,i]
∣∣∣

︸ ︷︷ ︸
vanilla DR only controls the empirical DR loss, and empirical risks of imputation and propensity models

+

∣∣∣∣∣∣ 1

|D|
∑

(u,i)∈D

Cov

(
ou,i − p̂u,i

p̂u,i
, eu,i − ẽu,i

)∣∣∣∣∣∣︸ ︷︷ ︸
corrected loss further controls the independence

+

(
1 +

1

Kψ

)(
2R(F) +Kϕ

√
18 log(4/η)

|D|

)
︸ ︷︷ ︸

tail bound controlled by empirical Rademacher complexity and sample size
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Figure 2: Effects of varying sample ratios b% on debiasing performance on the KuaiRec dataset.
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Figure 3: Effects of varying sample ratios b% on debiasing performance on the Yahoo! R3 dataset.

5 Experiments

5.1 Experimental Setup

Dataset Selection and Preprocessing. To verify the effectiveness of the proposed method in the
real-world dataset, the dataset that contains both biased and unbiased data is required. Following the
previous studies [14, 15, 32, 66], the following three widely used real-world datasets are adopted
to conduct our experiments: Coat contains ratings from 290 users to 300 items with 6,960 biased
ratings and 4,640 unbiased ratings. Yahoo! R3 contains ratings from 15,400 users to 1,000 items with
311,704 biased ratings and 54,000 unbiased ratings. We binarize the ratings to 0 for ratings less than
three, otherwise to 1. We further use a fully exposed industrial dataset KuaiRec [67] with 4,676,570
video watching ratio records from 1,411 users to 3,327 videos. Following previous studies [59, 60],
we biasedly select 201,171 samples according to the watch ratio as the training set and randomly
select 117,113 samples as the unbiased test set. For this dataset, we binarize the records to 0 for
records less than two, otherwise to 1

Baselines. In our experiments, as there are only very few features or no features for users and
items in all three datasets, we first use the matrix factorization (MF) [3] method to generate the
embedding for each user and item, and then fix such embedding as the user-item features. Then
we take the MLP as the backbone model and compared the proposed method with the following
debiasing baselines including DAMF [68], the information bottleneck based method: CVIB [69], the
propensity based methods: IPS [13], SNIPS [70], ASIPS [35], and IPS-V2 [71], and the DR-based
methods: DR [14], MRDR [33], DR-MSE [56], DR-V2 [71], TDR [55], SDR [54], MR [57],
AKBDR [59], DCE-TDR [60], and D-DR [61].

Experimental Protocols and Details. The following three metrics are used to measure the debiasing
performance: AUC, NDCG@K, and Recall@K, where we set K = 5 for Coat and Yahoo! R3,
while set K = 50 for KuaiRec. All the experiments are implemented on PyTorch with the GeForce
RTX 3090 as the computational resource. Adam is utilized as the optimizer in all experiments.
To simulate the super-population scenario, we first randomly sample b% users and items (unless
otherwise stated, b is set to 50% in our experiments) from the training set and then use the whole
unbiased test set to evaluate the debiasing performance. Note that this intervention will not affect the
data sparsity, it will only affect the number of observed users and items and will ensure P(Dtarget) =
P(Dtest) with limited overlapped users and items. In addition, the dimension of user and item
embedding are fixed as 32. We tune learning rate in {0.001, 0.005, 0.01, 0.02, 0.05} for parameters
in prediction, imputation, and propensity model, and in {0.01, 0.05, 0.1, 0.15, 0.2} for ϵ, batch size in
{128, 256, 512} for Coat and {1024, 2048, 4096} for Yahoo! R3 and KuaiRec. The weight decay
is tuned in {1e− 6, 5e− 6, . . . , 5e− 3, 1e− 2}. In addition, we use the logistic regression model
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Figure 4: Effects of empirical covariance (EC) reduction (%) on relative improvement (RI) (%).
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Figure 5: Effects of learning rate of the learnable imputation correction parameter ϵ.

as the propensity model, which means that there is no unbiased data requirement. To prevent the
propensity too small, we tune the propensity clip threshold in [0.005, 0.05]. For simplicity, we fix the
step in inner loop for updating prediction and imputation models in Algorithm 1 as 1.

5.2 Performance Comparison

Table 1 summarizes the debiasing performance of various methods on three benchmark datasets
Coat, Yahoo! R3, and KuaiRec, and we have the following findings. First, most debiased methods
outperform the base model naive MLP, which shows the necessity for debiasing. Second, overall
speaking, DR-based methods such as D-DR and DCE-TDR demonstrate the most competitive
performance, indicating the superiority of DR methods over other baselines. Third, the proposed
SuperDR method achieves the best performance in terms of all evaluation metrics. This indicates
that the SuperDR method can effectively reduce the additional bias introduced by sampling through
controlling empirical covariance, thus achieving an unbiased estimate of the ideal loss in scenarios
where users and items in the training set are not exactly the same as those in the test set.

5.3 In-Depth Analysis

Effects of Varying Bias Level. Figures 2 investigates the impact of different levels of bias introduced
by sampling on prediction performance on the KuaiRec dataset. We change the sample ratios to
control the degree of overlap between users and items in the training and test sets. A higher sample
ratio indicates a greater proportion of the same users and items in both sets, resulting in less bias
introduced by sampling. When the sample ratio is large (e.g., 0.7 or 0.9), our method slightly
outperforms recently proposed state-of-the-art methods such as DCE-TDR and D-DR. When the
sample ratio is 0.05 or 0.1, there are few overlapping users and items between the training and test
sets, resulting in significant bias introduced by sampling. The performance of previous methods
noticeably declines, while the SuperDR method effectively addresses this bias, achieving significant
performance improvements. We also conduct experiments on Yahoo! R3 dataset. The experiment
results are in Figure 3 with similar phenomenons.

Effects of Empirical Covariance Control. We explore the effects of Empirical Covariance (EC)
Reduction on the prediction performance in Figure 4. We find that SuperDR achieves the most
significant empirical covariance decreases and the most competitive performance in AUC and
NDCG@K, which empirically demonstrates the effectiveness of the targeting correction step and
the EC reduction benefit to the prediction performance. Note that DCE-TDR and TDR method
obtains some performance improvement compared to base model naive MLP, this is because they

9



add ou,i( 1
p̂u,i

− 1) as the correction term to the imputed errors to control the covariance on observed
samples. Unfortunately, DCE-TDR and TDR are unable to control the covariance on missing
outcomes, resulting in sub-optimal performance.

5.4 Sensitivity Analysis

We conduct sensitivity analysis on the Yahoo! R3 and KuaiRec datasets to explore the relationship
between the learning rate of learnable parameter ϵ and the debiasing performance, with AUC and
NDCG@K as the evaluation metrics, where K=5 on Yahoo! R3 and K=50 on KuaiRec. As shown in
Figure 5, the proposed SuperDR stably outperforms the DCE-TDR, the most competitive baseline on
these two datasets, under varying learning rates of ϵ, demonstrating that the enhanced imputation
model with target learning mitigates the additional bias introduced by sampling and exhibits no-
harm property. Meanwhile, under relatively moderate learning rates (0.05, 0.15), the SuperDR
demonstrates competitive prediction performance, which further indicates the robustness.

6 Conclusion

In this paper, we extend the previous exact matching scenario, i.e., the units are the same between
training and test set, and consider a more general scenario that the joint distribution of the feature and
rating P(x, r) in the training and test set to be the same. Then we show the DR estimator is biased
even if the imputed errors and learned propensities are correct in this scenario and provide the explicit
bias form, which has two terms: the term that measures the accuracy of imputed errors and learned
propensities and an additional covariance term. To achieve a more accurate estimation, we propose the
SuperDR estimator with the corrected imputation model, which can effectively control the additional
covariance term with many desirable theoretical properties such as bias and variance reduction. In
addition, we extend the previous joint learning algorithm based on the proposed corrected imputation
loss and further derive the generalization error bound for the proposed SuperDR, and show that the
proposed learning approach can effectively control it. Extensive experiments are conducted on three
real-world datasets to show the effectiveness of our SuperDR method. One of the potential limitations
and research directions is how to develop a tighter bound for controlling the empirical covariance and
to develop a more efficient algorithm for alternatively updating the prediction model, the imputation
model, and the target learning parameter.
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A Proofs

Lemma 4.1 (Bias of DR Estimator [14]). Given imputed errors êu,i and learned propensities p̂u,i > 0,
when considering only the randomness of missing indicators, the bias of DR estimator is

BiasO[EDR(θ)] =
1

|D|
∑

(u,i)∈D

{p̂u,i − pu,i} · {eu,i − êu,i}
p̂u,i

.

Proof of Lemma 4.1. The proof can be found in Lemma 3.1 of [14]. However, one should note that,
as stated in the proof, "the prediction and imputed errors are treated as constants when taking the
expectation, since ou,i does not result from any prediction or imputation models [13]". The DR
estimator in [14] is given as

EDR(θ) =
1

|D|
∑

(u,i)∈D

[
êu,i +

ou,i(eu,i − êu,i)

p̂u,i

]
.

By considering only the randomness on ou,i, we have

EO[EDR(θ)] = EO

[ 1

|D|
∑

(u,i)∈D

[
êu,i +

ou,i(eu,i − êu,i)

p̂u,i

]]
=

1

|D|
∑

(u,i)∈D

[
êu,i +

pu,i(eu,i − êu,i)

p̂u,i

]
.

By definition, the bias of the DR estimator is

BiasO[EDR(θ)] = Eideal(θ)− EO[EDR(θ)]

=
1

|D|
∑

(u,i)∈D

eu,i −
1

|D|
∑

(u,i)∈D

[
êu,i +

pu,i(eu,i − êu,i)

p̂u,i

]
=

1

|D|
∑

(u,i)∈D

{p̂u,i − pu,i} · {eu,i − êu,i}
p̂u,i

,

which yields the stated results.

Corollary 4.2 (Double Robustness [14]). The DR estimator is unbiased when either imputed errors
êu,i or learned propensities p̂u,i are accurate for all user-item pairs, i.e., either êu,i = eu,i or
p̂u,i = pu,i for all u and i.

Proof of Corollary 4.2. The proof can be found at Corollary 3.1 in Appendix of [14]. However, one
should note that, as stated in the proof, "the prediction and imputed errors are treated as constants
when taking the expectation, since ou,i does not result from any prediction or imputation models [13]".

Let δu,i = eu,i− êu,i and ∆u,i =
p̂u,i−pu,i
p̂u,i

. On the hand, when imputed errors are accurate, we have
δu,i = 0 for (u, i) ∈ D. In such case, we can compute the bias of the DR estimator by

BiasO[EDR(θ)] =
1

|D|
∑
u,i∈D

∆u,iδu,i =
1

|D|
∑
u,i∈D

∆u,i · 0 = 0.

On the other hand, when the learned propensities are accurate, we have ∆u,i = 0 for (u, i) ∈ D. In
this case, we can compute the bias of the DR estimator by

Bias (EDR) =
1

|D|
∑
u,i∈D

∆u,iδu,i =
1

|D|
∑
u,i∈D

0 · δu,i = 0.

In both cases, the bias of the DR estimator is zero, which means that the expectation of the DR
estimator over all the possible instances of ou,i is exactly the same as the prediction inaccuracy. This
completes the proof.
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Theorem 4.3 (Bias of DR Estimator under Super-population). Given error imputation model êu,i
and propensity model p̂u,i, then the bias of the DR estimator for estimating the expected ideal loss
under super-population is

BiasP [EDR(θ)] = Cov

(
p̂u,i − ou,i

p̂u,i
, eu,i − êu,i

)
︸ ︷︷ ︸

equals to 0 if independent

+E
[{

1− E
[
ou,i
p̂u,i

∣∣xu,i]} · {E[eu,i | xu,i]− E[êu,i | xu,i]}
]

︸ ︷︷ ︸
equals to 0 either E[ou,i/p̂u,i | xu,i] = 1 or E[êu,i − eu,i | xu,i] = 0

.

Proof of Theorem 1. Instead of considering only the randomness of the rating missing indicator, in
the following, we treat all variables, including imputed errors and learned propensities, as random
variables. Formally, we have

Bias[EDR(θ)] = E[Lideal(θ)]− E[EDR(θ)] = E[eu,i]− E
[
eu,i +

{ou,i − p̂u,i} · {eu,i − êu,i}
p̂u,i

]
= E

[
E
[{

p̂u,i − ou,i
p̂u,i

}
{eu,i − êu,i} | xu,i

]]
(by the double expectation formula)

= E
[
E
[{

p̂u,i − ou,i
p̂u,i

− E
[ p̂u,i − ou,i

p̂u,i

]
+ E

[ p̂u,i − ou,i
p̂u,i

]}
{(eu,i − êu,i)− E[eu,i − êu,i] + E[eu,i − êu,i]} | xu,i

]]
= E

[
E
[{

p̂u,i − ou,i
p̂u,i

− E
[ p̂u,i − ou,i

p̂u,i

]}
{(eu,i − êu,i)− E[eu,i − êu,i]} | xu,i

]]
+ E

[{
1− E

[
ou,i
p̂u,i

∣∣xu,i]} · {E[eu,i | xu,i]− E[êu,i | xu,i]}
]

= Cov

(
p̂u,i − ou,i

p̂u,i
, eu,i − êu,i

)
+ E

[{
1− E

[
ou,i
p̂u,i

∣∣xu,i]} · {E[eu,i | xu,i]− E[êu,i | xu,i]}
]
,

which yields the stated results.

Corollary 4.4 (Double Robustness under Super-population). Under super-population, the DR
estimator is unbiased when both the following conditions hold:

(i) Either learned propensities satisfy E[ou,i/p̂u,i | xu,i] = 1, or imputed errors have the same
conditional expectation with true prediction errors E[êu,i | xu,i] = E[eu,i | xu,i];

(ii) The covariance term vanishes, that is, Cov
(
p̂u,i−ou,i
p̂u,i

, eu,i − êu,i

)
= 0.

Proof of Corollary 4.4. First, when condition (ii) holds, i.e.,

Cov((p̂u,i − ou,i)/p̂u,i, eu,i − êu,i) = 0,

it follows from the results in Theorem 1 that

Bias[EDR(θ)] = E
[{

1− E
[
ou,i
p̂u,i

∣∣xu,i]} · {E[eu,i | xu,i]− E[êu,i | xu,i]}
]

On the hand, when the learned propensities satisfy E[ou,i/p̂u,i | xu,i] = 1. In such case, we can
compute the bias of the DR estimator by

Bias[EDR(θ)] = E [0 · {E[eu,i | xu,i]− E[êu,i | xu,i]}] = 0.

On the other hand, when imputed errors have the same conditional expectation with true prediction
errors, we have E[êu,i | xu,i] = E[eu,i | xu,i]. In this case, we can compute the bias of the DR
estimator by

Bias[EDR(θ)] = E
[{

1− E
[
ou,i
p̂u,i

∣∣xu,i]} · 0
]
= 0.

In both cases, the bias of the DR estimator is zero, which completes the proof.

Definition 4.5 (Empirical Covariance). The empirical expected conditional covariance between
(p̂u,i − ou,i)/p̂u,i and eu,i − êu,i is

Ĉov

(
p̂u,i − ou,i

p̂u,i
, eu,i − êu,i

)
=

1

|D|
∑

(u,i)∈D

p̂u,i − ou,i
p̂u,i

· (eu,i − êu,i).
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Definition 4.6 (Empirical Rademacher Complexity [65]). Let F be a family of prediction models
mapping from x ∈ X to [a, b], and S = {xu,i | (u, i) ∈ D} a fixed sample of size |D| with elements
in X . Then, the empirical Rademacher complexity of F with respect to the sample S is defined as:

R(F) = Eσ∼{−1,+1}|D| sup
fθ∈F

 1

|D|
∑

(u,i)∈D

σu,ieu,i

 ,
where σ = {σu,i : (u, i) ∈ D}, and σu,i are independent uniform random variables taking values in
{−1,+1}. The random variables σu,i are called Rademacher variables.

Lemma A.1 (Rademacher Comparison Lemma [65]). Let F be a family of real-valued functions on
z ∈ Z to [a, b], and S = {xu,i | (u, i) ∈ D} a fixed sample of size |D| with elements in X . Then

E
S∼P|D|

[
sup
f∈F

 E
z∼P

[f(z)]− 1

|D|
∑

(u,i)∈D

f (zu,i)

] ≤ 2 E
S∼P|D|

Eσ∼{−1,+1}|D| sup
f∈F

 1

|D|
∑

(u,i)∈D

σu,if (zu,i)

 ,
where σ = {σu,i : (u, i) ∈ D}, and σu,i are independent uniform random variables taking values in
{−1,+1}. The random variables σu,i are called Rademacher variables.

Proof of Lemma A.1. The proof can be found in Lemma 26.2 of [65].

Lemma A.2 (McDiarmid’s Inequality [65]). Let V be some set and let f : V m → R be a function of
m variables such that for some c > 0, for all i ∈ [m] and for all x1, . . . , xm, x′i ∈ V we have

|f (x1, . . . , xm)− f (x1, . . . , xi−1, x
′
i, xi+1, . . . , xm)| ≤ c

Let X1, . . . , Xm be m independent random variables taking values in V . Then, with probability of at
least 1− δ we have

|f (X1, . . . , Xm)− E [f (X1, . . . , Xm)]| ≤ c

√
log

(
2

δ

)
m/2

Proof of Lemma A.2. The proof can be found in Lemma 26.4 of [65].

Lemma A.3 (Rademacher Calculus [65]). For any A ⊂ Rm, scalar c ∈ R, and vector a0 ∈ Rm, we
have

R ({ca+ a0 : a ∈ A}) ≤ |c|R(A).

Proof of Lemma A.3. The proof can be found in Lemma 26.6 of [65].

Theorem 4.7 (Controllability of Empirical Covariance). The corrected imputation model trained by
LSupe is sufficient for controlling the empirical covariance.

(i) For user-item pairs with observed outcomes, the empirical covariance is 0. Formally, we have

∂

∂ϵ
LSupe (ϕ, ϵ)

∣∣∣∣
ϵ=ϵ∗

= 0, which is equivalent to
1

|D|
∑

(u,i): ou,i=1

p̂u,i − ou,i
p̂u,i

· (eu,i − ẽu,i) = 0;

(ii) For user-item pairs with missing outcomes, suppose that p̂u,i ≥ Kψ and |eu,i − ẽu,i| ≤ Kϕ, then
with probability at least 1− η, we have

1

|D|
∑

(u,i): ou,i=0

p̂u,i − ou,i
p̂u,i

· (eu,i − ẽu,i)

≤
√

LSupe (ϕ, ϵ)︸ ︷︷ ︸
proposed loss

+Kϕ

√√√√ 1

|D|
∑
u,i∈D

∣∣∣∣1− E
[
ou,i
p̂u,i

∣∣xu,i]∣∣∣∣︸ ︷︷ ︸
empirical bias from propensity model

+

√√√√Kϕ

(
1 +

1

Kψ

)(
2R(F) + (2Kϕ + 1)

√
2 log(4/η)

|D|

)
︸ ︷︷ ︸

tail bound controlled by empirical Rademacher complexity and sample size

,

where the Kψ , Kϕ, η are constants.
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Proof. For the proof of Theorem 4.7(i), first recap that the proposed boosted imputation model is
ẽu,i = m(xu,i;ϕ) + ϵ(ou,i − π(xu,i;ψ)),

and the proposed corrected imputation loss function for training the boosted imputation model is

(ϕ∗, ϵ∗) = argmin
ϕ,ϵ

LSupe (ϕ, ϵ) =
1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i
.

By taking the partial derivative with respective to ϵ of the above formula and setting it to zero, we
have
∂

∂ϵ
LSupe (ϕ, ϵ)

∣∣∣∣
ϵ=ϵ∗

= 0, which is equivalent to
1

|D|
∑

(u,i): ou,i=1

p̂u,i − ou,i
p̂u,i

· (eu,i − ẽu,i) = 0,

which proves the empirical convariance on the observed outcomes is 0.

For the proof of Theorem 4.7(ii), by noting that

1

|D|
∑

(u,i): ou,i=0

p̂u,i − ou,i
p̂u,i

·(eu,i−ẽu,i) =
1

|D|
∑

(u,i): ou,i=0

(eu,i−ẽu,i) ≤

 1

|D|
∑

(u,i)∈D

(eu,i − ẽu,i)
2

 1
2

,

we now focus on bounding the last term of the above equation with the least probability.

Suppose that p̂u,i ≥ Kψ and |eu,i − ẽu,i| ≤ Kϕ, then

1

|D|
∑

(u,i)∈D

(eu,i − ẽu,i)
2 =

1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i
+

1

|D|
∑

(u,i)∈D

(eu,i − ẽu,i)
2

− E

 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i

+ E

 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i

− 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i

≤ 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i
+

∣∣∣∣∣∣ 1

|D|
∑

(u,i)∈D

(eu,i − ẽu,i)
2 − E

 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i

∣∣∣∣∣∣
+

E

 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i

− 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i


≤ LSupe (ϕ, ϵ) +K2

ϕ ·

∣∣∣∣∣∣E
 1

|D|
∑

(u,i)∈D

1− ou,i
p̂u,i

∣∣∣∣∣∣
+ sup
fθ∈F

E

 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i

− 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i

 .

For simplicity, we denote the last term in the above formula as

B(F) = sup
fθ∈F

E

 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i

− 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i

 ,

we then aim to bound B(F) in the following.

Note that

B(F) = E
S∼P|D|

[B(F)] +

{
B(F)− E

S∼P|D|
[B(F)]

}
,

where the first term is E
S∼P|D|

[B(F)], and by Lemma A.1 we have

E
S∼P|D|

[B(F)] ≤ 2 E
S∼P|D|

Eσ∼{−1,+1}|D| sup
fθ∈F

 1

|D|
∑

(u,i)∈D

σu,i
ou,i(eu,i − ẽu,i)

2

p̂u,i

 .
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By the assumptions that p̂u,i ≥ Kψ and |eu,i − ẽu,i| ≤ Kϕ, we have

E
S∼P|D|

[B(F)] ≤ 2Kϕ

(
1 +

1

Kψ

)
E

S∼P|D|
Eσ∼{−1,+1}|D| sup

fθ∈F

 1

|D|
∑

(u,i)∈D

σu,i(eu,i − ẽu,i)


= 2Kϕ

(
1 +

1

Kψ

)
E

S∼P|D|
{R(F)},

where the last equation is directly from Lemma A.3, and R(F) is the empirical Rademacher com-
plexity

R(F) = Eσ∼{−1,+1}|D| sup
fθ∈F

 1

|D|
∑

(u,i)∈D

σu,ieu,i

 ,
where σ = {σu,i : (u, i) ∈ D}, and σu,i are independent uniform random variables taking values in
{−1,+1}. The random variables σu,i are called Rademacher variables.

By applying McDiarmid’s inequality in Lemma A.2, and let c = 2Kϕ
|D| , with probability at least 1− η

2 ,

∣∣∣∣R(F)− E
S∼P|D|

{R(F)}
∣∣∣∣ ≤ 2Kϕ

√
log(4/η)

2|D|
= Kϕ

√
2 log(4/η)

|D|
.

For the rest term B(F)− E
S∼P|D|

[B(F)], by applying McDiarmid’s inequality in Lemma A.2 and the

assumptions that p̂u,i ≥ Kψ and |eu,i − ẽu,i| ≤ Kϕ, let c =
2K2

ϕ

(
1+ 1

Kψ

)
|D| , then with probability at

least 1− η
2 ,

∣∣∣∣B(F)− E
S∼P|D|

[B(F)]

∣∣∣∣ ≤ 2K2
ϕ

(
1 +

1

Kψ

)√
log(4/η)

2|D|
= K2

ϕ

(
1 +

1

Kψ

)√
2 log(4/η)

|D|
.

We now bound B(F) combining the above results. Formally, we have

B(F) = E
S∼P|D|

[B(F)] +

{
B(F)− E

S∼P|D|
[B(F)]

}
≤ 2Kϕ

(
1 +

1

Kψ

)
E

S∼P|D|
{R(F)}+

{
B(F)− E

S∼P|D|
[B(F)]

}
.

With probability at least 1− η, we have

B(F) ≤ 2Kϕ

(
1 +

1

Kψ

)(
R(F) +Kϕ

√
2 log(4/η)

|D|

)
+K2

ϕ

(
1 +

1

Kψ

)√
2 log(4/η)

|D|

= Kϕ

(
1 +

1

Kψ

)(
2R(F) +Kϕ

√
18 log(4/η)

|D|

)
.
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We now bound the empirical convariance on the missing outcomes combining the above results.
Formally, we have

1

|D|
∑

(u,i): ou,i=0

p̂u,i − ou,i
p̂u,i

· (eu,i − ẽu,i) ≤

 1

|D|
∑

(u,i)∈D

(eu,i − ẽu,i)
2

 1
2

≤

LSupe (ϕ, ϵ) +
K2
ϕ

|D|
∑
u,i∈D

∣∣∣∣1− E
[
ou,i
p̂u,i

∣∣xu,i]∣∣∣∣+Kϕ

(
1 +

1

Kψ

)(
2R(F) +Kϕ

√
18 log(4/η)

|D|

) 1
2

≤ LSupe (ϕ, ϵ)
1
2 +Kϕ ·

 1

|D|
∑
u,i∈D

∣∣∣∣1− E
[
ou,i
p̂u,i

∣∣xu,i]∣∣∣∣
 1

2

+

[
Kϕ

(
1 +

1

Kψ

)(
2R(F) +Kϕ

√
18 log(4/η)

|D|

)] 1
2

,

which yields the stated results.

Corollary 4.8 (Relation to previous imputed errors). The learned coefficient ϵ∗ will converge to zero
when the imputation model êu,i has zero empirical covariance, making ẽu,i degenerates to êu,i.

Proof of Corollary 4.8. Note that ϵ∗ is solved by minimizing

1

|D|
∑

(u,i)∈D

ou,i(eu,i − êu,i − ϵ(ou,i − p̂u,i))
2

p̂u,i
.

Taking the first derivative of the above loss with respect to ϵ and setting it to zero yields∑
(u,i)∈D

ou,i
p̂u,i

·
{
eu,i − êu,i − ϵ(ou,i − p̂u,i)

}
· (ou,i − p̂u,i) = 0,

which implies that ∑
(u,i)∈D

ou,i
p̂u,i

· {eu,i − ẽu,i} · (ou,i − p̂u,i) = 0,

from which implies the uniqueness of ϵ. Formally, if êu,i already satisfies zero empirical covariance
on the observed outcomes, then ϵ = 0 is a solution of the above equation. Let ϵ̂ be another solution
of the above equation. Since the solution of equation is unique, then ϵ̂ will converage to 0, making
ẽu,i degenerates to êu,i.

Corollary 4.9 (Bias reduction property). The proposed corrected imputation loss leads to the smaller
bias of imputed errors ẽu,i, when êu,i are inaccurate. Formally, we have

min
ϕ,ϵ

LSupe (ϕ, ϵ) =
1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i
≤ min

ϕ
Le(ϕ) =

1

|D|
∑

(u,i)∈D

ou,i(eu,i − êu,i)
2

p̂u,i
.

Proof of Corollary 4.9. The result holds by noting that

min
ϕ,ϵ

LSupe (ϕ, ϵ) ≤ min
ϕ

LSupe (ϕ, ϵ = 0) = min
ϕ

Le(ϕ) =
1

|D|
∑

(u,i)∈D

ou,i(eu,i − êu,i)
2

p̂u,i
.

Corollary 4.10 (Variance reduction property). The proposed corrected imputation loss leads to the
smaller variance of ẽu,i when the optimal ϵ∗ lies in a certain range. Formally, we have

V(ẽu,i) = V(êu,i + ϵ∗ · (ou,i − p̂u,i)) ≤ V(êu,i), if ϵ∗ ∈
[
0, 2 · Cov(êu,i, p̂u,i − ou,i)

V(p̂u,i − ou,i)

]
.
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Proof of Corollary 4.10. First, we note that V(ẽu,i) equals to

V(êu,i)− 2ϵ∗ Cov(êu,i, p̂u,i − ou,i) + (ϵ∗)2V(ou,i − p̂u,i),

which serves as a quadratic function with respect to ϵ∗. By taking the partial derivative respective to
ϵ∗ of the above formula and setting it to zero, the optimal ϵ∗ with the minimal variance is given as

ϵ∗ =
Cov(êu,i, p̂u,i − ou,i)

V(p̂u,i − ou,i)
.

By exploiting the symmetry of the quadratic function, we have
V(ẽu,i) =V(êu,i + ϵ∗ · (ou,i − p̂u,i)) ≤ V(êu,i),

if ϵ∗ ∈
[
0, 2 · Cov(êu,i, p̂u,i − ou,i)

V(p̂u,i − ou,i)

]
.

Theorem 4.11 (Generalization Bound under Superpopulation). Suppose that p̂u,i ≥ Kψ and
min{ẽu,i, |eu,i − ẽu,i|} ≤ Kϕ, then with probability at least 1− η, we have

Lideal(θ) ≤ LSuperDR(θ) +
1

|D|
∑

(u,i)∈D

∣∣∣∣1− E
[
ou,i
p̂u,i

∣∣xu,i]∣∣∣∣ · ∣∣∣E[eu,i | xu,i]− E[ẽu,i | xu,i]
∣∣∣

︸ ︷︷ ︸
vanilla DR only controls the empirical DR loss, and empirical risks of imputation and propensity models

+

∣∣∣∣∣∣ 1

|D|
∑

(u,i)∈D

Cov

(
ou,i − p̂u,i

p̂u,i
, eu,i − ẽu,i

)∣∣∣∣∣∣︸ ︷︷ ︸
corrected loss further controls the independence

+

(
1 +

1

Kψ

)(
2R(F) +Kϕ

√
18 log(4/η)

|D|

)
︸ ︷︷ ︸

tail bound controlled by empirical Rademacher complexity and sample size

Proof of Theorem 4.11. First we decompose the ideal loss as follows.
Lideal(θ) = LDR(θ) + (Lideal(θ)− E[LDR(θ)]) + (E[LDR(θ)]− LDR(θ))

= LDR(θ) + Bias[LDR(θ)] + (E[LDR(θ)]− LDR(θ))

≤ LDR(θ) + |Bias[LDR(θ)]|

+ sup
fθ∈F

E

 1

|D|
∑

(u,i)∈D

êu,i +
ou,i(eu,i − êu,i)

p̂u,i

− 1

|D|
∑

(u,i)∈D

êu,i −
ou,i(eu,i − êu,i)

p̂u,i

 .

For simplicity, we denote the last term in the above formula as

B(F) = sup
fθ∈F

E

 1

|D|
∑

(u,i)∈D

êu,i +
ou,i(eu,i − êu,i)

p̂u,i

− 1

|D|
∑

(u,i)∈D

êu,i −
ou,i(eu,i − êu,i)

p̂u,i

 ,

we then aim to bound B(F) in the following.

Note that

B(F) = E
S∼P|D|

[B(F)] +

{
B(F)− E

S∼P|D|
[B(F)]

}
,

where the first term is E
S∼P|D|

[B(F)], and by Lemma A.1 we have

E
S∼P|D|

[B(F)] ≤ 2 E
S∼P|D|

Eσ∼{−1,+1}|D| sup
fθ∈F

 1

|D|
∑

(u,i)∈D

σu,iêu,i +
σu,iou,i(eu,i − êu,i)

p̂u,i

 .
By the assumptions that p̂u,i ≥ Kψ and min{êu,i, |eu,i − êu,i|} ≤ Kϕ, we have

E
S∼P|D|

[B(F)] ≤ 2 E
S∼P|D|

Eσ∼{−1,+1}|D| sup
fθ∈F

 1

|D|
∑

(u,i)∈D

σu,iou,i(eu,i − êu,i)

p̂u,i


≤ 2

(
1 +

1

Kψ

)
E

S∼P|D|
{R(F)},

21



where the first equation is from Lemma A.3, and R(F) is the empirical Rademacher complexity

R(F) = Eσ∼{−1,+1}|D| sup
fθ∈F

 1

|D|
∑

(u,i)∈D

σu,ieu,i

 ,
where σ = {σu,i : (u, i) ∈ D}, and σu,i are independent uniform random variables taking values in
{−1,+1}. The random variables σu,i are called Rademacher variables.

By applying McDiarmid’s inequality in Lemma A.2, and let c = 2Kϕ
|D| , with probability at least 1− η

2 ,∣∣∣∣R(F)− E
S∼P|D|

{R(F)}
∣∣∣∣ ≤ 2Kϕ

√
log(4/η)

2|D|
= Kϕ

√
2 log(4/η)

|D|
.

For the rest term B(F) − E
S∼P|D|

[B(F)], by applying McDiarmid’s inequality in Lemma A.2 and

the assumptions that p̂u,i ≥ Kψ and min{êu,i, |eu,i − êu,i|} ≤ Kϕ, let c =
2Kϕ

(
1+ 1

Kψ

)
|D| , then with

probability at least 1− η
2 ,∣∣∣∣B(F)− E

S∼P|D|
[B(F)]

∣∣∣∣ ≤ 2Kϕ

(
1 +

1

Kψ

)√
log(4/η)

2|D|
= Kϕ

(
1 +

1

Kψ

)√
2 log(4/η)

|D|
.

We now bound B(F) combining the above results. Formally, we have

B(F) = E
S∼P|D|

[B(F)] +

{
B(F)− E

S∼P|D|
[B(F)]

}
≤ 2

(
1 +

1

Kψ

)
E

S∼P|D|
{R(F)}+

{
B(F)− E

S∼P|D|
[B(F)]

}
.

With probability at least 1− η, we have

B(F) ≤ 2

(
1 +

1

Kψ

)(
R(F) +Kϕ

√
2 log(4/η)

|D|

)
+Kϕ

(
1 +

1

Kψ

)√
2 log(4/η)

|D|

=

(
1 +

1

Kψ

)(
2R(F) +Kϕ

√
18 log(4/η)

|D|

)
.

We now bound the ideal loss combining the above results. Formally, we have

Lideal(θ) ≤ LDR(θ) + |Bias[LDR(θ)]|+ B(F)

≤ LDR(θ) + |Bias[LDR(θ)]|+
(
1 +

1

Kψ

)(
2R(F) +Kϕ

√
18 log(4/η)

|D|

)
.

In Theorem 4.3, we have already prove that

|Bias[EDR(θ)]| =

∣∣∣∣∣∣ 1

|D|
∑

(u,i)∈D

Cov

(
p̂u,i − ou,i

p̂u,i
, eu,i − êu,i

)

+
1

|D|
∑

(u,i)∈D

[{
1− E

[
ou,i
p̂u,i

∣∣xu,i]} · {E[eu,i | xu,i]− E[êu,i | xu,i]}
]∣∣∣∣∣∣

≤

∣∣∣∣∣∣ 1

|D|
∑

(u,i)∈D

Cov

(
ou,i − p̂u,i

p̂u,i
, eu,i − êu,i

)∣∣∣∣∣∣
+

1

|D|
∑

(u,i)∈D

∣∣∣∣1− E
[
ou,i
p̂u,i

∣∣xu,i]∣∣∣∣ · ∣∣∣E[eu,i | xu,i]− E[êu,i | xu,i]
∣∣∣,
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therefore with probability at least 1− η, we have

Lideal(θ) ≤ LDR(θ) +
1

|D|
∑

(u,i)∈D

∣∣∣∣1− E
[
ou,i
p̂u,i

∣∣xu,i]∣∣∣∣ · ∣∣∣E[eu,i | xu,i]− E[êu,i | xu,i]
∣∣∣

+

∣∣∣∣∣∣ 1

|D|
∑

(u,i)∈D

Cov

(
ou,i − p̂u,i

p̂u,i
, eu,i − êu,i

)∣∣∣∣∣∣+
(
1 +

1

Kψ

)(
2R(F) +Kϕ

√
18 log(4/η)

|D|

)
,

which yields the stated results.
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2. Limitations
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Justification: We discuss the limitations of the work in Conclusion.
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Justification: We provide a complete proof in Appendix.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a detailed description of the experimental process in Section 5.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
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Answer: [Yes]

Justification: We provide the experimental setting and details. See details in Section 5.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report standard deviations and statistical significance in the main compara-
tive experiments.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information on the computer resources in Section 5.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and our paper conforms with it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our research does not have such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The assets used have been properly noted and credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
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well as details about compensation (if any)?

Answer: [NA]

Justification: We do not have any studies or results regarding crowdsourcing experiments
and human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not have any studies or results including study participants.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core methodological development in this research does not involve large
language models (LLMs) as essential, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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