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Abstract

People capture photos and videos to relive and001
share memories of personal significance. Re-002
cently, media montages (stories) have become a003
popular mode of sharing these memories due to004
their intuitive and powerful storytelling capabil-005
ities. However, creating such montages usually006
involves a lot of manual searches, clicks, and007
selections that are time-consuming and cumber-008
some, adversely affecting user experiences.009

To alleviate this, we propose task-oriented di-010
alogs for montage creation as a novel interac-011
tive tool to seamlessly search, compile, and012
edit montages from a media collection. To the013
best of our knowledge, our work is the first014
to leverage multi-turn conversations for such a015
challenging application, extending the previous016
literature studying simple media retrieval tasks.017
We collect a new dataset C3 (Conversational018
Content Creation), comprising 10k dialogs con-019
ditioned on media montages simulated from a020
large media collection.021

We take a simulate-and-paraphrase approach to022
collect these dialogs to be both cost and time023
efficient, while drawing from natural language024
distribution. Our analysis and benchmarking of025
state-of-the-art language models showcase the026
multimodal challenges present in the dataset.027
Lastly, we present a real-world mobile demo028
application that shows the feasibility of the pro-029
posed work in real-world applications. Our030
code & data will be made publicly available.031

1 Introduction032

With the advent of smart cameras, smart glasses,033

and other media devices, the barrier to capturing034

photos and videos has drastically been reduced.035

While this trend is desirable to relive and share036

memories, the sheer volume of such captured me-037

dia makes it intractable to search and share rele-038

vant memories. As a result, media montages (sto-039

ries) have emerged as an intuitive yet expressive040

way to creatively compile various memories and041

Figure 1: Illustration of C3: Conversational Content
Creation. Each dialog turn is fully annotated with dia-
log acts and multimodal coreference labels, accompa-
nied with its corresponding story montage snapshot.

share with friends and family. In order to cre- 042

ate such a montage, users have to search through 043

their personal collections, make selections, and edit 044

them manually, which are cumbersome and time- 045

consuming tasks, resulting in a bottleneck. 046

In this work, we propose a novel conversational 047

tool to interactively create and edit montages from 048

a personal media collection. While prior works 049

study the use of dialog in retrieving media or items 050

in a shopping catalog, we extend it to capture richer 051

interactions related to montage manipulations. To 052

the best of our knowledge, our work is the first to 053

consider task-oriented dialogs (TOD) for this chal- 054

lenging application of interactive content creation. 055

056

Towards this goal, we collect C3, a TOD dialog 057

dataset aimed at providing an intuitive conversa- 058

tional interface in which users can search through 059

their media, create a video story with highlights, 060

and edit clips hands-free, using natural language. 061
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Fig. 1 illustrates an example dialog. Due to our062

simulate-and-paraphrase pipeline, our dataset com-063

prises rich annotations both at turn- and dialog-064

level. These are helpful to: (a) tease out and study065

multimodal challenges (e.g., multimodal corefer-066

ences) that are present in C3, and (b) benchmark067

meaningful progress towards a robust TOD agent068

for this application. We perform preliminary em-069

pirical experimentation and train baselines to high-070

light the multimodal challenges in our C3 dataset.071

Lastly, we build a mobile demo (Fig. 5, App. A) to072

showcase the real-world applicability of our work.073

074
2 Related Work075

Task-oriented Dialogs (TOD), where the goal is to076

parse user queries and execute a pre-defined set of077

actions (e.g. booking hotels), have been extensively078

studied. We formulate similar tasks as found in the079

conventional TOD datasets (Rastogi et al., 2019;080

Budzianowski et al., 2018; Eric et al., 2019) such081

as Dialog State Tracking (DST), to build on the lit-082

erature. Our work extends it to a novel multimodal083

application of video content creation and editing.084

Recently, the methods that leverage large pre-085

trained LMs by casting DST as a causal inference086

problem (Peng et al., 2020; Hosseini-Asl et al.,087

2020; Gao et al., 2019) have shown successful. We088

develop a baseline following this trend, but extend089

it a unique multimodal setting by including multi-090

modal context as part of the grounding prompt.091

Conversational Media Applications: Recent092

work have addressed the dialog task for retrieving093

images (e.g. from a personal collection or as part094

of shopping scenarios) (Guo et al., 2018a,b; Tellex095

and Roy, 2009; Vo et al., 2019; Tan et al., 2019),096

given multi-turn target queries. Similarly, Bursztyn097

et al. (2021) considers an application to retrieve098

multiple images to create a montage. While C3099

does include search operations, our work extends100

this line of work by allowing for richer interac-101

tions and more complex post-edits on the retrieved102

videos, enhancing overall user experiences.103

As per similar applications, Lin et al. (2020) pro-104

poses tasks for editing a single image (e.g. bright-105

ness) via text commands, while Zhou et al. (2022)106

study interactive image generation from text, using107

CLIP text-image embeddings (Radford et al., 2021)108

and a generative model (Karras et al., 2019). Unlike109

the previous work that handle editing operations110

within a single image, our work addresses conver-111

sational editing of multiple videos into storytelling112

montages, a popular form of media sharing.113

3 The C3 Dataset 114

3.1 Multimodal Dialog Self-Play 115

We adopt a two-phase pipeline (Simulate and Para- 116

phrase (Shah et al., 2018; Kottur et al., 2021)), ex- 117

tending it to a unique multimodal setting where 118

multiple images as part of the user interface (UI) 119

are given as grounding visual contexts. The pro- 120

posed approach reduces the data collection and 121

annotation overheads (time and cost) for building 122

a dialog dataset (vs. collecting human↔human di- 123

alogs and collecting Dialog/NLU annotations on 124

top), as it requires little to no domain knowledge. 125

Phase 1. Multimodal Dialog Simulator. We first 126

generate synthetic dialog flows using a dialog sim- 127

ulator that conditions on an evolving “story” and 128

its corresponding set of clips, produced by a story 129

generator. The story generator outputs a diverse 130

set of clips (as schematic representation) accord- 131

ing to user requests, which serves as grounding 132

multimodal context for the conversations. This is 133

done by extracting a plausible set of meta informa- 134

tion (time, locations and activities, etc.) from an 135

existing memory graph, simulated and generated 136

using the object and activity annotations from the 137

ImageCOCO dataset (Lin et al., 2014). 138

The dialog simulator then takes this story rep- 139

resentation including the meta information (ac- 140

tivities, locations, attributes, etc.) and the UI 141

state (e.g. sequential ordering of media, viewer 142

status) updated at each turn, to create a realistic 143

dialog flow between a user and an assistant, us- 144

ing a probabilistic agenda-based approach. The 145

simulated dialog flows comprise NLU intents (e.g. 146

REQUEST:ADD_CLIPS), slots (e.g. activities, ob- 147

jects), and clip references. Specifically, we capture 148

various video editing queries that are identified as 149

a prioritized list of common actions required for 150

media editing and sharing (e.g. CREATE, REMOVE, 151

REPLACE, REORDER, REFINE, MODIFY_DURATION). 152

Phase 2. Manual Paraphrase. Once the dialog 153

flows are simulated, we paraphrase each templated 154

user turn via manual annotations. This step allows 155

us to collect utterances from the natural language 156

distribution, making the dataset robust to the user- 157

query variability in real-world applications. 158

We build an annotation tool that displays NLU 159

labels and templated utterances, along with the 160

schematic representation of stories with media 161

clips, updated at each turn. Annotators are then 162

instructed to paraphrase each turn without losing 163

key multimodal information such as relative clip 164
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(a) (b) (c)
Figure 2: Distribution of (a) utterance lengths with dialog turns, (b) activity distribution for REQUEST user act
(dominant), (c) number of clip candidates per turn (L) and coreference distance (R) between clip mentions.

Figure 3: Transition of dialogs acts in C3 for the first 4 turns, for dialog flows generated by our multimodal dialog
simulator. Each block is labelled ACTIVITY:[A|U][turn] to denote activity, user or assistant turn, and turn number,
respectively. ACT for user (REQUEST) and assistant (INFORM) are not shown for brevity. See text for more details.

Total # dialogs 10k
Total # utterances 136k
Total # stories 10k
Avg # words (user turns) 11.8± 4.4
Avg # words (assistant turns)† 10.3± 4.1
Avg # utterances / dialog 13.5
Avg # clips mentioned / dialog 3.6
Avg # clips per story 4.3± 2.5

Table 1: C3 Dataset Statistics. †assistant turns are
collected for a 1k dialog subset (12k utterances).

placements & meta data, objects and attributes.165

While assistant turns tend to be linguistically166

less diverse (e.g., informing successful executions:167

‘Done’, ‘Edited’) and thus are less of our focus from168

an application standpoint, we also collect assistant169

responses for a 1k dialog subset. The collected170

utterances allow for the study of contextualized171

assistant response generation, to accompany the172

modified stories reflected in the UI.173

3.2 Dataset Analysis174

Our C3 dataset has a total of 10k dialogs with 136k175

utterances. Dataset statistics are given in Tab. 1. A176

dataset example is provided in Fig. 6 (Appendix C).177

178

Analyzing Dialogs. The user and assistant turns179

in dialogs from C3 are about 11.8 and 10.3 words180

long respectively, with their distributions shown181

in Fig. 2a. User utterances tend to be longer on182

an average as they are instructive and contain finer183

details to manipulate the story.184

Analyzing Dialog Annotations. Dialogs in C3 185

are accompanied with full turn- and dialog-level 186

annotations, thanks to the simulate-and-paraphrase 187

approach. We follow the conventional hierarchical 188

ontology (Kottur et al., 2021) of dialog ACT and 189

ACTIVITY to annotate both user and assistant in- 190

tents. In our setup, users can request selections or 191

edits to create a montage, while the assistant is ex- 192

pected to execute them and inform its results. Thus, 193

the user and assistant dialog acts naturally resort 194

to REQUEST and INFORM in our ontology. Fig. 2b 195

shows the distribution of 8 user activities. 196

Each turn is grounded on an (evolving) story, 197

which contains an average of 4.3 clips. This leads 198

to interesting multimodal coreferences as there are 199

about 2.9 clip candidates to pick from for every clip 200

mention in the dialog. Further, the average corefer- 201

ence distance between the mentions is 3.7, going 202

beyond the trivial case of 1, i.e., clip mentioned in 203

the previous turn. Fig. 2c highlights the distribution 204

of clip candidates and distance between mentions. 205

Analyzing Dialog Flows. We visualize the di- 206

alog flows (first 4 dialog turns) in Fig. 3. Each 207

block is an intent at a particular [turn] labelled as 208

ACTIVITY:[A|U][turn], where [A|U] indicates 209

either an Assistant or User turn. The gray bands de- 210

note the transitions and their width is proportional 211

to the frequency of the transition. The almost uni- 212

form branch-off indicates a desirable presence of 213

diversity and thus a lack of intent bias in the dialog. 214
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215
4 Task Formulation216

We leverage C3 to study dialog systems that help217

users create and edit montages through a multi-turn218

dialog. More concretely, we propose 3 main tasks219

and respective evaluation metrics in this regard:220

Task 1: API Slot Prediction. We assume a 1-to-1221

mapping between user intent and the relevant API222

to execute a user request. API Slot Prediction thus223

involves predicting slots (e.g., participants, time)224

that are passed as arguments to the corresponding225

API, given dialog history, multimodal context of226

stories, and current user utterance (metric: F1). For227

example, ‘U: Create a story of all skiing trips in228

2018’ maps to [activity=skiing,time=2018]229

as the appropriate API slots and values. We do not230

propose a separate API-type prediction task (e.g.231

api_type=CREATE_STORY) as the baseline models232

perform with near perfect accuracy (97%).233

Task 2. Multimodal Coreference Resolution.234

It is imperative for conversational systems to be235

able to resolve multimodal coreferences without236

fails as a wrongly targeted edit would require ad-237

ditional interactions to rectify, greatly reducing238

user experiences. For instance, to process ‘Re-239

move the sunset clip and replace it with something240

similar to the second one.’, the system needs to re-241

solve both underlined references to the correspond-242

ing clip objects to perform the desired manipula-243

tions. To test this capability in isolation, we pro-244

pose Task 2, where the goal is to resolve any clip245

references in the current user utterance to the cor-246

responding clip objects (metric: F1), taking into247

account dialog history and story representations.248

Task 3. Multimodal Dialog State Tracking (MM-249

DST). Lastly, we evaluate the system on its joint250

ability to: (a) predict API calls along with its slot251

parameters, and (b) resolve multimodal references252

(if any) in the given utterance, taking into account253

dialog state carryovers (measured with accuracy).254

5 Modeling & Empirical Analysis255

We perform a preliminary empirical evaluation and256

train baselines for the tasks proposed in Sec. 4. We257

leave detailed modeling as part of future work.258

Dataset Splits. We split the 10k dialogs into train259

(60%), val (20%), and test (20%). All models260

are trained on train with val used to pick the261

hyper-parameters, and results are reported on test.262

Baselines. Following the recent success of finetun-263

ing pretrained LMs on TODs (Hosseini-Asl et al.,264

Model 1. API Slot 2. Coref 3. DST

Slot F1↑ Coref F1↑ Acc.↑

GPT-2 (tokens) 88.3±0.3 70.4±0.5 72.8
GPT-2 (embed) 90.1±0.1 81.5±0.6 79.6

Table 2: Baseline performances for GPT-2 models w/
multimodal image features (embed) and stringified text
(tokens). (1) API Call Slot Prediction (API Slot),
via slot F1, (2) Multimodal Coreference Resolution
(Coref), via coref prediction F1, (3) Dialog State
Tracking (DST), via Joint Accuracy. ↑: higher is better.

2020; Peng et al., 2020), we adopt GPT-2 (Radford 265

et al., 2019) and extend these work by adding two 266

different ways of representing multimodal contexts 267

(story): (a) visual embeddings (embed), where we 268

extract object-centric visual features for constituent 269

clips (Ren et al., 2015) projected into the hidden 270

size of GPT-2 via a linear layer, and (b) stringified 271

text (tokens), where the story information is repre- 272

sented as stringified tokens. The models are trained 273

to predict API calls, slot values, and clip mentions 274

given a sequential input of its dialog context and 275

multimodal context as above, through a conditional 276

LM loss. More details are in Appendix B. 277

Results. From Tab. 2, it can be seen that the 278

models achieve reasonably reliable performances 279

for API prediction, while the coreference resolu- 280

tion task (exactly pinpointing which set of clips 281

a user mentions) still remains a challenge. This 282

is due to the various types of coreferences that 283

exist in C3 that make resolutions uniquely chal- 284

lenging (e.g. adjectival: “the sunset clip", ordi- 285

nal: “the second to the last one., device context: 286

“the one I’m currently viewing", long-range carry- 287

over: “the one I added earlier"). This result sug- 288

gests future modeling directions that could leverage 289

the unique multimodal context more explicitly. It 290

can also be shown that the model that uses raw vi- 291

sual embeddings outperforms the model that uses 292

stringfied textual tokens, by better incorporating 293

rich context present in visual information. 294

Conclusions: We propose a novel task of building 295

a TOD system for interactively creating storytelling 296

media contents from a personal media collection. 297

We build a new multimodal dataset (10k dialogs & 298

136k turns) with rich dialog annotations and story 299

representations. Our analysis with the SOTA LM- 300

based multimodal dialog model highlights the key 301

challenges such as multimodal coreference resolu- 302

tion and MM-DST. Lastly, our mobile application 303

demonstrates the feasibility of our C3 dataset and 304

model on popular real-world applications in short 305

and long-form content creation and sharing. 306
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6 Limitations307

The generalizability and the use cases of the C3308

dataset are bounded by the synthetic nature of the309

multimodal dialog simulator used for this study.310

However, we note that even with the simulated311

dialog flows, C3 captures several interesting chal-312

lenges that are not addressed in the previous litera-313

ture such as the use of media montage representa-314

tions and device status as the grounding context for315

multimodal conversations, which opens the door316

to new research directions. We will open-source317

the multimodal dialog simulator used in the study318

for anyone to further develop any video-editing319

operations that are not included in C3, if necessary.320

References321

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang322
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-323
madan, and Milica Gašić. 2018. MultiWOZ - a324
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A Appendix: Demo Interface427

To demonstrate the feasibility of the real-world428

applications of the proposed dataset and models,429

we built a mobile demo application that runs the430

model trained with the C3 dataset. As can be seen431

in Fig. 5, the demo successfully handle unscripted432

user requests (not drawn from the training data) on433

a personal video collection as a retrieval target set,434

showing the promising use cases of our work.435

Note that a computer vision model was used436

to pre-process and extract key visual concepts for437

each video in the collection. Each video was in-438

dexed with the extracted concepts and stored in a439

database in advance for faster inference.440

At inference time, the mobile front-end runs an441

ASR model to get a transcript of a user’s request,442

which is then routed to the dialog model. Once the443

dialog model predicts the API call and parameters,444

we retrieve the associated video files and execute445

the requested create or edit operations on the story.446

B Appendix: Multimodal DST with a447

Causal Language Model448

Following the recent success of finetuning pre-449

trained LMs on task-oriented dialog task model-450

ing (Hosseini-Asl et al., 2020; Peng et al., 2020),451

we cast the MM-DST as a causal language infer-452

ence task. Specifically, we use the concatenated453

{<dialog history>, <multimodal context>}454

as the prompting context for the LM (where mul-455

timodal context is represented either as visual em-456

beddings or textual tokens), and use the task labels457

{INTENT [slot = value, ...] <clip: IDs,458

...>} as the target for causal LM inference.459

We use the 12-layer GPT-2 (117M ) model (Rad-460

ford et al., 2019) and finetune it on the C3 dataset,461

using early stopping based on token perplexity (<3462

GPU hrs). Fig. 4 illustrates the proposed architec-463

ture for the tasks in Sec. 4.464

C Appendix: Dataset Example465

Fig. 6 illustrates an example dialog from the C3466

dataset, along with the schematic representation of467

the stories (with a sequence of clips and their meta468

data) associated with each turn (U: User, A: Assis-469

tant). API Annotations are formatted as follows:470

INTENT [slot = value, ...] <clip: IDs,471

...>.472

It can be seen that the dataset includes many473

challenges such as multimodal coreferences and474

Figure 4: Baseline GPT-2 models for C3. Given the
dialog history, multimodal context, and current user
utterance, the model predicts the API call at the current
turn. As shown, GPT2 (tokens) uses attribute strings
to represent memories, while GPT2 (embed) use visual
features.

dialog context carryovers. We report the detailed 475

breakdown of the benchmark performances (e.g. 476

API prediction, Multimodal Coreference Resolu- 477

tion F1) in Sec. 5 478

More details on the dataset including the key 479

statistics are provided in Sec. 3.2. 480

D Appendix: Ethical Considerations 481

The data paraphrase task was contracted through 482

an external vendor that specializes in NLP annota- 483

tions, where annotators are employed as full-time. 484

Annotators were provided with clear instructions 485

including a detailed escalation path (“Report Di- 486

alog") for an (unlikely) case where the templated 487

utterance may include sensitive topics. 488

Please note that the figures used in this paper are 489

from authors’ personal media collections, and do 490

not include identifiable faces or sensitive topics. 491
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Figure 5: Screenshots of our mobile demo application. The dialog model is trained with the C3 dataset, and served
on a Python server. A personal media collection was used as a retrieval target set for demonstration purposes.

Figure 6: Dataset Example. Dialog labels include intent, slots, and multimodal coreferences.
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