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Abstract001

Recent advances in large language models have002
highlighted the critical need for precise con-003
trol over model outputs through predefined con-004
straints. While existing methods attempt to005
achieve this through either direct instruction-006
response synthesis or preferential response op-007
timization, they often struggle with constraint008
understanding and adaptation. This limitation009
becomes particularly evident when handling010
fine-grained constraints, leading to either hal-011
lucination or brittle performance. We intro-012
duce Generative Adversarial Policy Optimiza-013
tion (GAPO), a novel framework that com-014
bines GAN-based training dynamics with an015
encoder-only reward model to progressively016
learn and adapt to increasingly complex con-017
straints. GAPO leverages adversarial training018
to automatically generate training samples of019
varying difficulty while utilizing the encoder-020
only architecture to better capture prompt-021
response relationships. Extensive experiments022
demonstrate GAPO’s superior performance023
across multiple benchmarks, particularly in sce-024
narios requiring fine-grained constraint han-025
dling, where it significantly outperforms ex-026
isting methods like PPO, DPO, and KTO. Our027
results suggest that GAPO’s unique approach028
to preferential prompt learning offers a more ro-029
bust and effective solution for controlling LLM030
outputs.031

1 Introduction032

The advent of large-scale models has induced sig-033

nificant transformations in practical applications,034

enabling models to comprehend a broad spectrum035

of human instructions, ranging from casual dia-036

logue to intricate problem-solving tasks (Kaplan037

et al., 2020; Srivastava et al., 2022). As large038

language models (LLMs) advance in capability,039

guiding their outputs to fulfill specific require-040

ments—whether concerning format, style, or con-041

tent accuracy—becomes increasingly critical (Yang042

Figure 1: Illustration of the procedural differences be-
tween Preferential Response and Preferential Prompt,
emphasizing their distinct utilization of prompts and
responses.

et al., 2024; Team, 2024; Bubeck et al., 2023). This 043

is particularly vital in domains where compliance 044

with constraints is paramount, such as legal docu- 045

ment generation, medical record processing, and 046

workflow automation. 047

Ensuring that LLMs adhere to predefined con- 048

straints during text generation is essential (Zhou 049

et al., 2023a; Xu et al., 2023; He et al., 2024). 050

One effective strategy for achieving this is train- 051

ing models to generate responses within specified 052

boundaries at the data level (Ouyang et al., 2022; 053

Keskar et al., 2019; Zhou et al., 2023b). Data- 054

level control is typically realized through two pri- 055

mary methods. The first method directly synthe- 056

sizes instruction-response pairs that satisfy the con- 057

straints, offering clear examples of compliant out- 058

puts (Xu et al., 2023; Wang et al., 2022). The 059

second method leverages preferential response data 060

to adjust the probability distribution, thereby in- 061

creasing the likelihood that the model produces 062
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an expected response rather than an unexpected063

one (Rafailov et al., 2023; Schulman et al., 2017;064

Ethayarajh et al., 2024; Meng et al., 2024).065

The first approach often leads to the phe-066

nomenon of “hallucination”, where the model,067

having learned only what constitutes a correct re-068

sponse, may resort to shortcuts that result in inac-069

curate or fabricated outputs. The second method070

is more commonly employed, as preferential re-071

sponse data allows the model to more precisely072

align its output with the desired response based073

on specific prompts. However, neither approach074

effectively addresses the fundamental challenge075

of constraint understanding. The first method fo-076

cuses solely on correct outputs without teaching077

the model to comprehend the constraints. In con-078

trast, the second method adjusts output probabil-079

ities without explicitly training the model to rec-080

ognize and interpret the constraints in the prompts.081

This limitation in constraint understanding can lead082

to brittle performance when the model encounters083

novel or slightly modified constraints.084

A straightforward approach to enhance con-085

straint understanding would be directly modify-086

ing the constraints within prompts, allowing mod-087

els to learn fine-grained differences between con-088

straints. As shown in Figure 1, this method of089

prompt modification is simple to implement and090

provides rich preference data that captures subtle091

variations in constraints. However, this approach092

presents significant optimization challenges for cur-093

rent mainstream methods. For decoder-only archi-094

tectures (Subakan et al., 2021), which dominate095

current large language models (Bubeck et al., 2023;096

Yang et al., 2024), their unidirectional attention097

mechanism fundamentally limits their ability to098

detect discrepancies between prompts and given re-099

sponses. Furthermore, existing optimization meth-100

ods typically require manual intervention to con-101

struct intermediate training samples that bridge the102

complexity gap between different constraint pat-103

terns, introducing additional computational and en-104

gineering overhead.105

In this paper, we introduce the Generative106

Adversarial Policy Optimization (GAPO), which107

leverages Generative Adversarial Network108

(GAN) (Goodfellow et al., 2020; Aggarwal et al.,109

2021) to adaptively generate training samples110

with progressive difficulty while utilizing an111

encoder-only model to guide the generator’s opti-112

mization through Proximal Policy Optimization113

(PPO) (Schulman et al., 2017). A key innovation114

of GAPO lies in its seamless integration of GAN 115

and PPO frameworks. While utilizing the same 116

number of preference samples as other standard 117

preference optimization methods, GAPO has 118

superior performance stability and constraint 119

adherence. During the cold-start phase, the 120

algorithm initializes an encoder-only Reward 121

Model to learn prompt-response correspondences, 122

subsequently guiding the generator’s training. 123

Through this adversarial process, the generator 124

continuously evolves to produce increasingly 125

sophisticated outputs while the Reward Model 126

learns to discriminate between valid and invalid 127

responses with greater precision. 128

The advantages of GAPO are summarized as fol- 129

lows: 1. Using an encoder-only Reward Model in 130

GAPO effectively enhances the exploitation of pref- 131

erential prompt data, enabling the language model 132

to develop a deeper understanding of the intricate 133

details within the prompt. 2. GAPO significantly 134

simplifies the training process of the Reward Model 135

in PPO. Traditionally, the performance of the Re- 136

ward Model needed to be ensured before training 137

an effective generator in PPO. In contrast, within 138

the GAPO framework, the Reward Model and gen- 139

erator undergo iterative automated training, greatly 140

reducing the complexity of Reward Model training. 141

3. According to our experiments, GAPO outper- 142

forms other baseline training methods, like PPO, 143

DPO, KTO, and ORPO, in learning from prefer- 144

ential prompt data. It also demonstrates superior 145

performance in learning from general preferential 146

response data. Thus, GAPO can be considered a 147

more effective approach for enabling models to 148

learn from preference data. 149

2 Related Work 150

2.1 Reinforcement Learning with Human 151

Feedback 152

Reinforcement Learning from Human Feedback 153

(RLHF) (Bai et al., 2022; Christiano et al., 2017; 154

Ziegler et al., 2019) has emerged as a crucial 155

approach for aligning Large Language Models 156

(LLMs) with human values and expectations, ad- 157

dressing the limitations of traditional supervised 158

fine-tuning (SFT) which can lead to increased hal- 159

lucinations despite improving preferred outputs. 160

Classical RLHF algorithms, such as Proximal Pol- 161

icy Optimization (PPO) (Schulman et al., 2017), 162

achieve this alignment through a specialized re- 163

ward model for evaluation (Williams, 1992). In 164
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Figure 2: The GAPO framework encompasses two distinct tuning phases. The initial phase consists of a warm-
up period, during which the Reward Model is trained utilizing existing preference data. The subsequent phase
implements adversarial training through a dual mechanism: the Generator is updated based on feedback from the
Reward Model. The Reward Model undergoes training using a combination of Generator-produced data and existing
preference data.

contrast, more recent approaches like Direct Pref-165

erence Optimization (DPO) (Rafailov et al., 2023).166

Its variants, including SimPO (Meng et al., 2024),167

IPO (Azar et al., 2024), and KTO (Ethayarajh et al.,168

2024) streamline the process by directly optimizing169

human preferences, thereby eliminating the need170

for a separate reward model and reducing compu-171

tational complexity and bias (Zheng et al., 2024).172

However, these approaches face notable challenges:173

RLHF generally requires substantial-high-quality174

feedback data with detailed labeling (Bai et al.,175

2022), and DPO training exhibits vulnerability to176

overfitting, leading to poor generalization on novel177

data (Hu et al., 2024), highlighting the ongoing178

need for improvements in model alignment tech-179

niques. However, these works face significant chal-180

lenges in terms of data requirements and model181

stability. In contrast, GAPO addresses these limita-182

tions through its innovative GAN-PPO integration183

and encoder-only Reward Model, which enables184

more efficient training with better stability and gen-185

eralization capabilities.186

2.2 Constraint Following Augmentation187

Prior work in constrained text generation can188

be broadly categorized into three main ap-189

proaches (Zhang et al., 2022). The first cate-190

gory encompasses search-based methods, such191

as Constrained Beam Search (CBS) (Anderson192

et al., 2017) and its variants like Grid Beam Search193

(GBS) (Hokamp and Liu, 2017) and Dynamic194

Beam Allocation (DBA) (Post and Vilar, 2018),195

which enforce lexical constraints by modifying the196

search space, though often at the cost of generation197

speed and quality. The second category consists198

of score-based sampling methods that transform199

constraints into differentiable score functions (Liu200

et al., 2022), offering greater flexibility in handling 201

diverse constraint types but lacking guaranteed con- 202

straint satisfaction and suffering from slower gener- 203

ation speeds (Qin et al., 2022). The third category 204

focuses on model-centric approaches, including 205

specialized training methods and large language 206

models like CTRL (Keskar et al., 2019) and In- 207

structCTG (Zhou et al., 2023b), which incorporate 208

constraints through pre-training or natural language 209

instructions. Recent advancements have explored 210

multiple directions: multi-attribute controlled text 211

generation through prefix tuning (Li and Liang, 212

2021); latent space manipulation techniques such 213

as MacLaSa (Ding et al., 2023) and MAGIC (Liu 214

et al., 2024), where the latter employs counterfac- 215

tual feature vectors to disentangle attributes; regu- 216

lar expression-based constraint generation through 217

REI (Zheng et al., 2023); and the development of 218

specialized datasets (Zhang et al., 2023) to improve 219

control ability while maintaining text quality. How- 220

ever, existing model-centric approaches often rely 221

heavily on specialized pre-training or require heavy 222

manual engineering to incorporate constraints in 223

instructions and still suffer from unstable training 224

performance. GAPO addresses these limitations 225

through more automated and efficient constraint 226

learning while providing better constraint under- 227

standing and adherence without requiring exten- 228

sive specialized pre-training or manual instruction 229

engineering. 230

3 Generative Adversarial Policy 231

Optimization 232

3.1 Preliminary of Constrained Generation 233

Given an input prompt P = (T , C), where 234

T denotes a free-text description and C = 235
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Symbol Definition

T Free-text description component
C Constraint set
P Input prompt (T , C)
R Generated text output
πθ(t|c) Generator that produces next token t given context c
πref Reference generator for comparison
L(R,Ci) Constraint satisfaction function
D Training dataset
D′ Augmented dataset
R(c, t) Reward model evaluating token t in context c
V π(c) Expected future rewards given context c
Qπ(c, t) Expected cumulative reward for token t in context c
R̂ Generator-produced text output

Table 1: All definitions used in the GAPO section.

{C1, C2, . . . , Cn} represents a set of constraints,236

our objective is to generate an output R that satis-237

fies all constraints in C. We formulate this as an238

expectation maximization problem:239

E(πθ) = ER∼πθ(P )

∑
Ci∈C

L(R,Ci)

 , (1)240

where πθ represents the generator parameterized241

by θ. The constraint satisfaction function L(R,Ci)242

is defined as:243

L(R,Ci) =

{
1 if R |= Ci,

0 otherwise.
(2)244

3.2 Constraint-Aware Data Augmentation245

We propose a data augmentation method for246

constraint-aware learning. Given a dataset D =247

{(Pi, Ri)}Ni=1, where each prompt Pi = (Ti, Ci),248

we construct an augmented dataset through con-249

straint perturbation. For each original constraint250

set Ci, we generate a rejected constraint set Creject
i251

through one of the following operations:252

1) Constraint Modification: For a randomly253

selected constraint Ci,j ∈ Ci, we modify it to create254

C
reject
i,j such that it becomes incompatible with the255

original response Ri:256

C
reject
i,j = fmodify(Ci,j), where L(Ri, C

reject
i,j ) = 0257

2) Constraint Insertion: We introduce an addi-258

tional constraint Creject
i,n+1 that conflicts with existing259

constraints:260

Creject
i = Ci∪{Creject

i,n+1}, where L(Ri, C
reject
i,n+1) = 0261

The augmented dataset is thus constructed as262

follows:263

D′ = {(P accept
i , Ri), (P

reject
i , Ri)}Ni=1, (3)264

Algorithm 1 Generative Adversarial Policy Opti-
mization (GAPO)
Require: Generator πθ , Reference generator πref, Reward

model R(c, t) with value function V π(c), Training
dataset D = {(Pi, Ri)}Ni=1, Adversarial Steps T ,
Warmup Steps Twarmup

Ensure: Optimized generator πθ

1: // Warmup Phase
2: for t = 1 to Twarmup do
3: Sample batch (Pi, Ri) from D
4: Train R(c, t) with balanced sampling on

{(P acc
i , Ri, 1), (P

rej
i , Ri, 0)}

5: Update R(c, t) with BCE loss: LR(θ) =
−E(c,t,y)∼D′ [y logR(c, t)+(1−y) log(1−R(c, t))]

6: end for

7: // Adversarial Training Phase
8: for t = Twarmup + 1 to Twarmup + T do
9: if t mod 2 = 1 then

10: Sample batch (Pi, Ri) from D

11: Generate R̂i = πθ(Pi)
12: Train R(c, t) with balanced sampling on

{(P acc
i , Ri, 1), (P

rej
i , Ri, 0), (P

acc
i , R̂i, 0)}

13: Update R(c, t) using BCE loss LR(θ)
14: else
15: Update πθ with policy gradient: LG(θ) =

En[
πθ(tn|cn)
πref(tn|cn)

An]

16: where An = Qπ(cn, tn)− V π(cn)
17: end if
18: end for
19: return πθ

where P
accept
i = (Ti, Ci) and P

reject
i = (Ti, Creject

i ). 265

This augmentation strategy ensures that: 266

∃Creject
i,j ∈ Creject

i : L(Ri, C
reject
i,j ) = 0. (4) 267

3.3 Adversarial Learning Framework 268

We propose an adversarial learning framework 269

comprising a generator πθ(t|c) that produces the 270

next token t given the current context c, a reward 271

model R(c, t) evaluating the quality of generated 272

tokens, and a value function V π(c) estimating ex- 273

pected future rewards. The reward model is trained 274

on the augmented dataset: 275

D′ =
{
(P acc

i , Ri, 1), 276

(P
rej
i , Ri, 0), (5) 277

(Pi, R̂i, 0)
}
. 278

where R̂i represents the text response generated 279

by πθ based on prompt Pi. The reward model 280

optimizes the cross-entropy loss: 281

LR(θ) =− E(c,t,y)∼D′

[
y logR(c, t) 282

+ (1− y) log(1−R(c, t))

]
. (6) 283
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Name #Product #PV-Pair #Sample #Token

PDD-Raw 201 93,616 - -
PDD-Train 201 76,913 26,419 17,541,881
PDD-Rej-Train 201 66,838 26,419 14,983,806
PDD-Test 201 49,470 6,605 4,212,440
PDD-Rej-Test 201 31,280 6,605 3,629,544

Table 2: PDD-Raw contains only product informa-
tion and available descriptions without prompt-response
pairs, making it unsuitable for direct training. Rej rep-
resents mismatched prompt-response pairs. Train and
Test denote the training and testing datasets, respec-
tively.

Name #Type #Sample #Token

IFEval-Response 9 540 355,199
IFEval-Train 9 432 143,151
IFEval-Rej-Train 9 432 141,963
IFEval-Test 9 108 -

Table 3: IFEval-Response consists of GPT-4o re-
sponses provided by the IFEval benchmark in their of-
ficial version. Train comprises the prompt-response
pairs used for training, while Rej contains mismatched
prompt-response pairs. As IFEval incorporates its own
evaluation framework, the Test set does not include
prompt-response pairs.

The generator’s objective function is formulated284

as:285

LG(θ) = En

[
πθ(tn|cn)
πref(tn|cn)

An

]
, (7)286

where n indexes the token position, and the advan-287

tage function An is defined as:288

An = Qπ(cn, tn)− V π(cn). (8)289

Moreover, the action-value function is:290

Qπ(cn, tn) = R(cn, tn) + γEcn+1∼πθ
[V π(cn+1)].

(9)291

The value function is optimized by minimizing292

the mean squared error:293

LV (θ) = Ec

[
(V π(c)−R(c, t))2

]
. (10)294

4 Experiment Setup295

4.1 Baselines296

The experiments are grouped into two categories297

based on the role-playing methods used:298

4.1.1 Prompt-Based Methods299

(1) Direct Generation: The model generates con-300

tent directly without role-playing instructions, eval-301

uating its inherent capabilities and biases. (2)302

Chain-of-Thought (CoT): (Kojima et al., 2022) 303

The model engages in reasoning before generating 304

the output, improving coherence and transparency. 305

(3) Plan-and-Solve (Plan-N-Solve): (Wang et al., 306

2023) The model plans its response before generat- 307

ing content, leading to more organized solutions. 308

4.1.2 Training-Based Methods 309

(4) Supervised Fine-Tuning (SFT): Fine-tunes 310

the model on a role-specific dataset to im- 311

prove performance in role-playing scenarios. (5) 312

DPO: (Rafailov et al., 2023) Directly optimizes for 313

annotated responses, minimizing the likelihood of 314

undesired outputs. (6) KTO: (Ethayarajh et al., 315

2024) Uses prospect theory to optimize model 316

outputs, outperforming preference-based methods. 317

(7) SimPO: (Meng et al., 2024) Aligns the re- 318

ward function with model generation, simplify- 319

ing optimization without reference models. (8) 320

ORPO: (Hong et al., 2024) Optimize models with 321

preferential response data but without reference 322

model. (9) PPO: (Schulman et al., 2017) Opti- 323

mizes the model using a pre-trained reward model 324

that remains fixed throughout the training process 325

(10) GAPO (Ours): Optimize models with reward 326

criteria become progressively more demanding as 327

training advances. 328

4.2 Training Dataset 329

Product Description Dataset (PDD) is a novel 330

dataset designed for generating product descrip- 331

tions in this paper. The dataset encompasses 201 332

product categories and contains 93,616 property- 333

value pairs. Models trained on this dataset are 334

tasked with generating coherent product descrip- 335

tions using only the provided property-value pairs, 336

with two key constraints: they must (1) incorporate 337

all given facts while (2) avoid the introduction of 338

any additional information not present in the source 339

data. For detailed information regarding the dataset 340

construction methodology, please refer to Sec. A.2 341

in the Appendix, while comprehensive statistical 342

analyses are presented in Tab. 2. 343

IFEval is a benchmark designed to evaluate 344

Large Language Models’ instruction-following ca- 345

pabilities by enabling a standardized and automated 346

assessment methodology (Zhou et al., 2023a). 347

Building upon the existing dataset, we utilized GPT- 348

4 (Achiam et al., 2023) to generate additional data 349

samples that maintain similar constraint conditions 350

while exhibiting low similarity to the original en- 351

tries. Please refer to Sec. A.1 in the Appendix for a 352
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Model Prompt Punctuation Format Length Content Combination ChangeCase Startend Keywords Language All

Qwen-2.5-7B Naive Prompt 17.6 88.1 42.3 66.7 20.0 62.5 66.7 52.6 90.9 57.8
Qwen-2.5-7B CoT 23.5 78.6 53.8 33.3 13.3 62.5 66.7 57.9 100.0 57.8
Qwen-2.5-7B Plan-N-Solve 23.5 81.0 38.5 66.7 0.0 68.8 44.4 63.2 90.9 56.1

Qwen-2.5-7B + SFT Naive Prompt 100.0 92.9 57.7 83.3 26.7 75.0 88.9 81.6 90.9 78.3
Qwen-2.5-7B + DPO Naive Prompt 17.6 45.2 26.9 16.7 6.7 31.2 11.1 42.1 63.6 33.3
Qwen-2.5-7B + KTO Naive Prompt 11.8 71.4 38.5 50.0 6.7 50.0 44.4 76.3 100.0 54.4
Qwen-2.5-7B + SimPO Naive Prompt 11.8 45.2 23.1 16.7 0.0 31.2 0.0 39.5 63.6 30.6
Qwen-2.5-7B + ORPO Naive Prompt 5.9 40.5 34.6 33.3 20.0 25.0 33.3 55.3 9.1 33.9
Qwen-2.5-7B + PPO Naive Prompt 94.1 90.5 50.0 66.7 33.3 62.5 88.9 84.2 90.9 75.6
Qwen-2.5-7B + GAPO Naive Prompt 100.0 95.2 57.7 83.3 46.7 75.0 100.0 92.1 100.0 83.9

Table 4: Performance comparison across different categories on IFEval Benchmark.

Model Prompt
Reward Model LLM-as-a-Judge

HumanLongFormer-
Base-40963k

LongFormer-
Large-40963k

GPT-4o GPT3.5-turbo

Qwen2.5-7B Naive Prompt 61.4 52.3 75.4 73.7 45
Qwen2.5-7B CoT 58.4 50.5 71.5 72.6 43
Qwen2.5-7B Plan-N-Solve 62.8 53.7 72.5 78.1 51

Qwen2.5-7B + SFT Naive Prompt 70.1 59.8 82.6 80.3 60
Qwen2.5-7B + DPO Naive Prompt 12.5 11.3 5.4 9.6 0
Qwen2.5-7B + KTO Naive Prompt 64.5 57.1 72.6 74.8 49
Qwen2.5-7B + SimPO Naive Prompt 5.3 7.6 2.9 3.8 0
Qwen2.5-7B + ORPO Naive Prompt 21.4 20.8 7.5 8.2 0
Qwen2.5-7B + PPO Naive Prompt 89.4 88.5 89.7 86.4 81
Qwen2.5-7B + GAPO Naive Prompt 95.4 94.3 90.2 90.0 89

Table 5: Comprehensive model performance comparison on PDD dataset. 3k represents the model is pre-tuned on
3,000 preferential data to give evaluation scores.

detailed description. The statistical breakdown of353

this expanded dataset is detailed in Tab. 3.354

4.3 Evaluation Method355

We utilize the IFEval dataset’s built-in evaluation356

methodology to maintain consistency with existing357

research in this domain.358

For the PDD, we employ three evaluation meth-359

ods: (1) The Reward Models act as automated360

evaluators during our adversarial training process.361

Specifically, we use Longformer models (Beltagy362

et al., 2020) with an input length capacity of 4096363

tokens, which has been tuning on 3,000 preference364

data pairs to generate evaluation scores. (2) GPT-365

4o functions as an external evaluation model to366

provide independent assessment. (3) human eval-367

uators assess the quality of generated descriptions368

based on predefined criteria.369

5 Experiment370

5.1 Overall Result371

As shown in Tab. 4, while all preference optimiza-372

tion methods maintain basic functionality, their373

effectiveness varies significantly under different374

constraint types. This is evidenced by the stark per-375

formance gap: GAPO and PPO achieve strong over-376

all performance (83.9% and 75.6% respectively), 377

while methods like DPO, SimPO, and ORPO strug- 378

gle considerably with scores of 33.3%, 30.6%, 379

and 33.9% - particularly in handling complex con- 380

straints like combinations (6.7%, 0%, and 20.0% re- 381

spectively) and length requirements (26.9%, 23.1%, 382

and 34.6%). 383

As shown in Tab. 5, when facing more nuanced 384

preferential prompts that require a fine-grained un- 385

derstanding of constraints, most traditional opti- 386

mization methods experience catastrophic failure, 387

while encoder-based approaches maintain robust 388

performance. The collapse of conventional meth- 389

ods is dramatic: DPO, SimPO, and ORPO achieve 390

near-zero performance on both automated metrics 391

(5.4%, 2.9%, and 7.5% on GPT-4o) and human 392

evaluation (all 0%). In contrast, encoder-based 393

methods like GAPO and PPO demonstrate strong 394

capability with GPT-4o scores of 90.2% and 89.7%, 395

and human evaluation scores of 89% and 81% re- 396

spectively. 397

5.2 Effectiveness of Preferential Prompt vs. 398

Preferential Response 399

As shown in Tab. 6, training with Preferential 400

Prompt consistently outperforms Preferential Re- 401

sponse across all experimental configurations with 402
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Model #Sample #Token PDD Perfromance ∆No Train ∆PR vs. PP

No Training
Qwen-2.5-7B - - 61.4 - -
No Preferential Data
Qwen-2.5-7B + SFT 3,300 6,561,531 70.1 + 8.3 -
Training w/ Preferential Response (PR)
Qwen-2.5-7B + PPO 2,000 4,295,575 61.8 + 0.4 - 6.7
Qwen-2.5-7B + PPO 4,000 8,660,218 72.4 + 11.0 - 2.7
Qwen-2.5-7B + PPO 6,600 13,243,796 78.5 + 17.1 - 10.9
Qwen-2.5-7B + GAPO 2,000 4,295,575 63.3 + 1.9 - 7.3
Qwen-2.5-7B + GAPO 4,000 8,660,218 74.4 + 13.0 - 6.9
Qwen-2.5-7B + GAPO 6,600 13,243,796 82.9 + 21.5 - 12.5
Training w/ Preferential Prompt (PP)
Qwen-2.5-7B + PPO 2,000 4,219,814 68.5 + 7.1 + 6.7
Qwen-2.5-7B + PPO 4,000 8,506,194 75.1 + 13.7 + 2.7
Qwen-2.5-7B + PPO 6,600 12,984,601 89.4 + 28.0 + 10.9
Qwen-2.5-7B + GAPO 2,000 4,219,814 70.6 + 9.2 + 7.3
Qwen-2.5-7B + GAPO 4,000 8,506,194 81.3 + 19.9 + 6.9
Qwen-2.5-7B + GAPO 6,600 12,984,601 95.4 + 34.0 + 12.5

Table 6: Comparative Analysis of using Preferential Response and Preferential Prompt. The PDD Performance
metric represents the model’s generative output on the PDD dataset, as evaluated using a fine-tuned LongFormer-
Large-4096 Reward model architecture. The IFEval Performance metric indicates the model’s comprehensive
performance across the IFEval benchmark framework.

Figure 3: Analysis of Correlative Factors Influencing GAPO’s Performance on PDD and IFEval Benchmarks. The
analysis utilizes 300 randomly sampled instances from the PDD test set and the complete IFEval test set with 108
samples for comprehensive evaluation.

Figure 4: Detailed Performance Analysis Across Se-
quential Adversarial Training Stages. W indicates the
warmup phase, and A represents the adversarial phase
with alternating training between Generator and Reward
Model components.

both optimization methods. With 6,600 training403

samples, Preferential Prompt with GAPO achieves404

95.4% PDD Performance, surpassing its Preferen-405

tial Response counterpart by 12.5 percentage points406

and the supervised fine-tuning baseline by 34.0407

percentage points. This performance advantage408

holds across different sample sizes, with Prefer-409

ential Prompt showing improvements of 7.3 and410

6.9 percentage points at 2,000 and 4,000 samples,411

respectively.412

5.3 Training Efficiency Analysis 413

Tab. 6 also demonstrates GAPO’s superior opti- 414

mization capability and efficient utilization of train- 415

ing data. In Preferential Prompt training, GAPO 416

demonstrates remarkable scaling efficiency, achiev- 417

ing a 24.8 percentage point improvement (70.6% 418

to 95.4%) when increasing training tokens from 419

4.2M to 13.0M, while PPO shows a more modest 420

improvement of 20.9 percentage points (68.5% to 421

89.4%). A similar pattern is observed in Prefer- 422

ential Response training, where GAPO achieves a 423

19.6 percentage point improvement compared to 424

PPO’s 16.7 percentage points. 425

5.4 Detail Analysis on Model Performance 426

As shown in Fig. 3 Analysis across various dimen- 427

sions of prompt complexity reveals several key 428

findings. First, GAPO maintains consistent per- 429

formance even as prompt length increases, show- 430

ing only minimal degradation compared to baseline 431

methods. Second, performance scales well with the 432
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Prompt:  
Generate a description of a pet backpack, 
approximately 50 words. You need to use all the 
information from the "## Factual Information" 
section to generate the description, which should 
incorporate the emotions from "## Emotions to 
Add". Note that you cannot add additional factual 
information, please only add emotional content.

## Emotions to Add:
Pride: A feeling of satisfaction and respect for 
one's achievements or actions, typically 
associated with positive self-evaluation.

## Factual Information:
Material: Thickened PU leather 
Suitable pet type: Small parrots 
Weight: 750 grams 
Color options: Sunlight yellow 
Safety measures: High-strength nylon straps 
Dimensions: 30 x 25 x 40 cm 
Strap design: Anti-slip coating

Qwen-2.5-7B + SFT 
Experience pride with this stylish, sunlight-yellow pet backpack for small parrots, 
cra;ed from thickened PU leather, weighing just 750 grams. It features anD-slip strap 
design and high-strength nylon safety measures, with spacious dimensions of 30 x 25 x 
40 cm.

Qwen-2.5-7B + PPO 
Proudly present your vibrant companion with this stylish pet backpack, cra;ed from 
high-quality thickened PU leather in a cheerful sunlight yellow. Weighing just 750 
grams, it is thoughKully designed for small parrots and boasts dimensions of 30 x 25 x 
40 cm. Featuring robust high-strength nylon straps for internal safety and anD-slip 
coated straps, it ensures a secure and chic travel experience.

Qwen-2.5-7B + GAPO 
Proudly present your feathered friend in this sunlight yellow, thickened PU leather 
backpack, designed specifically for small parrots. Weighing just 750 grams, it's a breeze 
to carry. At 30 x 25 x 40 cm, it's spacious yet compact. Your cherished companion will 
travel securely with high-strength nylon straps inside, while you confidently stride with 
anD-slip coated shoulder straps.

Qwen-2.5-7B 
Cra;ed with pride, this pet backpack is a testament to excellence in pet care. Made 
from thickened PU leather, it exudes durability and quality. Designed specifically for 
small parrots, it ensures comfort and safety. The 750 grams weight is balanced, making 
it easy to carry. Available in sunny yellow, it upli;s moods instantly. Its internal structure 
includes high-strength nylon straps, guaranteeing your pet's secure journey. With 
dimensions of 30 x 25 x 40 cm, it's spacious enough for comfort. The anD-slip strap 
design adds an extra layer of security, giving you peace of mind. This pet backpack is not 
just a tool; it's a symbol of your love and commitment towards your feathered friend.

Figure 5: Case study of model performance under different training baslines.

number of constraints, demonstrating robust han-433

dling of multiple simultaneous requirements. Third,434

the model shows strong capability in generating435

both short and long responses while maintaining436

constraint adherence.437

5.5 Details in Adversarial Process438

As shown in Figure 4, the evolution of Reward439

Models during adversarial training reveals distinct440

learning patterns and convergence behaviors. From441

the initial warmup phase (W), where all models442

assign near-zero scores to generated samples, we443

observe a clear stratification in learning trajecto-444

ries across different Reward Models through stages445

A1-A15. The top-performing model demonstrates446

rapid improvement in the early stages (A1-A7),447

reaching a score of 0.6, followed by gradual con-448

vergence to 0.95 after A12. This stratification of449

final convergence scores (ranging from 0.2 to 0.95)450

and the stable plateaus after A12 indicates that451

GAPO successfully establishes a balanced adver-452

sarial training dynamic, where both the generator453

and Reward Models effectively learn the under-454

lying constraints without falling into degenerate455

solutions (Lucic et al., 2018; Gulrajani et al., 2017;456

Creswell et al., 2018) often encountered in adver-457

sarial training scenarios.458

5.6 Case Study459

As illustrated in Fig. 5, training substantially aug-460

mented the model’s proficiency in following com-461

plex constraints while retaining linguistic authentic- 462

ity, with GAPO attaining exemplary performance 463

across all metrics. The base Qwen-2.5 model exhib- 464

ited considerable divergence from the prescribed 465

length and incorporated superfluous emotional el- 466

ements. GAPO demonstrated remarkable superi- 467

ority over alternative approaches, for it achieved 468

meticulous control over word count and exem- 469

plified more sophisticated emotional articulation. 470

Most significantly, GAPO maintained impeccable 471

fidelity to the prescribed parameters by circumvent- 472

ing extraneous descriptive content and unsolicited 473

emotional undertones. 474

6 Conclusion 475

In this paper, we presented GAPO , a novel frame- 476

work that effectively addresses constraint under- 477

standing in large language models through the 478

seamless integration of GAN and PPO frameworks. 479

Our experimental results demonstrate GAPO’s su- 480

perior performance compared to baseline methods 481

(PPO, DPO, KTO, and ORPO) in both preferential 482

prompt learning and general preferential response 483

tasks, validating its effectiveness in enhancing con- 484

straint adherence while maintaining training stabil- 485

ity. As LLMs continue to evolve and find applica- 486

tions across various domains requiring precise ad- 487

herence to constraints, GAPO’s robust framework 488

provides a promising direction for future develop- 489

ments in controlled text generation. 490
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Ethical Concern491

This research contributes to constrained text gen-492

eration through two key innovations: a Preferen-493

tial Prompt data augmentation methodology and494

the GAPO training framework. Our approach sig-495

nificantly reduces dependency on preference data496

while maintaining generation quality, addressing a497

critical challenge in the field. The technical solu-498

tions focus solely on enhancing model capabilities499

under specific constraints, ensuring research re-500

producibility without introducing ethical concerns501

or societal risks. The implementation emphasizes502

technical optimization and maintains research neu-503

trality throughout the development process.504

Additionally, we introduce the PDD dataset, a505

comprehensive e-commerce corpus for product de-506

scription generation. This dataset’s construction507

prioritized both data quality and ethical considera-508

tions. Through rigorous quality control measures,509

including thorough manual review processes, we510

ensured data diversity while addressing potential511

biases and sensitive issues. The dataset maintains512

strict compliance with ethical guidelines and pri-513

vacy protection standards, safeguarding corporate514

and user interests. Our validation process confirms515

the dataset’s objectivity and reliability, establish-516

ing it as a valuable resource for future research517

endeavors.518

Limitation519

GAPO’s primary strength lies in its ability to re-520

duce the Reward Model’s training data require-521

ments while improving Generator performance.522

However, this advantage comes with notable trade-523

offs. The framework’s adversarial training process,524

involving simultaneous optimization of the Gen-525

erator, Reward Model, and Critic Model, signifi-526

cantly increases computational demands compared527

to traditional preference optimization approaches.528

This intensive resource consumption represents a529

practical limitation for widespread adoption and530

implementation.531

Furthermore, GAPO’s effectiveness is contin-532

gent upon the base model’s initial capabilities. Our533

research reveals that the framework performs opti-534

mally when applied to models that already possess535

fundamental generation competencies. This depen-536

dency arises because inadequate base model per-537

formance, particularly in generating semantically538

coherent responses, can compromise the Reward539

Model’s training quality during the adversarial pro-540

cess. This limitation suggests that GAPO is most 541

suitable as an enhancement tool for established 542

models rather than a solution for improving under- 543

performing ones, highlighting the importance of 544

careful model selection in its application. 545
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A Dataset Description 780

A.1 IFEval (Instruction-Following 781

Evaluation) Dataset 782

Dataset Construction Background and Purpose 783

IFEval represents a benchmark dataset specifically 784

designed to evaluate instruction-following capa- 785

bilities of Large Language Models (LLMs). The 786

research team systematically identified and defined 787

25 distinct types of verifiable instructions, based on 788

which they constructed approximately 541 prompts. 789

The distinguishing characteristic of these prompts 790

lies in their verifiable nature, allowing for objec- 791

tive programmatic verification and thus eliminating 792

potential subjective assessment biases. 793

Dataset Components The dataset encompasses 794

multiple dimensions of instruction types. Regard- 795

ing keyword requirements, it incorporates specific 796

keyword usage directives, frequency requirements, 797

and prohibited word constraints. Linguistic spec- 798

ifications include language-specific requirements. 799

Additionally, the dataset implements textual con- 800

straints regarding length parameters, such as para- 801

graph count, word count, and sentence quantity 802

specifications. Furthermore, it encompasses re- 803

quirements for specific content elements such as 804

postscripts and placeholders, as well as format 805

specifications including particular markup require- 806

ments, title formats, and JSON structure require- 807

ments. The dataset also incorporates specifications 808

for text styling, including case usage requirements 809

and punctuation conventions. 810
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Evaluation Methodology and Metrics IFEval811

implements dual evaluation criteria: strict metrics812

and loose metrics. The strict evaluation method-813

ology requires precise adherence to instructional814

requirements, while the loose evaluation methodol-815

ogy accommodates common variations while main-816

taining instructional integrity. The evaluation met-817

rics specifically include:818

• Prompt-level accuracy: Measuring the pro-819

portion of prompts where all instructions are820

correctly executed821

• Instruction-level accuracy: Quantifying the822

overall proportion of correctly executed in-823

structions824

A.2 Product Description Dataset825

Dataset Construction Process The Product De-826

scription Dataset (PDD) represents a specialized827

dataset focused on product description generation828

tasks, encompassing 1,000 product categories and829

32,000 property-value pairs. The research team830

initially collected raw product information and831

descriptions, subsequently generating correspond-832

ing responses using GPT-4 based on carefully de-833

signed prompts, followed by human verification.834

Through modifications of constraint conditions in835

the original prompts, the team constructed a set of836

mismatched property-value pairs and descriptions837

(Rej dataset), which proves valuable for evaluating838

model robustness.839

Dataset Structure and Composition The840

dataset comprises multiple subsets:841

• PDD-Raw: Contains unprocessed original842

product information and descriptions843

• PDD-Train: High-quality training data gener-844

ated by GPT-4 and validated through human845

verification846

• PDD-Test: Testing dataset serving dual pur-847

poses - evaluating generation model perfor-848

mance and validating scoring model efficacy849

• PDD-Rej-Train and PDD-Rej-Test: Mis-850

matched datasets obtained through constraint851

condition modifications in original prompts852

Evaluation Methodology The evaluation853

methodology for the PDD dataset incorporates854

multiple complementary approaches:855

1. Model-based Evaluation: Utilizing ad- 856

vanced language models to assess constraint 857

compliance 858

2. Human Evaluation: Implementing human 859

verification to assess content quality and accu- 860

racy 861

3. Specialized Evaluation Models: Developing 862

dedicated models to assess adherence to given 863

constraints 864

The evaluation framework primarily focuses on 865

two critical aspects: 866

• Verifying whether generated descriptions com- 867

prehensively incorporate all provided attribute 868

information 869

• Ensuring the absence of extraneous informa- 870

tion not present in the source data 871

This comprehensive evaluation approach ensures 872

robust assessment of model performance across 873

multiple dimensions of content generation quality. 874

B Manual Effort 875

This section presents our comprehensive manual 876

verification process for both the PDD dataset and 877

the model-generated outputs. Our verification 878

framework encompasses two primary components: 879

dataset quality assessment and model output evalu- 880

ation. 881

B.1 Dataset Quality Assessment 882

To ensure the reliability and ethical compliance of 883

the PDD dataset, we conducted a thorough manual 884

review process. A team of five domain experts 885

independently examined 10% of the dataset entries 886

(approximately 3,300 records), focusing on privacy 887

protection and content fairness. 888

B.1.1 Privacy Protection Verification 889

The privacy protection verification process system- 890

atically examines potential privacy concerns within 891

the dataset. Table 7 outlines our evaluation criteria 892

and standards. 893

B.1.2 Fairness Assessment 894

Our fairness assessment framework examines po- 895

tential biases and discriminatory content within 896

the dataset. This evaluation ensures that product 897

descriptions maintain objectivity and avoid perpet- 898

uating societal stereotypes. Table 8 presents our 899

fairness evaluation framework. 900
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Aspect Verification Content Acceptance Cri-
teria

Personal
Identity

Names, addresses,
contact information

Strictly prohib-
ited

Indirect
Identifiers

Combinations of infor-
mation that could lead
to identification

Must not enable
personal identifi-
cation

Sensitive
Data

Health conditions, fi-
nancial details

Limited to
general product-
related informa-
tion

Table 7: Privacy protection verification criteria for the
PDD dataset

Category Assessment Focus Requirements

Gender Gender-related stereo-
types and biases

Neutral product
descriptions
without gender
discrimination

Ethnicity Racial or ethnic biases No ethnicity-
specific stereo-
types or preju-
dices

Cultural
Elements

Cultural sensitivity
and representation

Objective and
culturally neu-
tral descriptions

Table 8: Fairness assessment criteria for dataset evalua-
tion

B.2 Model Output Evaluation901

The evaluation of model-generated product descrip-902

tions focuses on two fundamental constraints: com-903

pleteness and accuracy. We randomly selected904

1,000 samples from the test set for this assessment,905

with three domain experts conducting independent906

evaluations.907

B.2.1 Evaluation Methodology908

Our evaluation methodology employs a binary scor-909

ing system (0 or 1) based on strict compliance with910

both completeness and accuracy requirements. Ta-911

ble 9 details our scoring criteria.912

B.2.2 Evaluation Protocol913

The evaluation protocol ensures consistency and914

reliability across assessments. Each evaluator in-915

dependently examines the generated descriptions,916

comparing them against the input property-value917

pairs. For quality control, we conducted prelimi-918

nary training sessions and established a standard-919

ized evaluation process. Disagreements among920

evaluators were resolved through detailed discus-921

sion and consensus building.922

Score Requirements Assessment Criteria

1 Complete satisfac-
tion of all con-
straints

All property-value
pairs included; No
additional information
introduced

0 Failure to meet any
constraint

Missing any property-
value pair OR Includ-
ing extraneous infor-
mation

Table 9: Model output evaluation criteria and scoring
system

Component Specification

CPU Intel Xeon E5-2680 v4 @ 2.40GHz
RAM 128GB DDR4
GPU NVIDIA A100 80GB
Operating System Ubuntu 20.04 LTS
CUDA Version 12.1
Python Version 3.9.12

Table 10: Computing Infrastructure Specifications

The final evaluation score for each generated 923

description represents the average of scores from 924

all evaluators. To ensure evaluation reliability, we 925

calculated the inter-rater agreement using Cohen’s 926

Kappa coefficient. For cases receiving a score of 927

0, evaluators documented specific violation types, 928

enabling detailed analysis of model limitations and 929

potential areas for improvement. 930

C Training Expense 931

C.1 Computing Infrastructure 932

All experiments in this study were conducted using 933

the computing resources detailed in Table 10. To 934

ensure reproducibility and consistent performance, 935

we utilized the same hardware for all evaluations 936

and training. 937

C.2 Training Configuration 938

All hyperparameter settings are listed in Table 12. 939

Given that IFEval contains only 430 training sam- 940

ples, we adopted smaller batch sizes and larger 941

initial learning rates when training on the IFEval 942

dataset. 943

C.3 Generation Configuration 944

For our experiments, we employed carefully se- 945

lected parameters to ensure consistent and repro- 946

ducible results, as shown in Table 11. These param- 947

eters were chosen to minimize output variability 948

while maintaining generation quality. 949
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Parameter Value

Temperature 0.0
Top P 1.0
Frequency Penalty 0.0
Presence Penalty 0.0
Maximum Tokens 2048
Context Window 16385 tokens

Table 11: Language Model Parameters

The temperature was set to 0.0 to maximize de-950

terministic behavior, while maintaining a top P951

value of 1.0 to preserve the model’s ability to gen-952

erate coherent responses. Both frequency and pres-953

ence penalties were set to 0.0 to avoid artificial954

constraints on the model’s token selection process.955

These settings were kept constant across all experi-956

ments to ensure consistent generation behavior and957

reproducible results.958

D Prompt959

We use a comprehensive prompt template as shown960

in Table 13. The template includes essential com-961

ponents such as product name, word count require-962

ment, emotion specifications, and factual infor-963

mation. To explore the performance of different964

prompt engineers strategies, we further implement965

three distinct output formats (Table 14), namely966

Naive, Chain-of-Thought (CoT), and Plan-N-Solve967

approaches.968

Parameter PDD Dataset IFEval Dataset
Training Samples 3300 430
SFT
Learning Rate 5e-6 1e-4
Train Batch Size 256 32
Micro Train Batch Size 4 4
Max Sequence Length 4096 4096
Max Epochs 2 2
DPO
Learning Rate 5e-7 1e-4
Train Batch Size 128 32
Micro Train Batch Size 4 4
Max Sequence Length 4096 4096
Max Epochs 2 2
Beta 0.1 0.1
KTO
Learning Rate 5e-7 1e-4
Train Batch Size 128 32
Micro Train Batch Size 4 4
Max Sequence Length 4096 4096
Max Epochs 2 2
Beta 0.1 0.1
SimPO
Learning Rate 5e-7 1e-4
Train Batch Size 128 32
Micro Train Batch Size 4 4
Max Sequence Length 4096 4096
Max Epochs 2 2
Beta 0.1 0.1
ORPO
Learning Rate 5e-7 1e-4
Train Batch Size 128 32
Micro Train Batch Size 4 4
Max Sequence Length 4096 4096
Max Epochs 2 2
Beta 0.1 0.1
PPO
Actor Learning Rate 5e-7 1e-4
Critic Learning Rate 9e-6 2e-4
Train Batch Size 128 32
Micro Train Batch Size 2 2
Rollout Batch Size 1024 1024
Micro Rollout Batch Size 4 4
Max Epochs 2 2
KL Coefficient 0.01 0.01
Max Prompt Length 1024 1024
Max Generate Length 3072 3072
GAPO
Actor Learning Rate 5e-7 1e-4
Critic Learning Rate 9e-6 2e-4
Train Batch Size 128 16
Micro Train Batch Size 2 2
Rollout Batch Size 1024 1024
Micro Rollout Batch Size 4 4
Classifier Batch Size 8 4
Classifier Learning Rate 1e-5 1e-5
Max Prompt Length 1024 1024
Max Generate Length 3072 3072
KL Coefficient 0.01 0.01
Adversarial Training Epochs 2 2
Classifier Warmup Epochs 2 2
Classifier Training Epochs 2 2
Max Epochs 2 2
Classifier Generator Ratio 0.5 0.5

Table 12: Hyperparameter Settings for Different Train-
ing Methods
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# -*- coding: utf-8 -*-
Variables:
!<INPUT 0>! – Product Name
!<INPUT 1>! – Word Count Requirement
!<INPUT 2>! – Emotion Type and Description
!<INPUT 3>! – Factual Information
!<INPUT 4>! – Output Instruction
<commentblockmarker>###</commentblockmarker>
Please generate a product description about !<INPUT 0>! with approximately !<INPUT 1>! words.
You need to use all the information provided in the Factual Information section to generate the
description. The description should convey the emotion specified in the Emotion section.
Note that you cannot add additional factual information, and you must use all the given facts. Please
only add non-factual, emotion-related content.

### Emotion:
!<INPUT 2>!

### Factual Information:
!<INPUT 3>!

### Your output should follow this format:
!<INPUT 4>!

Table 13: Base template for the experiment of product description generation in this paper.

Method Prompt Template

Naive !<INPUT 4>! =

The description should be generated below the “### Generated Result:”

CoT !<INPUT 4>! =

Generate your thinking process step by step below the “### Thinking Process:”

Then the description should be generated below the “### Generated Result:”

Plan-N-Solve !<INPUT 4>! =

Generate your planing step by step below the “### Planning:”

Then the description should be generated below the “### Generated Result:”

Table 14: Detail prompt request in Tab. 13.
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