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Fig. 1: Left: Given an incomplete object base, we propose a diffusion-based model
to generate physically plausible parts that allow articulated interactions. Right: Our
model naturally applies to real-world scenarios and embodied AI tasks, including 3D
printing and robot manipulation, where physical plausibility is essential to the object
interactivity and success of the tasks. For example, a small surface bump or a slight size
mismatch can get the part stuck during interactions. Bottom: Our model supports
sequential generation of dependent parts (e.g., cabinet→door→handle) for more complex
object hierarchies.

Abstract. Interactable objects are ubiquitous in our daily lives. Recent
advances in 3D generative models make it possible to automate the
modeling of these objects, benefiting a range of applications from 3D
printing to the creation of robot simulation environments. However,
while significant progress has been made in modeling 3D shapes and
appearances, modeling object physics, particularly for interactable objects,
remains challenging due to the physical constraints imposed by inter-part
motions. In this paper, we tackle the problem of physically plausible
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part completion for interactable objects, aiming to generate 3D parts
that not only fit precisely into the object but also allow smooth part
motions. To this end, we propose a diffusion-based part generation model
that utilizes geometric conditioning through classifier-free guidance and
formulates physical constraints as a set of stability and mobility losses to
guide the sampling process. Additionally, we demonstrate the generation
of dependent parts, paving the way toward sequential part generation for
objects with complex part-whole hierarchies. Experimentally, we introduce
a new metric for measuring physical plausibility based on motion success
rates. Our model outperforms existing baselines over shape and physical
metrics, especially those that do not adequately model physical constraints.
We also demonstrate our applications in 3D printing, robot manipulation,
and sequential part generation, showing our strength in realistic tasks
with the demand for high physical plausibility.

1 Introduction

Creating 3D objects that facilitate human interactions is a critical and long-
standing problem in industrial engineering, with applications ranging from manu-
facturing to developing simulation environments. With the recent proliferation of
AI-facilitated 3D content creation [11,34,38–40,51,54,71,84], a line of efforts has
been made to model interactable objects, particularly articulated ones, with 3D
generative models [29,37]. Imagine having a cabinet with a broken drawer; rather
than engaging in labor-intensive carpentry with jigs and saws, a more efficient
solution would be to generate a 3D model of the drawer and print it using a 3D
printer, thus eliminating the need for specialized human expertise.

However, unlike rigid objects, whose modeling primarily focuses on shapes
and appearances, interactable object modeling presents the additional challenge
of intricate part motions under human interactions, constrained by geometry and
physics. This complexity is particularly problematic for real-world applications,
where high accuracy is essential. For instance, in the case of a drawer, even a
slight size mismatch or a minor surface bump can cause it to get stuck in the
cabinet.

In this paper, we address the problem of generating 3D object parts that are
physically plausible both in their rest states and under interactions. Previous
work on physics-constrained shape generation has predominantly concentrated
on rigid objects, emphasizing connectivity [22,23,43] or structural stability [42].
However, a challenge arises for interactable objects with part motions: while the
generated shapes are static, the inherent motion state is also crucial for physical
plausibility. Thus, constraints on both rest and motion states must be carefully
considered.

We propose a diffusion-based framework for physically plausible part com-
pletion for interactable objects. Given an object point cloud with a missing
part, we represent the part as an implicit surface and generate its shape with a
latent diffusion model on quantized latent embeddings, To guide the diffusion
sampling process toward a physically plausible solution, we introduce two types
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of conditions: the geometric conditioning applied via classifier-free guidance
and the physical constraints formulated as inference-time losses applied to the
score functions. Specifically, we design two sets of losses for physical constraints:
stability losses that consider collisions and contacts at rest states and mobility
losses that consider part motions. To incorporate the physical losses into the
sampling process, we approximate their gradients using a prediction of the noise-
free sample at each time step and add the approximated gradients to the score
function. Finally, we also demonstrate the generation of dependent parts, paving
the way toward sequential part generation for objects with complex part-whole
hierarchies.

For evaluation, we construct a benchmark with metrics for assessing both
the shapes and the physics of the generation results. Besides the widely adopted
metrics for 3D generative models, we introduce a physical plausibility metric that
directly evaluates the success rates of part motions. With both qualitative and
quantitative results, we show that our framework generates shapes of high quality,
outperforming methods that lack proper modeling of geometric conditioning or
physical constraints. Furthermore, we demonstrate two downstream applications:
3D printing and robot manipulation, showcasing our strong potential in real-world
applications that require high physical plausibility.

To summarize, our key contributions are:

– We introduce the task of physically plausible part completion for interactable
objects and provide a benchmark with holistic evaluation metrics for both
shape and physics.

– We propose a novel diffusion-based part generative model; it incorporates
geometric conditioning and physical constraints by formulating them as stability
and mobility losses, respectively.

– Experimentally, we show compelling results in both shape quality and physical
plausibility compared with baseline models, demonstrating the efficacy of our
model.

– We showcase physics-demanding applications of our model, including 3D
printing, robot manipulation, and sequential part generation, where high
physical plausibility is crucial to the task.

2 Related Work

Articulated Object Modeling. Articulated object modeling is a crucial and
longstanding field in 3D vision and robotics, encompassing a wide range of work in
perception [12,15–19,31,35,74], reconstruction [2,25,46,67], and generation [29,37].
These contributions have greatly advanced applications in simulation [19, 73]
and robot manipulation [4, 13, 15, 16, 30, 32, 68, 72, 75]. Beyond these perspectives,
the intricate per-part state changes and inter-part motions, which formulate
how objects interact and respond to interactions, also play important roles.
For instance, [17] categorizes parts based on their actions, [74] learns part
segmentation by analyzing point clouds during part motions, and [25, 46, 67]
focus on reconstructing parts and joints across various motion states. However,
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most studies primarily focus on part motions at the pose level, often neglecting
the critical interplay of underlying physics with detailed part geometry. This
oversight is particularly significant in 3D generation, where physical plausibility
is essential for the practical application of generated models. Nonetheless, this
critical aspect of modeling remains under-explored in recent studies, which focus
more on structure and shape [29, 37]. We direct readers to survey [36] for a more
comprehensive overview.

Physics-Aware Shape Generation. Previous research in physics-aware 3D
object generation has primarily focused on rigid shapes without complex self-
interactions [22,23,42,43]. For instance, [22,23,43] have used persistence diagrams
to ensure topological connectivity, and [42] introduced a differentiable physical
simulation layer to enhance stability under gravity. In contrast, physical principles
have been extensively applied in other areas, such as in PhyScene [73], which
aids in synthesizing interactable 3D scenes, and in human pose and motion
generation where studies [69, 80, 81] incorporate physics-aware constraints to
reduce collisions and enhance realism. Additionally, built on diffusion models,
SceneDiffuser [24] and PhysDiff [77] achieve physically plausible generation by
integrating physical optimization guidance into the denoising process. Our work
uniquely extends these principles by embedding physical constraints, including
stability and mobility, into a generative diffusion model, enabling the generation
of physically plausible parts for interactable articulated objects.

3D Shape Completion. Shape completion is a vital step for reconstructing
the missing parts of 3D shapes, traditionally tackled with techniques such as
Laplacian hole filling [48,61,82] and Poisson surface reconstruction [26,27]. These
methods primarily address small gaps and basic geometric forms. Another strategy
employs structural regularities, like symmetries, to infer unobserved parts of
shapes [44, 50, 55, 62, 66]. With the advent of extensive 3D datasets, retrieval-
based approaches [28,33,47,64] have emerged, searching databases to find the
best matches for incomplete inputs, alongside learning-based methods [6,8,10,
14,20,49,60,76] that minimize discrepancies between network predictions and
actual shapes. Notably, 3D-EPN [10] utilizes a 3D encoder-decoder architecture
to predict complete shapes from partial volumetric data, while Scan2Mesh [9]
transforms range scans into 3D meshes through direct mesh surface optimization.
PatchComplete [53] leverages local structural priors to fill in shapes from unseen
categories. Alternatively, generative methods like GANs [3, 56, 70, 79, 83] and
AutoEncoders [1,45] offer a different approach by generating diverse, plausible
shapes from partial inputs, though they often compromise on completion accuracy.
In contrast, our method leverages diffusion models and introduces physics-aware
loss guidance, effectively reducing surface artifacts and surpassing current state-of-
the-art methods in producing realistic and physics-plausible 3D shapes, allowing
applications like 3D printing and robot manipulation.
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Fig. 2: Pipeline of our proposed framework. We train a pose proposal model to
predict the missing part’s bounding box and a latent diffusion model conditioned on
the input object’s point cloud and the missing part’s bounding box within the latent
space of part SDF. During inference, the trained pose proposal model first predicts
the missing part’s bounding box. We then apply the proposed physical-aware losses
(contact and collision losses in static or dynamics states) to guide the sampling process.

3 Method

Given the full point cloud of an articulated object O with a missing part of a
known category (e.g., drawer), we aim to generate a replacement part p that
integrates seamlessly into the object while adhering to geometric and physical
constraints. We employ volumetric Signed Distance Fields (SDF) to model object
parts and train a 3D-VQVAE to compress these models into a discrete and
compact latent space. Unlike prior research that employs SDF representation
overlooks the object’s scale as generating SDF usually involves normalizing the
part to the unit cube, our framework also emphasizes accurately scaling the
objects for manufacturing purposes. Upon this part representation, our method
utilizes a coarse-to-fine approach, involving two diffusion-based sub-models: a
pose proposal model that determines the part’s approximate position at the
coarse level, and a part code generator that refines the shape based on geometric
conditions (Sec. 3.1) and physical constraints (Sec. 3.2). This integrated framework
ensures that the generated part can interact properly with external forces and fit
accurately within the existing object structure. An overview of our pipeline is
shown in Fig. 2.
Part-Pose Proposal. We propose a diffusion-based pose estimator to locate
the bounding box of the part to be generated given the object point cloud P.
Inspired by GenPose [78], we train a score-based diffusion model Φθ and an
energy-based diffusion model Ψϕ. Then we first generate pose candidates {pi}Ki=1

from Φθ and then compute the pose energies Ψϕ(p
i,P) for candidates via Ψϕ.
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After that, by ranking the candidates with the energies and then filtering out
low-ranking candidates, the remaining bounding box candidates are aggregated
into the final output using mean pooling.

3.1 Geometry-Conditioned Part Generation

SDF Generation with Latent Diffusion. SDFusion [5] introduces a diffusion-
based 3D generative model. The approach begins by compressing high-dimensional
SDFs into a compact latent space using a 3D-VQVAE. Specifically, an SDF
X ∈ RD×D×D is encoded into a latent vector z ∈ Rd×d×d by the encoder Eϕ.
The encoded SDF is then reconstructed by the decoder Dτ after passing z through
a vector quantization codebook VQ, i.e.,

z = Eϕ(X), and X ′ = Dτ (VQ(z)). (1)

Afterward, a conditional diffusion model is trained on the learned latent dis-
tribution. Techniques including the classifier-free guidance [21] and DDIM [58]
sampling are utilized to enhance the flexibility and efficiency of the generation
process.
Geometric Conditioning. The above framework allows the generation of
missing parts using point cloud as the condition. However, due to limited training
data and the point cloud’s inherent ambiguity, relying solely on the point cloud
often yields unsatisfactory results. Thus, we leverage the part bounding box
predicted by our pose estimation model as an additional condition. Specifically,
given the predicted bounding box of the desired part, we use the ratio of the
dimensions along the three axes as an auxiliary condition for the diffusion model.
The length ratio rather than absolute values is used since SDF representation is
scale-agnostic. Note that although we allow rotation to the input point cloud,
the mesh is always generated in its canonical pose.

Empirically, we adopt the PointNet++ [52] (ϕ1) to encode the point cloud c1 ∈
RN×3, and a sinusoidal positional encoding followed by a two-layer MLP (ϕ2)
to encode the bounding box ratio c2 ∈ R3. Then, we concatenate two control
signals then inject them into the model using self-attention layers. The training
objective for the diffusion model θ and encoders ϕ1, ϕ2 is formulated as:

L(θ, ϕ1, ϕ2) := Ez,c,e,t

[
∥ϵ− ϵθ(zt, t,D(ϕ1(c1)), D(ϕ2(c2)))∥2

]
, (2)

where D(·) denotes a dropout operation, c1, c2 are the conditions, and zt is the
noisy latent variable at timestamp t. Please refer to Appendix A for details on
model architecture.

Finally, using the predicted bounding box from the pose proposal model,
we scale the mesh by the cube root of the volume ratio between the predicted
bounding box and the axis-aligned bounding box of the generated mesh. This
ensures the mesh is sized appropriately to fit the object’s empty region.
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Fig. 3: Normalized 3D coordinate and shared motion constraints for certain
part categories. Specifically, drawers could be pulled out along the +z axis, while
doors could rotate around +x, −x, +y, and −y axes.

3.2 Loss-Guided Physical Constraints

Given an object’s point cloud, we predict the bounding box for the missing part,
generate the desired part by sampling from the diffusion model using the object’s
point cloud and the bounding box as conditions, and scale the generated mesh
using the bounding box volume ratio. However, this generation process is agnostic
to physical constraints and may result in parts incompatible with the original
object. To address this, we introduce physics-aware losses to guide the diffusion
sampling process, ensuring physical compatibility.
Stability Losses. The most critical criterion for the generated part is to avoid
collision with the provided object point cloud P . Therefore, we define the collision
loss by considering the predicted part-SDF value X(p) of the object point p as
follows:

ℓcollision(X,P) =
∑
p∈P

ReLU(−X(p)− α), (3)

where α represents a margin of tolerance. This loss function penalizes the SDF
values when object points are inside the predicted SDF (i.e., X(p) < 0), ensuring
no parts of the object intersect the generated part. Additionally, maintaining
proximity between the generated part and the object is crucial. Thus, we define
contact loss to ensure no part of the object is beyond a distance α from the
generated part:

ℓcontact(X,P) = min
p∈P

ReLU(X(p)− α), (4)

which penalizes excessive distances between the object points and the predicted
SDF. Given that all parts are generated in a scale-agnostic canonical space,
we adjust the scale of each part to match the predicted volume and apply
transformations according to the predicted pose during loss calculations.
Mobility Losses. As shown in Fig. 3, certain part categories must follow shared
motion constraints. For instance, drawers can move “out,” and hinge doors can
rotate around one of the four potential rotation axes. Thus, we extend both
stability losses with motion. Since the joints of these parts have only one degree
of freedom, we could ensure the feasibility of consistent part motion by random
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sampling the part states. The enhanced loss functions are defined as follows:

ℓcollision−m(X,P) = EX̂∼M(X)

∑
p∈P

ReLU(−X̂(p)− α), (5)

ℓcontact−m(X,P) = EX̂∼M(X) min
p∈P

ReLU(X̂(p)− α). (6)

where M(X) is a set of transformed SDF. Note that for hinge doors, the ground
truth rotation axis is unavailable during inference. However, as all four potential
axes impose similar constraints when rotating from 0 to 90 degrees, we opt for a
shared axis for all hinge door instances. To ensure both losses are differentiable,
we opt to transform the point cloud instead of transforming the SDF directly.
Loss-Guided Sampling. Conditional diffusion models aim to generate samples
x0 conditioned on a specific criterion y, where the conditional score at timestamp
t is derived using Bayes’ rule:

∇xt
log pt(xt|y) = ∇xt

log pt(xt) +∇xt
log pt(y|xt)

= − 1√
1− αt

ϵθ(xt, t) +∇xt
log pt(y|xt)

= − 1√
1− αt

(ϵθ(xt, t)−
√
1− αt · ∇xt log pt(y|xt)). (7)

Hence, the ω-weighted modified score ϵθ is expressed as:

ϵθ(xt, t, y) = ϵθ(xt, t)−
√
1− αt ω∇xt log pt(y|xt), (8)

where the gradient term ∇xt
log pt(y|xt) is written as − 1√

1−αt
(ϵθ(xt, t, y) −

ϵθ(xt, t)) in classifier-free guidance [21].
To introduce physical constraints into the sampling process, we approximate

the gradient using our defined physics-aware loss functions [7,59]. As loss functions
are defined on noise-free samples, we compute the loss on the predicted noise-free
sample at timestamp t, denoted as x̂0:

∇xt log pt(y|xt) ≈ ∇xt log pt(y|x̂0) (Eq. (15) in [7])

= ∇xt
log

exp(−ℓy(x̂0))

Z
= −ℓy(x̂0). (9)

Finally, we combine classifier-free guidance and loss guidance to obtain the
modified score:

ϵθ(xt, t, y) = ϵθ(xt, t) + ω1(ϵθ(xt, t, y)− ϵθ(xt, t)) + ω2ℓy(x̂0), (10)

where the ω1, ω2 are guidance weights. Denote X0 to be the decoded SDF of
latent code x0, the ℓy(x0) is the sum of our defined physical-aware losses:

ℓy(x0) = ℓcollision + ℓcontact + ℓcollision−m + ℓcontact−m. (11)
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(a) C-VAE (b) w/o loss guid. (c) w/ loss guid. (ours) (a) C-VAE (b) w/o loss guid. (c) w/ loss guid. (ours)

Fig. 4: Results of self-moving part generation. All visualizations are done in the
objects’ canonical poses, with the base shapes in green and the generated parts in red.
While all methods can generate part shapes that are roughly reasonable, the bumpy
surfaces and size mismatches in baseline results hinder their physical plausibility.

4 Experiments

This section demonstrates the effectiveness of our method in generating four
types of common articulated objects: slider drawers, hinge doors, hinge knobs,
and line handles, where the first two allow self-movements and the latter two
must be attached to other parts (denoted as dependent parts). We then explore
its potential applications in 3D printing, robot manipulation, and sequential part
generation tasks. Appendix B presents more experimental results.
Data and Implementation. We train our models on the GAPartNet dataset [17],
a part-centric object model dataset with part-level annotations and actionability
alignment across part classes. Approximately 90% of instances are allocated for
training for each part category, with the remainder reserved for evaluation. All
part categories utilize the same VQVAE model, trained across all part categories
at an input SDF resolution of 128, while a separate diffusion model is tailored
for each category. To ensure comparability, both our method and all baselines
involve random rotation of the input point clouds around the vertical axis during
training. For testing, we sample three different rotation angles for each object
instance. Further implementation details are available in Appendix A.
Baselines. Our primary baseline is the Conditional 3D Variational Autoencoder
(3D-CVAE) [57], which learns a VAE on part SDF with the object’s point cloud
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Table 1: Quantitative generation results on self-moving parts. “Phy.” denotes our
physical plausibility metric.

Method Slider drawer Hinge door
CD ↓ F-score ↑ Phy. (%) CD ↓ F-score ↑ Phy. (%)

3D-CVAE 0.00248 0.683 38.9 0.00106 0.867 45.6

Ours (w/o loss guidance) 0.00082 0.818 49.3 0.00083 0.873 71.1

Ours (w/ loss guidance) 0.00060 0.862 74.3 0.00081 0.883 92.2

as the condition. To ensure fair comparisons, we scale the generated parts using
our predicted pose and then use the same settings to process the results. To
further demonstrate the effectiveness of our loss guidance, we also compare the
vanilla SDF diffusion without our proposed loss functions.

4.1 Physics-Plausible Generation

Metrics. We introduce a physical plausibility metric to evaluate the viability
of generated shapes. Specifically, we first pre-process the meshes, excluding
those with multiple large connected parts or those not watertight as physically
infeasible. For the remaining meshes, a grid search around the part’s ground
truth position is conducted to locate positions where both collision loss (Eq. (5))
and contact loss (Eq. (6)) fall below a specified threshold. A part is deemed
physically plausible if its movement along the +x and −x axes (for slider drawers)
or along the −z axis (for other part categories) causes these losses to exceed
the threshold. Notably, for hinge doors, a shared rotation axis is used during
loss-guided sampling, while the ground truth rotation axis is used for evaluation.
Please see Appendix A.1 for a comprehensive explanation and pseudo-code.
Besides the physical plausibility metric, we also utilize Chamfer Distance (CD)
and F-score (@2%) [65] for evaluation.
Self-moving Part Generation. As shown in Tab. 1, our method significantly
outperforms the baseline in terms of generation quality (CD and F-score) and
physical plausibility in generating self-moving parts. The results also highlight
the essential role of our proposed physical guidance in the generation process.
Notably, as illustrated in Fig. 4, while the baseline method or the absence of
physical guidance often leads to collisions or misalignments at the interface
between the object and the generated part, our approach consistently delivers
parts that seamlessly integrate with the original object, establishing a robust
foundation for subsequent dependent part generation.
Dependent Part Generation. As shown in Tab. 2, our approach remains
superior to baseline methods dependent parts. Fig. 5 reveals that while the baseline
method frequently produces a degenerated distribution (such as generating oval-
shaped handles regardless of input or producing broken knobs), our method
achieves consistent high-fidelity results that meet the physical requirements.
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(a) C-VAE (b) w/o loss guid. (c) w/ loss guid. (ours) (a) C-VAE (b) w/o loss guid. (c) w/ loss guid. (ours)

Fig. 5: Results of dependent part generation. All visualizations are done in the
objects’ canonical poses, with the base shapes in green and the generated parts in red.

Table 2: Quantitative generation results on dependent parts. “Phy.” denotes our physical
plausibility metric.

Method Line handle Hinge knob
CD ↓ F-score ↑ Phy. (%) CD ↓ F-score ↑ Phy. (%)

3D-CVAE 0.01000 0.403 63.3 0.00028 0.894 31.5

Ours (w/o loss guidance) 0.00174 0.742 71.1 0.00026 0.912 78.9

Ours (w/ loss guidance) 0.00173 0.744 85.9 0.00024 0.917 84.2

4.2 Downstream Applications

3D Printing. To better illustrate the physical plausibility of our generated
parts, we 3D-printed the generated meshes. The printed parts not only fit
seamlessly into the corresponding articulated objects but also demonstrated
highly effective motions. Figure 6(a) shows these 3D-printed shapes, which were
scaled down to 1

200 of their original size, resulting in dimensions of approximately
10cm× 10cm× 10cm.
Sequential Part Generation. We then explore our method’s potential in
sequential part generation. For an object with multiple missing parts, we first
generate the self-moving parts using the ground truth bounding box of each
missing part as the condition simultaneously. Once all self-moving parts are
generated, they are assembled with the original object. A point cloud is then re-
sampled from this assembly and serves as the condition to generate the dependent
parts.

Fig. 6(b) shows our results. Although only trained on objects with one
missing part, our model presents outstanding generalizability to objects with
multiple missing parts. This capability allows for the sequential part generation
that adheres to physical constraints, showcasing real-world applications such as
obtaining a hierarchy of physically plausible parts given only bounding box-level
design.
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Fig. 6: Downstream applications of our method: (a) 3D printing for real-world
object completion, (b) sequential part generation for complex structures, and (c)
simulation for robot manipulation.

Simulation for Robot Manipulation. Finally, we demonstrate that the
generated parts can be manipulated using simple heuristics to validate the
physical plausibility and quality of our generated parts. Following the setup
in [16,17], we load the objects in URDF format into the IsaacGym simulator [41]
and apply a heuristic policy based on the estimated pose. Fig. 6(c) shows that
our generated shapes exhibit high quality and can be successfully manipulated.

4.3 Ablation Studies and Analysis

This section delves into the effectiveness of different model components through
ablation studies. Please refer to Appendix B.1 for additional results and analysis,
Bounding Box Condition. We first verify the design of adding the bounding
box condition to the diffusion model. As shown by the results in Tabs. 3 and 4,
and Fig. 9, relying solely on the point cloud condition often yields part generation
results that fail to fit the input object, such as drawers colliding or doors not
filling the whole space. Conversely, incorporating the bounding box as an auxiliary
condition significantly improves the overall performance of our model.
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Table 3: Ablation studies on the pose proposal model and the conditional generation
model on self-moving parts.

Method Slider drawer Hinge door
CD ↓ F-score ↑ Phy. (%) CD ↓ F-score ↑ Phy. (%)

Regress. pose proposal 0.00059 0.847 73.6 0.00134 0.736 50.0

w/o bbox condition 0.00178 0.740 53.5 0.00433 0.791 74.4

Full model 0.00060 0.862 74.3 0.00081 0.883 92.2

Ground Truth Sample 2Sample 1 Ground Truth Sample 2Sample 1

Fig. 7: Illustration of part generation diversity. Despite the strict requirements
imposed by the input conditions, our method could generate multiple plausible instances
for dependent parts.

Pose Proposal Model. We then verify the effectiveness of adopting the diffusion-
based pose proposal model. As shown in Tab. 3, leveraging the diffusion-based
structure produces object bounding boxes of higher accuracy, thus benefiting the
overall part generation quality.
Discussion on Generation Diversity. Using both the object point cloud
and predicted part bounding box inherently restricts the diversity of parts that
can be generated. This phenomenon is particularly notable for self-moving part
categories, which must precisely conform to the input object’s specifications
in size and shape. However, for dependent parts like handles and knobs, our
model demonstrates the capacity to generate multiple physically plausible part
instances, as illustrated in Fig. 7.

5 Conclusions

In this paper, we address the critical challenge of generating physically plausible
parts for interactable objects. We propose a diffusion-based framework that
integrates geometric conditioning and physical constraints, ensuring high accu-
racy and fidelity of the generated parts in shape and function under real-world
interactions. Our results demonstrate substantial improvements in shape quality
and physical plausibility over existing methods. These enhancements significantly
benefit downstream applications such as 3D printing and robot manipulation,
where precision is crucial for the tasks’ success.
Limitations and Future Work. A major limitation is that we only studied
articulated objects from common datasets with 1D revolute or prismatic joints.
Further studies can be done on more complex joints such as screws and wrenches
with joint motions represented by Plücker coordinates. Such complex joint types
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can also be coupled with complex part geometries, which are important to certain
domains such as tools or mechanical structures. We believe future studies in this
direction will facilitate a variety of downstream applications such as CAD design
and mechanical engineering.
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Algorithm 1: Physical Plausibility Metric
input :Object’s point cloud P, predicted missing part’s mesh x, set of

position candidate C1 determined by grid search, set of small
movement C2, and loss margin β.

output :Whether the predicted mesh x is physically plausible
initiate :C0 = ∅

1 Remove components in x with volume < 10−7 ;
2 if x contains multiple components or is not watertight then
3 return false;

4 Transform the mesh x into SDF representation X;
5 forall position candidate c ∈ C1 do
6 P c ← P − c; // translate point cloud by −c
7 if ℓcollision−m(X,P c) < β and ℓcontact−m(X,P c) < β then
8 Add c to C0;

9 forall c′ ∈ C2 do
10 if exists c ∈ C0 where (ℓcollision−m(X,P c+c′) ≥ β or

ℓcontact−m(X,P c+c′) ≥ β) then
11 return true;

12 return false;

A Implementation Details

A.1 Physical-Aware Losses and Metric

Physical-Aware Losses. We scale all parts to the unit cube with padding 0.2
before transforming into SDF. The threshold α for both physical-aware losses is
0.005.
Physical-Plausible Metric. We detail the methodology of our proposed physical
plausibility metric as follows. We first preprocess the meshes and discard those
not watertight or have multiple large connected parts deemed physically infeasible.
For the viable meshes, we employ a grid search with a grid length of 0.005 around
the part’s ground truth position to identify all positions where both collision
loss (Eq. (5)) and contact loss (Eq. (6)) fall below a predefined threshold of
β = 0.04. A part is then considered physically plausible if moving it along the −z
axis for a distance of 0.02 (applicable to hinge doors) or along the +x and −x
axes for a distance of 0.04 (other parts categories) results in the losses exceeding
the threshold. Note that the hyperparameters are chosen to ensure that more
than 95% of each category’s ground truth meshes are physically feasible. The
pseudo-code for this algorithm is provided in Algorithm 1.
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A.2 Experimental Configuration

Pose Proposal Module. The Pose Proposal Module is trained separately for
each part category. We train for 100 epochs on a single NVIDIA RTX 4090
with batch size 8. We adopt the Adam optimizer and a 10−4 learning rate. The
architecture is the same as GenPose [78].
3D Vector Quantizer. The 3D-VQVAE model is trained using all part instances
from the GAPartNet [17] dataset and is shared across all part categories. We
train the model for 150000 iterations on 8 NVIDIA V100 GPUs with batch size
1. We adopt the Adam optimizer and cosine learning rate scheduler with a base
learning rate 10−5. Detailed architecture is shown in Fig. 8.
Part Generation Module. The part generation diffusion module is trained
separately for each part category. We train the model for 100000 iterations on 8
NVIDIA V100 GPUs with batch size 4. We adopt the Adam optimizer and cosine
learning rate scheduler with a base learning rate 10−5. Guidance weights are set
to ω1 = 3 and ω2 = 1 during loss-guided sampling. Fig. 8 illustrates the details.
Part Manipulation Interaction Policy. (1) Slider Drawer: To retrieve items
from an open drawer, the gripper moves along the z-axis. To open a drawer, it
approaches along the x-axis, typically aiming to grasp a handle on the drawer’s
front face. (2) Hinge Door: For hinge doors with front-facing handles, the gripper
grabs the handle to open the door. After grasping the handle, it rotates around
the predicted hinge axis to complete the opening or closing action. For doors
without handles, if the door is ajar, the gripper clamps the outer edge along
the y-axis of the bounding box to open it. (3) Hinge Knob: For hinge knobs,
the gripper clamps the knob like a round handle and rotates the end-effector
to perform the task. (4) Fixed Handle: The interaction policy for linear fixed
handles mirrors that of round fixed handles. The gripper’s opening direction
should be perpendicular to the linear fixed handle, aligning parallel to the y-axis
of the predicted bounding box.
Part Manipulation Interaction Experiments. We employ a heuristic-based
interaction policy to open drawers and doors, manipulate handles, and rotate
knobs. Once we determine the part pose, our policy immediately provides the
corresponding grasping pose. We then use cuRobo [63] to position our gripper
at the grasping pose. Following this, our interaction policy and predicted axis
guide the design of the end-effector trajectory to match the part’s movement
trajectory, interpolating it with a time step of 1

200 . Using Inverse Kinematics and
a PID controller, we compute joint poses and maneuver the end-effector along
the defined trajectory. Our implementation is independent of ROS, ensuring
compatibility with various simulators.

B Additional Experiments

B.1 Additional Quantitative Results

Ablation studies on generating dependent parts. Tab. 4 presents ablation
studies on dependent parts generation to further validate our design choice
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Fig. 8: Architecture of our proposed physically plausible generation framework.

to incorporate bounding box conditions into the diffusion model and employ
a diffusion-based architecture for pose prediction. Similar to the results for
generating self-moving parts shown in Tab. 3, the inclusion of both designs
consistently yields superior results, further justifying the effectiveness of our
approach in physical-plausible generation.

B.2 Additional Qualitative Results

Single Part Generation. We present additional single part generation results in
Fig. 10 and 11. While the baseline method frequently struggles to generate parts
that meet physical constraints, our approach consistently yields high-fidelity
part-generation results.
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Table 4: Ablation studies on the pose proposal module and the conditional generation
module for dependent parts.

Method Line handle Hinge knob

CD ↓ F-score ↑ Phys. (%) CD ↓ F-score ↑ Phys. (%)

Regress. pose proposal 0.00252 0.655 74.2 0.00036 0.847 81.1

w/o bbox condition 0.00784 0.572 67.0 0.00033 0.885 80.7

Full version 0.00173 0.744 85.9 0.00024 0.917 84.2

w/o bounding box w/ bounding box w/o bounding box w/ bounding box w/o bounding box w/ bounding box

Fig. 9: Comparison between whether or not using the bounding box as an
additional condition. Incorporating the bounding box beside the point cloud enhances
the fit of the generated part to the given object.
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C-VAEOurs C-VAEOurs

Fig. 10: Qualitative single part generation results.
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C-VAEOurs C-VAEOurs

Fig. 11: Qualitative single part generation results.
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