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ABSTRACT

Knowledge distillation is a technique used to train a small student network using
the output generated by a large teacher network, and has many empirical advan-
tages (Hinton et al., 2015). While the standard one-shot approach to distillation
only uses the output of the final teacher network, recent work (Panigrahi et al.,
2024a) has shown that using intermediate checkpoints from the teacher’s training
process as an implicit “curriculum” for progressive distillation can significantly
speed up training. However, such schemes require storing these checkpoints, and
often require careful selection of the intermediate checkpoints to train on, which
can be impractical for large-scale training.
In this paper, we show that a curriculum can be extracted from just the fully trained
teacher network, and that this extracted curriculum can give similar efficiency
benefits to those of progressive distillation. Our extraction scheme is natural; we
use a random projection of the hidden representations of the teacher network to
progressively train the student network, before training using the output of the full
network. We show that our scheme significantly outperforms one-shot distillation
and achieves a performance similar to that of progressive distillation for learning
sparse parities with two-layer networks, and provide theoretical guarantees for this
setting. Additionally, we show that our method outperforms one-shot distillation
even when using transformer-based architectures, both for sparse-parity learning,
and language modeling tasks.

1 INTRODUCTION

In the era of large-scale models, as the cost of training state-of-the-art models increases substantially
with each passing year, leveraging compute effectively for training and inference has become
increasingly important. Knowledge distillation (Hinton et al., 2015) is one popular technique that is
commonly used to reduce the amount of compute necessary for inference, by training a small student
network to mimic the output of a large teacher network. Indeed, several state-of-the-art language
models are distilled versions of larger models (DeepSeek-AI et al., 2025; Abdin et al., 2024; Team,
2024; OpenAI, 2024).

Despite the adoption of distillation for language model training, prior work (Panigrahi et al., 2024a;
Anil et al., 2018; Mirzadeh et al., 2020) has shown that just using the output of the fully-trained teacher
network to train the student can result in poor performance relative to the teacher (a “teacher-student
gap” in performance), and that progressive distillation can significantly improve the performance of
the student. Panigrahi et al. (2024a) in particular offers an explanation for this phenomenon – the
intermediate checkpoints during the training of the teacher network act as an implicit curriculum for
the training of the student network, with earlier checkpoints emphasizing simpler patterns (e.g., local
syntax in the case of language models), and later checkpoints capturing complex abstractions (e.g.,
long-range semantics). Please see Appendix B for a more detailed overview of related work.

While progressive distillation offers significant efficiency advantages over one-shot distillation, it
requires storing frequent checkpoints during the training of the teacher, which can be prohibitive for
modern LLMs. Deciding on which checkpoints to make use of to train the student is often unclear;
such checkpoints are found by extensive experimentation in the works listed above, which can be
impractical. Moreover, in many cases, one lacks access to intermediate checkpoints during training,
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Figure 1: Our curriculum extraction
method trains the student model in a
layer-wise fashion. Student layers are
sequentially aligned to a random projec-
tion of the corresponding teacher layer’s
hidden representation using the Mean
Squared Error (MSE). After aligning lay-
ers, the student is trained on the teacher’s
output logits via the KL Divergence loss.
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Figure 2: In-support and out-of-
support correlations. A two-layer MLP
trained on 100-dimensional 6-sparse par-
ity data exhibits distinct in-support (red)
and out-of-support (blue) correlations of
(Af

(1)
t )(x) with xj for the random pro-

jection A ∈ R1×mt . When j is in the
support, the correlations show signifi-
cantly larger standard deviations com-
pared to when j is outside the support.
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Figure 3: Comparing Curriculum Extraction and One-Shot Distillation. We show three tasks for
which curriculum extraction outperforms one-shot distillation: (a) A two-layer MLP trained on 100-
dimensional 6-sparse parity, with a teacher hidden dimension of 50k and a student hidden dimension
of 100. (b) A transformer trained on 100-dimensional 6-sparse parity, using 256-dimensional
embeddings, where the teacher has 32 attention heads and the student has 4. (c) A BERT-large model
fine-tuned on the Wikipedia dataset, with the teacher using 768-dimensional embeddings, 12 attention
heads, and 12 transformer blocks, while the student reduces embeddings to 256 dimensions and
attention heads to 4. The dashed vertical lines indicate the iterations where the layer being distilled
is changed in the case of curriculum extraction, and a change in teacher checkpoint in the case of
progressive distillation.

even for open-source models (Jiang et al., 2023; DeepSeek-AI et al., 2025; Meta AI, 2024), making
progressive distillation impossible.

This raises a natural question – can we design a scheme that maintains the advantages of progressive
distillation without suffering from its drawbacks? Specifically, can we leverage the final fully-trained
teacher model more effectively to train the student model efficiently?

Curriculum Extraction. We propose a scheme to extract a curriculum from the fully-trained
teacher network. Our key insight is that the layer-wise hierarchy of a fully trained network naturally
encodes a progression from simple to complex features. To operationalize this, we train the student’s
hidden layers sequentially on random projections of the teacher’s hidden layers, starting from shallow
(layer l, say) to deep (the final layer L), before training the full student network on the output of the
full teacher network. See Figure 1 for a visual description of our extraction scheme.
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By progressively training on projections from shallower to deeper layers, the student learns incre-
mentally—mirroring the coarse-to-fine learning in progressive distillation, without having to store
intermediate checkpoints. Beyond circumventing checkpoint storage, our approach can potentially be
applied to efficiently distill from open-source models (e.g., Llama (Meta AI, 2024), Mistral (Jiang
et al., 2023), and Deepseek models (DeepSeek-AI et al., 2025)), where only the final model is
available. In addition, our method is computationally cheaper than one-shot or progressive distillation
per training iteration – during early stages, only a subset of student and teacher layers are active,
reducing memory and FLOPs per iteration.

1.1 OUR RESULTS

Sparse Parity Learning. We show that our curriculum extraction scheme is significantly more
efficient than one-shot distillation for the task of learning sparse parities using a two-layer MLP, and
provide a theoretical analysis for this setting. See Section 3 for a formal description of sparse parity
learning and two-layer MLPs. Here, we state an informal version of our main theorem, with the
formal theorem stated in Section 3.2.

Theorem 1.1 (Main, Informal). Consider learning d-dimensional k-sparse parity with a student
model of size Θ̃(2O(k)), where Õ, Θ̃ hides polylog factors in d, k. Suppose the teacher (of size
2O(k)poly(d, k)) has a loss O(ϵ) for some small ϵ > 0. Then, the total sample complexity
needed for the student to reach ϵ-loss using curriculum extraction based on random projection
is: Θ̃

(
2O(k)poly(d, k)ϵ−2

)
. However, one-shot distillation requires at least Ω

(
dk−1ϵ−2

)
samples.

Thus, one-shot distillation requires Ω(dO(k)) samples to learn sparse parties, while our curriculum
extraction scheme can learn using only O(2O(k)poly(d)) samples. We show in Figure 3 (a) that our
curriculum extraction scheme significantly outperforms one-shot distillation empirically, as predicted
by our theory – our scheme succeeds in learning, while one-shot distillation fails after training using
2 · 106 samples. Furthermore, it has similar performance as progressive distillation for a carefully
chosen checkpoint – we choose the checkpoint during training of the teacher network whose output
is most correlated with the support of the parity function, as proposed by Panigrahi et al. (2024b).

We also show empirically that our scheme continues to outperform one-shot distillation when using a
transformer-based architecture for learning sparse parities in Figure 3 (b).

Masked Language Modeling (BERT). In addition to learning sparse parities, we empirically
study our curriculum extraction scheme for language modeling, focusing on BERT-style masked
language modeling. We study two settings with different kinds of data: (i) Synthetic data generated
by a Probabilistic Context-free Grammar (PCFG), and (ii) Real-world language data from Wikipedia.

In the case of PCFGs, we show that our scheme outperforms one-shot distillation, both in terms of
computational efficiency (number of FLOPs), and in terms of sample efficiency (number of iterations),
in Figures 4 (a) and (b). We also show that our curriculum scheme outperforms just using the final
hidden representation of the teacher to distill before distilling using the full network; this suggests
that the efficiency benefits of our scheme do indeed come from the fact that the layers of the teacher
network implicitly act as a curriculum, rather than merely from the increased dimensionality of the
distilled features.

For Wikipedia data, we show in Figure 3 (c) that curriculum extraction has a significant accuracy
advantage over one-shot distillation when training for 24 · 103 iterations with a batch size of 128 –
for extraction, we use 4 intermediate layers to distill, before distilling with the full teacher network.

2 CURRICULUM EXTRACTION

We now describe our curriculum extraction scheme formally.

Definition 2.1 (Curriculum Extraction Scheme). Given a pre-trained teacher network T and a
student network S, both having the same number of layers L, let Ti and Si denote the network up to
layer i (Ti : Rd → Rmi and Si : Rd → Rni). Suppose also that for some ℓ ∈ [0, L) we are given
a sequence {tℓ, . . . , tL} such that ti ∈ Z indicates the number of iterations we train Si for. The
Layer-Wise Curriculum Extraction Scheme proceeds as follows:
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1. Initialization: Initialize the student network S with random weights.

2. Layer-Wise Training: For each i ∈ [ℓ, L− 1], such that ti > 0:

(a) Define a random projection matrix Pi : Rmi → Rni for layer i.
(b) Train Si for ti iterations to reduce the MSE loss between Si(x) and Pi(Ti(x)): Li =

1
T

∑T
t=1 ∥Si(x

(t))− Pi(Ti(x
(t)))∥22 where T is the number of training samples.

3. Train the entire student network S for tL iterations to reduce the KL-divergence loss between
S(x) and T (x).

3 LEARNING SPARSE PARITIES VIA CURRICULUM EXTRACTION

To demonstrate the effectiveness of our curriculum extraction scheme, we study its performance in
learning sparse parities. We compare our curriculum extraction scheme to one-shot distillation, where
the student is trained directly on samples generated by the teacher.

3.1 PRELIMINARIES

For our arguments in this section, we will assume WLOG that the support of the unknown parity
is S = [k]. We will learn two-layer MLP networks of the form f(x) := a · σ(Wx + b) =∑m

i=1 aiσ(wi · x + bi). where x ∈ Rd,W ∈ Rd×m and b, a ∈ Rm, and σ(t) := max(0, t) is
applied coordinate-wise when applied to a vector. We will denote the student network by fs and
the teacher network by ft with hidden dimensions ms and mt respectively. In general ms ≤ mt.
Let ℓf (x, y) := max(0, 1− f(x)y) be the hinge loss. Our main task will be to find the best fitting
two-layer MLP to an unknown sparse parity function.

Problem 3.1 (Learning Sparse Parities). Let S ⊂ [d] with |S| = k and k < d denote the support
of our unknown sparse parity. For x ∈ {±1}d, we define χS(x) :=

∏
i∈S xi to be a sparse parity

supported on S. Given a tolerance ϵ ∈ R and n samples {(xi, χS(xi)) | xi ∼u.a.r {±1} for i ∈
[0, n]} for an unknown support S, the task of learning a sparse parity function using a two-layer MLP,
is to find a two-layer MLP that achieves loss Ex∼{±1}[ℓf (x, y)] ≤ ϵ.

For our theoretical analysis, our training setup differs slightly from Definition 2.1 when it comes
to our losses – we use the hinge loss to train the teacher as well as the student’s top layer, and a
correlation-based distillation loss (defined below) to train the student’s hidden layer.

Initialization Prior to training, we will initialize the network using the following symmetric
initialization from Barak et al. (2022).

Definition 3.2 (Symmetric Initialization). Let f(x) :=
∑m

i=1 aiσ(wi · x + bi) be a two-layer
MLP with input dimension d and hidden dimension m. For each 1 ≤ i ≤ m/2, we ini-
tialize the parameters {wi}mi=1, {bi}mi=1 and {ai}mi=1 as follows: wi ∼ U({±1}d), bi ∼
U
({
−1 + 1

k , · · · , 1−
1
k

})
, ai ∼ U

({±1
m

})
, m/2 < i ≤ m are set to wi = −wi−m/2, bi =

bi−m/2, ai = −ai−m/2.

Training Algorithms: We train the teacher network ft by minimizing the hinge loss in two stages.
In the first stage of training, we freeze the top layer weights (a) and train the network with a
regularized version of ℓft(x, y), given by ℓft(x, y) − λ∥W∥2 updating only W,b. In the second
stage of training, we freeze the bottom layer weights and biases W,b and only update a.

For the student network fs, we define a distillation loss instead. Let f (1)
t := σ(W · x+ b) : Rd →

Rmt denote the output of the first layer of the teacher and suppose A ∈ Rmt×ms is a random
symmetric projection which mimics the initialization, i.e. for i ≤ mt/2, each Aij ∼ U({±1/mt})
and for i > mt/2, Aij = −A(i−m/2) j . In the first stage, the first layer of the student (i.e. f (1)

s (x) :=
σ(Wsx+ b)) is trained using the a similarly regularized version of the following distillation loss:
ℓDL(x, f

(1)
s , Af

(1)
t ) = −f (1)

s (x) · (Af (1)
t (x)), i.e. ℓDL(x, f

(1)
s , Af

(1)
t )− λ∥W∥2

The second layer of the student (as) is then trained using the standard hinge loss.

4
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3.2 THEORETICAL RESULTS

We prove that, compared to one-shot distillation—where the student needs at least Ω
(
dmin(2c,k−1)

)
samples to learn the unknown sparse parity—our curriculum extraction method reduces this require-
ment to Õ(2O(k)poly(k, d)). We state this formally below:

Theorem 3.3 (Curriculum Extraction Requires Fewer Samples). Suppose the teacher model (of size
O(2O(k)poly(d, k))) has been trained with 2-stage training in Algorithm 1, and achieves a loss of
O(d−c) for some constant c ≥ 1 at the end of the second stage. Suppose we train a student model fs
of size m̃ = Θ̃(2kk) using the following two strategies:

1. Random-projection curriculum extraction: Train the first layer of the student with a random
projection of the first layer of the teacher to the right output dimension, and then train the
entire student network with the final teacher network.

2. One-shot Distillation: Train with the teacher network throughout.

Then,

1. Under our distillation scheme, the total sample complexity to reach a loss of ϵ with probabil-
ity 1− δ is Θ(2O(k)poly(d, k)ϵ−2 log(k/δϵ)).

2. The necessary sample complexity under distillation is at least Ω
(
dmin(2c,k−1)

)
.

The key difference between the two is that, in one-shot distillation, the student must identify one
of Ω(dk) possible parity functions from scratch. In contrast, our scheme splits the learning into
two phases: identifying the support and learning the final function. Initially, the gradients of the
distillation loss guide the student in detecting the support of the sparse parity via the bottom layer.
With the support identified, the student only needs to select from O(2k) possible parities.

3.2.1 PROOF OVERVIEW

Without loss of generality, suppose that the support of the unknown parity S = [k]. The lower bound
on the sample complexity for one-shot distillation (Item 2 in Theorem 3.3) follows from the exact
same item in the analogous result in Panigrahi et al. (2024a) (Theorem B.1). The rest of this section
will focus on a high-level sketch of a sample complexity upper bound of Õ(2O(k)poly(k, d)) for our
curriculum extraction scheme (i.e. Item 1 in Theorem 3.3).

As stated earlier, our scheme aims to separate support recovery from loss minimization. By extracting
the support of the unknown sparse parity from the teacher using (exponentially) fewer samples than
what the teacher requires to learn the support, the student can focus on optimizing the top layer after
recovering the support.

For the sake of illustration, consider the unknown sparse parity χ[k](x) :=
∏k

i=1 xi : {±1}d →
{±1}. Our goal is to learn this function using a two-layer MLP. First, note that the parity function
χ[k](x) can be represented by a reasonably sized two-layer MLP. Since χ[k](x) depends only on the

sum
∑k

i=1 xi due to its symmetry in x1, . . . , xk, it can be rewritten as χ[k](x) = g
(∑k

i=1 xi

)
for a

univariate function g(t) mapping integers between −k and k to {±1}. A two-layer MLP with O(k)
ReLU activations can approximate this function by constructing a piecewise linear function over the
2k + 1 possible values.

If the ambient dimension is d≫ k, then this neural network may be realized by simply setting the
out-of-support coordinates of the weight vectors to be 0. Hence, if you know the parity apriori, it is
easy to construct the two-layer MLP that represents it.

In fact, it is possible to approximate the unknown sparse parity when much less is known — Theorem
4 from Barak et al. (2022) shows that the k-sparse parity can be well-approximated by training only
the top layer, given a hidden dimension of size Ω̃(2k) and random weights, provided there is a gap
between in-support and out-of-support variables of the bottom layer weights. We restate the version
of this theorem from Panigrahi et al. (2024b) in Lemma D.3.

5
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Returning to our setting, we want the student’s hidden weights to meet the conditions in Lemma D.3.
From Lemma D.2 (Panigrahi et al., 2024b; Barak et al., 2022), we know that the weights of the
first teacher layer f (1)

t satisfy this condition. The first student layer f (1)
s can only obtain support

information through the gradients of the distillation loss. It turns out that it is possible to select
an appropriate regularization parameter (λ) such that the student’s first layer weights become pro-
portional to the gradients after the first step, hence it suffices to demonstrate such a gap between
the magnitudes of the in-support and out-of-support coordinates of the gradient (Barak et al., 2022;
Panigrahi et al., 2024a). Lemma E.1 shows that the gradient of the distillation loss with respect to
wi is proportional to Ex[(Af

(1)
t (x))ix + (Af

(1)
t (x))i Maj(wi ⊙ x)x], and so to estimate the gap

between different gradient coordinates, it suffices to estimate the gap between the in-support and
out-of-support coordinates of the vector above.

For the rest of this discussion, we will focus on the j-th coorindate of the first term Ex[(Af
(1)
t (x))ixj ].

It will turn out that the second term is controlled by the first term. Note that , Ex[(Af
(1)
t (x))ixj ] =∑ms

ℓ=1 Aiℓ Ex[σ(x · wℓ + bℓ)xj ], which, after a rearrangement, can be viewed as a sum of scaled
Rademacher random variables {Aiℓ}ms

ℓ=1. Arguments from Panigrahi et al. (2024a) show that the
scaling of these random variables is significantly larger for j ∈ S rather than j /∈ S (see Figure 2 for
the distributions of these variables in our trained network).

By applying anticoncentration and concentration inequalities for sums of Rademacher random
variables to the terms above, we show that with reasonable probability over the randomness of the
top-layer weights this variance gap (over randomness of A) translates to a gap in the coordinates
of Ex[(Af

(1)
t (x))ix] for a given draw of A. We state an informal version of this below, the formal

version of which is in Lemma E.3.

Lemma 3.4 (Correlation Gap (Informal)). As long as mt = 2O(k)poly(d, k)/δ2 ≥
(m2

s k4 log(d)2/δ2), with probability 1 − δ, every coordinate i ∈ [ms] of the projected teacher
network satisfies |Ex[(Aft)i(x)xj ]| > Ω̃((mtk)

−1) for all j in the support of the unknown sparse
parity, and maxj>k |Ex[(Aft)i(x)xj ]| ≤ Õ((mtkd)

−1) for j that are out-of-support.

To ensure the population gap in Lemma 3.4 is witnessed by the empirical distribution, we need only
Õ(2O(k)poly(d, k)) samples. This translates to a gap in the gradient, which in turn translates to a
similar gap in the student weights after the first stage of training. Lemma D.3 then applies, which
allows us to learn the parity in a small number of samples overall.

At this point, we note an important difference between our proof and the one for progressive
distillation in Panigrahi et al. (2024a). In their work, the weights after the first stage of training are
able to adjust to the current top layer, this dependence allows them to more easily demonstrate a gap.
In fact, we also observe the effect of being able to tune to the current top layer in Figure 3 (a), where
we see that progressive distillation is able to make some progress even during the stage where we
only tune the bottom layer weights. In our setting, in the first phase of training, we train the bottom
layer of the student independently of the top layer, requiring us to rely on a different argument.

3.3 EXPERIMENTS

We investigate curriculum extraction for the problem of learning sparse parities for a Multi-Layer
Perceptron (MLP) and Transformer architectures, which we describe below:

Student and Teacher Architectures For the Multi-Layer Perceptron, both the student and teacher
are two-layer MLPs with the teacher network having a hidden dimension of 5× 104 and the student
having hidden dimension 100. For the transformer architecture, the transformer configuration has
matching embedding dimensions (256 dimensions for both teacher and student); however, the teacher
has 32 attention heads and the student has only 4. Both student as well as teacher architectures use
two decoder blocks followed by a linear projection layer.

Training and Evaluation Our distillation loss is the Mean Squared Error (MSE) and the final
checkpoint training is done using the Cross-Entropy loss. We measure performance of our model by
looking at the accuracy.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a DeLTa Workshop Paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0 2.5
FLOPs 1e13

0.0

0.2

0.4

0.6

0.8
Ac

cu
ra

cy

BERT Student Accuracy (PCFG)

One-Shot Distillation
Curriculum Extraction

(a)

4000 6000 8000
Iteration

0.86

0.87

0.88

0.89

0.90

0.91

Ac
cu

ra
cy

BERT Student Accuracy (PCFG)

One-Shot Distillation
Curriculum Extraction

(b)

0 2700 6000
Iteration

0.5

0.9

Ac
cu

ra
cy

Single Layer vs Multi-Layer Extraction

One-Shot Distillation
3 Layer Extraction
Single Layer Extraction

(c)

Figure 4: PCFG Experiments on BERT. The dashed vertical lines indicate iterations where the
layer being distilled from is changed. (a) Soon after the final checkpoint, curriculum extraction
achieves a larger accuracy in the same number of FLOPs, when compared to one-shot distillation.
(b) We compare curriculum extraction to one-shot distillation across three models trained with
two, three, and four-stage curricula at 4000, 6000, and 8000 iterations, respectively. Curriculum
extraction consistently outperforms one-shot distillation at all scales. (c) We compare curriculum
extraction performance by varying the number of layers. With a fixed budget of 6000 iterations (2700
for extraction, 3300 for full network training), extracting from three layers outperforms one-shot
distillation, and using a single layer.

3.3.1 DISCUSSION

Multi-Layer Perceptron: In Figure 3 (a), we compare the performance of MLPs trained using
one-shot distillation, layer-wise curriculum extraction, and the progressive distillation approach from
Panigrahi et al. (2024a). In both curriculum extraction and progressive distillation, we switch to the
final checkpoint at iteration 5× 105.

We observe that after 106 iterations, both methods perform comparably, with progressive distillation
achieving slightly higher accuracy. Notably, progressive distillation shows early improvement before
the 5×105 iteration mark, likely due to the MLP’s bottom layer quickly tuning to the top layer. In the
second phase of training, the top layer benefits from a well-optimized starting point. With curriculum
extraction on the other hand, the bottom layer starts randomly initialized and uncorrelated with the
top layer, limiting early gains. However, once we begin training the top layer, performance improves
rapidly, matching progressive distillation. In contrast, one-shot distillation shows no significant
improvement, even after 2 × 106 iterations. In fact, we observe in Figure 6 that our curriculum
extraction method leads to the more information about the support being transferred to the underlying
network than progressive distillation.

Transformer: In Figure 3 (b), we compare the performance of the transformer model trained using
one-shot distillation and our curriculum extraction scheme, with a checkpoint at 105 iterations. We
see that this leads to significantly improved student performance over the one-shot distillation case.

4 BERT LANGUAGE MODELING

We use BERT models trained for masked prediction, a task that involves predicting the tokens hidden
(masked) in an input sequence. Similar to Panigrahi et al. (2024a) we study this task for learning
probabilistic context-free grammars (PCFGs) and natural language modeling on the Wikipedia dataset.
We define the masked token prediction task below.

Problem 4.1 (Masked Token Prediction). Let v be a vocabulary (including the token [mask]), and
let x be a sequence of length h. We randomly choose a fraction (30%) of the positions M ⊆ [h] to
mask, with each position included independently with probability p. We create a masked input x \M
by replacing tokens in M with [mask], a random token, or leaving them unchanged with respective
probabilities 80%, 10%, 10%. The model is then trained via a cross-entropy objective to predict the
original tokens at those masked positions.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a DeLTa Workshop Paper at ICLR 2025

For sequence-to-sequence modelling our teacher and student networks map from sequences to
real vectors ft, fs : v

h → Rh×C . The teacher’s output distribution at position i is given by
p
(i)
T (x; τ) = softmax

(
[ft(x)]i / τ

)
, and p

(i)
S is defined analogously for the student. We set the

temperature τ to 10−4 for experiments on sparse parity and PCFG, and to 10−20 for Wikipedia.

Training and Evaluation For the masked prediction task, we use ℓ(x; fS) =

EM

[
1

|M |
∑

i∈M KL
(
exi
∥ p(i)S (x \ M ; τ)

)]
, where ey is a one-hot vector with a 1 at index

y for the final layer training; and the MSE for the indetermediate layers as our distillation loss. Our
final performance is measured using the top-1 accuracy on the masked tokens.

Student and Teacher Architectures For the PCFG tasks, the teacher model uses a BERT-style
architecture with a 256-dimensional embedding, 32 attention heads, and 4 transformer blocks, trained
with a batch size of 512. The student model retains the teacher’s 4-block architecture and 512 batch
size but reduces the embedding dimension to 64 and the number of attention heads to 8.
For Wikipedia language modeling, the teacher model follows a standard BERT-large configuration,
with 768-dimensional embeddings, 12 attention heads, and 12 transformer blocks, trained with a
batch size of 256. The student model preserves the teacher’s 12-block depth and 256 batch size but
reduces the embedding dimension to 256 and the number of attention heads to 4.

Probabilistic Context-Free Grammar A Probabilistic Context-Free Grammar (PCFG) generates
sentences using a hierarchical tree structure, defined by non-terminal symbols, rules, a probability
distribution over the rules, and a vocabulary of terminal symbols. PCFGs have been used as
mechanistic proxies for language data (Panigrahi et al., 2024a; Allen-Zhu & Li, 2023; Zhao et al.,
2023). We focus on masked token prediction for synthetic data from the cfg3b PCFG (Allen-Zhu & Li,
2023) (defined in Appendix F). Our layer-wise curriculum schedule outperforms one-shot distillation.
To confirm this improvement is due to the curriculum and not increased training bandwidth, we
compare models trained with different curricula but the same time steps.

4.1 DISCUSSION

PCFG Experiments: In Figure 4 (a), curriculum extraction shows FLOPS savings compared to
one-shot distillation, outperforming it after≈ 0.8× 1013 FLOPS. Additionally, its accuracy improves
at every checkpoint.

To establish that the reason for our improved performance is our scheme, In Figure 4 (b), we
implement two distinct curriculum strategies for BERT distillation to train the student network while
maintaining equivalent bandwidth across our experiments. We compare single-layer and multi-layer
extraction, both with 6000 training steps and 2700 dedicated to curriculum extraction. The single-
layer model uses one checkpoint at the end, while the three-layer model has checkpoints at 400, 1200,
and 2700 steps. Extracting from three layers improves performance, while single-layer extraction
appears to perform worse than one-shot distillation, possibly due to overfitting between the student’s
bottom layer and the teacher’s upper layers.

In Figure 4 (c) we see similar performance gains to those in Figure 4 (b) for higher bandwidth
experiments – for two, three and four-stage curricula. The two-stage curriculum skips the linear
projection and first transformer layer for iterations 1 through 500, skips just the top linear layer for
iterations 501 to 1500, and finally trains the entire network for iterations 1501 through 4000. The
three-stage curriculum skips two encoder blocks for iterations 1 through 400, skips one encoder block
for iterations 401 through 1200, and skips the final projection layer for iterations 1201 through 2700,
finally training the entire network for iterations 2701 to 6000. The four-stage curriculum skips four
encoder blocks for iterations 1 through 200, then three blocks for iterations 201 through 700, then
two blocks for iterations 701 through 1500, one block for iteration 1501 through 3000 and finally just
the final linear layer until iteration 8000.

Wikipedia In Figure 3 (c) we see that our extraction scheme also works extremely well on real-
world data. We train our BERT model for 500 iterations while skipping 4 encoder blocks, a further
1000 iterations while skipping 3 encoder blocks, a further 2000 iterations skipping one encoder block,
4000 iterations skipping the final projection layer and finally the full network for 16500 iterations.
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A ORGANIZATION

Appendix B gives an overview of the related work. Appendices C to E aim to provide a proof of
Theorem 3.3. In Appendix C we recall some basic definitions and facts. In Appendix D we recall the
analysis of the teacher in Panigrahi et al. (2024a); Barak et al. (2022). In Appendix E we analyze the
number of samples required for our student to perform well. In Appendix F we formally define a
PCFG and recall the definition of the cfg3b grammar from Allen-Zhu & Li (2023).

B RELATED WORK

Knowledge Distillation Knowledge distillation (KD), pioneered by Hinton et al. (2015), transfers
knowledge from computationally expensive teacher models to lightweight students by aligning output
distributions. This paradigm has been widely adopted in modern language models for inference cost
reduction. Examples of models trained via distillation include ChatGPT O1-mini (OpenAI, 2024),
Gemini Flash (Team, 2024), and the Phi series of models (Abdin et al., 2024). Despite the success
of distillation, there have been a number of works (Mirzadeh et al., 2020; Cho & Hariharan, 2019;
Harutyunyan et al., 2023; Panigrahi et al., 2024a) that have observed that simply distilling using the
output of the fully trained teacher network can be suboptimal, resulting in a “teacher-student gap” in
capabilities. To circumvent this gap, these works have proposed progressive distillation, a technique
that trains the student using intermediate checkpoints during the teacher training progressively,
before training on the output of the fully-trained teacher. Panigrahi et al. (2024a) proposes that the
intermediate checkpoints act as an implicit curriculum, allowing the student to learn simpler functions
before moving to the final complex one, and shows theoretical and empirical evidence to support
these claims.

Despite its promise, progressive distillation faces some challenges – (1) storing intermediate check-
points for large models incurs prohibitive costs, (2) finding an effective checkpoint schedule to
use is done heuristically (Panigrahi et al., 2024a), requiring costly trial-and-error, (3) Most models,
including open-source ones (e.g., Llama 3 (Meta AI, 2024), Mistral (Jiang et al., 2023)) only release
final weights, making progressive distillation impossible.

Our method builds a curriculum using just the fully-trained teacher network, and thus, avoids the
shortcomings or progressive distillation. While our curriculum extraction method is related to layer-
wise distillation methods proposed in the literature (Aguilar et al., 2020; Liang et al., 2023; Jiao et al.,
2020; Sun et al., 2019), these methods typically require the teacher and student to have the same
embedding dimension. In contrast, our method uses a random projection to embed the teacher’s
hidden representation into the student’s embedding dimension, allowing us to accommodate differing
embedding dimensions. Our method also crucially relies on the stage-wise curriculum extraction of
each layer individually, while the aforementioned works typically distill teacher layers simultaneously
with the final output. Moreover, all of these works are heuristic in nature; we provide rigorous
guarantees showing the correctness of our method, albeit in a stylized setting.

Curriculum Learning Curriculum learning, formalized by Bengio et al. (2009), structures training
data by difficulty to improve learning efficiency. Early NLP work relied on handcrafted curricula
(Kocmi & Bojar, 2017), while modern approaches automate this process through self-paced learning
(Kumar et al., 2010). Recent advances, such as those by (Panigrahi et al., 2024b), demonstrate
that stagewise pretraining via incremental subnetworks achieves computational efficiency without
compromising model quality, further supporting the benefits of progressive learning paradigms.
Additionally, studies on BERT reveal that its layers encode linguistic hierarchies (Tenney, 2019;
Hewitt & Manning, 2019), suggesting that intermediate representations can scaffold learning—though
this typically requires access to intermediate checkpoints (Shwartz-Ziv & Tishby, 2017; Voita et al.,
2019).

C PRELIMINARIES

We define the Fourier expansion of a boolean function below.
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Definition C.1 (Fourier Expansion of a Boolean Function). Let f : {−1, 1}n → R be a Boolean
function. The Fourier coefficients of f are defined as:

f̂(S) = Ex∼{−1,1}n [f(x) · χS(x)] ,

where:

• S ⊆ [n] is a subset of the input coordinates,

• χS(x) =
∏

i∈S xi is the parity function corresponding to S,

The function f can then be expressed in terms of its Fourier expansion:

f(x) =
∑
S⊆[n]

f̂(S) · χS(x).

C.1 PROPERTIES OF THE RELU FUNCTION

We will need the following properties of the ReLU function.

Lemma C.2 (Properties of ϕb(t)). Let σ(t) := max(0, t), and let a, b ∈ R. Then ϕb(a) :=
σ(a+ b)− σ(−a+ b) satisfies the following:

1. ϕb(0) = 0

2. ϕb(−t) = −ϕb(t)

3. ϕb(t) is monotonically non-decreasing in t.

Proof. The proofs follow by the definition of ϕb(a).

1. ϕb(0) = σ(b)− σ(b).

2. ϕb(−t) = σ(−t+ b)− σ(t+ b) = −ϕb(t).

3. This follows from the fact that σ(t) is monotonically non-decreasing. If t1 ≤ t2, observe
that

ϕb(t1) = σ(t1 + b)− σ(−t1 + b)

< σ(t2 + b)− σ(−t2 + b)

= ϕb(t2).

C.2 PROBABILITY FACTS

We will need the following anticoncentration and concentration inequalities for sums of scaled
Rademacher random variables.

Lemma C.3 (Littlewood-Offord Anticoncentration Lemma (Tao & Vu, 2006)). Let X1, X2, . . . , Xn

be independent random variables, each taking values in {−1,+1} with equal probability 1
2 . Let

a1, a2, . . . , an be real coefficients. Define the random sum

S =

n∑
i=1

aiXi.

The probability that S lies in an interval of length t satisfies

P[|S| ≤ t] ≤ C√
|{ai | |ai| > t}|

,

where C > 0 is an absolute constant.
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We will also need the standard Hoeffding’s inequality.

Lemma C.4 (Hoeffding’s Inequality). Let X1, X2, . . . , Xn be independent random variables such
that ai ≤ Xi ≤ bi almost surely for each i ∈ {1, 2, . . . , n}. Define the sample mean

X =
1

n

n∑
i=1

Xi,

and let µ = E[X] be the expected value of the sample mean. Then for any t > 0,

P
(
|X − µ| ≥ t

)
≤ 2 exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
.

D TEACHER TRAINING

In this section, we recall the teacher training analysis from Panigrahi et al. (2024a). Some lemmas
from this review will be used in the analysis of our student model.

In Appendix D.1, we restate Lemma D.2, which shows that after one gradient descent step, the
in-support weights become larger than the out-of-support weights. In Appendix D.2, we recall
Lemma D.3, which establishes that if the conditions of Lemma D.2 are met, the teacher can learn the
top-level weights within O(dO(k)ϵ−2 log(dk/ϵδ)) samples, achieving a loss of at most ϵ.

Recall that we use the teacher loss is given by the hinge loss ℓft(x, y) = max(0, 1− ft(x)y).

Algorithm 1 2-stage training for teacher

Require: Timestep T2, Learning rates η1, η2, batch sizes B1, B2, weight decay λ1.
1: Inner Layer Training:
2: for t = 1 do
3: Sample B1-samples {(x(j), y(j))}B1

j=1.

4: Update the inner layer weights {w(t)
1 , . . . ,w

(t)
mt} as:

w
(t)
i ← w

(t−1)
i − η1E(x,y)∈{(x(j),y(j))}B1

j=1

[
∇wi

(
ℓft(x, y) + λ1∥w(t−1)

i ∥2
)]

5: end for
6: Outer Layer Training:
7: for t ∈ [0, T2] do
8: Sample B2-samples {(x(j), y(j))}B2

j=1.
9: Update the outer layer weights:

a(t) ← a(t−1) − η2E(x,y)∈{(x(i),y(i))}B2
i=1

[∇aℓft(x, y)]

10: end for

Our teacher is trained in exactly the same way as in Panigrahi et al. (2024a), using Algorithm 1. For
completeness, we recall conditions required for teacher training to succeed. Before we continue, we
set up some notation.

Notation

• In what follows, B1, B2 are batch sizes, i.e. number of samples drawn to estimate the
gradients in the first and second stages of training respectively. δ will denote the probability
of failure, and λ1 will denote a regularization parameter (as seen in Algorithm 1).

• τg is the error estimate of the gradient, i.e. for a network f ,∣∣∣Ex,y∼U({±1}d)

[
∇wijf(x)

]
− E{(xk,yk)}

B1
k=1

[
∇wij

f(x)
]∣∣∣ ≤ τg,.

• mt and ms denote the hidden layer sizes of the student and teacher respectively.
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• For a, b, c ∈ R we will say a = b ± c if a ∈ [b − c, b + c]. for u, v ∈ Rd, we define
u⊙ v = (u1v1, . . . , udvd).

• θ(t) := {W(t), a(t),b(t)} denotes the parameters of the model that the algorithm recovers
at timestep t.

• Maj(x) : {±1}d → {−1, 0, 1} returns sign(
∑d

i=1 xi), where sign(0) := 0 and sign(t) :=
t/|t| for t ̸= 0.

We will also need the following lemma that controls the gradient error as a function of the batch size.

Claim D.1 (Gradient Concentration Panigrahi et al. (2024a)). Let f be a two-layer network initialized
using the symmetric initialization in Definition 3.2 with m being its hidden dimension. Fix δ, τg > 0.
For all i ∈ [m], j ∈ [d], for a randomly sampled batch of size B1, {(xk, yk)}B1

k=1, with probability at
least 1− δ, ∣∣∣Ex,y∼U({±1}d)

[
∇wij

f(x)
]
− E{(xk,yk)}

B1
k=1

[
∇wij

f(x)
]∣∣∣ ≤ τg,

provided B1 ≥ Ω
(
τ−2
g log(md/δ)

)
.

D.1 TEACHER ANALYSIS AFTER FIRST STAGE OF TRAINING

After the first stage of teacher training, the weights satisfy the property that they have larger mag-
nitudes for in-support indices compared to out-of-support indices. This property is crucial for the
second stage of training to achieve a good solution. This behavior is formally captured by the
following lemma.

Lemma D.2 (Lemma B.2 (Single step gradient descent, from Panigrahi et al. (2024a))). Let ζk denote
the kth Fourier coefficient of the majority function. Fix τg, δ > 0. Set T1 = 1. Suppose the batch size
B1 ≥ Ω(τ−2

g log(mtd/δ)). For learning rate η1 = mt

k|ζk−1| and λ1 = 1/2, the following conditions
hold true for all neurons i ∈ [m] at the end of the first stage of training with probability at least 1− δ.

1.
∣∣∣∣w(1)

ℓj −
sign(a

(0)
ℓ ζk−1) sign(χ[k]\{j}(w

(0)
ℓ ))

2k

∣∣∣∣ ≤ τg
|ζk−1| , for all j ∈ [k].

2.
∣∣∣∣w(1)

ℓj −
ζk+1

|ζk−1|
sign(a

(0)
ℓ ) sign(χ[k]∪{j}(w

(0)
ℓ ))

2k

∣∣∣∣ ≤ τg
|kζk−1| , for all j > k.

While we do not reproduce the proof of Lemma D.2, we point out that the proof essentially follows
by demonstrating that the gradients∇wℓj

[ℓft(x, y)] initialization satisfy properties similar to the ones
stated above for w(1)

ℓj , and setting λ1 = 1/2η1 ensures that the weights after one step are proportional

to these gradients w(1)
ℓj = −η1∇wℓj

[ℓft(x, y)].

Teacher batch size: A consequence of Lemma D.2 is that, since we need the gap to be wit-
nessed by the empirical gradients, the teacher batch size will be lower bounded by B1 ≥
(d2k ζk−1)

2 log(mtd/δ) ≥ Ω(dk−1). From this, we see that even a moderate-sized teacher re-
quires Ω(dk−1) samples, according to training algorithm. In fact this holds more generally (as shown
in Panigrahi et al. (2024a)).

D.2 TEACHER ANALYSIS AFTER SECOND STAGE OF TRAINING

Under the conclusions of Lemma D.2, the second stage of training produces a function with small
loss relative to the unknown parity function, so long as the hidden layer is sufficiently large (i.e.
mt ≥ 2kk log(k/d)). This result is formalized in the following theorem, which will be used to
analyze the second stage of training for both the student and the teacher.

Lemma D.3 (Theorem 4, Barak et al. (2022), version from Panigrahi et al. (2024a)). Fix ϵ, δ > 0. Sup-
pose m ≥ Ω(2kk log(k/δ)), d ≥ Ω(k4 log(kd/ϵ)). Furthermore, suppose B1 ≥ Ω(dkk2 log(kd/ϵ))
such that the weights satisfy the conditions in Lemma D.2 with τg = O(d−kk−1d−2) after the first
phase, and let θ(t) denote the model at timestep t. Then after T2 = Ω(md2k3/ϵ2) steps of training

14
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with batch size B2 = 1 and learning rate η2 = 4k1.5/(dm(T2 − 1)), we have, with expectation over
the randomness of the initialization and the sampling of the batches:

min
t∈[T2]

E[Lθ(t)(x, y)] ≤ ϵ.

Thus, the minimal sample complexity to reach a loss of ϵ is given by:

T1 ×B1 + T2 ×B2 = Θ(dO(k)ϵ−2 log(dk/ϵδ)).

Remark: The higher sample complexity of this algorithm is not primarily due to the teacher’s
hidden dimension (since it can be set to O(2kk log(k/δ))), but rather due to the need for accurately
estimating the gradients to an error of O(d−kk−1d−2).

E STUDENT TRAINING

In this section, we analyze our student training algorithm (Algorithm 2). The student algorithm
differs from the teacher training algorithm only in the first phase, where we use the distillation loss
ℓDL(x, f, g) := −f(x) · g(x). Here, f = f

(1)
s ∈ Rms is the first layer of the student network, and

g = Af
(1)
t (x) ∈ Rms is the first layer of the teacher network projected to the student’s hidden layer

dimension.

Algorithm 2 2-stage training for teacher

Require: Timestep T2, Learning rates η1, η2, batch sizes B1, B2, weight decay λ1.
1: Inner Layer Training:
2: for t = 1 do
3: Sample B1-samples {(x(j), y(j))}B1

j=1.

4: Update the inner layer weights {w(t)
1 , . . . ,w

(t)
ms} as:

w
(t)
i ← w

(t−1)
i − η1E(x,y)∈{(x(j),y(j))}B1

j=1

[
∇wi

(
ℓDL(x, f

(1)
s , Af

(1)
t ) + λ1∥w(t−1)

i ∥2
)]

5: end for
6: Outer Layer Training:
7: for t ∈ [0, T2] do
8: Sample B2-samples {(x(j), y(j))}B2

j=1.
9: Update the outer layer weights:

a(t) ← a(t−1) − η2E(x,y)∈{(x(i),y(i))}B2
i=1

[∇aℓ(x, y)]

10: end for

E.1 FIRST STAGE ANALYSIS OF THE STUDENT

Most of our effort will focus on showing that W(1)
s , the first layer of the student network after the

first stage of training, satisfies a property similar to the conclusion of Lemma D.2.

By choosing λ1 = 1/(2η1) in Algorithm 2, we obtain

w
(1)
i = −η1E(x,y)∈{(x(j),y(j))}B1

j=1

[
∇wℓ

ℓDL(x, f
(1)
s , Af

(1)
t )
]
.

Thus, it suffices to show that the gradient update for the student has larger magnitudes for in-support
coordinates than for out-of-support coordinates. This is captured in Lemma E.3 and corollary E.6,
which will be the focus of this section. We first recall some variants of lemmas from Panigrahi et al.
(2024a) which we will need.

E.1.1 PRELIMINARY SETUP

The following lemma shows that this may be expressed as a function of the fourier coefficients of
(Af

(1)
t (x))i and (Af

(1)
t (x))i Maj(wi ⊙ x).

15
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Lemma E.1 (Teacher Correlation Gap implies Student Gradient Gap). Let hi(x) := (Af
(1)
t (x))i.

For all i ∈ [ms], suppose

∣∣∣E
x

[
hi(x) xj

]
+E

x

[
hi(x) Maj(wi ⊙ x)xj

]∣∣∣ = {≥ 1
mtk

, for j ∈ [k],

< 1
mtkd

, for j > k.

Then,

E
x

[
∇wij ℓDL(x, f

(1)
s , Af

(1)
t )
]
=

Ω
(

1
mtk

)
, for j ∈ [k],

o
(

1
mtkd

)
, otherwise.

Proof. At initialization, the gradient of the weight vector of neuron i at coordinate j is given by,

E
x
[∇wij

ℓDL(x, f
(1)
s , Af

(1)
t )] = −E

x
[∇wij

(f (1)
s ·Af

(1)
t )]

= −E
x
[1(wi · x+ bi ≥ 0)(Af

(1)
t )ixj ]

Since |bi| < 1 and wi,x ∈ {±1}d at initialization, 1(wi ·x+bi ≥ 0) = 1
2+

Maj(wi⊙x)
2 . Substituting

this above,

E
x
[∇wij

ℓDL(x, f
(1)
s (x), Af

(1)
t (x))] = −1

2

(
E
x
[(Af

(1)
t )i(x) xj ] +E

x
[(Af

(1)
t )i(x) Maj(wi ⊙ x) xj ]

)

Define ϕb(a) := σ(a + b) − σ(−a + b). Then, we see that for W(0) initialized according to the
scheme in Section 3.1, the following holds:

Lemma E.2 (Bounds on coefficients). For a teacher network in the setting of Lemma D.3; with
probability 1 − δ over the randomness of initialization of bℓ, the following hold as long as mt ≥
10 log(1/δ):

1. For j ∈ [k], there are at least mt/8 values of ℓ ∈ [mt/2] satisfying |Ex [ϕbℓ (wℓ · x)xj ]| ≥
Ω(1/k).

2. For all j > k and ℓ ∈ [mt/2], |Ex [ϕbℓ(wℓ · x)]| ≤ O(1/kd).

Proof. This result follows from the calculations in the “estimates of in-support correlations” and
“estimations of out-of-support correlations” sections of Lemma B.5 in Panigrahi et al. (2024a) (pages
25–26).

Item 1 follows from the analysis in the “estimates of in-support correlations” section, which shows
that with probability at least 1/2 over the randomness of bℓ,

|Ex[ϕbℓ(wℓ · x)xj ]| ≥
1

4k
−O(τgd|ζk−1|−1).

Applying Hoeffding’s inequality to this event, we conclude that if mt ≥ Ω(log(1/δ)), then with
probability 1− δ, at least mt/8 neurons satisfy

|Ex[ϕbℓ(wℓ · x)xj ]| ≥
1

16k
−O(τgd|ζk−1|−1).

Item 2 follows directly from the “estimations of out-of-support correlations” section.

The error term 2dτg|ξk−1|−1 for the trained teacher network is controlled by setting τg appropriately.
Note that this is not something that affects the student sample complexity.
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E.1.2 TEACHER CORRELATION GAP AND GRADIENT CORRELATION GAP

Most of our effort will now focus on establishing the hypothesis of Lemma E.1. In this section, we
demonstrate a gap between the in-support and out-of-support indices j ∈ [d] for any fixed i in the
expression, Ex[(Af

(1)
t )i(x) xj ] +Ex[(Af

(1)
t )i(x) Maj(wi ⊙ x) xj ].

In Lemma E.3 we show this gap for the first term, Ex[(Af
(1)
t )i(x) xj ]. In Corollary E.6 we show

this gap for the second term Ex[(Af
(1)
t )i(x) Maj(wi ⊙ x) xj ]. In what follows, we will suppress

the dependence on i, as the argument is identical for each output coordinate i. We reuse this variable
instead to range over the teacher hidden dimension.

Lemma E.3 (Correlation Gap for One Projected Teacher Dimension). Let f(x) :=
∑mt

i=1 a
(0)
i σ(wi ·

x + bi) and fr(x) =
∑mt

i=1 a
r
iσ(wi · x + bi), where ari are independently drawn u.a.r. from

U({±1/mt}) for i ∈ [mt/2] and ari+mt/2
= −ari , and a

(0)
i and W(0) are initialized according to

the initialization scheme in Section 3.2.1. Let mt ≥ Ω(k4 log(d)2/δ2), then

min
j∈[k]

∣∣∣E
x
[fr(x)xj ]

∣∣∣ > 1

mtk
and max

j>k

∣∣∣E
x
[fr(x)xj ]

∣∣∣ < 1

mtkd

Proof. To make it easier for us to estimate Ex[f
r(x)xj ], we can rewrite fr(x):

fr(x) =

mt∑
i=1

ariσ(wi · x+ bi)

=

mt/2∑
i=1

ari (σ(wi · x+ bi)− σ(−wi · x+ bi))

The final equality follows by combining the terms for ℓ = i and ℓ = i+mt/2.

Define ϕb(a) := σ(a+ b)− σ(−a+ b). Using the linearity of expectation after multiplying by xj ,
we obtain:

Ex[f
r(x)xj ] =

mt/2∑
i=1

ariEx [ϕbi(wi · x)xj ] .

To derive bounds on Ex[f
r(x)xj ], we interpret the right-hand side as a sum of Rademacher random

variables scaled by coefficients. The remainder of the proof relies on anti-concentration and concen-
tration inequalities for such sums. To apply these inequalities, we require bounds on the coefficients
ari , specifically Ex[ϕbi(wi · x)xj ]. These bounds are provided by Lemma E.2 implicit in Panigrahi
et al. (2024a)

Given Lemma E.2, we apply the Littlewood-Offord lemma (Lemma C.3) to show that the sum∑mt/2
i=1 ari Ex[ϕbi(wi · x)xj ] cannot be too small with large probability.

Pr
ar
i

∃j ∈ [k].

∣∣∣∣∣∣
mt/2∑
i=1

ari E
x
[ϕbi(wi · x)xj ]

∣∣∣∣∣∣ ≤ Ω

(
1

mtk

)  ≤ O

(
k
√
mt

)
, (1)

where the final k on the right hand side is a consequence of a union bound over j ∈ [k]. Similarly, an
consequence of Hoeffding’s inequality (Lemma C.4) and Item 2 in Lemma E.2 is,

Pr
ar
i

∃j > k.

∣∣∣∣∣∣
mt/2∑
i=1

ari E
x
[ϕbi(wi · x)xj ]

∣∣∣∣∣∣ > O

(
1

mtkd

)  ≤ d exp(−2mt) (2)

Hence, if mt ≥ Ω(k4 log(d)2/δ2) we see that with probability at least 1− δ,

min
j∈[k]

∣∣∣∣∣∣
mt/2∑
i=1

ari E
x
[ϕbi(wi · x)xj ]

∣∣∣∣∣∣ > Ω

(
1

mtk

)
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and

max
j>k

∣∣∣∣∣∣
mt/2∑
i=1

ari E
x
[ϕbi(wi · x)xj ]

∣∣∣∣∣∣ < O

(
1

mtkd

)

Whenever d > k, this difference is Ω(1/mtk
2).

We now focus on getting similar bounds on Ex[f
r(x) ·Maj(w ⊙ x)xj ]. To bound the first term, we

must first bound all the Fourier coefficients (Definition C.1) of fr(x). This is necessary because the
degree-1 Fourier coefficients of a product of Boolean functions (in this case fr(x) and Maj(w ⊙ x))
depend on their entire Fourier expansions (see Lemma E.4 below).

Lemma E.4 (Fourier Coefficients of Inner Product). Let f, g : {−1, 1}n → R be two Boolean
functions with Fourier expansions:

f(x) =
∑
S⊆[n]

f̂(S)χS(x) and g(x) =
∑

T⊆[n]

ĝ(T )χT (x),

where χS(x) =
∏

i∈S xi are the parity (Walsh) basis functions, and f̂(S), ĝ(T ) are the Fourier
coefficients of f and g, respectively.

Then, the Fourier coefficients of the inner product h(x) = f(x) · g(x) are given by:

ĥ(S) =
∑

T⊆[n]

f̂(T )ĝ(S△T ),

where S△T denotes the symmetric difference of the sets S and T .

These bounds on the expansion of (Af
(1)
t ) follow from the following modified versions of Lemma

B.5 and Corollary B.6 from Panigrahi et al. (2024a), which we state below.

Lemma E.5 (Correlation within-support variables). Under the event that the conditions in Lemma D.2
are satisfied by each neuron, which occurs with probability at least 1− δ w.r.t. the randomness of
initialization as long as mt ≥ Ω(m2

s k4 log(d)2/δ2), the output of the model after the first phase
satisfies the following conditions:

1. Ex,y

[
(Af

(1)
t )i(x)xj

]
≥ Ω( 1

mtk
) for all j ∈ S.

2. Ex,y

[
(Af

(1)
t )i(x)xj

]
≤ O

(
1

mtkd

)
for all j /∈ S.

3. Ex,y

[
(Af

(1)
t )i(x)χS(x)

]
≤ O

(
τgd|ζk−1|−1

)
for all S with even |S|.

4.
∥∥∥(Af

(1)
t )i(x)

∥∥∥2
2
= Ex,y

[
(Af

(1)
t )i(x)

]2
≤ O

(
d
k

)
.

Proof. The proofs of the first two items follow from Lemma E.3. The proofs of the second two items
are exactly the same as the proofs of Items 3 and 4 of Lemma B.5 in Panigrahi et al. (2024a)

Lemma E.5 now allows us to recover the following variant of Corollary B.6 from Panigrahi et al.
(2024a), effectively obtaining a similar gap for Ex,y[f

r(x) ·Maj(w ⊙ x)xj ].

Corollary E.6 (Fourier expansion of fr(x)). Let fr(x) be defined as in Lemma E.2 and suppose the
conditions in Lemma E.2 are satisfied by each neuron, which occurs with probability at least 1− δ
with respect to the randomness of initialization and sampling, the output of the model after the first
phase can be given as:

fr(x) =

k∑
j=1

cjxj +

d∑
j=k+1

cjxj +
∑
S⊆[d]

|S|%2=1,|S|≥3

cSχS(x) +
∑
S⊆[d]

|S|%2=0

cSχS(x),
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where

|cj | ≥ Ω((kmt)
−1), for all 1 ≤ j ≤ k,

|cj | ≤ O((kdmt)
−1), for all j > k,

|cS | ≤ O(τgd|ζk−1|−1), for all S ⊆ [d] with |S|%2 = 0,

|cS | ≤ O(d/k), for all S ⊆ [d] with |S|%2 = 1.

As such, given a fixed w, the following correlations hold true for all i:

Ex,y [f
r(x) ·Maj(w ⊙ x)xi] = O(τgd

5/3|ζk−1|−1).

If the batch size B1 is set such that B1 ≥ Ω(k2d10/3ζ−4
k−1) and τg ≤ O(k−1d−5/3|ζk−1|m−1

t ), then
the following holds for all i:

Ex,y [f
r(x) ·Maj(w ⊙ x)xj ] ≥ Ω((mtk)

−1), if j ∈ [k],

Ex,y [f
r(x) ·Maj(w ⊙ x)xj ] ≤ o((mtkd)

−1), if j /∈ [k].

Proof. Observe that for a fixed w,

Ex,y [f
r(x) ·Maj(w ⊙ x)xi] = E

x,y

 d∑
j=1

cjxj Maj(w ⊙ x)xi

+
∑

S⊂[d],|S|%2=1,|S|≥3

E
x,y

[cS Maj(w ⊙ x)χS(x)xi]

+ E
x,y

 ∑
S⊂[d],|S|%2=0

cs Maj(w ⊙ x)χS(x)xi

 .

Since Maj(w⊙x) is an odd function (for a fixed w), Ex,y[Maj(w⊙x)χS(x)xi] = 0 for |S|%2 = 1.
This allows us to remove the term. A similar argument holds for the first term, giving us

Ex,y [f
r(x) ·Maj(w ⊙ x)xi] = ci E

x,y
[Maj(w ⊙ x)] + E

x,y

 ∑
S⊂[d],|S|%2=0

cs Maj(w ⊙ x)χS(x)xi

 .

The first term is 0 because Ex,y[Maj(w ⊙ x)] = 0, since, Maj(w ⊙ x) = −Maj(w ⊙ (−x)). The
second term may be bounded as follows,∣∣∣∣∣∣Ex,y

∑
S⊂[d],S%2=0

cS Maj(w ⊙ x)χS(x)xi

∣∣∣∣∣∣
≤ O(τgd|ζk−1|−1) ·

 ∑
S⊂[d],S%2=0

| E
x,y

Maj(w ⊙ x)χS(x)xi|


≤ O(τgd|ζk−1|−1) ·

 ∑
S⊂[d],S%2=0

| E
x,y

Maj(w ⊙ x)χS(x)|


≤ O(τgd|ζk−1|−1) ·

 ∑
S⊂[d],S%2=0

Θ

(
|S|−1/3(

d
|S|
) )


≤ O(τgd

5/3|ζk−1|−1)

Where the bounds follow from standard bounds on the Fourier coefficients of the majority function.
By ensuring that the batch size B1 ≥ Ω̃(τ−2

g ) , we see that for τg ≤ O(k−1d−5/3ζ−2
k−1m

−1
t ) we see

that Ex,y[(Af
(1)
t )(x)Maj(w ⊙ x)xi] = o( 1

mtdk
).
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E.2 STUDENT SAMPLE COMPLEXITY

Lemma E.7 (Student version of Theorem 4, Barak et al. (2022)). Let a teacher ft with hidden
dimension mt = Θ(2O(k) log(d)2/δ2) ≥ m2

s k
4 log(d)2/δ2 be trained in the setting of Lemma D.3.

Furthermore, for student training Algorithm 2 B1 ≥ k2d2 log(kd/δ), η1 = mt. Then after T2 =
Ω(msd

2k3/ϵ2) steps of training with batch size B2 = 1 and learning rate η2 = 4k1.5/(dm(T2−1)),
we have, with expectation over the randomness of the initialization and the sampling of the batches:

min
t∈[T2]

E[Lθ(t)(x, y)] ≤ ϵ.

Thus, the minimal sample complexity to reach a loss of ϵ for the student is given by:

T1 ×B1 + T2 ×B2 = Θ(2O(k)d2ϵ−2 log(k/δϵ)).

Proof. For the first stage, the sample complexity of the student is determined by two key factors: (1)
the lower bound on mt required to ensure that, after random projection, (Aft)ℓ for each ℓ ∈ [ms]
satisfies the conclusion of Lemma E.3, and (2) the sample complexity required to obtain a sufficiently
precise gradient estimate so that the gap can be observed.

To ensure that the overall event occurs with probability δ, applying a union bound over the ms

coordinates to the conclusions of Lemmata 3.4 and E.3 results in a lower bound on the teacher’s
hidden dimension, given by mt ≥ k4 log(d)2m2

s

δ2 . As long as mt = Θ(2O(k) log(d)2/δ2), the rest of
the argument follows.

By applying the conclusions of Lemmata 3.4 and E.3 to Lemma E.1, we know that the expected
gradient has in-support coordinates of Ω(1/mtk) and out-of-support coordinates of O(1/mtkd).
After one step of gradient descent with an appropriate regularization parameter (λ1 = 1/2η), we
have wi = −ηEx,y

[
∇wi

ℓDL(x, f
(1)
s , Af

(1)
t )
]
.

The gradient estimate needs to be accurate up to an error of O((kdmt)
−1). Setting |τg| =

O(2−Ω(k) log(k/d)−1) for the student in Claim D.1 ensures that B1 = O(2O(k) log(kd/δ)) is
sufficient. We then set η = mt to ensure that the gap between the student weights matches the gap in
Panigrahi et al. (2024a) and is bounded below by Ω(1/k2).

The sample complexity for the second stage is exactly the same as in Lemma D.3, and the exponential
dependence arises from there.

Remark: We observe that even when the gap between the teacher’s width and the student’s
width is only polynomial, the teacher requires Ω(dk−1) samples, while the student only needs
Õ(2O(k)poly(d, k)) samples, since mt = Õ(2O(k)poly(d, k)). This difference arises because of the
difference in the magnitude of the gap between the in-support and out-of-support coordinates of the
gradient in these two cases.

F PROBABILISTIC CONTEXT-FREE GRAMMARS

In this section we formally define a PCFG.

Definition F.1 (Probabilistic Context-Free Grammar (PCFG)). A Probabilistic Context-Free Gram-
mar (PCFG) is a 5-tuple (N,Σ, S,R, P ) where:

• N is a finite set of non-terminal symbols

• Σ is a finite set of terminal symbols (N ∩ Σ = ∅)

• S ∈ N is the distinguished start symbol

• R ⊆ N × (N ∪ Σ)∗ is a finite set of production rules
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• P : R→ [0, 1] is a probability function satisfying:

∀A ∈ N,
∑

(A→β)∈R

P (A→ β) = 1

The probability of a derivation tree T is given by:

P (T ) =
∏

(A→β)∈T

P (A→ β)

In cfg3b, the PCFG is constructed such that the degree for every non-terminal A is 2. In any gener-
ation rule, consecutive pairs of symbols in the generated strings are distinct. The 25%, 50%, 75%,
and 95% percentile string lengths generated by the PCFG are 251, 278, 308, and342, respectively,
we refer to the commonly cited Figure 5 below from Allen-Zhu & Li (2023).

22 → 21 20
22 → 20 19

19 → 16 17 18
19 → 17 18 16
20 → 17 16 18
20 → 16 17
21 → 18 16
21 → 16 18 17

16 → 15 13
16 → 13 15 14
17 → 14 13 15
17 → 15 13 14
18 → 15 14 13
18 → 14 13

13 → 11 12
13 → 12 11
14 → 11 10 12
14 → 10 11 12
15 → 12 11 10
15 → 11 12 10

10 → 7 9 8
10 → 9 8 7
11 → 8 7 9
11 → 7 8 9
12 → 8 9 7
12 → 9 7 8

7 → 3 1
7 → 1 2 3
8 → 3 2
8 → 3 1 2
9 → 3 2 1
9 → 2 1

Figure 5: cfg3b from Allen-Zhu & Li (2023). Vocabulary is {1, 2, 3}. Indentation reflects production
hierarchy.

We also we show similar performance gains to those we observe in Section 4 for experiments with
larger bandwidth. In particular, for experiments with a total of 6000 and 8000 iterations respectively,
with three and four-stage curricula.

G MISCELLANEOUS FIGURES
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Figure 6: MLP Projection vs Layer Correlation We look at the magnitude of the correlations of the
hidden layer weights of the depth-two MLP with the support of a 100-dimensional 6-sparse parity
after the first phase of training. We observe that the curriculum extraction in-support coverage is
significantly larger the out-of-support coverage, and with a significantly larger advantage than that
for progressive distillation.

.
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