
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a DeLTa Workshop Paper at ICLR 2025

EFFICIENT KNOWLEDGE DISTILLATION VIA CURRICU-
LUM EXTRACTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Knowledge distillation is a technique used to train a small student network using
the output generated by a large teacher network, and has many empirical advan-
tages (Hinton et al., 2015). While the standard one-shot approach to distillation
only uses the output of the final teacher network, recent work (Panigrahi et al.,
2024a) has shown that using intermediate checkpoints from the teacher’s training
process as an implicit “curriculum” for progressive distillation can significantly
speed up training. However, such schemes require storing these checkpoints, and
often require careful selection of the intermediate checkpoints to train on, which
can be impractical for large-scale training.
In this paper, we show that a curriculum can be extracted from just the fully trained
teacher network, and that this extracted curriculum can give similar efficiency
benefits to those of progressive distillation. Our extraction scheme is natural; we
use a random projection of the hidden representations of the teacher network to
progressively train the student network, before training using the output of the full
network. We show that our scheme significantly outperforms one-shot distillation
and achieves a performance similar to that of progressive distillation for learning
sparse parities with two-layer networks, and provide theoretical guarantees for this
setting. Additionally, we show that our method outperforms one-shot distillation
even when using transformer-based architectures, both for sparse-parity learning,
and language modeling tasks.

1 INTRODUCTION

In the era of large-scale models, as the cost of training state-of-the-art models increases substantially
with each passing year, leveraging compute effectively for training and inference has become
increasingly important. Knowledge distillation (Hinton et al., 2015) is one popular technique that is
commonly used to reduce the amount of compute necessary for inference, by training a small student
network to mimic the output of a large teacher network. Indeed, several state-of-the-art language
models are distilled versions of larger models (DeepSeek-AI et al., 2025; Abdin et al., 2024; Team,
2024; OpenAI, 2024).

Despite the adoption of distillation for language model training, prior work (Panigrahi et al., 2024a;
Anil et al., 2018; Mirzadeh et al., 2020) has shown that just using the output of the fully-trained teacher
network to train the student can result in poor performance relative to the teacher (a “teacher-student
gap” in performance), and that progressive distillation can significantly improve the performance of
the student. Panigrahi et al. (2024a) in particular offers an explanation for this phenomenon – the
intermediate checkpoints during the training of the teacher network act as an implicit curriculum for
the training of the student network, with earlier checkpoints emphasizing simpler patterns (e.g., local
syntax in the case of language models), and later checkpoints capturing complex abstractions (e.g.,
long-range semantics). Please see Appendix B for a more detailed overview of related work.

While progressive distillation offers significant efficiency advantages over one-shot distillation, it
requires storing frequent checkpoints during the training of the teacher, which can be prohibitive for
modern LLMs. Deciding on which checkpoints to make use of to train the student is often unclear;
such checkpoints are found by extensive experimentation in the works listed above, which can be
impractical. Moreover, in many cases, one lacks access to intermediate checkpoints during training,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a DeLTa Workshop Paper at ICLR 2025

StudentTeacher

1

2

3

4

Random projection

Figure 1: Our curriculum extraction
method trains the student model in a
layer-wise fashion. Student layers are
sequentially aligned to a random projec-
tion of the corresponding teacher layer’s
hidden representation using the Mean
Squared Error (MSE). After aligning lay-
ers, the student is trained on the teacher’s
output logits via the KL Divergence loss.

Correlation

D
en

si
ty

In-support and Out-of-support Correlations
Indices 1-6
Indices 7-100

Figure 2: In-support and out-of-
support correlations. A two-layer MLP
trained on 100-dimensional 6-sparse par-
ity data exhibits distinct in-support (red)
and out-of-support (blue) correlations of
(Af

(1)
t)(x) with xj for the random pro-

jection A ∈ R1×mt . When j is in the
support, the correlations show signifi-
cantly larger standard deviations com-
pared to when j is outside the support.

0.5 1.0 1.5 2.0
Iteration 1e6

0.5

1.0

Ac
cu

ra
cy

MLP Student Accuracy (Parity)

One-Shot Distillation
Curriculum Extraction
Progressive Distillation

(a)

0 100000 200000 300000
Iteration

0.5

1.0

Ac
cu

ra
cy

Transformer Student Accuracy (Parity)

One-Shot Distillation
Curriculum Extraction

(b)

0 5000 10000 15000 20000 25000
Iteration

0.0

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

BERT Student Accuracy (Wikipedia)

One-Shot
Curriculum Extraction

(c)

Figure 3: Comparing Curriculum Extraction and One-Shot Distillation. We show three tasks for
which curriculum extraction outperforms one-shot distillation: (a) A two-layer MLP trained on 100-
dimensional 6-sparse parity, with a teacher hidden dimension of 50k and a student hidden dimension
of 100. (b) A transformer trained on 100-dimensional 6-sparse parity, using 256-dimensional
embeddings, where the teacher has 32 attention heads and the student has 4. (c) A BERT-large model
fine-tuned on the Wikipedia dataset, with the teacher using 768-dimensional embeddings, 12 attention
heads, and 12 transformer blocks, while the student reduces embeddings to 256 dimensions and
attention heads to 4. The dashed vertical lines indicate the iterations where the layer being distilled
is changed in the case of curriculum extraction, and a change in teacher checkpoint in the case of
progressive distillation.

even for open-source models (Jiang et al., 2023; DeepSeek-AI et al., 2025; Meta AI, 2024), making
progressive distillation impossible.

This raises a natural question – can we design a scheme that maintains the advantages of progressive
distillation without suffering from its drawbacks? Specifically, can we leverage the final fully-trained
teacher model more effectively to train the student model efficiently?

Curriculum Extraction. We propose a scheme to extract a curriculum from the fully-trained
teacher network. Our key insight is that the layer-wise hierarchy of a fully trained network naturally
encodes a progression from simple to complex features. To operationalize this, we train the student’s
hidden layers sequentially on random projections of the teacher’s hidden layers, starting from shallow
(layer l, say) to deep (the final layer L), before training the full student network on the output of the
full teacher network. See Figure 1 for a visual description of our extraction scheme.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a DeLTa Workshop Paper at ICLR 2025

By progressively training on projections from shallower to deeper layers, the student learns incre-
mentally—mirroring the coarse-to-fine learning in progressive distillation, without having to store
intermediate checkpoints. Beyond circumventing checkpoint storage, our approach can potentially be
applied to efficiently distill from open-source models (e.g., Llama (Meta AI, 2024), Mistral (Jiang
et al., 2023), and Deepseek models (DeepSeek-AI et al., 2025)), where only the final model is
available. In addition, our method is computationally cheaper than one-shot or progressive distillation
per training iteration – during early stages, only a subset of student and teacher layers are active,
reducing memory and FLOPs per iteration.

1.1 OUR RESULTS

Sparse Parity Learning. We show that our curriculum extraction scheme is significantly more
efficient than one-shot distillation for the task of learning sparse parities using a two-layer MLP, and
provide a theoretical analysis for this setting. See Section 3 for a formal description of sparse parity
learning and two-layer MLPs. Here, we state an informal version of our main theorem, with the
formal theorem stated in Section 3.2.

Theorem 1.1 (Main, Informal). Consider learning d-dimensional k-sparse parity with a student
model of size Θ̃(2O(k)), where Õ, Θ̃ hides polylog factors in d, k. Suppose the teacher (of size
2O(k)poly(d, k)) has a loss O(ϵ) for some small ϵ > 0. Then, the total sample complexity
needed for the student to reach ϵ-loss using curriculum extraction based on random projection
is: Θ̃

(
2O(k)poly(d, k)ϵ−2

)
. However, one-shot distillation requires at least Ω

(
dk−1ϵ−2

)
samples.

Thus, one-shot distillation requires Ω(dO(k)) samples to learn sparse parties, while our curriculum
extraction scheme can learn using only O(2O(k)poly(d)) samples. We show in Figure 3 (a) that our
curriculum extraction scheme significantly outperforms one-shot distillation empirically, as predicted
by our theory – our scheme succeeds in learning, while one-shot distillation fails after training using
2 · 106 samples. Furthermore, it has similar performance as progressive distillation for a carefully
chosen checkpoint – we choose the checkpoint during training of the teacher network whose output
is most correlated with the support of the parity function, as proposed by Panigrahi et al. (2024b).

We also show empirically that our scheme continues to outperform one-shot distillation when using a
transformer-based architecture for learning sparse parities in Figure 3 (b).

Masked Language Modeling (BERT). In addition to learning sparse parities, we empirically
study our curriculum extraction scheme for language modeling, focusing on BERT-style masked
language modeling. We study two settings with different kinds of data: (i) Synthetic data generated
by a Probabilistic Context-free Grammar (PCFG), and (ii) Real-world language data from Wikipedia.

In the case of PCFGs, we show that our scheme outperforms one-shot distillation, both in terms of
computational efficiency (number of FLOPs), and in terms of sample efficiency (number of iterations),
in Figures 4 (a) and (b). We also show that our curriculum scheme outperforms just using the final
hidden representation of the teacher to distill before distilling using the full network; this suggests
that the efficiency benefits of our scheme do indeed come from the fact that the layers of the teacher
network implicitly act as a curriculum, rather than merely from the increased dimensionality of the
distilled features.

For Wikipedia data, we show in Figure 3 (c) that curriculum extraction has a significant accuracy
advantage over one-shot distillation when training for 24 · 103 iterations with a batch size of 128 –
for extraction, we use 4 intermediate layers to distill, before distilling with the full teacher network.

2 CURRICULUM EXTRACTION

We now describe our curriculum extraction scheme formally.

Definition 2.1 (Curriculum Extraction Scheme). Given a pre-trained teacher network T and a
student network S, both having the same number of layers L, let Ti and Si denote the network up to
layer i (Ti : Rd → Rmi and Si : Rd → Rni). Suppose also that for some ℓ ∈ [0, L) we are given
a sequence {tℓ, . . . , tL} such that ti ∈ Z indicates the number of iterations we train Si for. The
Layer-Wise Curriculum Extraction Scheme proceeds as follows:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a DeLTa Workshop Paper at ICLR 2025

1. Initialization: Initialize the student network S with random weights.

2. Layer-Wise Training: For each i ∈ [ℓ, L− 1], such that ti > 0:

(a) Define a random projection matrix Pi : Rmi → Rni for layer i.
(b) Train Si for ti iterations to reduce the MSE loss between Si(x) and Pi(Ti(x)): Li =

1
T

∑T
t=1 ∥Si(x

(t))− Pi(Ti(x
(t)))∥22 where T is the number of training samples.

3. Train the entire student network S for tL iterations to reduce the KL-divergence loss between
S(x) and T (x).

3 LEARNING SPARSE PARITIES VIA CURRICULUM EXTRACTION

To demonstrate the effectiveness of our curriculum extraction scheme, we study its performance in
learning sparse parities. We compare our curriculum extraction scheme to one-shot distillation, where
the student is trained directly on samples generated by the teacher.

3.1 PRELIMINARIES

For our arguments in this section, we will assume WLOG that the support of the unknown parity
is S = [k]. We will learn two-layer MLP networks of the form f(x) := a · σ(Wx + b) =∑m

i=1 aiσ(wi · x + bi). where x ∈ Rd,W ∈ Rd×m and b, a ∈ Rm, and σ(t) := max(0, t) is
applied coordinate-wise when applied to a vector. We will denote the student network by fs and
the teacher network by ft with hidden dimensions ms and mt respectively. In general ms ≤ mt.
Let ℓf (x, y) := max(0, 1− f(x)y) be the hinge loss. Our main task will be to find the best fitting
two-layer MLP to an unknown sparse parity function.

Problem 3.1 (Learning Sparse Parities). Let S ⊂ [d] with |S| = k and k < d denote the support
of our unknown sparse parity. For x ∈ {±1}d, we define χS(x) :=

∏
i∈S xi to be a sparse parity

supported on S. Given a tolerance ϵ ∈ R and n samples {(xi, χS(xi)) | xi ∼u.a.r {±1} for i ∈
[0, n]} for an unknown support S, the task of learning a sparse parity function using a two-layer MLP,
is to find a two-layer MLP that achieves loss Ex∼{±1}[ℓf (x, y)] ≤ ϵ.

For our theoretical analysis, our training setup differs slightly from Definition 2.1 when it comes
to our losses – we use the hinge loss to train the teacher as well as the student’s top layer, and a
correlation-based distillation loss (defined below) to train the student’s hidden layer.

Initialization Prior to training, we will initialize the network using the following symmetric
initialization from Barak et al. (2022).

Definition 3.2 (Symmetric Initialization). Let f(x) :=
∑m

i=1 aiσ(wi · x + bi) be a two-layer
MLP with input dimension d and hidden dimension m. For each 1 ≤ i ≤ m/2, we ini-
tialize the parameters {wi}mi=1, {bi}mi=1 and {ai}mi=1 as follows: wi ∼ U({±1}d), bi ∼
U
({
−1 + 1

k , · · · , 1−
1
k

})
, ai ∼ U

({±1
m

})
, m/2 < i ≤ m are set to wi = −wi−m/2, bi =

bi−m/2, ai = −ai−m/2.

Training Algorithms: We train the teacher network ft by minimizing the hinge loss in two stages.
In the first stage of training, we freeze the top layer weights (a) and train the network with a
regularized version of ℓft(x, y), given by ℓft(x, y) − λ∥W∥2 updating only W,b. In the second
stage of training, we freeze the bottom layer weights and biases W,b and only update a.

For the student network fs, we define a distillation loss instead. Let f (1)
t := σ(W · x+ b) : Rd →

Rmt denote the output of the first layer of the teacher and suppose A ∈ Rmt×ms is a random
symmetric projection which mimics the initialization, i.e. for i ≤ mt/2, each Aij ∼ U({±1/mt})
and for i > mt/2, Aij = −A(i−m/2) j . In the first stage, the first layer of the student (i.e. f (1)

s (x) :=
σ(Wsx+ b)) is trained using the a similarly regularized version of the following distillation loss:
ℓDL(x, f

(1)
s , Af

(1)
t) = −f (1)

s (x) · (Af (1)
t (x)), i.e. ℓDL(x, f

(1)
s , Af

(1)
t)− λ∥W∥2

The second layer of the student (as) is then trained using the standard hinge loss.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a DeLTa Workshop Paper at ICLR 2025

3.2 THEORETICAL RESULTS

We prove that, compared to one-shot distillation—where the student needs at least Ω
(
dmin(2c,k−1)

)
samples to learn the unknown sparse parity—our curriculum extraction method reduces this require-
ment to Õ(2O(k)poly(k, d)). We state this formally below:

Theorem 3.3 (Curriculum Extraction Requires Fewer Samples). Suppose the teacher model (of size
O(2O(k)poly(d, k))) has been trained with 2-stage training in Algorithm 1, and achieves a loss of
O(d−c) for some constant c ≥ 1 at the end of the second stage. Suppose we train a student model fs
of size m̃ = Θ̃(2kk) using the following two strategies:

1. Random-projection curriculum extraction: Train the first layer of the student with a random
projection of the first layer of the teacher to the right output dimension, and then train the
entire student network with the final teacher network.

2. One-shot Distillation: Train with the teacher network throughout.

Then,

1. Under our distillation scheme, the total sample complexity to reach a loss of ϵ with probabil-
ity 1− δ is Θ(2O(k)poly(d, k)ϵ−2 log(k/δϵ)).

2. The necessary sample complexity under distillation is at least Ω
(
dmin(2c,k−1)

)
.

The key difference between the two is that, in one-shot distillation, the student must identify one
of Ω(dk) possible parity functions from scratch. In contrast, our scheme splits the learning into
two phases: identifying the support and learning the final function. Initially, the gradients of the
distillation loss guide the student in detecting the support of the sparse parity via the bottom layer.
With the support identified, the student only needs to select from O(2k) possible parities.

3.2.1 PROOF OVERVIEW

Without loss of generality, suppose that the support of the unknown parity S = [k]. The lower bound
on the sample complexity for one-shot distillation (Item 2 in Theorem 3.3) follows from the exact
same item in the analogous result in Panigrahi et al. (2024a) (Theorem B.1). The rest of this section
will focus on a high-level sketch of a sample complexity upper bound of Õ(2O(k)poly(k, d)) for our
curriculum extraction scheme (i.e. Item 1 in Theorem 3.3).

As stated earlier, our scheme aims to separate support recovery from loss minimization. By extracting
the support of the unknown sparse parity from the teacher using (exponentially) fewer samples than
what the teacher requires to learn the support, the student can focus on optimizing the top layer after
recovering the support.

For the sake of illustration, consider the unknown sparse parity χ[k](x) :=
∏k

i=1 xi : {±1}d →
{±1}. Our goal is to learn this function using a two-layer MLP. First, note that the parity function
χ[k](x) can be represented by a reasonably sized two-layer MLP. Since χ[k](x) depends only on the

sum
∑k

i=1 xi due to its symmetry in x1, . . . , xk, it can be rewritten as χ[k](x) = g
(∑k

i=1 xi

)
for a

univariate function g(t) mapping integers between −k and k to {±1}. A two-layer MLP with O(k)
ReLU activations can approximate this function by constructing a piecewise linear function over the
2k + 1 possible values.

If the ambient dimension is d≫ k, then this neural network may be realized by simply setting the
out-of-support coordinates of the weight vectors to be 0. Hence, if you know the parity apriori, it is
easy to construct the two-layer MLP that represents it.

In fact, it is possible to approximate the unknown sparse parity when much less is known — Theorem
4 from Barak et al. (2022) shows that the k-sparse parity can be well-approximated by training only
the top layer, given a hidden dimension of size Ω̃(2k) and random weights, provided there is a gap
between in-support and out-of-support variables of the bottom layer weights. We restate the version
of this theorem from Panigrahi et al. (2024b) in Lemma D.3.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a DeLTa Workshop Paper at ICLR 2025

Returning to our setting, we want the student’s hidden weights to meet the conditions in Lemma D.3.
From Lemma D.2 (Panigrahi et al., 2024b; Barak et al., 2022), we know that the weights of the
first teacher layer f (1)

t satisfy this condition. The first student layer f (1)
s can only obtain support

information through the gradients of the distillation loss. It turns out that it is possible to select
an appropriate regularization parameter (λ) such that the student’s first layer weights become pro-
portional to the gradients after the first step, hence it suffices to demonstrate such a gap between
the magnitudes of the in-support and out-of-support coordinates of the gradient (Barak et al., 2022;
Panigrahi et al., 2024a). Lemma E.1 shows that the gradient of the distillation loss with respect to
wi is proportional to Ex[(Af

(1)
t (x))ix + (Af

(1)
t (x))i Maj(wi ⊙ x)x], and so to estimate the gap

between different gradient coordinates, it suffices to estimate the gap between the in-support and
out-of-support coordinates of the vector above.

For the rest of this discussion, we will focus on the j-th coorindate of the first term Ex[(Af
(1)
t (x))ixj].

It will turn out that the second term is controlled by the first term. Note that , Ex[(Af
(1)
t (x))ixj] =∑ms

ℓ=1 Aiℓ Ex[σ(x · wℓ + bℓ)xj], which, after a rearrangement, can be viewed as a sum of scaled
Rademacher random variables {Aiℓ}ms

ℓ=1. Arguments from Panigrahi et al. (2024a) show that the
scaling of these random variables is significantly larger for j ∈ S rather than j /∈ S (see Figure 2 for
the distributions of these variables in our trained network).

By applying anticoncentration and concentration inequalities for sums of Rademacher random
variables to the terms above, we show that with reasonable probability over the randomness of the
top-layer weights this variance gap (over randomness of A) translates to a gap in the coordinates
of Ex[(Af

(1)
t (x))ix] for a given draw of A. We state an informal version of this below, the formal

version of which is in Lemma E.3.

Lemma 3.4 (Correlation Gap (Informal)). As long as mt = 2O(k)poly(d, k)/δ2 ≥
(m2

s k4 log(d)2/δ2), with probability 1 − δ, every coordinate i ∈ [ms] of the projected teacher
network satisfies |Ex[(Aft)i(x)xj]| > Ω̃((mtk)

−1) for all j in the support of the unknown sparse
parity, and maxj>k |Ex[(Aft)i(x)xj]| ≤ Õ((mtkd)

−1) for j that are out-of-support.

To ensure the population gap in Lemma 3.4 is witnessed by the empirical distribution, we need only
Õ(2O(k)poly(d, k)) samples. This translates to a gap in the gradient, which in turn translates to a
similar gap in the student weights after the first stage of training. Lemma D.3 then applies, which
allows us to learn the parity in a small number of samples overall.

At this point, we note an important difference between our proof and the one for progressive
distillation in Panigrahi et al. (2024a). In their work, the weights after the first stage of training are
able to adjust to the current top layer, this dependence allows them to more easily demonstrate a gap.
In fact, we also observe the effect of being able to tune to the current top layer in Figure 3 (a), where
we see that progressive distillation is able to make some progress even during the stage where we
only tune the bottom layer weights. In our setting, in the first phase of training, we train the bottom
layer of the student independently of the top layer, requiring us to rely on a different argument.

3.3 EXPERIMENTS

We investigate curriculum extraction for the problem of learning sparse parities for a Multi-Layer
Perceptron (MLP) and Transformer architectures, which we describe below:

Student and Teacher Architectures For the Multi-Layer Perceptron, both the student and teacher
are two-layer MLPs with the teacher network having a hidden dimension of 5× 104 and the student
having hidden dimension 100. For the transformer architecture, the transformer configuration has
matching embedding dimensions (256 dimensions for both teacher and student); however, the teacher
has 32 attention heads and the student has only 4. Both student as well as teacher architectures use
two decoder blocks followed by a linear projection layer.

Training and Evaluation Our distillation loss is the Mean Squared Error (MSE) and the final
checkpoint training is done using the Cross-Entropy loss. We measure performance of our model by
looking at the accuracy.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a DeLTa Workshop Paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0 2.5
FLOPs 1e13

0.0

0.2

0.4

0.6

0.8
Ac

cu
ra

cy

BERT Student Accuracy (PCFG)

One-Shot Distillation
Curriculum Extraction

(a)

4000 6000 8000
Iteration

0.86

0.87

0.88

0.89

0.90

0.91

Ac
cu

ra
cy

BERT Student Accuracy (PCFG)

One-Shot Distillation
Curriculum Extraction

(b)

0 2700 6000
Iteration

0.5

0.9

Ac
cu

ra
cy

Single Layer vs Multi-Layer Extraction

One-Shot Distillation
3 Layer Extraction
Single Layer Extraction

(c)

Figure 4: PCFG Experiments on BERT. The dashed vertical lines indicate iterations where the
layer being distilled from is changed. (a) Soon after the final checkpoint, curriculum extraction
achieves a larger accuracy in the same number of FLOPs, when compared to one-shot distillation.
(b) We compare curriculum extraction to one-shot distillation across three models trained with
two, three, and four-stage curricula at 4000, 6000, and 8000 iterations, respectively. Curriculum
extraction consistently outperforms one-shot distillation at all scales. (c) We compare curriculum
extraction performance by varying the number of layers. With a fixed budget of 6000 iterations (2700
for extraction, 3300 for full network training), extracting from three layers outperforms one-shot
distillation, and using a single layer.

3.3.1 DISCUSSION

Multi-Layer Perceptron: In Figure 3 (a), we compare the performance of MLPs trained using
one-shot distillation, layer-wise curriculum extraction, and the progressive distillation approach from
Panigrahi et al. (2024a). In both curriculum extraction and progressive distillation, we switch to the
final checkpoint at iteration 5× 105.

We observe that after 106 iterations, both methods perform comparably, with progressive distillation
achieving slightly higher accuracy. Notably, progressive distillation shows early improvement before
the 5×105 iteration mark, likely due to the MLP’s bottom layer quickly tuning to the top layer. In the
second phase of training, the top layer benefits from a well-optimized starting point. With curriculum
extraction on the other hand, the bottom layer starts randomly initialized and uncorrelated with the
top layer, limiting early gains. However, once we begin training the top layer, performance improves
rapidly, matching progressive distillation. In contrast, one-shot distillation shows no significant
improvement, even after 2 × 106 iterations. In fact, we observe in Figure 6 that our curriculum
extraction method leads to the more information about the support being transferred to the underlying
network than progressive distillation.

Transformer: In Figure 3 (b), we compare the performance of the transformer model trained using
one-shot distillation and our curriculum extraction scheme, with a checkpoint at 105 iterations. We
see that this leads to significantly improved student performance over the one-shot distillation case.

4 BERT LANGUAGE MODELING

We use BERT models trained for masked prediction, a task that involves predicting the tokens hidden
(masked) in an input sequence. Similar to Panigrahi et al. (2024a) we study this task for learning
probabilistic context-free grammars (PCFGs) and natural language modeling on the Wikipedia dataset.
We define the masked token prediction task below.

Problem 4.1 (Masked Token Prediction). Let v be a vocabulary (including the token [mask]), and
let x be a sequence of length h. We randomly choose a fraction (30%) of the positions M ⊆ [h] to
mask, with each position included independently with probability p. We create a masked input x \M
by replacing tokens in M with [mask], a random token, or leaving them unchanged with respective
probabilities 80%, 10%, 10%. The model is then trained via a cross-entropy objective to predict the
original tokens at those masked positions.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a DeLTa Workshop Paper at ICLR 2025

For sequence-to-sequence modelling our teacher and student networks map from sequences to
real vectors ft, fs : v

h → Rh×C . The teacher’s output distribution at position i is given by
p
(i)
T (x; τ) = softmax

(
[ft(x)]i / τ

)
, and p

(i)
S is defined analogously for the student. We set the

temperature τ to 10−4 for experiments on sparse parity and PCFG, and to 10−20 for Wikipedia.

Training and Evaluation For the masked prediction task, we use ℓ(x; fS) =

EM

[
1

|M |
∑

i∈M KL
(
exi
∥ p(i)S (x \ M ; τ)

)]
, where ey is a one-hot vector with a 1 at index

y for the final layer training; and the MSE for the indetermediate layers as our distillation loss. Our
final performance is measured using the top-1 accuracy on the masked tokens.

Student and Teacher Architectures For the PCFG tasks, the teacher model uses a BERT-style
architecture with a 256-dimensional embedding, 32 attention heads, and 4 transformer blocks, trained
with a batch size of 512. The student model retains the teacher’s 4-block architecture and 512 batch
size but reduces the embedding dimension to 64 and the number of attention heads to 8.
For Wikipedia language modeling, the teacher model follows a standard BERT-large configuration,
with 768-dimensional embeddings, 12 attention heads, and 12 transformer blocks, trained with a
batch size of 256. The student model preserves the teacher’s 12-block depth and 256 batch size but
reduces the embedding dimension to 256 and the number of attention heads to 4.

Probabilistic Context-Free Grammar A Probabilistic Context-Free Grammar (PCFG) generates
sentences using a hierarchical tree structure, defined by non-terminal symbols, rules, a probability
distribution over the rules, and a vocabulary of terminal symbols. PCFGs have been used as
mechanistic proxies for language data (Panigrahi et al., 2024a; Allen-Zhu & Li, 2023; Zhao et al.,
2023). We focus on masked token prediction for synthetic data from the cfg3b PCFG (Allen-Zhu & Li,
2023) (defined in Appendix F). Our layer-wise curriculum schedule outperforms one-shot distillation.
To confirm this improvement is due to the curriculum and not increased training bandwidth, we
compare models trained with different curricula but the same time steps.

4.1 DISCUSSION

PCFG Experiments: In Figure 4 (a), curriculum extraction shows FLOPS savings compared to
one-shot distillation, outperforming it after≈ 0.8× 1013 FLOPS. Additionally, its accuracy improves
at every checkpoint.

To establish that the reason for our improved performance is our scheme, In Figure 4 (b), we
implement two distinct curriculum strategies for BERT distillation to train the student network while
maintaining equivalent bandwidth across our experiments. We compare single-layer and multi-layer
extraction, both with 6000 training steps and 2700 dedicated to curriculum extraction. The single-
layer model uses one checkpoint at the end, while the three-layer model has checkpoints at 400, 1200,
and 2700 steps. Extracting from three layers improves performance, while single-layer extraction
appears to perform worse than one-shot distillation, possibly due to overfitting between the student’s
bottom layer and the teacher’s upper layers.

In Figure 4 (c) we see similar performance gains to those in Figure 4 (b) for higher bandwidth
experiments – for two, three and four-stage curricula. The two-stage curriculum skips the linear
projection and first transformer layer for iterations 1 through 500, skips just the top linear layer for
iterations 501 to 1500, and finally trains the entire network for iterations 1501 through 4000. The
three-stage curriculum skips two encoder blocks for iterations 1 through 400, skips one encoder block
for iterations 401 through 1200, and skips the final projection layer for iterations 1201 through 2700,
finally training the entire network for iterations 2701 to 6000. The four-stage curriculum skips four
encoder blocks for iterations 1 through 200, then three blocks for iterations 201 through 700, then
two blocks for iterations 701 through 1500, one block for iteration 1501 through 3000 and finally just
the final linear layer until iteration 8000.

Wikipedia In Figure 3 (c) we see that our extraction scheme also works extremely well on real-
world data. We train our BERT model for 500 iterations while skipping 4 encoder blocks, a further
1000 iterations while skipping 3 encoder blocks, a further 2000 iterations skipping one encoder block,
4000 iterations skipping the final projection layer and finally the full network for 16500 iterations.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a DeLTa Workshop Paper at ICLR 2025

REFERENCES

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 technical
report. arXiv preprint arXiv:2412.08905, 2024.

Gustavo Aguilar, Yuan Ling, Yu Zhang, Benjamin Yao, Xing Fan, and Chenlei Guo. Knowledge
distillation from internal representations. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pp. 7350–7357, 2020.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 1, context-free grammar. arXiv
preprint arXiv:2305.13673, 2023.

Rohan Anil, Gabriel Pereyra, Alexandre Passos, Robert Ormandi, George E Dahl, and Geoffrey E
Hinton. Large scale distributed neural network training through online distillation. arXiv preprint
arXiv:1804.03235, 2018.

Boaz Barak, Benjamin L. Edelman, Surbhi Goel, Sham M. Kakade, eran malach, and Cyril Zhang.
Hidden progress in deep learning: SGD learns parities near the computational limit. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/forum?id=8XWP2ewX-im.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
ICML, pp. 41–48, 2009.

Jang Hyun Cho and Bharath Hariharan. On the efficacy of knowledge distillation. In 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 4793–4801, 2019. doi: 10.1109/ICCV.
2019.00489.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Hrayr Harutyunyan, Ankit Rawat, Aditya Menon, Kim Seungyeon, and Sanjiv Kumar. Supervision
complexity and its role in knowledge distillation, 01 2023.

9

https://openreview.net/forum?id=8XWP2ewX-im
https://arxiv.org/abs/2501.12948

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a DeLTa Workshop Paper at ICLR 2025

John Hewitt and Christopher D Manning. A structural probe for finding syntax in word representations.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pp. 4129–4138, 2019.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
ArXiv, abs/1503.02531, 2015. URL https://api.semanticscholar.org/CorpusID:
7200347.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
Tinybert: Distilling BERT for natural language understanding. EMNLP Findings, pp. 4163–4174,
2020.

Tom Kocmi and Ondrej Bojar. Curriculum learning and minibatch bucketing in neural machine
translation. 2017.

M Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable models.
Advances in neural information processing systems, 23, 2010.

Chen Liang, Simiao Zuo, Qingru Zhang, Pengcheng He, Weizhu Chen, and Tuo Zhao. Less is more:
Task-aware layer-wise distillation for language model compression. In International Conference
on Machine Learning, pp. 20852–20867. PMLR, 2023.

Meta AI. Llama 3. 2024. https://ai.meta.com/blog/meta-llama-3/.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Matsukawa, and Hassan
Ghasemzadeh. Improved knowledge distillation via teacher assistant. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pp. 5191–5198, 2020.

OpenAI. Openai o1-mini, 2024. URL https://openai.com/index/
openai-o1-mini-advancing-cost-efficient-reasoning/.

Abhishek Panigrahi, Bingbin Liu, Sadhika Malladi, Andrej Risteski, and Surbhi Goel. Progressive
distillation induces an implicit curriculum. arXiv preprint arXiv:2410.05464, 2024a.

Abhishek Panigrahi, Nikunj Saunshi, Kaifeng Lyu, Sobhan Miryoosefi, Sashank Reddi, Satyen Kale,
and Sanjiv Kumar. Efficient stagewise pretraining via progressive subnetworks. arXiv preprint
arXiv:2402.05913, 2024b.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via information.
arXiv preprint arXiv:1703.00810, 2017.

S. Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert model
compression. In Conference on Empirical Methods in Natural Language Processing, 2019. URL
https://api.semanticscholar.org/CorpusID:201670719.

Terence Tao and Van H. Vu. Additive Combinatorics. Cambridge Studies in Advanced Mathematics.
Cambridge University Press, 2006.

Gemini Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context,
2024. URL https://arxiv.org/abs/2403.05530.

I Tenney. Bert rediscovers the classical nlp pipeline. arXiv preprint arXiv:1905.05950, 2019.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019.

Haoyu Zhao, Abhishek Panigrahi, Rong Ge, and Sanjeev Arora. Do transformers parse while
predicting the masked word? arXiv preprint arXiv:2303.08117, 2023.

10

https://api.semanticscholar.org/CorpusID:7200347
https://api.semanticscholar.org/CorpusID:7200347
https://ai.meta.com/blog/meta-llama-3/
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://api.semanticscholar.org/CorpusID:201670719
https://arxiv.org/abs/2403.05530

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a DeLTa Workshop Paper at ICLR 2025

A ORGANIZATION

Appendix B gives an overview of the related work. Appendices C to E aim to provide a proof of
Theorem 3.3. In Appendix C we recall some basic definitions and facts. In Appendix D we recall the
analysis of the teacher in Panigrahi et al. (2024a); Barak et al. (2022). In Appendix E we analyze the
number of samples required for our student to perform well. In Appendix F we formally define a
PCFG and recall the definition of the cfg3b grammar from Allen-Zhu & Li (2023).

B RELATED WORK

Knowledge Distillation Knowledge distillation (KD), pioneered by Hinton et al. (2015), transfers
knowledge from computationally expensive teacher models to lightweight students by aligning output
distributions. This paradigm has been widely adopted in modern language models for inference cost
reduction. Examples of models trained via distillation include ChatGPT O1-mini (OpenAI, 2024),
Gemini Flash (Team, 2024), and the Phi series of models (Abdin et al., 2024). Despite the success
of distillation, there have been a number of works (Mirzadeh et al., 2020; Cho & Hariharan, 2019;
Harutyunyan et al., 2023; Panigrahi et al., 2024a) that have observed that simply distilling using the
output of the fully trained teacher network can be suboptimal, resulting in a “teacher-student gap” in
capabilities. To circumvent this gap, these works have proposed progressive distillation, a technique
that trains the student using intermediate checkpoints during the teacher training progressively,
before training on the output of the fully-trained teacher. Panigrahi et al. (2024a) proposes that the
intermediate checkpoints act as an implicit curriculum, allowing the student to learn simpler functions
before moving to the final complex one, and shows theoretical and empirical evidence to support
these claims.

Despite its promise, progressive distillation faces some challenges – (1) storing intermediate check-
points for large models incurs prohibitive costs, (2) finding an effective checkpoint schedule to
use is done heuristically (Panigrahi et al., 2024a), requiring costly trial-and-error, (3) Most models,
including open-source ones (e.g., Llama 3 (Meta AI, 2024), Mistral (Jiang et al., 2023)) only release
final weights, making progressive distillation impossible.

Our method builds a curriculum using just the fully-trained teacher network, and thus, avoids the
shortcomings or progressive distillation. While our curriculum extraction method is related to layer-
wise distillation methods proposed in the literature (Aguilar et al., 2020; Liang et al., 2023; Jiao et al.,
2020; Sun et al., 2019), these methods typically require the teacher and student to have the same
embedding dimension. In contrast, our method uses a random projection to embed the teacher’s
hidden representation into the student’s embedding dimension, allowing us to accommodate differing
embedding dimensions. Our method also crucially relies on the stage-wise curriculum extraction of
each layer individually, while the aforementioned works typically distill teacher layers simultaneously
with the final output. Moreover, all of these works are heuristic in nature; we provide rigorous
guarantees showing the correctness of our method, albeit in a stylized setting.

Curriculum Learning Curriculum learning, formalized by Bengio et al. (2009), structures training
data by difficulty to improve learning efficiency. Early NLP work relied on handcrafted curricula
(Kocmi & Bojar, 2017), while modern approaches automate this process through self-paced learning
(Kumar et al., 2010). Recent advances, such as those by (Panigrahi et al., 2024b), demonstrate
that stagewise pretraining via incremental subnetworks achieves computational efficiency without
compromising model quality, further supporting the benefits of progressive learning paradigms.
Additionally, studies on BERT reveal that its layers encode linguistic hierarchies (Tenney, 2019;
Hewitt & Manning, 2019), suggesting that intermediate representations can scaffold learning—though
this typically requires access to intermediate checkpoints (Shwartz-Ziv & Tishby, 2017; Voita et al.,
2019).

C PRELIMINARIES

We define the Fourier expansion of a boolean function below.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a DeLTa Workshop Paper at ICLR 2025

Definition C.1 (Fourier Expansion of a Boolean Function). Let f : {−1, 1}n → R be a Boolean
function. The Fourier coefficients of f are defined as:

f̂(S) = Ex∼{−1,1}n [f(x) · χS(x)] ,

where:

• S ⊆ [n] is a subset of the input coordinates,

• χS(x) =
∏

i∈S xi is the parity function corresponding to S,

The function f can then be expressed in terms of its Fourier expansion:

f(x) =
∑
S⊆[n]

f̂(S) · χS(x).

C.1 PROPERTIES OF THE RELU FUNCTION

We will need the following properties of the ReLU function.

Lemma C.2 (Properties of ϕb(t)). Let σ(t) := max(0, t), and let a, b ∈ R. Then ϕb(a) :=
σ(a+ b)− σ(−a+ b) satisfies the following:

1. ϕb(0) = 0

2. ϕb(−t) = −ϕb(t)

3. ϕb(t) is monotonically non-decreasing in t.

Proof. The proofs follow by the definition of ϕb(a).

1. ϕb(0) = σ(b)− σ(b).

2. ϕb(−t) = σ(−t+ b)− σ(t+ b) = −ϕb(t).

3. This follows from the fact that σ(t) is monotonically non-decreasing. If t1 ≤ t2, observe
that

ϕb(t1) = σ(t1 + b)− σ(−t1 + b)

< σ(t2 + b)− σ(−t2 + b)

= ϕb(t2).

C.2 PROBABILITY FACTS

We will need the following anticoncentration and concentration inequalities for sums of scaled
Rademacher random variables.

Lemma C.3 (Littlewood-Offord Anticoncentration Lemma (Tao & Vu, 2006)). Let X1, X2, . . . , Xn

be independent random variables, each taking values in {−1,+1} with equal probability 1
2 . Let

a1, a2, . . . , an be real coefficients. Define the random sum

S =

n∑
i=1

aiXi.

The probability that S lies in an interval of length t satisfies

P[|S| ≤ t] ≤ C√
|{ai | |ai| > t}|

,

where C > 0 is an absolute constant.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a DeLTa Workshop Paper at ICLR 2025

We will also need the standard Hoeffding’s inequality.

Lemma C.4 (Hoeffding’s Inequality). Let X1, X2, . . . , Xn be independent random variables such
that ai ≤ Xi ≤ bi almost surely for each i ∈ {1, 2, . . . , n}. Define the sample mean

X =
1

n

n∑
i=1

Xi,

and let µ = E[X] be the expected value of the sample mean. Then for any t > 0,

P
(
|X − µ| ≥ t

)
≤ 2 exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
.

D TEACHER TRAINING

In this section, we recall the teacher training analysis from Panigrahi et al. (2024a). Some lemmas
from this review will be used in the analysis of our student model.

In Appendix D.1, we restate Lemma D.2, which shows that after one gradient descent step, the
in-support weights become larger than the out-of-support weights. In Appendix D.2, we recall
Lemma D.3, which establishes that if the conditions of Lemma D.2 are met, the teacher can learn the
top-level weights within O(dO(k)ϵ−2 log(dk/ϵδ)) samples, achieving a loss of at most ϵ.

Recall that we use the teacher loss is given by the hinge loss ℓft(x, y) = max(0, 1− ft(x)y).

Algorithm 1 2-stage training for teacher

Require: Timestep T2, Learning rates η1, η2, batch sizes B1, B2, weight decay λ1.
1: Inner Layer Training:
2: for t = 1 do
3: Sample B1-samples {(x(j), y(j))}B1

j=1.

4: Update the inner layer weights {w(t)
1 , . . . ,w

(t)
mt} as:

w
(t)
i ← w

(t−1)
i − η1E(x,y)∈{(x(j),y(j))}B1

j=1

[
∇wi

(
ℓft(x, y) + λ1∥w(t−1)

i ∥2
)]

5: end for
6: Outer Layer Training:
7: for t ∈ [0, T2] do
8: Sample B2-samples {(x(j), y(j))}B2

j=1.
9: Update the outer layer weights:

a(t) ← a(t−1) − η2E(x,y)∈{(x(i),y(i))}B2
i=1

[∇aℓft(x, y)]

10: end for

Our teacher is trained in exactly the same way as in Panigrahi et al. (2024a), using Algorithm 1. For
completeness, we recall conditions required for teacher training to succeed. Before we continue, we
set up some notation.

Notation

• In what follows, B1, B2 are batch sizes, i.e. number of samples drawn to estimate the
gradients in the first and second stages of training respectively. δ will denote the probability
of failure, and λ1 will denote a regularization parameter (as seen in Algorithm 1).

• τg is the error estimate of the gradient, i.e. for a network f ,∣∣∣Ex,y∼U({±1}d)

[
∇wijf(x)

]
− E{(xk,yk)}

B1
k=1

[
∇wij

f(x)
]∣∣∣ ≤ τg,.

• mt and ms denote the hidden layer sizes of the student and teacher respectively.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a DeLTa Workshop Paper at ICLR 2025

• For a, b, c ∈ R we will say a = b ± c if a ∈ [b − c, b + c]. for u, v ∈ Rd, we define
u⊙ v = (u1v1, . . . , udvd).

• θ(t) := {W(t), a(t),b(t)} denotes the parameters of the model that the algorithm recovers
at timestep t.

• Maj(x) : {±1}d → {−1, 0, 1} returns sign(
∑d

i=1 xi), where sign(0) := 0 and sign(t) :=
t/|t| for t ̸= 0.

We will also need the following lemma that controls the gradient error as a function of the batch size.

Claim D.1 (Gradient Concentration Panigrahi et al. (2024a)). Let f be a two-layer network initialized
using the symmetric initialization in Definition 3.2 with m being its hidden dimension. Fix δ, τg > 0.
For all i ∈ [m], j ∈ [d], for a randomly sampled batch of size B1, {(xk, yk)}B1

k=1, with probability at
least 1− δ, ∣∣∣Ex,y∼U({±1}d)

[
∇wij

f(x)
]
− E{(xk,yk)}

B1
k=1

[
∇wij

f(x)
]∣∣∣ ≤ τg,

provided B1 ≥ Ω
(
τ−2
g log(md/δ)

)
.

D.1 TEACHER ANALYSIS AFTER FIRST STAGE OF TRAINING

After the first stage of teacher training, the weights satisfy the property that they have larger mag-
nitudes for in-support indices compared to out-of-support indices. This property is crucial for the
second stage of training to achieve a good solution. This behavior is formally captured by the
following lemma.

Lemma D.2 (Lemma B.2 (Single step gradient descent, from Panigrahi et al. (2024a))). Let ζk denote
the kth Fourier coefficient of the majority function. Fix τg, δ > 0. Set T1 = 1. Suppose the batch size
B1 ≥ Ω(τ−2

g log(mtd/δ)). For learning rate η1 = mt

k|ζk−1| and λ1 = 1/2, the following conditions
hold true for all neurons i ∈ [m] at the end of the first stage of training with probability at least 1− δ.

1.
∣∣∣∣w(1)

ℓj −
sign(a

(0)
ℓ ζk−1) sign(χ[k]\{j}(w

(0)
ℓ))

2k

∣∣∣∣ ≤ τg
|ζk−1| , for all j ∈ [k].

2.
∣∣∣∣w(1)

ℓj −
ζk+1

|ζk−1|
sign(a

(0)
ℓ) sign(χ[k]∪{j}(w

(0)
ℓ))

2k

∣∣∣∣ ≤ τg
|kζk−1| , for all j > k.

While we do not reproduce the proof of Lemma D.2, we point out that the proof essentially follows
by demonstrating that the gradients∇wℓj

[ℓft(x, y)] initialization satisfy properties similar to the ones
stated above for w(1)

ℓj , and setting λ1 = 1/2η1 ensures that the weights after one step are proportional

to these gradients w(1)
ℓj = −η1∇wℓj

[ℓft(x, y)].

Teacher batch size: A consequence of Lemma D.2 is that, since we need the gap to be wit-
nessed by the empirical gradients, the teacher batch size will be lower bounded by B1 ≥
(d2k ζk−1)

2 log(mtd/δ) ≥ Ω(dk−1). From this, we see that even a moderate-sized teacher re-
quires Ω(dk−1) samples, according to training algorithm. In fact this holds more generally (as shown
in Panigrahi et al. (2024a)).

D.2 TEACHER ANALYSIS AFTER SECOND STAGE OF TRAINING

Under the conclusions of Lemma D.2, the second stage of training produces a function with small
loss relative to the unknown parity function, so long as the hidden layer is sufficiently large (i.e.
mt ≥ 2kk log(k/d)). This result is formalized in the following theorem, which will be used to
analyze the second stage of training for both the student and the teacher.

Lemma D.3 (Theorem 4, Barak et al. (2022), version from Panigrahi et al. (2024a)). Fix ϵ, δ > 0. Sup-
pose m ≥ Ω(2kk log(k/δ)), d ≥ Ω(k4 log(kd/ϵ)). Furthermore, suppose B1 ≥ Ω(dkk2 log(kd/ϵ))
such that the weights satisfy the conditions in Lemma D.2 with τg = O(d−kk−1d−2) after the first
phase, and let θ(t) denote the model at timestep t. Then after T2 = Ω(md2k3/ϵ2) steps of training

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a DeLTa Workshop Paper at ICLR 2025

with batch size B2 = 1 and learning rate η2 = 4k1.5/(dm(T2 − 1)), we have, with expectation over
the randomness of the initialization and the sampling of the batches:

min
t∈[T2]

E[Lθ(t)(x, y)] ≤ ϵ.

Thus, the minimal sample complexity to reach a loss of ϵ is given by:

T1 ×B1 + T2 ×B2 = Θ(dO(k)ϵ−2 log(dk/ϵδ)).

Remark: The higher sample complexity of this algorithm is not primarily due to the teacher’s
hidden dimension (since it can be set to O(2kk log(k/δ))), but rather due to the need for accurately
estimating the gradients to an error of O(d−kk−1d−2).

E STUDENT TRAINING

In this section, we analyze our student training algorithm (Algorithm 2). The student algorithm
differs from the teacher training algorithm only in the first phase, where we use the distillation loss
ℓDL(x, f, g) := −f(x) · g(x). Here, f = f

(1)
s ∈ Rms is the first layer of the student network, and

g = Af
(1)
t (x) ∈ Rms is the first layer of the teacher network projected to the student’s hidden layer

dimension.

Algorithm 2 2-stage training for teacher

Require: Timestep T2, Learning rates η1, η2, batch sizes B1, B2, weight decay λ1.
1: Inner Layer Training:
2: for t = 1 do
3: Sample B1-samples {(x(j), y(j))}B1

j=1.

4: Update the inner layer weights {w(t)
1 , . . . ,w

(t)
ms} as:

w
(t)
i ← w

(t−1)
i − η1E(x,y)∈{(x(j),y(j))}B1

j=1

[
∇wi

(
ℓDL(x, f

(1)
s , Af

(1)
t) + λ1∥w(t−1)

i ∥2
)]

5: end for
6: Outer Layer Training:
7: for t ∈ [0, T2] do
8: Sample B2-samples {(x(j), y(j))}B2

j=1.
9: Update the outer layer weights:

a(t) ← a(t−1) − η2E(x,y)∈{(x(i),y(i))}B2
i=1

[∇aℓ(x, y)]

10: end for

E.1 FIRST STAGE ANALYSIS OF THE STUDENT

Most of our effort will focus on showing that W(1)
s , the first layer of the student network after the

first stage of training, satisfies a property similar to the conclusion of Lemma D.2.

By choosing λ1 = 1/(2η1) in Algorithm 2, we obtain

w
(1)
i = −η1E(x,y)∈{(x(j),y(j))}B1

j=1

[
∇wℓ

ℓDL(x, f
(1)
s , Af

(1)
t)
]
.

Thus, it suffices to show that the gradient update for the student has larger magnitudes for in-support
coordinates than for out-of-support coordinates. This is captured in Lemma E.3 and corollary E.6,
which will be the focus of this section. We first recall some variants of lemmas from Panigrahi et al.
(2024a) which we will need.

E.1.1 PRELIMINARY SETUP

The following lemma shows that this may be expressed as a function of the fourier coefficients of
(Af

(1)
t (x))i and (Af

(1)
t (x))i Maj(wi ⊙ x).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a DeLTa Workshop Paper at ICLR 2025

Lemma E.1 (Teacher Correlation Gap implies Student Gradient Gap). Let hi(x) := (Af
(1)
t (x))i.

For all i ∈ [ms], suppose

∣∣∣E
x

[
hi(x) xj

]
+E

x

[
hi(x) Maj(wi ⊙ x)xj

]∣∣∣ = {≥ 1
mtk

, for j ∈ [k],

< 1
mtkd

, for j > k.

Then,

E
x

[
∇wij ℓDL(x, f

(1)
s , Af

(1)
t)
]
=

Ω
(

1
mtk

)
, for j ∈ [k],

o
(

1
mtkd

)
, otherwise.

Proof. At initialization, the gradient of the weight vector of neuron i at coordinate j is given by,

E
x
[∇wij

ℓDL(x, f
(1)
s , Af

(1)
t)] = −E

x
[∇wij

(f (1)
s ·Af

(1)
t)]

= −E
x
[1(wi · x+ bi ≥ 0)(Af

(1)
t)ixj]

Since |bi| < 1 and wi,x ∈ {±1}d at initialization, 1(wi ·x+bi ≥ 0) = 1
2+

Maj(wi⊙x)
2 . Substituting

this above,

E
x
[∇wij

ℓDL(x, f
(1)
s (x), Af

(1)
t (x))] = −1

2

(
E
x
[(Af

(1)
t)i(x) xj] +E

x
[(Af

(1)
t)i(x) Maj(wi ⊙ x) xj]

)

Define ϕb(a) := σ(a + b) − σ(−a + b). Then, we see that for W(0) initialized according to the
scheme in Section 3.1, the following holds:

Lemma E.2 (Bounds on coefficients). For a teacher network in the setting of Lemma D.3; with
probability 1 − δ over the randomness of initialization of bℓ, the following hold as long as mt ≥
10 log(1/δ):

1. For j ∈ [k], there are at least mt/8 values of ℓ ∈ [mt/2] satisfying |Ex [ϕbℓ (wℓ · x)xj]| ≥
Ω(1/k).

2. For all j > k and ℓ ∈ [mt/2], |Ex [ϕbℓ(wℓ · x)]| ≤ O(1/kd).

Proof. This result follows from the calculations in the “estimates of in-support correlations” and
“estimations of out-of-support correlations” sections of Lemma B.5 in Panigrahi et al. (2024a) (pages
25–26).

Item 1 follows from the analysis in the “estimates of in-support correlations” section, which shows
that with probability at least 1/2 over the randomness of bℓ,

|Ex[ϕbℓ(wℓ · x)xj]| ≥
1

4k
−O(τgd|ζk−1|−1).

Applying Hoeffding’s inequality to this event, we conclude that if mt ≥ Ω(log(1/δ)), then with
probability 1− δ, at least mt/8 neurons satisfy

|Ex[ϕbℓ(wℓ · x)xj]| ≥
1

16k
−O(τgd|ζk−1|−1).

Item 2 follows directly from the “estimations of out-of-support correlations” section.

The error term 2dτg|ξk−1|−1 for the trained teacher network is controlled by setting τg appropriately.
Note that this is not something that affects the student sample complexity.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a DeLTa Workshop Paper at ICLR 2025

E.1.2 TEACHER CORRELATION GAP AND GRADIENT CORRELATION GAP

Most of our effort will now focus on establishing the hypothesis of Lemma E.1. In this section, we
demonstrate a gap between the in-support and out-of-support indices j ∈ [d] for any fixed i in the
expression, Ex[(Af

(1)
t)i(x) xj] +Ex[(Af

(1)
t)i(x) Maj(wi ⊙ x) xj].

In Lemma E.3 we show this gap for the first term, Ex[(Af
(1)
t)i(x) xj]. In Corollary E.6 we show

this gap for the second term Ex[(Af
(1)
t)i(x) Maj(wi ⊙ x) xj]. In what follows, we will suppress

the dependence on i, as the argument is identical for each output coordinate i. We reuse this variable
instead to range over the teacher hidden dimension.

Lemma E.3 (Correlation Gap for One Projected Teacher Dimension). Let f(x) :=
∑mt

i=1 a
(0)
i σ(wi ·

x + bi) and fr(x) =
∑mt

i=1 a
r
iσ(wi · x + bi), where ari are independently drawn u.a.r. from

U({±1/mt}) for i ∈ [mt/2] and ari+mt/2
= −ari , and a

(0)
i and W(0) are initialized according to

the initialization scheme in Section 3.2.1. Let mt ≥ Ω(k4 log(d)2/δ2), then

min
j∈[k]

∣∣∣E
x
[fr(x)xj]

∣∣∣ > 1

mtk
and max

j>k

∣∣∣E
x
[fr(x)xj]

∣∣∣ < 1

mtkd

Proof. To make it easier for us to estimate Ex[f
r(x)xj], we can rewrite fr(x):

fr(x) =

mt∑
i=1

ariσ(wi · x+ bi)

=

mt/2∑
i=1

ari (σ(wi · x+ bi)− σ(−wi · x+ bi))

The final equality follows by combining the terms for ℓ = i and ℓ = i+mt/2.

Define ϕb(a) := σ(a+ b)− σ(−a+ b). Using the linearity of expectation after multiplying by xj ,
we obtain:

Ex[f
r(x)xj] =

mt/2∑
i=1

ariEx [ϕbi(wi · x)xj] .

To derive bounds on Ex[f
r(x)xj], we interpret the right-hand side as a sum of Rademacher random

variables scaled by coefficients. The remainder of the proof relies on anti-concentration and concen-
tration inequalities for such sums. To apply these inequalities, we require bounds on the coefficients
ari , specifically Ex[ϕbi(wi · x)xj]. These bounds are provided by Lemma E.2 implicit in Panigrahi
et al. (2024a)

Given Lemma E.2, we apply the Littlewood-Offord lemma (Lemma C.3) to show that the sum∑mt/2
i=1 ari Ex[ϕbi(wi · x)xj] cannot be too small with large probability.

Pr
ar
i

∃j ∈ [k].

∣∣∣∣∣∣
mt/2∑
i=1

ari E
x
[ϕbi(wi · x)xj]

∣∣∣∣∣∣ ≤ Ω

(
1

mtk

)  ≤ O

(
k
√
mt

)
, (1)

where the final k on the right hand side is a consequence of a union bound over j ∈ [k]. Similarly, an
consequence of Hoeffding’s inequality (Lemma C.4) and Item 2 in Lemma E.2 is,

Pr
ar
i

∃j > k.

∣∣∣∣∣∣
mt/2∑
i=1

ari E
x
[ϕbi(wi · x)xj]

∣∣∣∣∣∣ > O

(
1

mtkd

)  ≤ d exp(−2mt) (2)

Hence, if mt ≥ Ω(k4 log(d)2/δ2) we see that with probability at least 1− δ,

min
j∈[k]

∣∣∣∣∣∣
mt/2∑
i=1

ari E
x
[ϕbi(wi · x)xj]

∣∣∣∣∣∣ > Ω

(
1

mtk

)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a DeLTa Workshop Paper at ICLR 2025

and

max
j>k

∣∣∣∣∣∣
mt/2∑
i=1

ari E
x
[ϕbi(wi · x)xj]

∣∣∣∣∣∣ < O

(
1

mtkd

)

Whenever d > k, this difference is Ω(1/mtk
2).

We now focus on getting similar bounds on Ex[f
r(x) ·Maj(w ⊙ x)xj]. To bound the first term, we

must first bound all the Fourier coefficients (Definition C.1) of fr(x). This is necessary because the
degree-1 Fourier coefficients of a product of Boolean functions (in this case fr(x) and Maj(w ⊙ x))
depend on their entire Fourier expansions (see Lemma E.4 below).

Lemma E.4 (Fourier Coefficients of Inner Product). Let f, g : {−1, 1}n → R be two Boolean
functions with Fourier expansions:

f(x) =
∑
S⊆[n]

f̂(S)χS(x) and g(x) =
∑

T⊆[n]

ĝ(T)χT (x),

where χS(x) =
∏

i∈S xi are the parity (Walsh) basis functions, and f̂(S), ĝ(T) are the Fourier
coefficients of f and g, respectively.

Then, the Fourier coefficients of the inner product h(x) = f(x) · g(x) are given by:

ĥ(S) =
∑

T⊆[n]

f̂(T)ĝ(S△T),

where S△T denotes the symmetric difference of the sets S and T .

These bounds on the expansion of (Af
(1)
t) follow from the following modified versions of Lemma

B.5 and Corollary B.6 from Panigrahi et al. (2024a), which we state below.

Lemma E.5 (Correlation within-support variables). Under the event that the conditions in Lemma D.2
are satisfied by each neuron, which occurs with probability at least 1− δ w.r.t. the randomness of
initialization as long as mt ≥ Ω(m2

s k4 log(d)2/δ2), the output of the model after the first phase
satisfies the following conditions:

1. Ex,y

[
(Af

(1)
t)i(x)xj

]
≥ Ω(1

mtk
) for all j ∈ S.

2. Ex,y

[
(Af

(1)
t)i(x)xj

]
≤ O

(
1

mtkd

)
for all j /∈ S.

3. Ex,y

[
(Af

(1)
t)i(x)χS(x)

]
≤ O

(
τgd|ζk−1|−1

)
for all S with even |S|.

4.
∥∥∥(Af

(1)
t)i(x)

∥∥∥2
2
= Ex,y

[
(Af

(1)
t)i(x)

]2
≤ O

(
d
k

)
.

Proof. The proofs of the first two items follow from Lemma E.3. The proofs of the second two items
are exactly the same as the proofs of Items 3 and 4 of Lemma B.5 in Panigrahi et al. (2024a)

Lemma E.5 now allows us to recover the following variant of Corollary B.6 from Panigrahi et al.
(2024a), effectively obtaining a similar gap for Ex,y[f

r(x) ·Maj(w ⊙ x)xj].

Corollary E.6 (Fourier expansion of fr(x)). Let fr(x) be defined as in Lemma E.2 and suppose the
conditions in Lemma E.2 are satisfied by each neuron, which occurs with probability at least 1− δ
with respect to the randomness of initialization and sampling, the output of the model after the first
phase can be given as:

fr(x) =

k∑
j=1

cjxj +

d∑
j=k+1

cjxj +
∑
S⊆[d]

|S|%2=1,|S|≥3

cSχS(x) +
∑
S⊆[d]

|S|%2=0

cSχS(x),

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a DeLTa Workshop Paper at ICLR 2025

where

|cj | ≥ Ω((kmt)
−1), for all 1 ≤ j ≤ k,

|cj | ≤ O((kdmt)
−1), for all j > k,

|cS | ≤ O(τgd|ζk−1|−1), for all S ⊆ [d] with |S|%2 = 0,

|cS | ≤ O(d/k), for all S ⊆ [d] with |S|%2 = 1.

As such, given a fixed w, the following correlations hold true for all i:

Ex,y [f
r(x) ·Maj(w ⊙ x)xi] = O(τgd

5/3|ζk−1|−1).

If the batch size B1 is set such that B1 ≥ Ω(k2d10/3ζ−4
k−1) and τg ≤ O(k−1d−5/3|ζk−1|m−1

t), then
the following holds for all i:

Ex,y [f
r(x) ·Maj(w ⊙ x)xj] ≥ Ω((mtk)

−1), if j ∈ [k],

Ex,y [f
r(x) ·Maj(w ⊙ x)xj] ≤ o((mtkd)

−1), if j /∈ [k].

Proof. Observe that for a fixed w,

Ex,y [f
r(x) ·Maj(w ⊙ x)xi] = E

x,y

 d∑
j=1

cjxj Maj(w ⊙ x)xi

+
∑

S⊂[d],|S|%2=1,|S|≥3

E
x,y

[cS Maj(w ⊙ x)χS(x)xi]

+ E
x,y

 ∑
S⊂[d],|S|%2=0

cs Maj(w ⊙ x)χS(x)xi

 .

Since Maj(w⊙x) is an odd function (for a fixed w), Ex,y[Maj(w⊙x)χS(x)xi] = 0 for |S|%2 = 1.
This allows us to remove the term. A similar argument holds for the first term, giving us

Ex,y [f
r(x) ·Maj(w ⊙ x)xi] = ci E

x,y
[Maj(w ⊙ x)] + E

x,y

 ∑
S⊂[d],|S|%2=0

cs Maj(w ⊙ x)χS(x)xi

 .

The first term is 0 because Ex,y[Maj(w ⊙ x)] = 0, since, Maj(w ⊙ x) = −Maj(w ⊙ (−x)). The
second term may be bounded as follows,∣∣∣∣∣∣Ex,y

∑
S⊂[d],S%2=0

cS Maj(w ⊙ x)χS(x)xi

∣∣∣∣∣∣
≤ O(τgd|ζk−1|−1) ·

 ∑
S⊂[d],S%2=0

| E
x,y

Maj(w ⊙ x)χS(x)xi|


≤ O(τgd|ζk−1|−1) ·

 ∑
S⊂[d],S%2=0

| E
x,y

Maj(w ⊙ x)χS(x)|


≤ O(τgd|ζk−1|−1) ·

 ∑
S⊂[d],S%2=0

Θ

(
|S|−1/3(

d
|S|
))


≤ O(τgd

5/3|ζk−1|−1)

Where the bounds follow from standard bounds on the Fourier coefficients of the majority function.
By ensuring that the batch size B1 ≥ Ω̃(τ−2

g) , we see that for τg ≤ O(k−1d−5/3ζ−2
k−1m

−1
t) we see

that Ex,y[(Af
(1)
t)(x)Maj(w ⊙ x)xi] = o(1

mtdk
).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a DeLTa Workshop Paper at ICLR 2025

E.2 STUDENT SAMPLE COMPLEXITY

Lemma E.7 (Student version of Theorem 4, Barak et al. (2022)). Let a teacher ft with hidden
dimension mt = Θ(2O(k) log(d)2/δ2) ≥ m2

s k
4 log(d)2/δ2 be trained in the setting of Lemma D.3.

Furthermore, for student training Algorithm 2 B1 ≥ k2d2 log(kd/δ), η1 = mt. Then after T2 =
Ω(msd

2k3/ϵ2) steps of training with batch size B2 = 1 and learning rate η2 = 4k1.5/(dm(T2−1)),
we have, with expectation over the randomness of the initialization and the sampling of the batches:

min
t∈[T2]

E[Lθ(t)(x, y)] ≤ ϵ.

Thus, the minimal sample complexity to reach a loss of ϵ for the student is given by:

T1 ×B1 + T2 ×B2 = Θ(2O(k)d2ϵ−2 log(k/δϵ)).

Proof. For the first stage, the sample complexity of the student is determined by two key factors: (1)
the lower bound on mt required to ensure that, after random projection, (Aft)ℓ for each ℓ ∈ [ms]
satisfies the conclusion of Lemma E.3, and (2) the sample complexity required to obtain a sufficiently
precise gradient estimate so that the gap can be observed.

To ensure that the overall event occurs with probability δ, applying a union bound over the ms

coordinates to the conclusions of Lemmata 3.4 and E.3 results in a lower bound on the teacher’s
hidden dimension, given by mt ≥ k4 log(d)2m2

s

δ2 . As long as mt = Θ(2O(k) log(d)2/δ2), the rest of
the argument follows.

By applying the conclusions of Lemmata 3.4 and E.3 to Lemma E.1, we know that the expected
gradient has in-support coordinates of Ω(1/mtk) and out-of-support coordinates of O(1/mtkd).
After one step of gradient descent with an appropriate regularization parameter (λ1 = 1/2η), we
have wi = −ηEx,y

[
∇wi

ℓDL(x, f
(1)
s , Af

(1)
t)
]
.

The gradient estimate needs to be accurate up to an error of O((kdmt)
−1). Setting |τg| =

O(2−Ω(k) log(k/d)−1) for the student in Claim D.1 ensures that B1 = O(2O(k) log(kd/δ)) is
sufficient. We then set η = mt to ensure that the gap between the student weights matches the gap in
Panigrahi et al. (2024a) and is bounded below by Ω(1/k2).

The sample complexity for the second stage is exactly the same as in Lemma D.3, and the exponential
dependence arises from there.

Remark: We observe that even when the gap between the teacher’s width and the student’s
width is only polynomial, the teacher requires Ω(dk−1) samples, while the student only needs
Õ(2O(k)poly(d, k)) samples, since mt = Õ(2O(k)poly(d, k)). This difference arises because of the
difference in the magnitude of the gap between the in-support and out-of-support coordinates of the
gradient in these two cases.

F PROBABILISTIC CONTEXT-FREE GRAMMARS

In this section we formally define a PCFG.

Definition F.1 (Probabilistic Context-Free Grammar (PCFG)). A Probabilistic Context-Free Gram-
mar (PCFG) is a 5-tuple (N,Σ, S,R, P) where:

• N is a finite set of non-terminal symbols

• Σ is a finite set of terminal symbols (N ∩ Σ = ∅)

• S ∈ N is the distinguished start symbol

• R ⊆ N × (N ∪ Σ)∗ is a finite set of production rules

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a DeLTa Workshop Paper at ICLR 2025

• P : R→ [0, 1] is a probability function satisfying:

∀A ∈ N,
∑

(A→β)∈R

P (A→ β) = 1

The probability of a derivation tree T is given by:

P (T) =
∏

(A→β)∈T

P (A→ β)

In cfg3b, the PCFG is constructed such that the degree for every non-terminal A is 2. In any gener-
ation rule, consecutive pairs of symbols in the generated strings are distinct. The 25%, 50%, 75%,
and 95% percentile string lengths generated by the PCFG are 251, 278, 308, and342, respectively,
we refer to the commonly cited Figure 5 below from Allen-Zhu & Li (2023).

22 → 21 20
22 → 20 19

19 → 16 17 18
19 → 17 18 16
20 → 17 16 18
20 → 16 17
21 → 18 16
21 → 16 18 17

16 → 15 13
16 → 13 15 14
17 → 14 13 15
17 → 15 13 14
18 → 15 14 13
18 → 14 13

13 → 11 12
13 → 12 11
14 → 11 10 12
14 → 10 11 12
15 → 12 11 10
15 → 11 12 10

10 → 7 9 8
10 → 9 8 7
11 → 8 7 9
11 → 7 8 9
12 → 8 9 7
12 → 9 7 8

7 → 3 1
7 → 1 2 3
8 → 3 2
8 → 3 1 2
9 → 3 2 1
9 → 2 1

Figure 5: cfg3b from Allen-Zhu & Li (2023). Vocabulary is {1, 2, 3}. Indentation reflects production
hierarchy.

We also we show similar performance gains to those we observe in Section 4 for experiments with
larger bandwidth. In particular, for experiments with a total of 6000 and 8000 iterations respectively,
with three and four-stage curricula.

G MISCELLANEOUS FIGURES

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a DeLTa Workshop Paper at ICLR 2025

0 100000 200000 300000 400000 500000
Iteration

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Co
rre

la
tio

n Progressive distillation, in support average
Progressive distillation, out of support average
Curriculum Extraction, in support average
Curriculum Extraction, out of support average

Figure 6: MLP Projection vs Layer Correlation We look at the magnitude of the correlations of the
hidden layer weights of the depth-two MLP with the support of a 100-dimensional 6-sparse parity
after the first phase of training. We observe that the curriculum extraction in-support coverage is
significantly larger the out-of-support coverage, and with a significantly larger advantage than that
for progressive distillation.

.

22

	Introduction
	Our Results

	Curriculum Extraction
	Learning Sparse Parities via Curriculum Extraction
	Preliminaries
	Theoretical Results
	Proof Overview

	Experiments
	Discussion

	BERT Language Modeling
	Discussion

	Organization
	Related Work
	Preliminaries
	Properties of the ReLU Function
	Probability Facts

	Teacher Training
	Teacher analysis after first stage of training
	Teacher analysis after second stage of training

	Student Training
	First stage analysis of the student
	Preliminary Setup
	Teacher correlation Gap and Gradient Correlation Gap

	Student sample complexity

	Probabilistic Context-Free Grammars
	Miscellaneous Figures

