
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LOSSLESS COMPRESSION: A NEW BENCHMARK FOR
TIME SERIES MODEL EVALUATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The evaluation of time series models has traditionally focused on four canonical
tasks: forecasting, imputation, anomaly detection, and classification. Although
these tasks have made significant progress, they primarily assess task-specific per-
formance and do not rigorously measure whether a model captures the full genera-
tive distribution of the data. We introduce lossless compression as a new paradigm
for evaluating time series models, grounded in Shannon’s source coding theorem.
This perspective establishes a direct equivalence between optimal compression
length and the negative log-likelihood, providing a strict and unified information-
theoretic criterion for modeling capacity. Then we define a standardized evalu-
ation protocol and metrics. We further propose and open-source a comprehen-
sive evaluation framework TSCom-Bench, which enables the rapid adaptation of
time series models as backbones for lossless compression. Experiments across
diverse datasets on state-of-the-art models, including TimeXer, iTransformer, and
PatchTST, demonstrate that compression reveals distributional weaknesses over-
looked by classic benchmarks. These findings position lossless compression as a
principled task that complements and extends existing evaluations for time series
modeling.

1 INTRODUCTION

Time series modeling is a fundamental branch of machine learning with critical applications in fi-
nance, healthcare, climate science, and industrial operations Sakib et al. (2025). Recent advances in
deep learning have pushed the field from early recurrent and convolutional networks to models uti-
lizing self-attention and hybrid architectures, which demonstrate remarkable performance across a
variety of settings Kim et al. (2025); Mahmoud & Mohammed (2024). However, a central challenge
remains unresolved: how to systematically and rigorously evaluate their modeling capacity.

Currently, the time series research widely relies on four canonical benchmark tasks: forecasting,
anomaly detection, imputation, and classification Jin et al. (2024). While these tasks have unde-
niably advanced the field, they exhibit an inherent limitation: their optimization objectives do not
directly correspond to a model’s ability to capture the global statistical structure of a sequence. In
other words, they primarily validate task-specific functionality but fail to provide a comprehensive
assessment of distributional modeling capacity. Specifically, forecasting tasks typically minimize
MSE or MAE, which can be satisfied by short-term lags or average baselines while overlooking tail
risks and regime shifts Jean (2025). Classification tasks may achieve high accuracy by focusing on
a few features strongly correlated with labels, ignoring the majority of temporal dependencies Sun
et al. (2024). Imputation tasks are optimized under artificially masked conditions, emphasizing local
consistency rather than global distributional fidelity Zhang et al. (2024). Anomaly detection empha-
sizes distinguishing between “normal” and “abnormal” boundaries Lee et al. (2024). Therefore,
these four tasks are closer to functional validation. They can demonstrate that a model is useful in
specific applications, but they cannot answer a deeper question: does the model truly capture the
entropy structure and generative regularities of time series?

Addressing this gap requires an evaluation perspective that directly characterizes the generative
distribution rather than merely assessing task-specific performance. Lossless compression in infor-
mation theory provides precisely such a bridge. Recent studies have highlighted a close connection
between language modeling and lossless compression. DeepMind’s work formalizes that autore-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

gressive models paired with arithmetic coding act as universal compressors Delétang et al. (2023a).
Marcus Hutter, founder of the Hutter Prize, argues that intelligence can be measured by the ability to
compress data effectively Kipper (2021). For time series, the connection with lossless compression
is even more natural Wan et al., as the act of predicting each subsequent byte is a granular test of
the model’s ability to approximate the true conditional probability of the underlying data-generating
process Mao et al. (2022). A model that achieves strong compression must have learned to rep-
resent complex, multi-level dependencies in a compact, low-entropy form Delétang et al. (2023a).
Furthermore, much like forecasting or classification which are valuable applications, lossless com-
pression is a critical real-world task for efficient data storage and transmission Elakkiya & Thivya
(2022). Therefore, our work innovatively introduces lossless compression as a new benchmark for
time series evaluation. The main contributions of this work are summarized as follows:

• A novel evaluation task: We introduce lossless compression as an independent benchmark
task, complementing and extending the existing four canonical tasks.

• Theoretical grounding: We rigorously derive the equivalence between compression ob-
jectives and probabilistic modeling goals, highlighting its unique role in optimization, in-
formation constraints, and modeling granularity.

• Pluggable compression framework: We propose and open-source TSCom-Bench, a stan-
dardized lossless compression evaluation framework that allows seamless integration of
time series models as backbones and outputs a comprehensive suite of evaluation metrics.

• Comprehensive empirical study: We conduct extensive experiments on diverse real-
world and synthetic datasets, benchmarking both classical compressors and modern
learning-based time series models.

2 PRELIMINARIES AND MOTIVATION

2.1 MULTIVARIATE TIME SERIES AND OPTIMAL CODE LENGTH

We consider a multivariate time series X = {xt ∈ Rd}Tt=1, where T is the total time steps and
each observation xt ∈ Rd is a d-dimensional vector at a given time step t, with d denoting the
number of channels. From an information-theoretic perspective, the x<t = (x1, . . . , xt−1) denotes
the history of observations before t, the goal is equivalent to accurately approximating the true
conditional probability. According to Shannon’s source coding theorem Barron et al. (1998), the
theoretical optimal expected code length of X under an ideal entropy coder is asymptotically equal
to its negative log-likelihood (NLL):

L∗(X) = −
T∑

t=1

log2 P (xt | x<t), (1)

where L∗(X) is the optimal code length in bits required to encode the entire sequence X . The
term P (xt | x<t) within the summation is the true conditional probability of observing xt given
all previous observations x<t. This equivalence implies that a model’s ability to compress a time
series is a direct measure of how well it approximates the true data-generating process Gruver et al.
(2023).

2.2 FROM MULTIVARIATE TIME SERIES TO SYMBOLIC STREAMS

To apply compression-based evaluation, the continuous time series X must be mapped to a discrete
sequence. Let f : Rd → Ak be a bijective encoding function, where A is a finite alphabet (e.g.,
bytes, where |A| = 256) and k is the number of symbols required to represent a single real number
(e.g., k = 4 for a 32-bit float). Assuming a homogeneous data type across all channels. This function
maps the time series X to a symbolic stream S:

S = f(X) ∈ AL, where L = T · d · k. (2)
Here, S is the resulting byte stream, and L is the total length in bytes. If the encoding function f
is bijective, then the Shannon entropy measured in bits, using base-2 logarithms log2, denoted by
H(·), is preserved between the original time series X and its encoded stream S:

H(X) = H(S). (3)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

This equality holds exactly under a perfect bijective mapping. In practice, when continuous values
are quantized, a small approximation error may occur, but it vanishes as the quantization becomes
infinitely precise (Cover & Thomas, 2006). Therefore, byte-level compression faithfully reflects the
probabilistic modeling quality for real-valued multivariate time series.

2.3 COMPRESSION OBJECTIVE AND KL DIVERGENCE

The central quantity in compression is the expected code length. For a byte stream S drawn from the
true data distribution P , a model Qθ parameterized by θ assigns a likelihood via an autoregressive
factorization:

Qθ(S) =

L∏
i=1

Qθ(si | s<i), (4)

where si is the i-th symbol in the stream S of total length L, and s<i denotes the history of preceding
symbols. The compression loss Lcomp is defined as the expected negative log-likelihood:

Lcomp(θ) = ES∼P

[
− log2 Qθ(S)

]
. (5)

This loss decomposes into Shannon entropy and KL divergence:

Lcomp(θ) = H(P) + KL(P∥Qθ), (6)

where H(P) is the Shannon entropy of the true distribution P , and KL(P∥Qθ) is the Kullback-
Leibler (KL) divergence between P and Qθ. Thus, minimizing Lcomp is equivalent to minimizing
the KL divergence, which forces the model distribution to align with the true data distribution. The
derivation process establishes compression as the most principled evaluation: only if a model fully
captures the distribution will it achieve near-optimal compression.

3 OVERALL COMPRESSION ARCHITECTURE

The overall lossless compression evaluation architecture integrates byte stream serialization, time
series probabilistic modeling, and arithmetic encoding into a unified pipeline, as shown in Fig-
ure 1. First, the uncompressed file is read as a byte stream, forming the byte stream serialization
(s1, s2, . . . , si−1) that is fed into the time series model to derive the probability distribution Qθ of
the next byte si. Then, these probability vectors are fed into an arithmetic encoder for arithmetic en-
coding. The arithmetic encoder is a standard entropy coding algorithm that first performs cumulative
probability calculation, then iteratively reduces the unit interval based on the predicted probabilities
to assign each byte to a sub-interval. Through continuous interval narrowing, the entire sequence
is represented by a final interval. This final interval is converted into the shortest binary fraction
to generate a compressed bitstream that ultimately forms the compressed file. This compressed file
can be accurately decoded back to the original file through reverse processing. Thus, this archi-
tecture unifies probabilistic modeling and compression, which is reflected in the fact that the more
accurately a time series model captures temporal dependencies, the more efficient its compression
becomes.

Figure 1: Overall lossless compression architecture. Byte-level encoding, probabilistic modeling,
and arithmetic coding are combined into a unified pipeline.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 COMPARISON WITH CANONICAL TASKS

We provide a comparison between lossless compression and the four canonical evaluation tasks
widely used in time series modeling: forecasting, imputation, anomaly detection, and classification.
The differences in evaluation of these tasks will be discussed in the appendix.

Unified View. The canonical tasks can be abstractly interpreted as minimizing a divergence between
projected statistics of the true and model distributions. This can be conceptualized as:

Ltask(θ) ≈ d(ϕ(P), ϕ(Qθ)), (7)

where Ltask represents a generic task loss, ϕ is a function that extracts a relevant statistic (e.g., the
conditional mean for forecasting), and d(·, ·) is a generic distance or divergence measure. These
projections constrain only partial aspects of the distribution.

Illustrative Counterexample. Consider a time series generated by a binary mixture process. For
any history x<t, the next value xt is drawn from the conditional distribution:

P (xt | x<t) =
1

2
δ(xt − (µ− a)) +

1

2
δ(xt − (µ+ a)), (8)

where µ, a ∈ R with a > 0 are fixed constants, and δ(·) is the Dirac delta function, which we use
to compactly represent a two-point discrete distribution. The conditional mean of this process is
always Ep[xt | x<t] = µ. A forecasting model that always predicts this conditional mean, x̂t = µ,
achieves an MSE of:

Ep

[
(xt − µ)2

]
= a2, (9)

which is the optimal solution for minimizing MSE. For a conceptual illustration, suppose a model
Qθ incorrectly assumes a narrow Gaussian distribution, N (µ, σ2), where the variance σ2 ≪ a2.
This model’s mean prediction is also µ, so its MSE remains near-optimal. However, its compression
performance, measured by the cross-entropy − log2 Qθ(xt | x<t) will be extremely poor. The
model Qθ assigns negligible probability density to the only two points that can actually occur, xt =
µ ± a, causing the negative log-likelihood to diverge towards infinity. Therefore, a model can
appear successful under forecasting metrics while failing under compression, which demonstrates
that compression provides a stricter and more informative evaluation.

5 BENCHMARK DESIGN AND METHODOLOGY

We propose a standardized benchmark that evaluates time series models via lossless compression,
providing a rigorous and reproducible methodology and protocols.

5.1 ENCODING CONVENTIONS

To guarantee both losslessness and reproducibility, we recommend a canonical encoding scheme:

• Numeric representation. Each real-valued observation is stored in IEEE-754 32-bit/UTF-
8 format (16/64-bit can be evaluated in ablations). Every float is decomposed into k = 4
bytes, each a symbol from A with |A| = 256. Bytes are concatenated in a fixed order
(channel-first, then time), yielding the symbol stream S = f(X).

• Bijectivity. The mapping f : X 7→ S is deterministic and invertible, ensuring exact
recovery of the original sequence via f−1.

• Preprocessing. Any preprocessing (e.g., missing value imputation, normalization, bound-
ary alignment) must be standardized and released with the dataset package.

• Alternative encodings. Other discretization schemes (e.g., histogram binning, lossy quan-
tization) may be studied, but benchmark results should always report the canonical byte-
level encoding for comparability.

5.2 MODEL-TO-CODER INTERFACE

Time series models are treated as predictors that interface with a lossless entropy coder.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

• Interface. For each prefix s<i, the model outputs a probability vector Qθ(· | s<i) over A.
• Training paradigms. Two primary training paradigms are supported: (i) Autoregres-

sive models are trained directly on symbol streams (default); or (ii) density estimators are
trained on raw values and subsequently mapped to discrete probabilities.

• Entropy coder. An arithmetic coder consumes the probability vectors together with the
ground-truth sequence S. Encoding length equals the negative log-likelihood.

• Numerical stability. Probability vectors must be properly normalized; log-space accumu-
lations or fixed-precision mappings are recommended to avoid underflow or mismatch.

5.3 EVALUATION PROTOCOL AND METRICS

To ensure comparability, models are trained on the designated training split and evaluated on held-
out test sequences, with no adaptive coding across training and test allowed. All preprocessing,
random seeds, and hyperparameters should be fixed and released to ensure strict reproducibility.
We report metrics for both compression efficiency and runtime. These include bits per byte (bpb),
compression ratio (CR), and Compression Throughput (CT), defined as:

bpb =
Lcomp(Qθ, S)

L
, CR =

Lcomp(Qθ, S)

8 · L
, CT =

L/1024

Tcompress
, (10)

where Lcomp(Qθ, S) is the total compressed length in bits, L is the original length of the byte stream
S in bytes, and Tcompress is the compression time in seconds.

5.4 OPEN-SOURCE TSCOM-BENCH FRAMEWORK

Models in TSCom-Bench are evaluated in their standard architectural form. We do not change the
backbone structure. It is worth noting that we are a new compression task parallel to prediction,
classification tasks, etc., and will not perform secondary fine-tuning based on the training model.
Any autoregressive backbone used for forecasting or classification can be adapted with very little
code, usually fewer than 20 lines of code. We strongly encourage releasing preprocessing code,
training scripts, and entropy coding implementations. All components of this benchmark have been
open-sourced in the TSCom-Bench framework, which provides standardized encoding functions,
reference coders, datasets, and evaluation scripts for direct and reproducible comparison. Codes are
available in https://anonymous.4open.science/r/TSCom-Bench-8262.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Datasets. We evaluate on a diverse collection of widely used multivariate time series benchmarks,
including PEMS08, Traffic, Electricity, Weather, ETTh2 and Solar datasets. For PEMS08 we follow
standard practice and use the publicly released compressed NumPy archive (.npz), whose byte
stream is already stored in a ZIP-based container and later serves as a negative control for calibrating
our benchmark. In addition, we include standard lossless compression benchmarks such as Enwik9
(Wikipedia text), Image (raw image bitmaps), Sound (audio waveforms), Float, Silesia and Backup
archives.

Baselines. We compare against representative state-of-the-art forecasting backbones widely adopted
in time series research, including Transformer-based models Informer Zhou et al. (2021), Auto-
former Wu et al. (2021), PatchTST Nie et al. (2022), SCINet Liu et al. (2022), iTransformer Liu et al.
(2023), TimeXer Wang et al. (2024), lightweight linear approaches DLinear Zeng et al. (2023) and
recent hybrid architectures LightTS Campos et al. (2023). Classical compressors such as Dzip Goyal
et al. (2021) and NNCP Bellard (2019) is also included for reference.

Environments and Parameters. All experiments are implemented in PyTorch 2.1 and executed on
NVIDIA Tesla P100 GPUs. For neural baselines, we adopt standard training protocols following
prior work: the sequence length is fixed at 96, and data are normalized with RevIN preprocess-
ing. Optimization uses Adam with learning rates selected from {10−3, 10−4}, and employs early
stopping based on validation loss. For evaluation, we report bpb, CR and CT for comparison.

5

https://anonymous.4open.science/r/TSCom-Bench-8262

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Lossless compression results on six benchmark time series datasets. CT is measured in
KB/s. The best results are highlighted in bold, and the second best are underlined.

Dataset TimeXer
(2025)

iTransformer
(2024)

PatchTST
(2023)

Autoformer
(2023)

DLinear
(2023)

LightTS
(2023)

SCINet
(2022)

Informer
(2021)

CR CT CR CT CR CT CR CT CR CT CR CT CR CT CR CT

PEMS08 0.978 12.55 0.978 18.13 0.978 9.63 0.980 3.24 0.996 30.92 0.989 17.41 0.980 2.74 0.979 2.74

Traffic 0.137 15.58 0.141 23.21 0.137 11.89 0.151 3.27 0.155 60.06 0.174 24.63 0.140 1.29 0.167 4.18

Electricity 0.112 16.19 0.142 23.06 0.115 12.32 0.194 3.26 0.176 57.79 0.168 24.33 0.135 2.87 0.194 4.17

Weather 0.207 15.63 0.268 21.99 0.213 11.76 0.370 2.15 0.382 54.57 0.370 20.56 0.332 3.52 0.418 2.77

ETTh2 0.262 15.04 0.364 20.50 0.285 11.67 0.404 2.17 0.495 44.72 0.534 22.13 0.412 3.53 0.437 2.74

Solar 0.027 16.61 0.036 24.70 0.029 21.98 0.074 2.79 0.068 65.55 0.055 27.22 0.049 2.90 0.093 2.79

Table 2: CR under the MSCI setting on four multivariate time series datasets.

Dataset iTransformer TimeXer PatchTST SCINet Informer Autoformer DLinear LightTS

Weather 0.1581 0.1651 0.1690 0.2664 0.2727 0.3078 0.4545 0.3485
ETTh2 0.2127 0.2106 0.2160 0.2203 0.2106 0.2185 0.2845 0.3121
Electricity 0.0816 0.0787 0.0808 0.0873 0.0862 0.0916 0.1939 0.1487
Traffic 0.1807 0.1076 0.1068 0.1251 0.1293 0.1295 0.2491 0.2501

6.2 MAIN RESULTS: LOSSLESS COMPRESSION ACROSS TIME SERIES BENCHMARKS

To validate lossless compression as a principled evaluation paradigm for time series modeling, we
conduct systematic experiments across six real-world benchmark datasets, with results summarized
in Table 1. Two points are worth highlighting. The Solar’s remarkably low CR directly reflects
its minimal data entropy, which stems from a highly predictable diurnal cycle and inherent sparsity
from frequent zero-values during nighttime. This ability to quantify the data’s intrinsic predictabil-
ity is a crucial insight inaccessible to classic error-based metrics. In contrast, PEMS08 consistently
shows CR values close to 1, consistent with the results for general-purpose compressors in Ap-
pendix Table 10, indicating near-incompressibility. The fact that our pipeline correctly identifies
this pre-compressed data as having minimal remaining redundancy serves as a crucial validation of
its correctness and reliability.

The results across all datasets reveal that leading models like TimeXer, iTransformer and PatchTST
consistently demonstrate strong performance on the compression task, aligning with their effective-
ness in other tasks. An interesting finding is that PatchTST’s superior compression, despite not
always leading in forecasting, indicates its ability to capture rich distributional representations over-
looked by task-specific objectives. Overall, these results demonstrate that lossless compression pro-
vides a more fundamental and stringent benchmark, exposing differences and limitations invisible
to functional evaluations and supporting its role as a core benchmark for time series models.

6.3 MULTI-STREAM CHANNEL-INDEPENDENT (MSCI) SETTING

To fully exploit models such as TimeXer, iTransformer and PatchTST that contain channel-aware
components, we conduct a multi-stream version of the experiment. Specifically, we treat each vari-
able in the dataset as an independent read channel. A single model instance processes and com-
presses each channel in sequence, and the final file size is obtained by summing over all channels.
Across all datasets, the MSCI setting yields lower CR than the single-stream setting (see Table 2).
This indicates that, when channel boundaries are preserved, multivariate data contains structural
information beyond temporal continuity, and this structure becomes clearer and easier to learn.
Channel-independent models, especially iTransformer and TimeXer, benefit the most, confirming
that their CI design indeed captures meaningful per-channel temporal patterns.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Results of time series and IEEE 754 structure ablation CR experiments on WEATHER
dataset. “A” retains both time series and IEEE 754 structure; “B” removes only the time series; “C”
removes both.

Method A Raw B Shuffled time C Shuffled time and bytes

TimeXer 0.3434 0.4909 0.7690
iTransformer 0.3718 0.5106 0.7691
PatchTST 0.3485 0.4849 0.7705
LightTS 0.6654 0.7447 0.8243

6.4 LEARNING TEMPORAL DEPENDENCIES IN BYTE-LEVEL ENCODING

A natural concern for our byte-level framework is that splitting a 32-bit IEEE 754 float into four
bytes might destroy useful structure: it could weaken temporal dynamics in the original sequence
and break the internal sign–exponent–mantissa dependency. To verify that these potential informa-
tion structures can actually be learned by the model, we design the following controlled experiment.

We use the Weather datasets and consider three settings:

• A: Raw data. The original time series is encoded into bytes in temporal order. Both
temporal structure and IEEE 754 structure are preserved.

• B: Shuffled time. We randomly permute the time steps before encoding. Temporal order
is removed, while the IEEE 754 layout within each value is preserved.

• C: Shuffled time and shuffled bytes. We randomly permute both the time steps and the
four bytes inside each 32-bit float. Both temporal and IEEE 754 structures are removed.

In all three settings we keep the same models, training protocol, and compression metric. Table 3
shows the results. From setting A to B, the CR increases consistently across all models, even though
the IEEE 754 structure inside each float remains unchanged. This indicates that models rely on
temporal dynamics such as trend and seasonality. If byte-level encoding had destroyed temporal in-
formation, shuffling the time index would not cause such a clear and systematic drop in compression
performance.

From setting B to C, the metric becomes even worse. The only additional change is shuffling the
four bytes within each float, which breaks the deterministic relation between sign, exponent, and
mantissa. The consistent degradation from B to C suggests that models also learn this internal
numeric structure: they capture dependencies between the first byte (sign and exponent) and the
subsequent bytes that refine the mantissa.

Overall, these results demonstrate that byte-level lossless compression preserves both macro tempo-
ral structure and micro numeric structure. Models can still learn temporal dependencies across time
steps while also capturing the internal IEEE 754 layout within each value, even though the data is
presented as a flat byte stream.

6.5 CONVERGENCE TO THE ENTROPY LIMIT ON SYNTHETIC DATA

To directly assess whether our approach can recover the true underlying data-generating distribution
rather than overfitting to local repetitions, we construct a controlled synthetic dataset. This dataset
consists of discrete-valued samples generated with a fixed period of 1,000 bytes and small additive
noise, producing an approximately Gaussian marginal value distribution with nontrivial temporal
regularity. Figure 2 shows two aspects of this experiment. Panel (a) illustrates a segment of the
periodic byte sequence, where the repeated structure and injected noise are clearly visible. Panel
(b) compares the original and model-predicted byte-level distribution trends: the strong overlap
between the red and green curves indicates that the model successfully captures the global statistical
properties of the data rather than merely memorizing individual cycles or local patterns. We then
evaluate the learned model using our lossless compression protocol. As shown in Table 4, the
theoretical lower bound of the compression rate is approximately 1.0097 bpb, with small fluctuations

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Segment of the periodic synthetic byte sequence. (b) True vs. model-predicted byte-level distributions.

Figure 2: Synthetic data entropy validation.

due to injected noise. As the dataset size increases, the gap between the model’s bpb and the bound
steadily decreases, demonstrating clear convergence toward the information-theoretic limit.

This experiment provides two key insights for our benchmark. First, it confirms that lossless com-
pression evaluation reflects a model’s ability to recover global statistical regularities. Second, it
shows that as more data is observed, a well-specified model can approach the entropy limit, which
serves as a rigorous, interpretable upper bound for modeling capacity.

Table 4: Empirical compression converges to theoretical entropy on synthetic data.

Metric 1MB 2MB 4MB 8MB 16MB 32MB 128MB

True Entropy 1.0087 1.0066 1.0089 1.0097 1.0090 1.0097 1.0097
Model bpb 1.1251 1.0945 1.0639 1.0482 1.0347 1.0301 1.0442
Gap 0.1154 0.0848 0.0542 0.0385 0.0250 0.0204 0.0345

6.6 CROSS-MODALITY COMPRESSION BENCHMARK

To evaluate whether lossless compression truly captures cross-domain temporal regularities, we
further construct a multimodal compression benchmark by interleaving heterogeneous data audio
segments, environmental sensor readings, and textual event into a unified IEEE-754/UTF-8 byte
stream following our canonical encoding. This setting mimics real-world archives where diverse
modalities must be stored jointly without loss. As shown in Table 5, time-series models consistently
outperform classical compressors such as Dzip and NNCP even under cross-modal interleaving,
with TimeXer achieving the lowest CR of 0.185 while maintaining high CT on Enwik9. These
results provide direct evidence that temporal modeling for compression generalizes beyond single-
modality data and yields superior compression efficiency on heterogeneous multimodal streams.
The results highlight that incorporating compression as a task is not only a theoretical exercise for
model evaluation, but also directly addresses the practical need for efficient data archival in real-
world applications.

6.7 RELATIONSHIP BETWEEN COMPRESSION AND CLASSIC TIME SERIES TASKS

To investigate how lossless compression relates to classic time series tasks, we compare our com-
pression evaluations with publicly reported results on forecasting, imputation, anomaly detection,
and classification. The results for representative models are collected from their original benchmark
papers and widely used survey tables Wang et al. (2024); Liu et al. (2023); Wu et al. (2022). Loss-
less compression results are taken from our standardized TSCom-Bench evaluation protocol in Table
1. For comparability across heterogeneous metrics, all task scores are normalized to the range [0, 1]
within each task. The radar plot in Figure 3 (a) displays the normalized scores across five tasks,
revealing distinctive performance profiles: models such as iTransformer achieve strong forecasting
and imputation results but lag markedly on compression, forming an asymmetric profile. In contrast,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Lossless compression results on seven compression-benchmark cross-modality datasets.
The best results are highlighted in bold, and the second best are underlined.

Dataset TimeXer
(2025)

iTransformer
(2024)

PatchTST
(2023)

DLinear
(2023)

SCINet
(2022)

Dzip
(2021)

NNCP
(2019)

CR CT CR CT CR CT CR CT CR CT CR CT CR CT

Enwik9 0.185 14.35 0.206 16.67 0.187 13.21 0.359 32.54 0.263 3.64 0.224 4.06 0.279 1.05

Sound 0.431 13.67 0.479 25.54 0.455 10.37 0.592 40.63 0.535 1.69 0.490 4.51 0.615 1.13

Image 0.517 18.43 0.615 24.57 0.523 14.12 0.741 38.42 0.713 2.95 0.581 4.77 0.676 1.32

Float 0.312 14.53 0.327 19.56 0.291 12.35 0.392 53.67 0.429 1.72 0.694 4.51 0.582 1.23

Silesia 0.198 17.04 0.202 23.64 0.207 13.74 0.425 48.96 0.402 2.82 0.209 4.79 0.395 1.26

Backup 0.528 17.25 0.575 22.83 0.552 22.34 0.730 39.78 0.647 1.96 0.572 5.11 0.598 1.65

(a) Normalized performance across five tasks. (b) Pairwise correlations between tasks.

Figure 3: Relationship between compression and classic time series tasks from publicly reported
benchmarks. (a) Radar plot compares representative models on forecasting, imputation, anomaly
detection, classification, and compression tasks. (b) Correlation matrix quantifies task relationships.
Compression scores are from our lossless evaluation on the Weather dataset.

TimeXer and PatchTST maintain relatively balanced performance across all dimensions. Figure 3
(b) quantifies these relationships via the Pearson correlation between normalized task performances.
The four classic tasks show no consistent or universal correlation pattern with each other, reflecting
their focus on different aspects of time series behavior. In contrast, lossless compression exhibits a
moderate and relatively uniform correlation with all these tasks. This pattern suggests that compres-
sion reflects a model’s ability to approximate the global data distribution rather than being tied to
any single local objective.

This observation points to a promising direction: training models with compression-oriented objec-
tives could provide a strong pretraining backbone, with task-specific heads fine-tuned for forecast-
ing, imputation, anomaly detection, or classification. Such a framework may unify evaluation and
pretraining for time series modeling, analogous to language modeling in NLP. Details of the task
metrics, normalization, and data sources are provided in the Appendix for reproducibility.

7 RELATED WORK

7.1 LOSSLESS COMPRESSION AND INFORMATION-THEORETIC EVALUATION

Shannon’s source coding theorem and the close relation between negative log-likelihood and opti-
mal code length form the theoretical backbone connecting probabilistic modeling and compression
Cover & Thomas (2006). The use of compression as a measure of model quality has a long his-
tory in algorithmic information theory and minimum description length (MDL) principles Rissanen

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

(1978); Grünwald (2007). Hutter and colleagues formalized connections between induction, intel-
ligence and compression in the context of Solomonoff induction and universal prediction Hutter
(2005). Recent work in the deep learning era has revisited compression as a principled evaluation
approach for language models and generative systems Delétang et al. (2023b); Yang et al. (2025).
Our work adapts these information-theoretic perspectives specifically to multivariate time series,
providing practical encoding and evaluation protocols targeted at modern time series architectures.

7.2 LEARNING-BASED COMPRESSION AND PROBABILISTIC SEQUENCE MODELING

Traditional lossless compressors such as LZ-family, gzip and bzip2 rely on dictionary or statistical
coding heuristics and are effective for certain data modalities Ziv & Lempel (1977). Neural and
learning-based compressors employ learned probability models (autoregressive models, VAEs with
entropy models, flow-based models) together with arithmetic/ANS coders to achieve superior com-
pression for images, audio and text Ballé et al. (2017); van den Oord et al. (2016); Sain et al. (2023).
In the sequence domain, autoregressive models (RNNs, Transformers) serve as learned predictors to
drive entropy coding; notable examples include language modeling-based compressors and recent
transformer-based compression efforts Rae et al. (2020); Bellard (2020). For time series specifically,
prior work has considered both lossy and lossless approaches, including predictive coding, differ-
encing and domain-specific encoders Chiarot & Silvestri (2022). The recent SEP framework im-
proves the speed and memory efficiency of existing models through GPU-level optimizations, while
a semantic enhancement module boosts the compression ratio Wan et al.. However, a systematic
benchmark that treats lossless compression itself as a canonical evaluation task for general-purpose
time series models has not been established. TSCom-Bench seeks to fill this gap by formalizing
encoding conventions, evaluation metrics and baselines compatible with contemporary time series
architectures such as iTransformer and TimeXer Liu et al. (2023); Wang et al. (2024).

7.3 LOSS–METRIC MISMATCH

The mismatch between optimization objectives and evaluation metrics is a well established topic
in machine learning, and our empirical finding in time series is a concrete instance of this broader
phenomenon. Specifically, Theis et al. (2015) provide a theoretical justification showing that likeli-
hood and sample quality do not necessarily correlate, highlighting that the training objective may not
reflect true model performance. Elmachtoub & Grigas (2022) demonstrate that minimizing mean
squared error in forecasting does not ensure optimal downstream utility in real decision settings,
indicating that MSE often functions only as a surrogate objective. Stein et al. (2023) further show
that modern generative modeling metrics may not faithfully capture actual modeling quality.

This work provides an empirical verification of this phenomenon in the time series domain. Many
SOTA forecasting models achieve competitive MSE performance yet perform significantly worse
under lossless compression, which corresponds to evaluating negative log-likelihood, and lossless
compression thereby provides a unified information-theoretic view for revealing this form of metric
mismatch.

7.4 CONCLUSION

In this paper, we propose lossless compression as a new benchmark for evaluating time series mod-
els and release the open-source TSCom-Bench framework to standardize its evaluation. Our experi-
ments demonstrate that this information-theoretic metric reveals distributional weaknesses in SOTA
models that are overlooked by conventional tasks. We advocate for its adoption as a new canonical
benchmark, as it not only provides a more stringent evaluation of models but also constitutes an
indispensable real-world application. Looking forward, we believe this approach offers a powerful
pre-training strategy, where models pre-trained on the compression objective can then be fine-tuned
for downstream tasks such as forecasting or classification.

ETHICS STATEMENT

This research focuses on foundational methods using public, anonymized datasets and does not
present any foreseeable ethical concerns or negative societal impacts.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We are committed to ensuring the full reproducibility of our research. The source code for
our proposed TSCom-Bench framework, which includes implementations of the evaluation pro-
tocols, data handlers, and experiment scripts, has been submitted as supplementary material.
An anonymous GitHub link is provided here: https://anonymous.4open.science/r/
TSCom-Bench-8262 and will be made public upon publication.

REFERENCES

Johannes Ballé, Valero Laparra, and Eero P Simoncelli. End-to-end optimized image compres-
sion. In International Conference on Learning Representations (ICLR), 2017. URL https:
//openreview.net/forum?id=rJxdQ3jeg.

Andrew Barron, Jorma Rissanen, and Bin Yu. The minimum description length principle in coding
and modeling. IEEE transactions on information theory, 44(6):2743–2760, 1998.

Fabrice Bellard. Nncp: Lossless data compression with neural networks, 2019.

Fabrice Bellard. Lossless data compression with transformers. arXiv preprint arXiv:2009.02229,
2020. URL https://arxiv.org/abs/2009.02229.

David Campos, Miao Zhang, Bin Yang, Tung Kieu, Chenjuan Guo, and Christian S Jensen. Lightts:
Lightweight time series classification with adaptive ensemble distillation. Proceedings of the
ACM on Management of Data, 1(2):1–27, 2023.

Giacomo Chiarot and Claudio Silvestri. Time series compression survey. ACM Comput. Surv., 55
(11), aug 2022. ISSN 0360-0300. doi: 10.1145/3552492. URL https://doi.org/10.
1145/3552492.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley & Sons, 2006.
doi: 10.1002/047174882X.

Grégoire Delétang, Anian Ruoss, Paul-Ambroise Duquenne, Elliot Catt, Tim Genewein, Christo-
pher Mattern, Jordi Grau-Moya, Li Kevin Wenliang, Matthew Aitchison, Laurent Orseau, et al.
Language modeling is compression. arXiv preprint arXiv:2309.10668, 2023a.

Grégoire Delétang, Anian Ruoss, Marcus Hutter, and Shane Legg. Language models are good
unsupervised compressors. arXiv preprint arXiv:2309.11552, 2023b. URL https://arxiv.
org/abs/2309.11552.

S Elakkiya and KS Thivya. Comprehensive review on lossy and lossless compression techniques.
Journal of The Institution of Engineers (India): Series B, 103(3):1003–1012, 2022.

Adam N. Elmachtoub and Paul Grigas. Smart “predict, then optimize”. Management Science, 68
(1):9–26, 2022.

Mohit Goyal, Kedar Tatwawadi, Shubham Chandak, and Idoia Ochoa. Dzip: Improved general-
purpose loss less compression based on novel neural network modeling. In 2021 data compression
conference (DCC), pp. 153–162. IEEE, 2021.

Peter D. Grünwald. The Minimum Description Length Principle. The MIT Press, 2007.

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G Wilson. Large language models are zero-shot
time series forecasters. Advances in Neural Information Processing Systems, 36:19622–19635,
2023.

Marcus Hutter. Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Prob-
ability. Springer Science & Business Media, 2005. doi: 10.1007/b138216.

Guillaume Jean. A multivariate time series framework using regime-switching models and macroe-
conomic indicators for the anticipation of financial market bubbles and crashes. 2025.

11

https://anonymous.4open.science/r/TSCom-Bench-8262
https://anonymous.4open.science/r/TSCom-Bench-8262
https://openreview.net/forum?id=rJxdQ3jeg
https://openreview.net/forum?id=rJxdQ3jeg
https://arxiv.org/abs/2009.02229
https://doi.org/10.1145/3552492
https://doi.org/10.1145/3552492
https://arxiv.org/abs/2309.11552
https://arxiv.org/abs/2309.11552

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ming Jin, Huan Yee Koh, Qingsong Wen, Daniele Zambon, Cesare Alippi, Geoffrey I Webb, Irwin
King, and Shirui Pan. A survey on graph neural networks for time series: Forecasting, classifi-
cation, imputation, and anomaly detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

Jongseon Kim, Hyungjoon Kim, HyunGi Kim, Dongjun Lee, and Sungroh Yoon. A comprehensive
survey of deep learning for time series forecasting: architectural diversity and open challenges.
Artificial Intelligence Review, 58(7):1–95, 2025.

Jens Kipper. Intuition, intelligence, data compression. Synthese, 198(Suppl 27):6469–6489, 2021.

Younjeong Lee, Chanho Park, Namji Kim, Jisu Ahn, and Jongpil Jeong. Lstm-autoencoder based
anomaly detection using vibration data of wind turbines. Sensors, 24(9):2833, 2024.

Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
Time series modeling and forecasting with sample convolution and interaction. Advances in
Neural Information Processing Systems, 35:5816–5828, 2022.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023.

Amal Mahmoud and Ammar Mohammed. Leveraging hybrid deep learning models for enhanced
multivariate time series forecasting. Neural Processing Letters, 56(5):223, 2024.

Yu Mao, Yufei Cui, Tei-Wei Kuo, and Chun Jason Xue. Trace: A fast transformer-based general-
purpose lossless compressor. In Proceedings of the ACM Web Conference 2022, pp. 1829–1838,
2022.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy Lillicrap. Compressive trans-
formers for long-range sequence modelling. In International Conference on Learning Represen-
tations, 2020. URL https://openreview.net/forum?id=SylKikSYDH.

Jorma Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978. doi:
10.1016/0005-1098(78)90005-5.

Animesh Sain, Muchen Jin, Poyraz Akyazi, Y-H. Yang, and Avideh Zakhor. VC-1: A Versatile
Video Compression Network. In 2023 IEEE International Conference on Image Processing
(ICIP), pp. 3205–3209, 2023. doi: 10.1109/ICIP49359.2023.10222475.

Mohd Sakib, Suhel Mustajab, and Mahfooz Alam. Ensemble deep learning techniques for time se-
ries analysis: a comprehensive review, applications, open issues, challenges, and future directions.
Cluster Computing, 28(1):73, 2025.

Gideon Stein, James Cresswell, and Gabriel Loaiza-Ganem. Exposing flaws of generative model
evaluation metrics and their unfair treatment of diffusion models. Advances in Neural Information
Processing Systems, 36:3732–3784, 2023.

Chenxi Sun, Hongyan Li, Moxian Song, Derun Cai, Baofeng Zhang, and Shenda Hong. Time
pattern reconstruction for classification of irregularly sampled time series. Pattern Recognition,
147:110075, 2024.

Lucas Theis, Aarón van den Oord, and Matthias Bethge. A note on the evaluation of generative
models. arXiv preprint arXiv:1511.01844, 2015.

Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
In International conference on machine learning (ICML), pp. 1747–1756. PMLR, 2016.

Meng Wan, Rongqiang Cao, Yanghao Li, Jue Wang, Zijian Wang, Qi Su, Lei Qiu, Peng Shi, Yan-
gang Wang, and Chong Li. Sep: A general lossless compression framework with semantics
enhancement and multi-stream pipelines.

12

https://openreview.net/forum?id=SylKikSYDH

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Guo Qin, Haoran Zhang, Yong Liu, Yunzhong Qiu, Jian-
min Wang, and Mingsheng Long. Timexer: Empowering transformers for time series forecasting
with exogenous variables. Advances in Neural Information Processing Systems, 37:469–498,
2024.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in neural information
processing systems, 34:22419–22430, 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Tem-
poral 2d-variation modeling for general time series analysis. arXiv preprint arXiv:2210.02186,
2022.

En-Hao Yang, Jin-Chen Zhang, Yan Yang, Kui Liu, Yun-Hao Wang, Zhen-Duo Wang, Jia-Qi Zhang,
and Chao Wang. A survey and benchmark evaluation for neural-network-based lossless universal
compressors toward multi-source data. Frontiers of Computer Science, 19(2):192301, 2025. doi:
10.1007/s11704-024-40300-5.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121–11128, 2023.

Shunyang Zhang, Senzhang Wang, Hao Miao, Hao Chen, Changjun Fan, and Jian Zhang. Score-
cdm: Score-weighted convolutional diffusion model for multivariate time series imputation. arXiv
preprint arXiv:2405.13075, 2024.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory, 23(3):337–343, 1977. doi: 10.1109/TIT.1977.1055714.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

This appendix provides a rigorous mathematical analysis to clarify why the lossless compression
evaluation paradigm offers a more comprehensive and theoretically grounded measure of a time
series model’s distributional modeling capabilities than the four canonical tasks of forecasting, im-
putation, anomaly detection, and classification.

Our central claim is that a superior generative model, parameterized by θ and denoted Qθ, should
closely approximate the true data-generating distribution P . The gold standard for measuring the
discrepancy between two probability distributions in information theory is the Kullback-Leibler
(KL) divergence. An ideal evaluation metric should therefore correspond directly to minimizing
KL(P ||Qθ).

Symbols and Definitions. For clarity, we list all key symbols used throughout this appendix and
their intended meaning (this is deliberately detailed since the appendix is read independently by
reviewers):

• X = {xt}Tt=1: the original time series, each xt ∈ Rd.

• S = f(X): discrete symbol sequence / byte stream produced by applying a deterministic
encoding f to X . We explicitly allow two conceptual regimes for f :

1. Ideal bijection: f is a one-to-one reversible mapping on the domain. In this case
discrete entropies are preserved under f .

2. Practical quantization: f maps continuous X to finite-precision representations. This
mapping is many-to-one and introduces quantization error; later we quantify the
information-theoretic effect.

• P : true distribution of X . In the continuous case, p(x) is a probability density function
(pdf) . In the discrete/bijective case, P is a probability mass function (pmf).

• Qθ: model distribution over X (or over symbols S after applying f); parameterized by θ.

• x<t ≜ {x1, . . . , xt−1}: prefix / history.

• M,O: sets of masked and observed indices for imputation.

• Tnormal: indices labeled as normal for anomaly-detection training.

• H(·): discrete Shannon entropy in bits when argument is a pmf.

• h(·): differential entropy in bits when argument is a continuous density.

• KL(P ||Q): Kullback–Leibler divergence, defined in the discrete case as KL(P ||Q) =∑
x P (x) log2

P (x)
Q(x) , and in the continuous case as the corresponding integral when densi-

ties exist.

• All logarithms are base-2 unless otherwise noted; where natural logs appear, we indicate
the conversion factor explicitly.

Notation. To avoid ambiguity, we distinguish three related quantities:

• Expected NLL (training loss) is the quantity minimized in training, and it equals H(P) +
KL(P∥Qθ) in the discrete case:

Lcomp(θ) := ES∼P

[
− log2 Qθ(S)

]
. (11)

• Sample-level NLL is the negative log-likelihood of a particular sequence S under the
model:

NLL(S) := − log2 Qθ(S), (12)

• Arithmetic-coded length (measured file size) Larith(S) is the actual number of bits pro-
duced by an arithmetic coder when encoding S with model Qθ. By construction,
NLL(S) ≤ Larith(S) < NLL(S) + c, where c is a small implementation-dependent con-
stant.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Important conceptual distinction. Many readers conflate: (a) theoretical statements that assume
an ideal reversible encoding f , and (b) practical settings with finite-precision quantization. We
keep these separate throughout: first state exact equalities under bijections, then provide approxima-
tions/upper bounds for practical quantization and coding.

A.1 INVARIANCE OF MUTUAL INFORMATION UNDER BIJECTIVE MAPPING

A core premise of our work is that modeling the byte stream S is equivalent to modeling the original
continuous time series X . While the entropies H(S) and H(X) are not directly comparable, we
can show that the mutual information, which captures the dependency structure, is invariant under
the bijective mapping f : X 7→ S.

Let’s consider two continuous random vectors X1 and X2 with a joint probability density function
(pdf) p(x1, x2). Their mutual information is:

I(X1;X2) =

∫∫
p(x1, x2) log

p(x1, x2)

p(x1)p(x2)
dx1dx2. (13)

Now, consider a bijective (one-to-one and onto) and differentiable transformation f , such that
(S1, S2) = (f(X1), f(X2)). The change of variables formula relates their pdfs:

q(s1, s2) = p(f−1(s1), f
−1(s2))

∣∣det(Jf−1(s1, s2))
∣∣ , (14)

where q is the pdf for (S1, S2) and Jf−1 is the Jacobian of the inverse transformation. The mutual
information for S1 and S2 is:

I(S1;S2) =

∫∫
q(s1, s2) log

q(s1, s2)

q(s1)q(s2)
ds1ds2. (15)

By substituting the change of variables formula and noting that the Jacobian term cancels out in the
ratio q(s1,s2)

q(s1)q(s2)
, we can prove that I(X1;X2) = I(S1;S2).

This invariance is critical. It implies that for our time series, the mutual information I(xt;x<t) is
perfectly preserved. Therefore, a model that accurately learns the dependencies in the byte stream
S must, by extension, have learned the dependencies in the original series X . This provides a solid
mathematical foundation for our claim that byte-level compression is a valid proxy for evaluating
the modeling of continuous time series.

A.2 ON THE INFORMATION LOSS FROM QUANTIZATION

The mapping from R to its IEEE-754 32-bit representation is technically a form of quantization,
which theoretically involves information loss. Let X be the true continuous variable and Xq be
its quantized representation. The information loss can be quantified by the conditional differential
entropy H(X|Xq).

We can model quantization as adding a small, unknown error ϵ = X − Xq , which is bounded by
the quantization interval ∆. For high-resolution quantization, it is common to approximate the error
as being uniformly distributed, ϵ ∼ U(−∆/2,∆/2). The entropy of this uniform distribution is
H(ϵ) = log2(∆). This represents the uncertainty about the true value X given its quantized version
Xq .

In the IEEE-754 32-bit floating-point standard, the quantization step ∆ is extremely small and adap-
tive. Most of the information lost within such tiny bins corresponds to high-frequency, unpredictable
noise rather than the structured, learnable temporal patterns targeted by time series models. The
signal components relevant for forecasting, imputation, or capturing seasonalities occur at a much
coarser scale than the quantization resolution. Thus, while there is a theoretical information loss
of approximately log2(∆) bits per sample, this loss is inconsequential for the task of modeling the
macroscopic statistical structure of the time series.

A.3 QUANTIFYING THE NLL-CODELENGTH GAP IN ARITHMETIC CODING

Our framework relies on the fact that the achieved code length Larith(S) is a high-fidelity proxy for
the model’s sample-level negative log-likelihood, NLL(S). This relationship is enabled by arith-
metic coding, and we can formally analyze the gap.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

There are two primary sources of sub-optimality in any practical compression scheme:

1. Modeling Gap: The divergence between the model’s learned distribution Qθ and the true
(unknown) data distribution P . The expected extra code length per symbol due to this gap
is the Kullback-Leibler (KL) divergence, DKL(P ||Qθ). Our entire evaluation framework
is designed to measure this gap.

2. Coding Gap: The difference between the theoretical code length prescribed by the model
and the actual number of bits produced by the compressor.

An ideal entropy coder would have a coding gap of zero. Arithmetic coding is renowned for its
efficiency in approaching this ideal. The extra bits redundancy of a well-implemented arithmetic
coder is provably bounded. For a sequence of length L, the total coding gap is typically less than 2
bits for the entire sequence, arising from finite-precision arithmetic and stream termination.

NLL(S) ≤ Larith(S) < NLL(S) + c, (16)

where c is an implementation-dependent constant. The value of c is typically between 1–2 bits per
stream, which is an extremely tight bound. It means the contribution of the Coding Gap to the
final file size is negligible. Therefore, the measured compressed length Lcomp is almost entirely
determined by the model’s NLL. This validates our use of the final compressed size as a direct and
stringent measure of the model’s probabilistic modeling capability.

A.4 LOSSLESS COMPRESSION: THE GOLD STANDARD

We keep your original derivation and expand each step with a full explanation.

For a time series X = {xt}Tt=1, assume an autoregressive factorization of the model distribution:

Qθ(X) =

T∏
t=1

Qθ(xt | x<t). (17)

The compression loss is the expected NLL:

Lcomp(θ) = EX∼P [− log2 Qθ(X)]. (18)

Now reproduce and expand your original algebraic decomposition:

Lcomp(θ) = EX∼P [− log2 Qθ(X)]

= EX∼P

[
− log2 P (X) + log2

P (X)

Qθ(X)

]
= EX∼P [− log2 P (X)] + EX∼P

[
log2

P (X)

Qθ(X)

]
= H(P) +KL(P ||Qθ). (19)

As shown in equation 19, the first equality is the definition of expected NLL under P . In the second
line, we add and subtract log2 P (X) inside the expectation. This is an exact algebraic identity:

− log2 Qθ(X) = − log2 P (X) + log2
P (X)

Qθ(X)
. (20)

Then the third line separates the expectation over the sum into the sum of expectations.
The fourth line recognizes EX∼P [− log2 P (X)] as the Shannon entropy H(P) (in bits), and
EX∼P

[
log2

P (X)
Qθ(X)

]
as the Kullback–Leibler divergence KL(P ||Qθ). Therefore, the information is

important for clarification:

1. Since H(P) depends only on the true distribution P , it is a constant with respect to model
parameters θ. Therefore minimizing Lcomp(θ) is equivalent to minimizing KL(P ||Qθ).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

2. The above equality is exact for discrete distributions where pmfs exist. For continuous-
valued X with densities, the analogous decomposition holds if P and Qθ admit densities
w.r.t. the same dominating measure. Otherwise, one must work in terms of measures.

3. The metric KL(P ||Qθ) is global: it penalizes all deviations of Qθ from P , including
differences in support, modes, tails, and higher moments, which explains why compression
is a strict measure of distributional fit.

Gradient form. It is often useful to see the gradient of the compression loss:

∇θLcomp(θ) = ∇θEX∼P [− log2 Qθ(X)]

= −EX∼P

[
∇θ log2 Qθ(X)

]
= − 1

ln 2
EX∼P

[
∇θ lnQθ(X)

]
, (21)

where we used log2 u = (lnu)/ ln 2. This shows that training under Lcomp(θ) provides gradient
signals from every X sampled from P , in contrast to restricted losses.

Practical coding: arithmetic coding and finite-precision overhead. When using arithmetic cod-
ing to convert model probabilities into bitstreams, the achieved code length for a sequence S satis-
fies:

NLL(S) ≤ Larith(S) < NLL(S) + c, (22)

where c is a small implementation-dependent constant (Cover & Thomas, 2006). Hence asymptot-
ically, the NLL is an achievable lower bound on practical codelength up to a negligible constant
overhead.

A.5 COMPARISON WITH CANONICAL TASKS

We provide a detailed comparison between lossless compression and the four canonical evaluation
tasks widely used in time series modeling: forecasting, imputation, anomaly detection, and classifi-
cation.

Forecasting. Forecasting aims to predict the future values given the past. The standard loss is mean
squared error:

Lforecast(θ) =
1

T

T∑
t=1

∥xt − x̂θ
t ∥22, x̂θ

t = EQθ
[xt | x<t]. (23)

Minimizing this loss forces Qθ to match only the conditional mean. Different distributions can
share the same mean but have very different variance or tail behaviour, so a model may achieve low
forecasting loss yet diverge from P in KL divergence.

Imputation. Imputation requires the model to reconstruct missing values in a partially observed
sequence. Let M ⊂ {1, . . . , T} be a randomly sampled set of masked indices, and let O denote the
complement set of observed indices. A typical objective is to minimize the mean squared error on
the masked values, denoted by Limp:

Limp(θ) = EM

[∑
t∈M

∥∥xt − x̂θ
t (xO)

∥∥2
2

]
, (24)

where the expectation EM is taken over the distribution of masks, and x̂θ
t (xO) is the model’s re-

construction of xt conditioned on the observed values xO. This criterion enforces local accuracy
only on masked positions, while unmasked positions are unconstrained. Unless masking covers all
possible subsets, Qθ can match Limp while disagreeing with P elsewhere.

Anomaly detection. The model learns the density of normal data and flags deviations. A common
approach is to maximize the likelihood on the set of normal data points. Let Tnormal ⊂ {1, . . . , T} be

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

the set of time indices corresponding to normal data. The loss Lanom is the negative log-likelihood
on this subset:

Lanom(θ) = −
∑

t∈Tnormal

log2 Qθ(xt | x<t). (25)

This objective enforces accurate density estimation only within the restricted support of normal
sequences. Probability mass outside this region is largely irrelevant, meaning the model is not
penalized for misrepresenting the full distribution.

Classification. Classification associates an entire sequence X with a single, discrete label y ∈ Y ,
where Y is the set of all possible labels. The standard objective is to minimize the cross-entropy
loss, denoted by Lcls:

Lcls(θ) = − log2 Qθ(y | X). (26)

This objective enforces that the model’s conditional label distribution Qθ(y | X) approximates the
true one P (y | X), but it does not constrain the sequence distribution Qθ(X) itself. A model may
achieve perfect classification by exploiting only a few discriminative features, while ignoring most
temporal dependencies.

A.6 FORECASTING: CONSTRAINING ONLY THE CONDITIONAL MEAN

Forecasting tasks typically employ the Mean Squared Error (MSE) loss:

Lforecast(θ) = EX∼P

[
1

T

T∑
t=1

∥xt − x̂θ
t ∥22

]
(27)

where the point forecast x̂θ
t is the conditional expectation under the model: x̂θ

t := EQθ
[xt|x<t].

Mathematical Derivation and Analysis. To minimize Lforecast, for any given history x<t, the
model must select an optimal prediction x̂t that minimizes the expected squared error under the true
conditional distribution P (xt|x<t). We find this optimal point by taking the derivative with respect
to x̂t and setting it to zero:

∂

∂x̂t
EP (xt|x<t)[∥xt − x̂t∥22] = EP (xt|x<t)

[
∂

∂x̂t
(xt − x̂t)

T (xt − x̂t)

]
= EP (xt|x<t)[−2(xt − x̂t)]

= −2(EP (xt|x<t)[xt]− x̂t) (28)

Setting the derivative to zero yields the optimal forecast x̂opt
t = EP (xt|x<t)[xt]. This derivation

proves that minimizing the MSE loss solely drives the mean of the model’s predictive distribution,
EQθ

[xt|x<t], to match the mean of the true conditional distribution.

Comparison with Compression. The MSE objective is limited as it only constrains the first mo-
ment of the distribution, while remaining insensitive to all higher-order moments and the overall
distributional shape. A model can achieve a perfect MSE score with a unimodal Gaussian predic-
tion, even if the true distribution is bimodal, leading to a potentially infinite KL divergence.

A.7 IMPUTATION: CONSTRAINING A SUBSET OF CONDITIONAL MEANS

The imputation loss is also typically an MSE objective:

Limp(θ) = EM

[∑
t∈M

∥xt − x̂θ
t (xO)∥22

]
(29)

where M is the set of masked indices, O is the set of observed indices, and x̂θ
t (xO) := EQθ

[xt|xO].

Mathematical Derivation and Analysis. To minimize this loss, for any given set of observed
values xO, the model must find the optimal imputation x̂t(xO) that minimizes the expected squared

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

error under the true conditional distribution P (xt|xO). We derive this optimal value by taking the
derivative with respect to x̂t(xO) and setting it to zero:

∂

∂x̂t(xO)
EP (xt|xO)[∥xt − x̂t(xO)∥22]

= EP (xt|xO)

[
∂

∂x̂t(xO)
(xt − x̂t(xO))

T (xt − x̂t(xO))

]
= EP (xt|xO)[−2(xt − x̂t(xO))]

= −2(EP (xt|xO)[xt]− x̂t(xO)) (30)
Setting the final expression to zero yields the optimal imputation:

x̂opt
t (xO) = EP (xt|xO)[xt] (31)

This derivation formally shows that minimizing the imputation loss solely forces the model’s condi-
tional mean, EQθ

[xt|xO], to align with the true conditional mean.

Comparison with Compression. This derivation highlights two fundamental limitations: (1)
Like forecasting, it only constrains the conditional mean, ignoring the full conditional distribution
P (xM |xO). (2) The objective is optimized only over a specific masking strategy, offering no guar-
antee that the model has learned the full joint distribution P (X) required to handle arbitrary patterns
of missingness. Compression, by contrast, requires modeling all conditionals P (xt|x<t) and thus
captures the full joint distribution.

A.8 ANOMALY DETECTION: CONSTRAINING LIKELIHOOD ON A RESTRICTED SUPPORT

A common anomaly-detection training objective is to maximize (or equivalently minimize negative)
likelihood over normal data only:

Lanom(θ) = −
∑

t∈Tnormal

log2 Qθ(xt | x<t). (32)

Gradient-level analysis. The gradient of this objective is

∇θLanom(θ) = −
∑

t∈Tnormal

∇θ log2 Qθ(xt | x<t)

= − 1

ln 2

∑
t∈Tnormal

∇θQθ(xt | x<t)

Qθ(xt | x<t)
. (33)

Only indices in Tnormal contribute to the gradient; anomalous samples do not appear and thus pro-
vide no direct learning signal.

Implication. Because anomalies are absent from the training gradient, the model is not explic-
itly encouraged to give them low probability, which is only encouraged to give high probability to
normal examples. A model could, in principle, assign arbitrarily large probability mass to certain
anomalous patterns while still maximizing the objective on normal data. In contrast, the compres-
sion objective enforces low likelihood for rare/unexpected events insofar as assigning mass to those
events increases expected code length.

Comparison with Compression. The gradient analysis proves that the model receives no super-
vision on how to assign probabilities to anomalous events. The model is not penalized for assigning
high probability to anomalies, which fundamentally undermines its ability to detect them. The com-
pression objective Lcomp(θ) computes the NLL over all data points (t = 1, . . . , T), ensuring that
its gradient reflects the need to assign low probability to rare events to achieve an efficient overall
codelength.

A.9 CLASSIFICATION: CONSTRAINING ONLY THE LABEL’S POSTERIOR PROBABILITY

The classification objective is to minimize the cross-entropy loss:
Lcls(θ) = − log2 Qθ(y|X) (34)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Mathematical Derivation and Analysis. The expected loss over the true data distribution
P (X,Y) is:

E(X,y)∼P (X,Y)[− log2 Qθ(y|X)] =
∑
X,y

P (X, y)[− log2 Qθ(y|X)]

=
∑
X,y

P (X, y)

[
− log2 P (y|X) + log2

P (y|X)

Qθ(y|X)

]
= H(Y |X) +KL(P (Y |X) ||Qθ(Y |X)) (35)

where H(Y |X) is the true conditional entropy of the labels given the data, a constant with respect
to the model. This derivation formally shows that the classification objective is solely concerned
with minimizing the KL divergence between the true conditional label distribution P (Y |X) and the
model’s prediction Qθ(Y |X).

Comparison with Compression. The joint distribution of data and labels is P (X,Y) =
P (Y |X)P (X). The mathematics clearly shows that the classification objective focuses exclusively
on the P (Y |X) term and places absolutely no constraints on the modeling of the data distribution
P (X) itself. A model can achieve perfect classification by learning a mapping from a small, discrim-
inative subset of features in X to y, while completely failing to capture the underlying generative
process of X . Compression, in contrast, directly evaluates the model’s understanding of P (X),
making the two objectives mathematically orthogonal.

A.10 UNIFIED VIEW AND SUMMARY

The analyses above show that the four canonical tasks evaluate a model by minimizing a divergence
on a ”projection” or ”subset” of the true data distribution. We summarize this in Table 6.

Table 6: Unified Mathematical View of Evaluation Tasks

Task Objective Function Ltask Optimized Statistic/Distribution ϕ(·) Key Mathematical Limitation
Compression Lcomp(θ) Full Distribution P (X) None (Theoretically global evaluation)
Forecasting EP [∥xt − x̂θ

t ∥22] Conditional Mean E[xt|x<t] Ignores all higher-order moments and shape
Imputation EM [∥xt − x̂θ

t (xO)∥22] Subset of Cond. Means E[xt|xO] Constrains only the mean; depends on mask strategy
Anomaly Det. −

∑
t∈Tnormal

log2 Qθ(xt|x<t) Dist. on a Subset P (X)|X∈Normal No constraint on probability of anomalous events
Classification − log2 Qθ(y|X) Label Posterior Dist. P (y|X) No constraint on the data distribution P (X)

In conclusion, the mathematical derivations confirm that lossless compression, by being equivalent
to minimizing the full KL divergence, provides a holistic, unified, and strict evaluation of a model’s
generative capabilities. The canonical tasks, in contrast, examine only specific, and often insuffi-
cient, aspects of the true data distribution.

A.11 OVERVIEW OF CORE PROCESS OF ARITHMETIC ENCODING

The arithmetic encoder processes byte stream data (with a symbol set of discrete symbols ranging
from 0 to 255) based on its core principle of interval mapping for data compression: it maps the
original byte sequence to a continuous decimal number within the interval [0,1), which is then rep-
resented by the shortest binary form to generate the compressed bitstream. During decoding, the
probability distribution from the encoding end is reused to iteratively restore the original symbol
sequence through reverse operations. The encoder’s performance relies on two key logical compo-
nents: first, cumulative probability modeling, which converts the probability distribution of bytes
into exclusive subintervals within [0,1), assigning each byte a unique interval range; second, iter-
ative interval reduction, where the current interval is subdivided using the exclusive subinterval of
the current symbol during encoding, and symbols are located via interval matching during decoding.
Both processes share identical interval update rules to ensure lossless data reconstruction. Next, we
will elaborate on the core workflow of arithmetic encoding in three stages.

Construction of Cumulative Probability Distribution The core input of arithmetic encoding is
not individual probabilities, but the cumulative probability distribution. Because it requires parti-
tioning the interval [0, 1) using cumulative probabilities to assign each byte a unique subinterval.
This conversion serves as the bridge connecting the model’s output and the encoding operation.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

First, clarify the form of the time-series model’s output: assume the model predicts the probability
distribution of the next byte as P = [p0, p1, . . . , p255], where pi is the probability that the next
byte equals i (0 ≤ i ≤ 255), satisfying

∑255
i=0 pi = 1. Then, define a cumulative probability array

C = [C0, C1, . . . , C256] of length 257, covering the start and end points of intervals for bytes 0 to
255. Initialize C0 = 0 (the starting baseline), and compute subsequent elements through cumulative
probability summation:

Ci+1 = Ci + pi (36)

Ultimately, C256 = 1, ensuring full coverage of the interval. Through this process, the exclusive
interval for byte i is [Ci, Ci+1), with an interval width equal to its probability pi, aligning with the
compression principle of assigning wider intervals to high-frequency bytes and narrower intervals to
low-frequency bytes. For example, suppose the model outputs a set of values as shown in the Table 7.
Bytes with higher probabilities are assigned longer intervals, which is the key to subsequent short
encoding.

Table 7: Byte Probability Distribution and Interval Partitioning

Byte
i

Probability
pi

Cumulative
Probability

ci

Cumulative
Probability

ci+1

Exclusive
Interval
for Byte

i

Interval
Length
(= pi)

0-107 Sum 0.1 0.0 0.1 [0.0, 0.1) 0.1
108 0.15 0.1 0.25 [0.1, 0.25) 0.15
109-113 Sum 0.1 0.25 0.35 [0.25, 0.35) 0.1
114 0.45 (Target Byte) 0.35 0.8 [0.35, 0.8) 0.45
115-255 Sum 0.2 0.8 1.0 [0.8, 1.0) 0.2

Narrow down the encoding range using the actual byte’s interval The essence of arithmetic
encoding lies in progressively narrowing the interval and using the final interval’s binary represen-
tation as the encoding result. The narrowing process is guided by the model’s assigned exclusive
interval for each byte. Specifically, for encoding the actual byte 114, let the initial encoding interval
be [0, 1). When the actual byte is 114, we use its exclusive interval[0.35, 0.8) to carve the current
encoding interval[0, 1), resulting in a new encoding interval[0.35, 0.8).

Table 8: The Structure of Binary Sub-intervals for Final Code Selection. This table illustrates how
binary fractions of varying lengths (precision) partition the unit interval [0, 1). This principle is used
in the final step of arithmetic encoding to select the shortest binary code that uniquely represents a
sub-interval contained entirely within the algorithm’s final target range.

Binary Decimal
Digits

Division Precision
(Interval Length)

Interval Examples
(Partial)

Meaning of
Binary Fractions

1-digit (0.x1) 1/2 = 0.5 [0, 0.5), [0.5, 1) 0.1 → [0.5, 1), 0.0 → [0, 0.5)

2-digit (0.x1x2) 1/4 = 0.25 [0, 0.25), [0.25, 0.5), ... 0.10 → [0.5, 0.75)

3-digit (0.x1x2x3) 1/8 = 0.125 [0, 0.125), [0.125, 0.25), ... 0.101 → [0.625, 0.75)

n-digit 1/2n [k/2n, (k + 1)/2n)
(k = 0, 1, . . . , 2n − 1)

n-digit binary fractions corre-
spond to intervals of length 1/2n

Final Encoded Output The ultimate goal of the encoding process is to use a sequence of binary
bits to uniquely represent this interval. For instance, the shortest binary fraction serves as an efficient
representation, and any two distinct binary fractions must correspond to different numerical values,
thereby satisfying the prerequisite of encoding uniqueness. For the new interval (0.35, 0.8), we seek
the shortest binary fraction such that its corresponding subinterval entirely falls within (0.35, 0.8).
As shown in the Table 8, among 2-bit binary fractions, 0.102 (corresponding to the decimal value
0.5) has a subinterval of (0.5, 0.75), which lies entirely within (0.35, 0.8). Thus, the encoding result
is 1 0, using only 2 bits, which is significantly fewer than the traditional 8-bit encoding.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

A.12 ADDITIONAL EXPERIMENTS

To further validate the effectiveness and robustness of our proposed lossless compression evalua-
tion paradigm, we conduct additional experiments on a diverse set of benchmark datasets. In this
appendix, we provide detailed descriptions of each dataset, the parameter settings used in our ex-
periments, and the full results under multiple sequence lengths. This section complements the main
text by reporting comprehensive results that could not fit within the page limits.

A.12.1 DATASETS

We evaluate on six widely-used public datasets covering diverse application domains:

• PEMS04 and PEMS08 are traffic flow datasets collected from the California Department
of Transportation’s Performance Measurement System. They contain traffic speed, flow,
and occupancy data from hundreds of loop sensors on highway networks. We follow stan-
dard preprocessing and use the same train, validation and test splits as prior works.

• Traffic contains road occupancy rates measured by 862 sensors on San Francisco Bay Area
freeways. It is a canonical benchmark for large-scale multivariate time series forecasting.

• Electricity records hourly electricity consumption of 321 customers from 2012–2014. It
exhibits strong daily and weekly periodicity, making it a challenging testbed for temporal
models.

• Weather contains 21 meteorological variables collected from the WeatherBench bench-
mark. It is commonly used to evaluate long-horizon temporal modeling under rich covari-
ates.

• ETTh2 and ETTm2 are subsets of the ETT (Electricity Transformer Temperature) bench-
mark capturing transformer oil temperature and related exogenous factors. ETTh2 has
hourly resolution, while ETTm2 has 15-minute resolution, enabling evaluation across dif-
ferent temporal granularities.

We also include several standard lossless compression benchmarks to evaluate the general-purpose
capabilities of the models:

• Enwik9 is a standard benchmark from the Large Text Compression Benchmark, consisting
of the first 1 billion bytes of an English Wikipedia XML dump. It is widely used to test a
compressor’s performance on natural language text.

• Image is a dataset composed of raw, uncompressed image bitmaps derived from the Im-
ageNet database, designed to evaluate compression performance on visual data with high
spatial redundancy.

• Sound consists of uncompressed audio waveforms from environmental sound recordings,
which tests a model’s ability to capture the temporal structures and periodic patterns typical
in audio data.

• Float is a dataset containing arrays of 64-bit double-precision floating-point numbers from
scientific simulations. It is used to benchmark the compression of high-precision numerical
data.

• Silesia Corpus is a well-known collection of diverse file types, including text, executables,
images, and databases, designed to be a representative benchmark for general-purpose loss-
less compressors.

• Backup is a heterogeneous dataset created to simulate real-world backup archives, con-
taining a mixture of different file types to test a compressor’s ability to adapt to varying
data statistics.

A.12.2 PARAMETERS AND EXPERIMENTAL SETUP

The experiments in this section follow the setup described in the main paper. We evaluate a suite of
eight representative time series models on six public benchmarks. To assess performance robustness,
we test across four distinct sequence lengths: {12, 24, 48, 96}. All reported results are averaged
over three independent runs with different random seeds to ensure reliability.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 9: Comprehensive lossless compression results across six benchmark datasets under multiple
sequence lengths. The best result in each setting is highlighted in bold, the second best is underlined,
and avg denotes the average over all tested horizons.

D
at

as
et

H
or

iz
on

TimeXer
(2025)

iTransformer
(2024)

PatchTST
(2023)

Autoformer
(2023)

DLinear
(2023)

LightTS
(2023)

SCINet
(2022)

Informer
(2021)

CR CT CR CT CR CT CR CT CR CT CR CT CR CT CR CT

PE
M

S0
8

12 0.979 12.42 0.977 23.34 0.980 25.12 0.980 3.33 0.998 33.13 0.985 24.45 0.994 2.36 0.993 2.85
24 0.979 16.23 0.976 24.19 0.979 21.88 0.980 4.42 0.998 32.54 0.986 24.38 0.983 2.17 0.982 2.73
48 0.979 16.00 0.978 24.06 0.978 16.23 0.979 1.28 0.997 30.33 0.991 23.62 0.989 1.98 0.980 2.66
96 0.978 12.55 0.978 18.13 0.978 9.63 0.980 3.24 0.996 30.92 0.989 17.41 0.980 2.74 0.979 2.74
avg 0.979 14.30 0.978 22.43 0.979 18.22 0.980 3.07 0.997 31.73 0.988 22.47 0.987 2.31 0.984 2.75

Tr
af

fic

12 0.139 21.36 0.141 35.89 0.139 38.22 0.171 3.59 0.158 60.74 0.146 35.33 0.357 1.33 0.191 4.55
24 0.138 20.44 0.140 35.28 0.138 29.46 0.164 4.86 0.154 62.66 0.180 35.15 0.159 1.78 0.172 3.94
48 0.137 20.23 0.141 36.35 0.137 20.62 0.162 1.30 0.153 59.87 0.174 33.31 0.158 1.27 0.166 4.24
96 0.137 15.58 0.141 23.21 0.137 11.89 0.151 3.27 0.155 60.06 0.174 24.63 0.140 1.29 0.167 4.18
avg 0.138 19.40 0.141 32.68 0.138 25.05 0.162 3.26 0.155 60.83 0.169 32.11 0.204 1.42 0.174 4.23

E
le

ct
ri

ci
ty

12 0.131 20.96 0.132 35.49 0.131 38.10 0.157 3.59 0.178 64.11 0.168 34.67 0.216 2.46 0.209 3.97
24 0.128 20.78 0.133 36.06 0.128 29.74 0.185 4.87 0.173 65.14 0.180 35.36 0.205 2.72 0.211 4.01
48 0.119 20.45 0.134 35.75 0.121 21.28 0.267 1.31 0.173 63.41 0.172 33.09 0.168 2.77 0.202 4.13
96 0.112 16.19 0.142 23.06 0.115 12.32 0.194 3.26 0.176 57.79 0.168 24.33 0.135 2.87 0.194 4.17
avg 0.123 19.60 0.135 32.59 0.124 25.36 0.201 3.26 0.175 62.61 0.172 31.86 0.181 2.71 0.204 4.07

W
ea

th
er

12 0.229 20.13 0.236 34.30 0.234 35.78 0.344 3.52 0.418 53.53 0.379 29.69 0.497 3.12 0.482 3.11
24 0.209 20.02 0.217 33.49 0.212 28.77 0.356 4.75 0.388 53.12 0.377 29.94 0.367 2.99 0.451 2.78
48 0.208 20.01 0.296 29.08 0.211 20.67 0.359 1.30 0.382 56.08 0.384 31.54 0.343 3.53 0.424 2.83
96 0.207 15.63 0.268 21.99 0.213 11.76 0.370 2.15 0.382 54.57 0.370 20.56 0.332 3.52 0.418 2.77
avg 0.213 18.95 0.254 29.72 0.218 24.25 0.357 2.93 0.393 54.33 0.378 27.93 0.385 3.29 0.444 2.87

E
T

T
h2

12 0.267 19.79 0.277 33.74 0.279 32.80 0.393 3.51 0.541 48.62 0.520 29.16 0.499 3.02 0.493 2.73
24 0.260 19.00 0.279 30.67 0.274 27.14 0.423 4.73 0.504 47.36 0.488 29.52 0.484 3.12 0.478 2.61
48 0.267 19.15 0.303 31.07 0.279 20.01 0.426 1.32 0.491 51.45 0.536 28.84 0.443 2.97 0.438 2.82
96 0.262 15.04 0.364 20.50 0.285 11.67 0.404 2.17 0.495 44.72 0.534 22.13 0.412 3.53 0.437 2.74
avg 0.264 18.25 0.306 29.00 0.279 22.91 0.412 2.93 0.508 48.04 0.520 27.41 0.460 3.16 0.462 2.73

So
la

r

12 0.073 21.57 0.064 37.28 0.075 38.37 0.093 3.55 0.104 64.92 0.081 38.78 0.078 2.31 0.101 2.33
24 0.025 21.28 0.030 38.43 0.028 31.38 0.088 4.53 0.074 69.32 0.054 40.47 0.064 2.73 0.098 2.63
48 0.025 21.42 0.035 36.52 0.028 21.98 0.078 1.33 0.067 70.63 0.053 36.68 0.053 2.87 0.094 2.86
96 0.027 16.61 0.036 24.70 0.029 21.98 0.074 2.79 0.068 65.55 0.055 27.22 0.049 2.90 0.093 2.79
avg 0.038 20.22 0.041 34.23 0.040 28.43 0.083 3.05 0.078 67.61 0.061 35.79 0.061 2.70 0.097 2.65

A.12.3 FULL LOSSLESS COMPRESSION RESULTS AND ANALYSIS

An analysis of Table 9 reveals several key findings. Overall, TimeXer consistently achieves the
best or second-best CR across nearly all datasets and horizons, affirming its strong capability in
capturing data distributions. iTransformer and PatchTST also demonstrate highly competitive com-
pression performance, often securing top-tier rankings. Beyond absolute performance, the results
highlight a clear rate-utility trade-off. For example, the simple linear model DLinear exhibits by
far the highest CT, making it the fastest method, but this speed comes at the cost of a significantly
poorer compression ratio. Conversely, models like TimeXer provide superior compression with
more moderate throughput, showcasing how the benchmark can quantify this critical trade-off. The
benchmark’s validity is further validated by its ability to characterize datasets: the PEMS08 dataset
consistently yields a CR close to 1.0, correctly identifying its pre-compressed nature, while the
highly predictable Solar dataset results in very low CR values. Collectively, these detailed results
reinforce the importance of lossless compression as a robust and insightful evaluation paradigm. It
moves beyond single-purpose metrics to provide a multi-faceted view of a model’s performance,
assessing not only its fundamental ability to model data distributions but also its practical trade-offs
regarding speed and sensitivity to data characteristics.

Surprisingly, the Solar dataset exhibits extraordinarily strong compressibility: under the TimeXer
model, the compressed file size is approximately 3% of the original. To understand this behaviour,
we performed a dataset-level diagnostic (Fig. 4). The panel (a) shows that 55.10% of all entries are

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

(a) Zero vs. non-zero ratio. (b) Value frequency histogram (log scale).

Figure 4: Dataset diagnostics explaining Solar’s exceptional compressibility and PEMS08’s appar-
ent incompressibility. (a) shows that 55.10% of Solar entries are exactly zero; (b) shows a strongly
skewed value-frequency distribution with only 2,539 unique values over 7,200,720 samples and val-
ues confined to [0.0, 88.9]. These properties make Solar highly predictable for neural compressors.

exactly zero, producing long runs of highly predictable values. The panel (b) reveals that the dataset
contains 7,200,720 samples but only 2,539 unique values (a repetition rate of roughly 99.96%),
with non-zero values confined to a narrow numeric range [0.0, 88.9]. These characteristics—high
sparsity, extreme redundancy, a limited numeric range, and pronounced diurnal/seasonal periodic-
ity—concentrate probability mass and make the series especially easy for neural autoregressive pre-
dictors to model accurately, which in turn yields very low bits-per-byte and excellent compression.
By contrast, the apparently poor compressibility of PEMS08 is an artifact of its storage format:
PEMS08 is distributed as a .npz archive, so the files are already compressed and contain little
residual redundancy for further reduction, producing compression ratios close to one.

A.12.4 ANALYSIS OF COMPRESSION DYNAMICS AND MODEL CONVERGENCE

Figure 5: Step-by-step convergence of cumulative bpb for top-performing models on the synthetic
dataset. The legend reports the final, stable BPB value achieved by each model after processing
2,000 bytes.

To provide deeper insight into the compression process, we visualize the step-by-step performance
of our top models on the synthetic dataset. Figure 5 plots the cumulative bpb as a function of the
number of bytes processed. The cumulative bpb acts as a running average of compression efficiency,
reflecting how well the model predicts the data stream over time.

The plot reveals several key behaviors. Initially, the bpb for all models is volatile, which is expected
when the predictive context is small. However, as the models process more data, their performance

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

(a) Transition matrix of the Markov chain. (b) Model’s predicted vs. true distributions.

Figure 6: Validation on a synthetic Markovian byte sequence. (a) The transition matrix heatmap
shows strong local dependencies, with high probabilities concentrated along the diagonal. (b) A
comparison of the true conditional byte distribution (red) and the TimeXer model’s predicted distri-
bution (blue).

stabilizes, and the cumulative bpb converges to a steady value. This convergence demonstrates that
the models are learning a consistent statistical representation of the data and that our benchmark
provides a stable and reliable final score for comparison.

Furthermore, this visualization clearly differentiates the final performance ranking of the models.
TimeXer converges to the lowest final bpb of 1.1251, indicating the most effective compression
and the best approximation of the data’s underlying distribution among the three. It is followed
by PatchTST (1.1369) and iTransformer (1.1422). This step-by-step analysis complements the ag-
gregate results in the main paper by illustrating the dynamic behavior of the models and visually
confirming their performance hierarchy on the compression task.

A.12.5 VALIDATION ON SYNTHETIC MARKOVIAN DATA

To provide a definitive validation of our compression-based evaluation paradigm, we designed a
controlled experiment using a synthetic dataset whose theoretical properties are perfectly known.
We generated a byte sequence from a 256-state Markov chain, where the transition matrix was
constructed to exhibit strong temporal dependencies. The probability of transitioning to a new state
is inversely proportional to its distance from the current state. This setup creates a data source with
a known generative process, allowing us to precisely calculate its theoretical entropy rate. This
rate serves as an absolute ground-truth benchmark against which we evaluated our top-performing
model, TimeXer, to assess its ability to learn the known data distribution.

The results of this experiment are visualized in Figure 6. The heatmap of the transition matrix in
Figure 6 (a) clearly shows this strong local structure, with probabilities heavily concentrated along
the diagonal, indicating that the next byte is highly likely to be close in value to the current byte.
This is the explicit statistical rule that a successful time series model must learn. Figure 6 (b) demon-
strates how well the TimeXer model captured this underlying rule. It compares the true conditional
distribution of the next byte against the distribution predicted by the model. The significant over-
lap between the original and predicted distributions, especially evident in the smoothed trend lines,
confirms that the model successfully approximated the data’s true generative properties rather than
merely memorizing superficial patterns.

The primary advantage of this controlled experiment is the ability to quantify model performance
against a perfect theoretical baseline. For the generated sequence with transition probability pa-
rameter p = 0.9, the theoretical entropy rate was calculated to be 1.268 bits/byte. When evaluated
on this data, our top-performing model, TimeXer, achieved an actual compression rate of 1.956
bits/byte. The resulting gap of 0.688 bits/byte provides a direct and unambiguous measure of the
model’s fidelity in learning the true data distribution. This result strongly substantiates our paper’s

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 10: CR of our best model backbone (TimeXer), specialised time-series compressors, and
general-purpose compressors across four datasets.

Dataset TimeXer Sprintz Elf Chimp Camel Gorilla LZ4 Zstd Brotli Xz

Electricity 0.1120 0.1820 0.3065 0.3587 0.4020 0.2269 0.3050 0.2066 0.1969 0.1430
ETTh2 0.2620 0.1220 0.8204 0.7521 0.4790 0.7595 0.3010 0.1506 0.1423 0.1230
Traffic 0.1370 0.2290 0.3120 0.8962 0.2070 0.9794 0.3625 0.2342 0.2226 0.1650
Weather 0.2070 0.3160 0.4052 0.8267 0.3570 0.7642 0.5208 0.3372 0.3001 0.2320

central thesis: lossless compression serves as a rigorous, principled, and quantitatively verifiable
benchmark for evaluating a model’s core ability to capture the underlying generative process of a
time series.

A.12.6 COMPARISON WITH SPECIALIZED COMPRESSORS

To further assess the relative performance of learned models, we compare our best TSCom-Bench
backbone against specialised lossless time-series compressors such as Sprintz, ELF, Chimp, Camel
and Gorilla, as well as general-purpose compressors (LZ4, Zstd, Brotli, Xz); detailed numbers are
reported in Table 10. For clarity, we place the best-performing deep model (TimeXer) in the first
column. The results show that TimeXer achieves the lowest or near-lowest compression ratio on
all datasets except ETTh2, despite never being designed as a compressor. The weaker performance
on ETTh2 is likely due to its limited periodicity and regularity, a well-known characteristic of this
benchmark in the time-series literature. Overall, these findings are encouraging: they indicate that
modern time-series models already learn distributional structure rich enough to rival specialised
compressors. They also suggest that future models explicitly designed for lossless time-series com-
pression may surpass both current deep models and traditional compressors, and that TSCom-Bench
provides a natural testbed for exploring this new research direction.

B COMPARISON WITH CANONICAL TASKS

We provide a detailed comparison between lossless compression and the four canonical evaluation
tasks widely used in time series modeling: forecasting, imputation, anomaly detection, and classifi-
cation.

Forecasting. Forecasting aims to predict the future values given the past. The standard loss is mean
squared error:

Lforecast(θ) =
1

T

T∑
t=1

∥xt − x̂θ
t ∥22, x̂θ

t = EQθ
[xt | x<t]. (37)

Minimizing this loss forces Qθ to match only the conditional mean. Different distributions can
share the same mean but have very different variance or tail behaviour, so a model may achieve low
forecasting loss yet diverge from P in KL divergence.

Imputation. Imputation requires the model to reconstruct missing values in a partially observed
sequence. Let M ⊂ {1, . . . , T} be a randomly sampled set of masked indices, and let O denote the
complement set of observed indices. A typical objective is to minimize the mean squared error on
the masked values, denoted by Limp:

Limp(θ) = EM

[∑
t∈M

∥∥xt − x̂θ
t (xO)

∥∥2
2

]
, (38)

where the expectation EM is taken over the distribution of masks, and x̂θ
t (xO) is the model’s re-

construction of xt conditioned on the observed values xO. This criterion enforces local accuracy
only on masked positions, while unmasked positions are unconstrained. Unless masking covers all
possible subsets, Qθ can match Limp while disagreeing with P elsewhere.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Anomaly detection. The model learns the density of normal data and flags deviations. A common
approach is to maximize the likelihood on the set of normal data points. Let Tnormal ⊂ {1, . . . , T} be
the set of time indices corresponding to normal data. The loss Lanom is the negative log-likelihood
on this subset:

Lanom(θ) = −
∑

t∈Tnormal

log2 Qθ(xt | x<t). (39)

This objective enforces accurate density estimation only within the restricted support of normal
sequences. Probability mass outside this region is largely irrelevant, meaning the model is not
penalized for misrepresenting the full distribution.

Classification. Classification associates an entire sequence X with a single, discrete label y ∈ Y ,
where Y is the set of all possible labels. The standard objective is to minimize the cross-entropy
loss, denoted by Lcls:

Lcls(θ) = − log2 Qθ(y | X). (40)
This objective enforces that the model’s conditional label distribution Qθ(y | X) approximates the
true one P (y | X), but it does not constrain the sequence distribution Qθ(X) itself. A model may
achieve perfect classification by exploiting only a few discriminative features, while ignoring most
temporal dependencies.

C USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, we utilized Large Language Models (LLMs), specifically
Google’s Gemini, as writing assistants. The use of these models was strictly limited to improving
grammar, polishing language, and enhancing the clarity of the text. All the core ideas, method-
ologies, experimental designs, results, and conclusions presented in this paper were conceived and
developed exclusively by the human authors. LLMs served solely as a tool for refining the written
expression and did not contribute in any form to the scientific content or intellectual contributions
of this work.

27

	Introduction
	Preliminaries and Motivation
	Multivariate Time Series and Optimal Code Length
	From Multivariate Time Series to Symbolic Streams
	Compression Objective and KL Divergence

	Overall Compression Architecture
	Comparison with Canonical Tasks
	Benchmark Design and Methodology
	Encoding Conventions
	Model-to-Coder Interface
	Evaluation Protocol and Metrics
	Open-Source TSCom-Bench Framework

	Experiments
	Experimental Setup
	Main Results: Lossless Compression across Time Series Benchmarks
	Multi-Stream Channel-Independent (MSCI) Setting
	Learning Temporal Dependencies in Byte-Level Encoding
	Convergence to the Entropy Limit on Synthetic Data
	Cross-Modality Compression Benchmark
	Relationship Between Compression and Classic Time Series Tasks

	Related Work
	Lossless Compression and Information-Theoretic Evaluation
	Learning-based Compression and Probabilistic Sequence Modeling
	Loss–Metric Mismatch
	Conclusion

	Appendix
	Invariance of Mutual Information under Bijective Mapping
	On the Information Loss from Quantization
	Quantifying the NLL-Codelength Gap in Arithmetic Coding
	Lossless Compression: The Gold Standard
	Comparison with Canonical Tasks
	Forecasting: Constraining Only the Conditional Mean
	Imputation: Constraining a Subset of Conditional Means
	Anomaly Detection: Constraining Likelihood on a Restricted Support
	Classification: Constraining Only the Label's Posterior Probability
	Unified View and Summary
	Overview of Core Process of Arithmetic Encoding
	Additional Experiments
	Datasets
	Parameters and Experimental Setup
	Full Lossless Compression Results and Analysis
	Analysis of Compression Dynamics and Model Convergence
	Validation on Synthetic Markovian Data
	Comparison with Specialized Compressors

	Comparison with Canonical Tasks
	Use of Large Language Models

