

LOSSLESS COMPRESSION: A NEW BENCHMARK FOR TIME SERIES MODEL EVALUATION

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

The evaluation of time series models has traditionally focused on four canonical tasks: forecasting, imputation, anomaly detection, and classification. Although these tasks have made significant progress, they primarily assess task-specific performance and do not rigorously measure whether a model captures the full generative distribution of the data. We introduce lossless compression as a new paradigm for evaluating time series models, grounded in Shannon’s source coding theorem. This perspective establishes a direct equivalence between optimal compression length and the negative log-likelihood, providing a strict and unified information-theoretic criterion for modeling capacity. Then we define a standardized evaluation protocol and metrics. We further propose and open-source a comprehensive evaluation framework TSCom-Bench, which enables the rapid adaptation of time series models as backbones for lossless compression. Experiments across diverse datasets on state-of-the-art models, including TimeXer, iTransformer, and PatchTST, demonstrate that compression reveals distributional weaknesses overlooked by classic benchmarks. These findings position lossless compression as a principled task that complements and extends existing evaluations for time series modeling.

1 INTRODUCTION

Time series modeling is a fundamental branch of machine learning with critical applications in finance, healthcare, climate science, and industrial operations Sakib et al. (2025). Recent advances in deep learning have pushed the field from early recurrent and convolutional networks to models utilizing self-attention and hybrid architectures, which demonstrate remarkable performance across a variety of settings Kim et al. (2025); Mahmoud & Mohammed (2024). However, a central challenge remains unresolved: how to systematically and rigorously evaluate their modeling capacity.

Currently, the time series research widely relies on four canonical benchmark tasks: forecasting, anomaly detection, imputation, and classification Jin et al. (2024). While these tasks have undeniably advanced the field, they exhibit an inherent limitation: their optimization objectives do not directly correspond to a model’s ability to capture the global statistical structure of a sequence. In other words, they primarily validate task-specific functionality but fail to provide a comprehensive assessment of distributional modeling capacity. Specifically, forecasting tasks typically minimize MSE or MAE, which can be satisfied by short-term lags or average baselines while overlooking tail risks and regime shifts Jean (2025). Classification tasks may achieve high accuracy by focusing on a few features strongly correlated with labels, ignoring the majority of temporal dependencies Sun et al. (2024). Imputation tasks are optimized under artificially masked conditions, emphasizing local consistency rather than global distributional fidelity Zhang et al. (2024). Anomaly detection emphasizes distinguishing between “normal” and “abnormal” boundaries Lee et al. (2024). Therefore, these four tasks are closer to functional validation. They can demonstrate that a model is useful in specific applications, but they cannot answer a deeper question: does the model truly capture the entropy structure and generative regularities of time series?

Addressing this gap requires an evaluation perspective that directly characterizes the generative distribution rather than merely assessing task-specific performance. Lossless compression in information theory provides precisely such a bridge. Recent studies have highlighted a close connection between language modeling and lossless compression. DeepMind’s work formalizes that autore-

054 gressive models paired with arithmetic coding act as universal compressors Delétang et al. (2023a).
 055 Marcus Hutter, founder of the *Hutter Prize*, argues that intelligence can be measured by the ability to
 056 compress data effectively Kipper (2021). For time series, the connection with lossless compression
 057 is even more natural Wan et al., as the act of predicting each subsequent byte is a granular test of
 058 the model’s ability to approximate the true conditional probability of the underlying data-generating
 059 process Mao et al. (2022). A model that achieves strong compression must have learned to rep-
 060 resent complex, multi-level dependencies in a compact, low-entropy form Delétang et al. (2023a).
 061 Furthermore, much like forecasting or classification which are valuable applications, lossless com-
 062 pression is a critical real-world task for efficient data storage and transmission Elakkiya & Thiyva
 063 (2022). Therefore, our work innovatively introduces lossless compression as a new benchmark for
 064 time series evaluation. The main contributions of this work are summarized as follows:
 065

- 066 • **A novel evaluation task:** We introduce lossless compression as an independent benchmark
 067 task, complementing and extending the existing four canonical tasks.
- 068 • **Theoretical grounding:** We rigorously derive the equivalence between compression ob-
 069 jectives and probabilistic modeling goals, highlighting its unique role in optimization, in-
 070 formation constraints, and modeling granularity.
- 071 • **Pluggable compression framework:** We propose and open-source *TSCom-Bench*, a stan-
 072 dardized lossless compression evaluation framework that allows seamless integration of
 073 time series models as backbones and outputs a comprehensive suite of evaluation metrics.
- 074 • **Comprehensive empirical study:** We conduct extensive experiments on diverse real-
 075 world and synthetic datasets, benchmarking both classical compressors and modern
 076 learning-based time series models.

077 2 PRELIMINARIES AND MOTIVATION

078 2.1 MULTIVARIATE TIME SERIES AND OPTIMAL CODE LENGTH

079 We consider a multivariate time series $X = \{x_t \in \mathbb{R}^d\}_{t=1}^T$, where T is the total time steps and
 080 each observation $x_t \in \mathbb{R}^d$ is a d -dimensional vector at a given time step t , with d denoting the
 081 number of channels. From an information-theoretic perspective, the $x_{<t} = (x_1, \dots, x_{t-1})$ denotes
 082 the history of observations before t , the goal is equivalent to accurately approximating the true
 083 conditional probability. According to Shannon’s source coding theorem Barron et al. (1998), the
 084 theoretical optimal expected code length of X under an ideal entropy coder is asymptotically equal
 085 to its negative log-likelihood (NLL):
 086

$$087 L^*(X) = - \sum_{t=1}^T \log_2 P(x_t | x_{<t}), \quad (1)$$

088 where $L^*(X)$ is the optimal code length in bits required to encode the entire sequence X . The
 089 term $P(x_t | x_{<t})$ within the summation is the true conditional probability of observing x_t given
 090 all previous observations $x_{<t}$. This equivalence implies that a model’s ability to compress a time
 091 series is a direct measure of how well it approximates the true data-generating process Gruver et al.
 092 (2023).
 093

094 2.2 FROM MULTIVARIATE TIME SERIES TO SYMBOLIC STREAMS

095 To apply compression-based evaluation, the continuous time series X must be mapped to a discrete
 096 sequence. Let $f : \mathbb{R}^d \rightarrow \mathcal{A}^k$ be a bijective encoding function, where \mathcal{A} is a finite alphabet (e.g.,
 097 bytes, where $|\mathcal{A}| = 256$) and k is the number of symbols required to represent a single real number
 098 (e.g., $k = 4$ for a 32-bit float). Assuming a homogeneous data type across all channels. This function
 099 maps the time series X to a symbolic stream S :

$$100 S = f(X) \in \mathcal{A}^L, \quad \text{where } L = T \cdot d \cdot k. \quad (2)$$

101 Here, S is the resulting byte stream, and L is the total length in bytes. If the encoding function f
 102 is bijective, then the Shannon entropy measured in bits, using base-2 logarithms \log_2 , denoted by
 103 $H(\cdot)$, is preserved between the original time series X and its encoded stream S :

$$104 H(X) = H(S). \quad (3)$$

108 This equality holds exactly under a perfect bijective mapping. In practice, when continuous values
 109 are quantized, a small approximation error may occur, but it vanishes as the quantization becomes
 110 infinitely precise (Cover & Thomas, 2006). Therefore, byte-level compression faithfully reflects the
 111 probabilistic modeling quality for real-valued multivariate time series.

113 2.3 COMPRESSION OBJECTIVE AND KL DIVERGENCE

115 The central quantity in compression is the expected code length. For a byte stream S drawn from the
 116 true data distribution P , a model Q_θ parameterized by θ assigns a likelihood via an autoregressive
 117 factorization:

$$118 \quad 119 \quad 120 \quad Q_\theta(S) = \prod_{i=1}^L Q_\theta(s_i \mid s_{<i}), \quad (4)$$

121 where s_i is the i -th symbol in the stream S of total length L , and $s_{<i}$ denotes the history of preceding
 122 symbols. The compression loss $\mathcal{L}_{\text{comp}}$ is defined as the expected negative log-likelihood:

$$123 \quad 124 \quad 125 \quad \mathcal{L}_{\text{comp}}(\theta) = \mathbb{E}_{S \sim P} \left[-\log_2 Q_\theta(S) \right]. \quad (5)$$

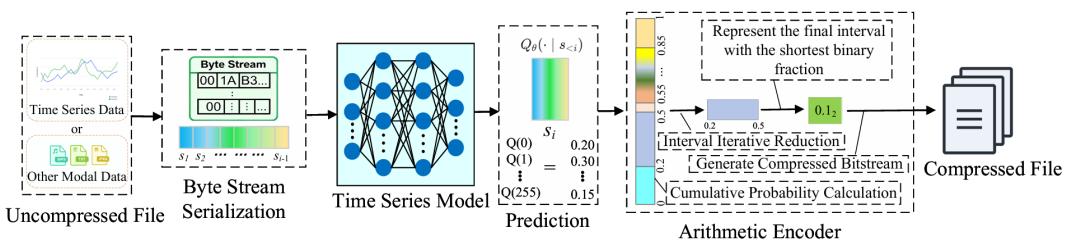
126 This loss decomposes into Shannon entropy and KL divergence:

$$127 \quad 128 \quad \mathcal{L}_{\text{comp}}(\theta) = H(P) + \text{KL}(P \parallel Q_\theta), \quad (6)$$

129 where $H(P)$ is the Shannon entropy of the true distribution P , and $\text{KL}(P \parallel Q_\theta)$ is the Kullback-
 130 Leibler (KL) divergence between P and Q_θ . Thus, minimizing $\mathcal{L}_{\text{comp}}$ is equivalent to minimizing
 131 the KL divergence, which forces the model distribution to align with the true data distribution. The
 132 derivation process establishes compression as the most principled evaluation: only if a model fully
 133 captures the distribution will it achieve near-optimal compression.

134 3 OVERALL COMPRESSION ARCHITECTURE

137 The overall lossless compression evaluation architecture integrates byte stream serialization, time
 138 series probabilistic modeling, and arithmetic encoding into a unified pipeline, as shown in Figure 1. First, the uncompressed file is read as a byte stream, forming the byte stream serialization
 139 (s_1, s_2, \dots, s_{i-1}) that is fed into the time series model to derive the probability distribution Q_θ of
 140 the next byte s_i . Then, these probability vectors are fed into an arithmetic encoder for arithmetic en-
 141 coding. The arithmetic encoder is a standard entropy coding algorithm that first performs cumulative
 142 probability calculation, then iteratively reduces the unit interval based on the predicted probabilities
 143 to assign each byte to a sub-interval. Through continuous interval narrowing, the entire sequence
 144 is represented by a final interval. This final interval is converted into the shortest binary fraction
 145 to generate a compressed bitstream that ultimately forms the compressed file. This compressed file
 146 can be accurately decoded back to the original file through reverse processing. Thus, this archi-
 147 tecture unifies probabilistic modeling and compression, which is reflected in the fact that the more
 148 accurately a time series model captures temporal dependencies, the more efficient its compression
 149 becomes.



151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 Figure 1: Overall lossless compression architecture. Byte-level encoding, probabilistic modeling,
 and arithmetic coding are combined into a unified pipeline.

162

4 COMPARISON WITH CANONICAL TASKS

164 We provide a comparison between lossless compression and the four canonical evaluation tasks
165 widely used in time series modeling: forecasting, imputation, anomaly detection, and classification.
166 The differences in evaluation of these tasks will be discussed in the appendix.167 **Unified View.** The canonical tasks can be abstractly interpreted as minimizing a divergence between
168 projected statistics of the true and model distributions. This can be conceptualized as:
169

170
$$\mathcal{L}_{\text{task}}(\theta) \approx d(\phi(P), \phi(Q_\theta)), \quad (7)$$

171 where $\mathcal{L}_{\text{task}}$ represents a generic task loss, ϕ is a function that extracts a relevant statistic (e.g., the
172 conditional mean for forecasting), and $d(\cdot, \cdot)$ is a generic distance or divergence measure. These
173 projections constrain only partial aspects of the distribution.
174175 **Illustrative Counterexample.** Consider a time series generated by a binary mixture process. For
176 any history $x_{<t}$, the next value x_t is drawn from the conditional distribution:
177

178
$$P(x_t | x_{<t}) = \frac{1}{2} \delta(x_t - (\mu - a)) + \frac{1}{2} \delta(x_t - (\mu + a)), \quad (8)$$

179 where $\mu, a \in \mathbb{R}$ with $a > 0$ are fixed constants, and $\delta(\cdot)$ is the Dirac delta function, which we use
180 to compactly represent a two-point discrete distribution. The conditional mean of this process is
181 always $\mathbb{E}_p[x_t | x_{<t}] = \mu$. A forecasting model that always predicts this conditional mean, $\hat{x}_t = \mu$,
182 achieves an MSE of:
183

184
$$\mathbb{E}_p[(x_t - \mu)^2] = a^2, \quad (9)$$

185 which is the optimal solution for minimizing MSE. For a conceptual illustration, suppose a model
186 Q_θ incorrectly assumes a narrow Gaussian distribution, $\mathcal{N}(\mu, \sigma^2)$, where the variance $\sigma^2 \ll a^2$.
187 This model's mean prediction is also μ , so its MSE remains near-optimal. However, its compression
188 performance, measured by the cross-entropy $-\log_2 Q_\theta(x_t | x_{<t})$ will be extremely poor. The
189 model Q_θ assigns negligible probability density to the only two points that can actually occur, $x_t =$
190 $\mu \pm a$, causing the negative log-likelihood to diverge towards infinity. Therefore, a model can
191 appear successful under forecasting metrics while failing under compression, which demonstrates
192 that compression provides a stricter and more informative evaluation.193

5 BENCHMARK DESIGN AND METHODOLOGY

194 We propose a standardized benchmark that evaluates time series models via lossless compression,
195 providing a rigorous and reproducible methodology and protocols.
196197

5.1 ENCODING CONVENTIONS

200 To guarantee both losslessness and reproducibility, we recommend a canonical encoding scheme:
201

- **Numeric representation.** Each real-valued observation is stored in IEEE-754 32-bit/UTF-8 format (16/64-bit can be evaluated in ablations). Every float is decomposed into $k = 4$ bytes, each a symbol from \mathcal{A} with $|\mathcal{A}| = 256$. Bytes are concatenated in a fixed order (channel-first, then time), yielding the symbol stream $S = f(X)$.
- **Bijectivity.** The mapping $f : X \mapsto S$ is deterministic and invertible, ensuring exact recovery of the original sequence via f^{-1} .
- **Preprocessing.** Any preprocessing (e.g., missing value imputation, normalization, boundary alignment) must be standardized and released with the dataset package.
- **Alternative encodings.** Other discretization schemes (e.g., histogram binning, lossy quantization) may be studied, but benchmark results should always report the canonical byte-level encoding for comparability.

214

5.2 MODEL-TO-CODER INTERFACE

215 Time series models are treated as *predictors* that interface with a lossless entropy coder.

- **Interface.** For each prefix $s_{<i}$, the model outputs a probability vector $Q_\theta(\cdot | s_{<i})$ over \mathcal{A} .
- **Training paradigms.** Two primary training paradigms are supported: (i) Autoregressive models are trained directly on symbol streams (default); or (ii) density estimators are trained on raw values and subsequently mapped to discrete probabilities.
- **Entropy coder.** An arithmetic coder consumes the probability vectors together with the ground-truth sequence S . Encoding length equals the negative log-likelihood.
- **Numerical stability.** Probability vectors must be properly normalized; log-space accumulations or fixed-precision mappings are recommended to avoid underflow or mismatch.

5.3 EVALUATION PROTOCOL AND METRICS

To ensure comparability, models are trained on the designated training split and evaluated on held-out test sequences, with no adaptive coding across training and test allowed. All preprocessing, random seeds, and hyperparameters should be fixed and released to ensure strict reproducibility. We report metrics for both compression efficiency and runtime. These include bits per byte (bpb), compression ratio (CR), and Compression Throughput (CT), defined as:

$$\text{bpb} = \frac{L_{\text{comp}}(Q_\theta, S)}{L}, \quad \text{CR} = \frac{L_{\text{comp}}(Q_\theta, S)}{8 \cdot L}, \quad \text{CT} = \frac{L/1024}{T_{\text{compress}}}, \quad (10)$$

where $L_{\text{comp}}(Q_\theta, S)$ is the total compressed length in bits, L is the original length of the byte stream S in bytes, and T_{compress} is the compression time in seconds.

5.4 OPEN-SOURCE TSCom-BENCH FRAMEWORK

Models in TSCom-Bench are evaluated in their standard architectural form. We do not change the backbone structure. It is worth noting that we are a new compression task parallel to prediction, classification tasks, etc., and will not perform secondary fine-tuning based on the training model. Any autoregressive backbone used for forecasting or classification can be adapted with very little code, usually fewer than 20 lines of code. We strongly encourage releasing preprocessing code, training scripts, and entropy coding implementations. All components of this benchmark have been open-sourced in the **TSCom-Bench** framework, which provides standardized encoding functions, reference coders, datasets, and evaluation scripts for direct and reproducible comparison. Codes are available in <https://anonymous.4open.science/r/TSCom-Bench-8262>.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Datasets. We evaluate on a diverse collection of widely used multivariate time series benchmarks, including PEMS08, Traffic, Electricity, Weather, ETTh2 and Solar datasets. For PEMS08 we follow standard practice and use the publicly released compressed NumPy archive (`.npz`), whose byte stream is already stored in a ZIP-based container and later serves as a negative control for calibrating our benchmark. In addition, we include standard lossless compression benchmarks such as Enwik9 (Wikipedia text), Image (raw image bitmaps), Sound (audio waveforms), Float, Silesia and Backup archives.

Baselines. We compare against representative state-of-the-art forecasting backbones widely adopted in time series research, including Transformer-based models Informer Zhou et al. (2021), Autoformer Wu et al. (2021), PatchTST Nie et al. (2022), SCINet Liu et al. (2022), iTransformer Liu et al. (2023), TimeXer Wang et al. (2024), lightweight linear approaches DLinear Zeng et al. (2023) and recent hybrid architectures LightTS Campos et al. (2023). Classical compressors such as Dzip Goyal et al. (2021) and NNCP Bellard (2019) is also included for reference.

Environments and Parameters. All experiments are implemented in PyTorch 2.1 and executed on NVIDIA Tesla P100 GPUs. For neural baselines, we adopt standard training protocols following prior work: the sequence length is fixed at 96, and data are normalized with RevIN preprocessing. Optimization uses Adam with learning rates selected from $\{10^{-3}, 10^{-4}\}$, and employs early stopping based on validation loss. For evaluation, we report bpb, CR and CT for comparison.

270 Table 1: Lossless compression results on six benchmark time series datasets. CT is measured in
 271 KB/s. The best results are highlighted in **bold**, and the second best are underlined.
 272

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323	Dataset		TimeXer (2025)		iTransformer (2024)		PatchTST (2023)		Autoformer (2023)		DLinear (2023)		LightTS (2023)		SCINet (2022)		Informer (2021)	
	CR	CT	CR	CT	CR	CT	CR	CT	CR	CT	CR	CT	CR	CT	CR	CT	CR	CT
PEMS08	0.978	12.55	0.978	<u>18.13</u>	<u>0.978</u>	9.63	0.980	3.24	0.996	30.92	0.989	17.41	0.980	2.74	0.979	2.74		
Traffic	0.137	15.58	0.141	23.21	<u>0.137</u>	11.89	0.151	3.27	0.155	60.06	0.174	<u>24.63</u>	0.140	1.29	0.167	4.18		
Electricity	0.112	16.19	0.142	23.06	<u>0.115</u>	12.32	0.194	3.26	0.176	57.79	0.168	<u>24.33</u>	0.135	2.87	0.194	4.17		
Weather	0.207	15.63	0.268	<u>21.99</u>	<u>0.213</u>	11.76	0.370	2.15	0.382	54.57	0.370	20.56	0.332	3.52	0.418	2.77		
ETTh2	0.262	15.04	0.364	20.50	<u>0.285</u>	11.67	0.404	2.17	0.495	44.72	0.534	<u>22.13</u>	0.412	3.53	0.437	2.74		
Solar	0.027	16.61	0.036	24.70	<u>0.029</u>	21.98	0.074	2.79	0.068	65.55	0.055	<u>27.22</u>	0.049	2.90	0.093	2.79		

284 Table 2: CR under the MSCI setting on four multivariate time series datasets.
 285

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323	Dataset	iTransformer	TimeXer	PatchTST	SCINet	Informer	Autoformer	DLinear	LightTS
Weather		0.1581	<u>0.1651</u>	0.1690	0.2664	0.2727	0.3078	0.4545	0.3485
ETTh2		<u>0.2127</u>	0.2106	0.2160	0.2203	0.2106	0.2185	0.2845	0.3121
Electricity		<u>0.0816</u>	0.0787	0.0808	0.0873	0.0862	0.0916	0.1939	0.1487
Traffic		0.1807	<u>0.1076</u>	0.1068	0.1251	0.1293	0.1295	0.2491	0.2501

294 6.2 MAIN RESULTS: LOSSLESS COMPRESSION ACROSS TIME SERIES BENCHMARKS

295 To validate lossless compression as a principled evaluation paradigm for time series modeling, we
 296 conduct systematic experiments across six real-world benchmark datasets, with results summarized
 297 in Table 1. Two points are worth highlighting. The Solar’s remarkably low CR directly reflects
 298 its minimal data entropy, which stems from a highly predictable diurnal cycle and inherent sparsity
 299 from frequent zero-values during nighttime. This ability to quantify the data’s intrinsic predictabil-
 300 ity is a crucial insight inaccessible to classic error-based metrics. In contrast, PEMS08 consistently
 301 shows CR values close to 1, consistent with the results for general-purpose compressors in Ap-
 302 pendix Table 10, indicating near-incompressibility. The fact that our pipeline correctly identifies
 303 this pre-compressed data as having minimal remaining redundancy serves as a crucial validation of
 304 its correctness and reliability.

305 The results across all datasets reveal that leading models like TimeXer, iTransformer and PatchTST
 306 consistently demonstrate strong performance on the compression task, aligning with their effective-
 307 ness in other tasks. An interesting finding is that PatchTST’s superior compression, despite not
 308 always leading in forecasting, indicates its ability to capture rich distributional representations over-
 309 looked by task-specific objectives. Overall, these results demonstrate that lossless compression pro-
 310 vides a more fundamental and stringent benchmark, exposing differences and limitations invisible
 311 to functional evaluations and supporting its role as a core benchmark for time series models.

314 6.3 MULTI-STREAM CHANNEL-INDEPENDENT (MSCI) SETTING

316 To fully exploit models such as TimeXer, iTransformer and PatchTST that contain channel-aware
 317 components, we conduct a multi-stream version of the experiment. Specifically, we treat each vari-
 318 able in the dataset as an independent read channel. A single model instance processes and
 319 compresses each channel in sequence, and the final file size is obtained by summing over all channels.
 320 Across all datasets, the MSCI setting yields lower CR than the single-stream setting (see Table 2).
 321 This indicates that, when channel boundaries are preserved, multivariate data contains structural
 322 information beyond temporal continuity, and this structure becomes clearer and easier to learn.
 323 Channel-independent models, especially iTransformer and TimeXer, benefit the most, confirming
 324 that their CI design indeed captures meaningful per-channel temporal patterns.

324
 325 Table 3: Results of time series and IEEE 754 structure ablation CR experiments on WEATHER
 326 dataset. “A” retains both time series and IEEE 754 structure; “B” removes only the time series; “C”
 327 removes both.

Method	A Raw	B Shuffled time	C Shuffled time and bytes
TimeXer	0.3434	0.4909	0.7690
iTransformer	0.3718	0.5106	0.7691
PatchTST	0.3485	0.4849	0.7705
LightTS	0.6654	0.7447	0.8243

334 335 6.4 LEARNING TEMPORAL DEPENDENCIES IN BYTE-LEVEL ENCODING

336
 337 A natural concern for our byte-level framework is that splitting a 32-bit IEEE 754 float into four
 338 bytes might destroy useful structure: it could weaken temporal dynamics in the original sequence
 339 and break the internal sign–exponent–mantissa dependency. To verify that these potential informa-
 340 tion structures can actually be learned by the model, we design the following controlled experiment.

341 We use the Weather datasets and consider three settings:

- 343 • **A: Raw data.** The original time series is encoded into bytes in temporal order. Both
 344 temporal structure and IEEE 754 structure are preserved.
- 345 • **B: Shuffled time.** We randomly permute the time steps before encoding. Temporal order
 346 is removed, while the IEEE 754 layout within each value is preserved.
- 347 • **C: Shuffled time and shuffled bytes.** We randomly permute both the time steps and the
 348 four bytes inside each 32-bit float. Both temporal and IEEE 754 structures are removed.

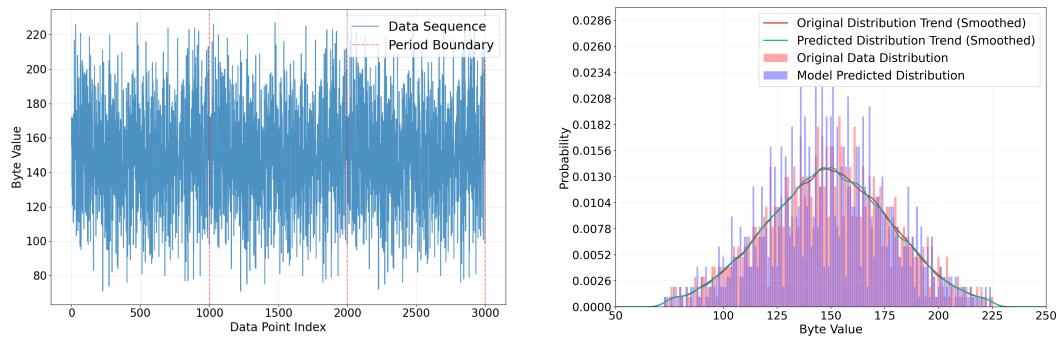
350 In all three settings we keep the same models, training protocol, and compression metric. Table 3
 351 shows the results. From setting A to B, the CR increases consistently across all models, even though
 352 the IEEE 754 structure inside each float remains unchanged. This indicates that models rely on
 353 temporal dynamics such as trend and seasonality. If byte-level encoding had destroyed temporal in-
 354 formation, shuffling the time index would not cause such a clear and systematic drop in compression
 355 performance.

356 From setting B to C, the metric becomes even worse. The only additional change is shuffling the
 357 four bytes within each float, which breaks the deterministic relation between sign, exponent, and
 358 mantissa. The consistent degradation from B to C suggests that models also learn this internal
 359 numeric structure: they capture dependencies between the first byte (sign and exponent) and the
 360 subsequent bytes that refine the mantissa.

361 Overall, these results demonstrate that byte-level lossless compression preserves both macro tempo-
 362 ral structure and micro numeric structure. Models can still learn temporal dependencies across time
 363 steps while also capturing the internal IEEE 754 layout within each value, even though the data is
 364 presented as a flat byte stream.

366 367 6.5 CONVERGENCE TO THE ENTROPY LIMIT ON SYNTHETIC DATA

368 To directly assess whether our approach can recover the true underlying data-generating distribution
 369 rather than overfitting to local repetitions, we construct a controlled synthetic dataset. This dataset
 370 consists of discrete-valued samples generated with a fixed period of 1,000 bytes and small additive
 371 noise, producing an approximately Gaussian marginal value distribution with nontrivial temporal
 372 regularity. Figure 2 shows two aspects of this experiment. Panel (a) illustrates a segment of the
 373 periodic byte sequence, where the repeated structure and injected noise are clearly visible. Panel
 374 (b) compares the original and model-predicted byte-level distribution trends: the strong overlap
 375 between the red and green curves indicates that the model successfully captures the global statistical
 376 properties of the data rather than merely memorizing individual cycles or local patterns. We then
 377 evaluate the learned model using our lossless compression protocol. As shown in Table 4, the
 theoretical lower bound of the compression rate is approximately 1.0097 bpb, with small fluctuations



(a) Segment of the periodic synthetic byte sequence. (b) True vs. model-predicted byte-level distributions.

Figure 2: Synthetic data entropy validation.

due to injected noise. As the dataset size increases, the gap between the model’s bpb and the bound steadily decreases, demonstrating clear convergence toward the information-theoretic limit.

This experiment provides two key insights for our benchmark. First, it confirms that lossless compression evaluation reflects a model’s ability to recover global statistical regularities. Second, it shows that as more data is observed, a well-specified model can approach the entropy limit, which serves as a rigorous, interpretable upper bound for modeling capacity.

Table 4: Empirical compression converges to theoretical entropy on synthetic data.

Metric	1MB	2MB	4MB	8MB	16MB	32MB	128MB
True Entropy	1.0087	1.0066	1.0089	1.0097	1.0090	1.0097	1.0097
Model bpb	1.1251	1.0945	1.0639	1.0482	1.0347	1.0301	1.0442
Gap	0.1154	0.0848	0.0542	0.0385	0.0250	0.0204	0.0345

6.6 CROSS-MODALITY COMPRESSION BENCHMARK

To evaluate whether lossless compression truly captures cross-domain temporal regularities, we further construct a multimodal compression benchmark by interleaving heterogeneous data audio segments, environmental sensor readings, and textual event into a unified IEEE-754/UTF-8 byte stream following our canonical encoding. This setting mimics real-world archives where diverse modalities must be stored jointly without loss. As shown in Table 5, time-series models consistently outperform classical compressors such as Dzip and NNCP even under cross-modal interleaving, with TimeXer achieving the lowest CR of 0.185 while maintaining high CT on Enwik9. These results provide direct evidence that temporal modeling for compression generalizes beyond single-modality data and yields superior compression efficiency on heterogeneous multimodal streams. The results highlight that incorporating compression as a task is not only a theoretical exercise for model evaluation, but also directly addresses the practical need for efficient data archival in real-world applications.

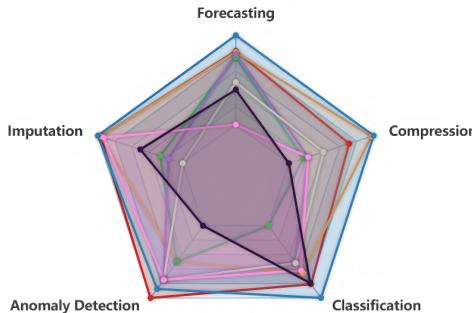
6.7 RELATIONSHIP BETWEEN COMPRESSION AND CLASSIC TIME SERIES TASKS

To investigate how lossless compression relates to classic time series tasks, we compare our compression evaluations with publicly reported results on forecasting, imputation, anomaly detection, and classification. The results for representative models are collected from their original benchmark papers and widely used survey tables Wang et al. (2024); Liu et al. (2023); Wu et al. (2022). Lossless compression results are taken from our standardized TSCom-Bench evaluation protocol in Table 1. For comparability across heterogeneous metrics, all task scores are normalized to the range [0, 1] within each task. The radar plot in Figure 3 (a) displays the normalized scores across five tasks, revealing distinctive performance profiles: models such as iTransformer achieve strong forecasting and imputation results but lag markedly on compression, forming an asymmetric profile. In contrast,

432 Table 5: Lossless compression results on seven compression-benchmark cross-modality datasets.
 433 The best results are highlighted in **bold**, and the second best are underlined.
 434

Dataset	TimeXer (2025)		iTransformer (2024)		PatchTST (2023)		DLinear (2023)		SCINet (2022)		Dzip (2021)		NNCP (2019)	
	CR	CT	CR	CT	CR	CT	CR	CT	CR	CT	CR	CT	CR	CT
Enwik9	0.185	14.35	0.206	<u>16.67</u>	<u>0.187</u>	13.21	0.359	32.54	0.263	3.64	0.224	4.06	0.279	1.05
Sound	0.431	13.67	0.479	<u>25.54</u>	<u>0.455</u>	10.37	0.592	40.63	0.535	1.69	0.490	4.51	0.615	1.13
Image	0.517	18.43	0.615	<u>24.57</u>	<u>0.523</u>	14.12	0.741	38.42	0.713	2.95	0.581	4.77	0.676	1.32
Float	<u>0.312</u>	14.53	0.327	<u>19.56</u>	0.291	12.35	0.392	53.67	0.429	1.72	0.694	4.51	0.582	1.23
Silesia	0.198	17.04	<u>0.202</u>	<u>23.64</u>	0.207	13.74	0.425	48.96	0.402	2.82	0.209	4.79	0.395	1.26
Backup	0.528	17.25	0.575	22.83	<u>0.552</u>	<u>22.34</u>	0.730	39.78	0.647	1.96	0.572	5.11	0.598	1.65

446
 447



(a) Normalized performance across five tasks.

(b) Pairwise correlations between tasks.

461 Figure 3: Relationship between compression and classic time series tasks from publicly reported
 462 benchmarks. (a) Radar plot compares representative models on forecasting, imputation, anomaly
 463 detection, classification, and compression tasks. (b) Correlation matrix quantifies task relationships.
 464 Compression scores are from our lossless evaluation on the Weather dataset.

465
 466 TimeXer and PatchTST maintain relatively balanced performance across all dimensions. Figure 3
 467 (b) quantifies these relationships via the Pearson correlation between normalized task performances.
 468 The four classic tasks show no consistent or universal correlation pattern with each other, reflecting
 469 their focus on different aspects of time series behavior. In contrast, lossless compression exhibits a
 470 moderate and relatively uniform correlation with all these tasks. This pattern suggests that compres-
 471 sion reflects a model’s ability to approximate the global data distribution rather than being tied to
 472 any single local objective.

473 This observation points to a promising direction: training models with compression-oriented objec-
 474 tives could provide a strong pretraining backbone, with task-specific heads fine-tuned for forecast-
 475 ing, imputation, anomaly detection, or classification. Such a framework may unify evaluation and
 476 pretraining for time series modeling, analogous to language modeling in NLP. Details of the task
 477 metrics, normalization, and data sources are provided in the Appendix for reproducibility.

7 RELATED WORK

7.1 LOSSLESS COMPRESSION AND INFORMATION-THEORETIC EVALUATION

483 Shannon’s source coding theorem and the close relation between negative log-likelihood and opti-
 484 mal code length form the theoretical backbone connecting probabilistic modeling and compression
 485 Cover & Thomas (2006). The use of compression as a measure of model quality has a long his-
 486 tory in algorithmic information theory and minimum description length (MDL) principles Rissanen

486 (1978); Grünwald (2007). Hutter and colleagues formalized connections between induction, intel-
 487 ligence and compression in the context of Solomonoff induction and universal prediction Hutter
 488 (2005). Recent work in the deep learning era has revisited compression as a principled evaluation
 489 approach for language models and generative systems Delétang et al. (2023b); Yang et al. (2025).
 490 Our work adapts these information-theoretic perspectives specifically to multivariate time series,
 491 providing practical encoding and evaluation protocols targeted at modern time series architectures.
 492

493 7.2 LEARNING-BASED COMPRESSION AND PROBABILISTIC SEQUENCE MODELING

494
 495 Traditional lossless compressors such as LZ-family, gzip and bzip2 rely on dictionary or statistical
 496 coding heuristics and are effective for certain data modalities Ziv & Lempel (1977). Neural and
 497 learning-based compressors employ learned probability models (autoregressive models, VAEs with
 498 entropy models, flow-based models) together with arithmetic/ANS coders to achieve superior com-
 499 pression for images, audio and text Ballé et al. (2017); van den Oord et al. (2016); Sain et al. (2023).
 500 In the sequence domain, autoregressive models (RNNs, Transformers) serve as learned predictors to
 501 drive entropy coding; notable examples include language modeling-based compressors and recent
 502 transformer-based compression efforts Rae et al. (2020); Bellard (2020). For time series specifically,
 503 prior work has considered both lossy and lossless approaches, including predictive coding, differ-
 504 encing and domain-specific encoders Chiarot & Silvestri (2022). The recent SEP framework im-
 505 proves the speed and memory efficiency of existing models through GPU-level optimizations, while
 506 a semantic enhancement module boosts the compression ratio Wan et al.. However, a systematic
 507 benchmark that treats lossless compression itself as a canonical evaluation task for general-purpose
 508 time series models has not been established. TSCom-Bench seeks to fill this gap by formalizing
 509 encoding conventions, evaluation metrics and baselines compatible with contemporary time series
 510 architectures such as iTransformer and TimeXer Liu et al. (2023); Wang et al. (2024).

511 7.3 LOSS–METRIC MISMATCH

512
 513 The mismatch between optimization objectives and evaluation metrics is a well established topic
 514 in machine learning, and our empirical finding in time series is a concrete instance of this broader
 515 phenomenon. Specifically, Theis et al. (2015) provide a theoretical justification showing that likeli-
 516 hood and sample quality do not necessarily correlate, highlighting that the training objective may not
 517 reflect true model performance. Elmachtoub & Grigas (2022) demonstrate that minimizing mean
 518 squared error in forecasting does not ensure optimal downstream utility in real decision settings,
 519 indicating that MSE often functions only as a surrogate objective. Stein et al. (2023) further show
 520 that modern generative modeling metrics may not faithfully capture actual modeling quality.

521 This work provides an empirical verification of this phenomenon in the time series domain. Many
 522 SOTA forecasting models achieve competitive MSE performance yet perform significantly worse
 523 under lossless compression, which corresponds to evaluating negative log-likelihood, and lossless
 524 compression thereby provides a unified information-theoretic view for revealing this form of metric
 525 mismatch.

526 7.4 CONCLUSION

527
 528 In this paper, we propose lossless compression as a new benchmark for evaluating time series mod-
 529 els and release the open-source TSCom-Bench framework to standardize its evaluation. Our exper-
 530 iments demonstrate that this information-theoretic metric reveals distributional weaknesses in SOTA
 531 models that are overlooked by conventional tasks. We advocate for its adoption as a new canonical
 532 benchmark, as it not only provides a more stringent evaluation of models but also constitutes an
 533 indispensable real-world application. Looking forward, we believe this approach offers a powerful
 534 pre-training strategy, where models pre-trained on the compression objective can then be fine-tuned
 535 for downstream tasks such as forecasting or classification.

536 ETHICS STATEMENT

537
 538 This research focuses on foundational methods using public, anonymized datasets and does not
 539 present any foreseeable ethical concerns or negative societal impacts.

540
541

REPRODUCIBILITY STATEMENT

542

We are committed to ensuring the full reproducibility of our research. The source code for our proposed TSCom-Bench framework, which includes implementations of the evaluation protocols, data handlers, and experiment scripts, has been submitted as supplementary material. An anonymous GitHub link is provided here: <https://anonymous.4open.science/r/TSCoM-Bench-8262> and will be made public upon publication.

543

544

REFERENCES

545

546

Johannes Ballé, Valero Laparra, and Eero P Simoncelli. End-to-end optimized image compression. In *International Conference on Learning Representations (ICLR)*, 2017. URL <https://openreview.net/forum?id=rJxdQ3jeg>.

547

548

Andrew Barron, Jorma Rissanen, and Bin Yu. The minimum description length principle in coding and modeling. *IEEE transactions on information theory*, 44(6):2743–2760, 1998.

549

550

Fabrice Bellard. Nncp: Lossless data compression with neural networks, 2019.

551

552

Fabrice Bellard. Lossless data compression with transformers. *arXiv preprint arXiv:2009.02229*, 2020. URL <https://arxiv.org/abs/2009.02229>.

553

554

David Campos, Miao Zhang, Bin Yang, Tung Kieu, Chenjuan Guo, and Christian S Jensen. Lightts: Lightweight time series classification with adaptive ensemble distillation. *Proceedings of the ACM on Management of Data*, 1(2):1–27, 2023.

555

556

Giacomo Chiarot and Claudio Silvestri. Time series compression survey. *ACM Comput. Surv.*, 55(11), aug 2022. ISSN 0360-0300. doi: 10.1145/3552492. URL <https://doi.org/10.1145/3552492>.

557

558

Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory*. John Wiley & Sons, 2006. doi: 10.1002/047174882X.

559

560

Grégoire Delétang, Anian Ruoss, Paul-Ambroise Duquenne, Elliot Catt, Tim Genewein, Christopher Mattern, Jordi Grau-Moya, Li Kevin Wenliang, Matthew Aitchison, Laurent Orseau, et al. Language modeling is compression. *arXiv preprint arXiv:2309.10668*, 2023a.

561

562

Grégoire Delétang, Anian Ruoss, Marcus Hutter, and Shane Legg. Language models are good unsupervised compressors. *arXiv preprint arXiv:2309.11552*, 2023b. URL <https://arxiv.org/abs/2309.11552>.

563

564

S Elakkiya and KS Thivya. Comprehensive review on lossy and lossless compression techniques. *Journal of The Institution of Engineers (India): Series B*, 103(3):1003–1012, 2022.

565

566

Adam N. Elmachtoub and Paul Grigas. Smart “predict, then optimize”. *Management Science*, 68(1):9–26, 2022.

567

568

Mohit Goyal, Kedar Tatwawadi, Shubham Chandak, and Idoia Ochoa. Dzip: Improved general-purpose loss less compression based on novel neural network modeling. In *2021 data compression conference (DCC)*, pp. 153–162. IEEE, 2021.

569

570

Peter D. Grünwald. *The Minimum Description Length Principle*. The MIT Press, 2007.

571

572

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G Wilson. Large language models are zero-shot time series forecasters. *Advances in Neural Information Processing Systems*, 36:19622–19635, 2023.

573

574

Marcus Hutter. *Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability*. Springer Science & Business Media, 2005. doi: 10.1007/b138216.

575

576

Guillaume Jean. A multivariate time series framework using regime-switching models and macroeconomic indicators for the anticipation of financial market bubbles and crashes. 2025.

594 Ming Jin, Huan Yee Koh, Qingsong Wen, Daniele Zambon, Cesare Alippi, Geoffrey I Webb, Irwin
 595 King, and Shirui Pan. A survey on graph neural networks for time series: Forecasting, classifi-
 596 cation, imputation, and anomaly detection. *IEEE Transactions on Pattern Analysis and Machine*
 597 *Intelligence*, 2024.

598 Jongseon Kim, Hyungjoon Kim, HyunGi Kim, Dongjun Lee, and Sungroh Yoon. A comprehensive
 599 survey of deep learning for time series forecasting: architectural diversity and open challenges.
 600 *Artificial Intelligence Review*, 58(7):1–95, 2025.

601

602 Jens Kipper. Intuition, intelligence, data compression. *Synthese*, 198(Suppl 27):6469–6489, 2021.

603

604 Younjeong Lee, Chanho Park, Namji Kim, Jisu Ahn, and Jongpil Jeong. Lstm-autoencoder based
 605 anomaly detection using vibration data of wind turbines. *Sensors*, 24(9):2833, 2024.

606

607 Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
 608 Time series modeling and forecasting with sample convolution and interaction. *Advances in*
 609 *Neural Information Processing Systems*, 35:5816–5828, 2022.

610

611 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
 612 itransformer: Inverted transformers are effective for time series forecasting. *arXiv preprint*
 613 *arXiv:2310.06625*, 2023.

614

615 Amal Mahmoud and Ammar Mohammed. Leveraging hybrid deep learning models for enhanced
 616 multivariate time series forecasting. *Neural Processing Letters*, 56(5):223, 2024.

617

618 Yu Mao, Yufei Cui, Tei-Wei Kuo, and Chun Jason Xue. Trace: A fast transformer-based general-
 619 purpose lossless compressor. In *Proceedings of the ACM Web Conference 2022*, pp. 1829–1838,
 620 2022.

621

622 Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
 623 words: Long-term forecasting with transformers. *arXiv preprint arXiv:2211.14730*, 2022.

624

625 Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy Lillicrap. Compressive trans-
 626 formers for long-range sequence modelling. In *International Conference on Learning Represen-
 627 tations*, 2020. URL <https://openreview.net/forum?id=SylKikSYDH>.

628

629 Jorma Rissanen. Modeling by shortest data description. *Automatica*, 14(5):465–471, 1978. doi:
 630 10.1016/0005-1098(78)90005-5.

631

632 Animesh Sain, Muchen Jin, Poyraz Akyazi, Y-H. Yang, and Avideh Zakhor. VC-1: A Versatile
 633 Video Compression Network. In *2023 IEEE International Conference on Image Processing*
 634 (*ICIP*), pp. 3205–3209, 2023. doi: 10.1109/ICIP49359.2023.10222475.

635

636 Mohd Sakib, Suhel Mustajab, and Mahfooz Alam. Ensemble deep learning techniques for time se-
 637 ries analysis: a comprehensive review, applications, open issues, challenges, and future directions.
 638 *Cluster Computing*, 28(1):73, 2025.

639

640 Gideon Stein, James Cresswell, and Gabriel Loaiza-Ganem. Exposing flaws of generative model
 641 evaluation metrics and their unfair treatment of diffusion models. *Advances in Neural Information*
 642 *Processing Systems*, 36:3732–3784, 2023.

643

644 Chenxi Sun, Hongyan Li, Moxian Song, Derun Cai, Baofeng Zhang, and Shenda Hong. Time
 645 pattern reconstruction for classification of irregularly sampled time series. *Pattern Recognition*,
 646 147:110075, 2024.

647

648 Lucas Theis, Aarón van den Oord, and Matthias Bethge. A note on the evaluation of generative
 649 models. *arXiv preprint arXiv:1511.01844*, 2015.

650

651 Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
 652 In *International conference on machine learning (ICML)*, pp. 1747–1756. PMLR, 2016.

653

654 Meng Wan, Rongqiang Cao, Yanghao Li, Jue Wang, Zijian Wang, Qi Su, Lei Qiu, Peng Shi, Yan-
 655 gang Wang, and Chong Li. Sep: A general lossless compression framework with semantics
 656 enhancement and multi-stream pipelines.

648 Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Guo Qin, Haoran Zhang, Yong Liu, Yunzhong Qiu, Jian-
649 min Wang, and Mingsheng Long. Timexer: Empowering transformers for time series forecasting
650 with exogenous variables. *Advances in Neural Information Processing Systems*, 37:469–498,
651 2024.

652 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
653 formers with auto-correlation for long-term series forecasting. *Advances in neural information*
654 *processing systems*, 34:22419–22430, 2021.

655 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Tem-
656 poral 2d-variation modeling for general time series analysis. *arXiv preprint arXiv:2210.02186*,
657 2022.

658 En-Hao Yang, Jin-Chen Zhang, Yan Yang, Kui Liu, Yun-Hao Wang, Zhen-Duo Wang, Jia-Qi Zhang,
659 and Chao Wang. A survey and benchmark evaluation for neural-network-based lossless universal
660 compressors toward multi-source data. *Frontiers of Computer Science*, 19(2):192301, 2025. doi:
661 10.1007/s11704-024-40300-5.

662 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
663 forecasting? In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp.
664 11121–11128, 2023.

665 Shunyang Zhang, Senzhang Wang, Hao Miao, Hao Chen, Changjun Fan, and Jian Zhang. Score-
666 cdm: Score-weighted convolutional diffusion model for multivariate time series imputation. *arXiv*
667 *preprint arXiv:2405.13075*, 2024.

668 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
669 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings*
670 *of the AAAI conference on artificial intelligence*, volume 35, pp. 11106–11115, 2021.

671 Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression. *IEEE*
672 *Transactions on Information Theory*, 23(3):337–343, 1977. doi: 10.1109/TIT.1977.1055714.

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A APPENDIX**

703

704 This appendix provides a rigorous mathematical analysis to clarify why the lossless compression
 705 evaluation paradigm offers a more comprehensive and theoretically grounded measure of a time
 706 series model’s distributional modeling capabilities than the four canonical tasks of forecasting, im-
 707 putation, anomaly detection, and classification.

708 Our central claim is that a superior generative model, parameterized by θ and denoted Q_θ , should
 709 closely approximate the true data-generating distribution P . The gold standard for measuring the
 710 discrepancy between two probability distributions in information theory is the Kullback-Leibler
 711 (KL) divergence. An ideal evaluation metric should therefore correspond directly to minimizing
 712 $KL(P \parallel Q_\theta)$.

713

714 **Symbols and Definitions.** For clarity, we list all key symbols used throughout this appendix and
 715 their intended meaning (this is deliberately detailed since the appendix is read independently by
 716 reviewers):

- 718 • $X = \{x_t\}_{t=1}^T$: the original time series, each $x_t \in \mathbb{R}^d$.
- 719 • $S = f(X)$: discrete symbol sequence / byte stream produced by applying a deterministic
 720 encoding f to X . We explicitly allow two conceptual regimes for f :
 - 721 1. Ideal bijection: f is a one-to-one reversible mapping on the domain. In this case
 722 discrete entropies are preserved under f .
 - 723 2. Practical quantization: f maps continuous X to finite-precision representations. This
 724 mapping is many-to-one and introduces quantization error; later we quantify the
 725 information-theoretic effect.
- 726 • P : true distribution of X . In the continuous case, $p(x)$ is a probability density function
 727 (pdf). In the discrete/bijective case, P is a probability mass function (pmf).
- 728 • Q_θ : model distribution over X (or over symbols S after applying f); parameterized by θ .
- 729 • $x_{<t} \triangleq \{x_1, \dots, x_{t-1}\}$: prefix / history.
- 730 • M, O : sets of masked and observed indices for imputation.
- 731 • T_{normal} : indices labeled as normal for anomaly-detection training.
- 732 • $H(\cdot)$: discrete Shannon entropy in bits when argument is a pmf.
- 733 • $h(\cdot)$: differential entropy in bits when argument is a continuous density.
- 734 • $KL(P \parallel Q)$: Kullback–Leibler divergence, defined in the discrete case as $KL(P \parallel Q) =$
 735 $\sum_x P(x) \log_2 \frac{P(x)}{Q(x)}$, and in the continuous case as the corresponding integral when densi-
 736 ties exist.
- 737 • All logarithms are base-2 unless otherwise noted; where natural logs appear, we indicate
 738 the conversion factor explicitly.

743 **Notation.** To avoid ambiguity, we distinguish three related quantities:

744

- 745 • Expected NLL (training loss) is the quantity minimized in training, and it equals $H(P) +$
 746 $KL(P \parallel Q_\theta)$ in the discrete case:

$$\mathcal{L}_{\text{comp}}(\theta) := \mathbb{E}_{S \sim P} [-\log_2 Q_\theta(S)]. \quad (11)$$

- 747 • Sample-level NLL is the negative log-likelihood of a particular sequence S under the
 748 model:

$$\text{NLL}(S) := -\log_2 Q_\theta(S), \quad (12)$$

- 753 • Arithmetic-coded length (measured file size) $L_{\text{arith}}(S)$ is the actual number of bits pro-
 754 duced by an arithmetic coder when encoding S with model Q_θ . By construction,
 755 $\text{NLL}(S) \leq L_{\text{arith}}(S) < \text{NLL}(S) + c$, where c is a small implementation-dependent con-
 756 stant.

756 **Important conceptual distinction.** Many readers conflate: (a) theoretical statements that assume
 757 an ideal reversible encoding f , and (b) practical settings with finite-precision quantization. We
 758 keep these separate throughout: first state exact equalities under bijections, then provide approxima-
 759 tions/upper bounds for practical quantization and coding.
 760

761 A.1 INVARIANCE OF MUTUAL INFORMATION UNDER BIJECTIVE MAPPING

763 A core premise of our work is that modeling the byte stream S is equivalent to modeling the original
 764 continuous time series X . While the entropies $H(S)$ and $H(X)$ are not directly comparable, we
 765 can show that the mutual information, which captures the dependency structure, is invariant under
 766 the bijective mapping $f : X \mapsto S$.

767 Let's consider two continuous random vectors X_1 and X_2 with a joint probability density function
 768 (pdf) $p(x_1, x_2)$. Their mutual information is:

$$769 \quad I(X_1; X_2) = \iint p(x_1, x_2) \log \frac{p(x_1, x_2)}{p(x_1)p(x_2)} dx_1 dx_2. \quad (13)$$

771 Now, consider a bijective (one-to-one and onto) and differentiable transformation f , such that
 772 $(S_1, S_2) = (f(X_1), f(X_2))$. The change of variables formula relates their pdfs:

$$774 \quad q(s_1, s_2) = p(f^{-1}(s_1), f^{-1}(s_2)) |\det(J_{f^{-1}}(s_1, s_2))|, \quad (14)$$

775 where q is the pdf for (S_1, S_2) and $J_{f^{-1}}$ is the Jacobian of the inverse transformation. The mutual
 776 information for S_1 and S_2 is:

$$777 \quad I(S_1; S_2) = \iint q(s_1, s_2) \log \frac{q(s_1, s_2)}{q(s_1)q(s_2)} ds_1 ds_2. \quad (15)$$

779 By substituting the change of variables formula and noting that the Jacobian term cancels out in the
 780 ratio $\frac{q(s_1, s_2)}{q(s_1)q(s_2)}$, we can prove that $I(X_1; X_2) = I(S_1; S_2)$.

782 This invariance is critical. It implies that for our time series, the mutual information $I(x_t; x_{<t})$ is
 783 perfectly preserved. Therefore, a model that accurately learns the dependencies in the byte stream
 784 S must, by extension, have learned the dependencies in the original series X . This provides a solid
 785 mathematical foundation for our claim that byte-level compression is a valid proxy for evaluating
 786 the modeling of continuous time series.

787 A.2 ON THE INFORMATION LOSS FROM QUANTIZATION

789 The mapping from \mathbb{R} to its IEEE-754 32-bit representation is technically a form of quantization,
 790 which theoretically involves information loss. Let X be the true continuous variable and X_q be
 791 its quantized representation. The information loss can be quantified by the conditional differential
 792 entropy $H(X|X_q)$.

793 We can model quantization as adding a small, unknown error $\epsilon = X - X_q$, which is bounded by
 794 the quantization interval Δ . For high-resolution quantization, it is common to approximate the error
 795 as being uniformly distributed, $\epsilon \sim U(-\Delta/2, \Delta/2)$. The entropy of this uniform distribution is
 796 $H(\epsilon) = \log_2(\Delta)$. This represents the uncertainty about the true value X given its quantized version
 797 X_q .

798 In the IEEE-754 32-bit floating-point standard, the quantization step Δ is extremely small and adap-
 799 tive. Most of the information lost within such tiny bins corresponds to high-frequency, unpredictable
 800 noise rather than the structured, learnable temporal patterns targeted by time series models. The
 801 signal components relevant for forecasting, imputation, or capturing seasonalities occur at a much
 802 coarser scale than the quantization resolution. Thus, while there is a theoretical information loss
 803 of approximately $\log_2(\Delta)$ bits per sample, this loss is inconsequential for the task of modeling the
 804 macroscopic statistical structure of the time series.

806 A.3 QUANTIFYING THE NLL-CODELENGTH GAP IN ARITHMETIC CODING

808 Our framework relies on the fact that the achieved code length $L_{\text{arith}}(S)$ is a high-fidelity proxy for
 809 the model's sample-level negative log-likelihood, $\text{NLL}(S)$. This relationship is enabled by arith-
 metic coding, and we can formally analyze the gap.

810 There are two primary sources of sub-optimality in any practical compression scheme:
 811

812 1. **Modeling Gap:** The divergence between the model’s learned distribution Q_θ and the true
 813 (unknown) data distribution P . The expected extra code length per symbol due to this gap
 814 is the Kullback-Leibler (KL) divergence, $D_{KL}(P||Q_\theta)$. Our entire evaluation framework
 815 is designed to measure this gap.

816 2. **Coding Gap:** The difference between the theoretical code length prescribed by the model
 817 and the actual number of bits produced by the compressor.
 818

819 An ideal entropy coder would have a coding gap of zero. Arithmetic coding is renowned for its
 820 efficiency in approaching this ideal. The extra bits redundancy of a well-implemented arithmetic
 821 coder is provably bounded. For a sequence of length L , the total coding gap is typically less than 2
 822 bits for the entire sequence, arising from finite-precision arithmetic and stream termination.
 823

$$824 \text{NLL}(S) \leq L_{\text{arith}}(S) < \text{NLL}(S) + c, \quad (16)$$

825 where c is an implementation-dependent constant. The value of c is typically between 1–2 bits per
 826 stream, which is an extremely tight bound. It means the contribution of the Coding Gap to the
 827 final file size is negligible. Therefore, the measured compressed length L_{comp} is almost entirely
 828 determined by the model’s NLL. This validates our use of the final compressed size as a direct and
 829 stringent measure of the model’s probabilistic modeling capability.
 830

831 A.4 LOSSLESS COMPRESSION: THE GOLD STANDARD

832 We keep your original derivation and expand each step with a full explanation.
 833

834 For a time series $X = \{x_t\}_{t=1}^T$, assume an autoregressive factorization of the model distribution:
 835

$$836 Q_\theta(X) = \prod_{t=1}^T Q_\theta(x_t | x_{<t}). \quad (17)$$

837 The compression loss is the expected NLL:
 838

$$839 \mathcal{L}_{\text{comp}}(\theta) = \mathbb{E}_{X \sim P}[-\log_2 Q_\theta(X)]. \quad (18)$$

840 Now reproduce and expand your original algebraic decomposition:
 841

$$842 \begin{aligned} \mathcal{L}_{\text{comp}}(\theta) &= \mathbb{E}_{X \sim P}[-\log_2 Q_\theta(X)] \\ 843 &= \mathbb{E}_{X \sim P} \left[-\log_2 P(X) + \log_2 \frac{P(X)}{Q_\theta(X)} \right] \\ 844 &= \mathbb{E}_{X \sim P}[-\log_2 P(X)] + \mathbb{E}_{X \sim P} \left[\log_2 \frac{P(X)}{Q_\theta(X)} \right] \\ 845 &= H(P) + KL(P || Q_\theta). \end{aligned} \quad (19)$$

846 As shown in equation 19, the first equality is the definition of expected NLL under P . In the second
 847 line, we add and subtract $\log_2 P(X)$ inside the expectation. This is an exact algebraic identity:
 848

$$849 -\log_2 Q_\theta(X) = -\log_2 P(X) + \log_2 \frac{P(X)}{Q_\theta(X)}. \quad (20)$$

850 Then the third line separates the expectation over the sum into the sum of expectations.
 851 The fourth line recognizes $\mathbb{E}_{X \sim P}[-\log_2 P(X)]$ as the Shannon entropy $H(P)$ (in bits), and
 852 $\mathbb{E}_{X \sim P} \left[\log_2 \frac{P(X)}{Q_\theta(X)} \right]$ as the Kullback–Leibler divergence $KL(P || Q_\theta)$. Therefore, the information is
 853 important for clarification:
 854

855 1. Since $H(P)$ depends only on the true distribution P , it is a constant with respect to model
 856 parameters θ . Therefore minimizing $\mathcal{L}_{\text{comp}}(\theta)$ is equivalent to minimizing $KL(P || Q_\theta)$.
 857

864
865
866
867
868
869
870
871
872
873
874
875
876
877

2. The above equality is exact for discrete distributions where pmfs exist. For continuous-valued X with densities, the analogous decomposition holds if P and Q_θ admit densities w.r.t. the same dominating measure. Otherwise, one must work in terms of measures.
3. The metric $KL(P||Q_\theta)$ is global: it penalizes all deviations of Q_θ from P , including differences in support, modes, tails, and higher moments, which explains why compression is a strict measure of distributional fit.

Gradient form. It is often useful to see the gradient of the compression loss:

$$\begin{aligned}\nabla_\theta \mathcal{L}_{\text{comp}}(\theta) &= \nabla_\theta \mathbb{E}_{X \sim P}[-\log_2 Q_\theta(X)] \\ &= -\mathbb{E}_{X \sim P}[\nabla_\theta \log_2 Q_\theta(X)] \\ &= -\frac{1}{\ln 2} \mathbb{E}_{X \sim P}[\nabla_\theta \ln Q_\theta(X)],\end{aligned}\tag{21}$$

878 where we used $\log_2 u = (\ln u) / \ln 2$. This shows that training under $\mathcal{L}_{\text{comp}}(\theta)$ provides gradient
879 signals from every X sampled from P , in contrast to restricted losses.
880

881 **Practical coding: arithmetic coding and finite-precision overhead.** When using arithmetic coding
882 to convert model probabilities into bitstreams, the achieved code length for a sequence S satisfies:
883

$$\text{NLL}(S) \leq L_{\text{arith}}(S) < \text{NLL}(S) + c,\tag{22}$$

884 where c is a small implementation-dependent constant (Cover & Thomas, 2006). Hence asymptotically, the NLL is an achievable lower bound on practical codelength up to a negligible constant
885 overhead.
886

889 A.5 COMPARISON WITH CANONICAL TASKS

890 We provide a detailed comparison between lossless compression and the four canonical evaluation
891 tasks widely used in time series modeling: forecasting, imputation, anomaly detection, and classifi-
892 cation.
893

894 **Forecasting.** Forecasting aims to predict the future values given the past. The standard loss is mean
895 squared error:
896

$$\mathcal{L}_{\text{forecast}}(\theta) = \frac{1}{T} \sum_{t=1}^T \|x_t - \hat{x}_t^\theta\|_2^2, \quad \hat{x}_t^\theta = \mathbb{E}_{Q_\theta}[x_t | x_{<t}].\tag{23}$$

897 Minimizing this loss forces Q_θ to match only the conditional mean. Different distributions can
898 share the same mean but have very different variance or tail behaviour, so a model may achieve low
899 forecasting loss yet diverge from P in KL divergence.
900

901 **Imputation.** Imputation requires the model to reconstruct missing values in a partially observed
902 sequence. Let $M \subset \{1, \dots, T\}$ be a randomly sampled set of masked indices, and let O denote the
903 complement set of observed indices. A typical objective is to minimize the mean squared error on
904 the masked values, denoted by \mathcal{L}_{imp} :
905

$$\mathcal{L}_{\text{imp}}(\theta) = \mathbb{E}_M \left[\sum_{t \in M} \|x_t - \hat{x}_t^\theta(x_O)\|_2^2 \right],\tag{24}$$

906 where the expectation \mathbb{E}_M is taken over the distribution of masks, and $\hat{x}_t^\theta(x_O)$ is the model's re-
907 construction of x_t conditioned on the observed values x_O . This criterion enforces local accuracy
908 only on masked positions, while unmasked positions are unconstrained. Unless masking covers all
909 possible subsets, Q_θ can match \mathcal{L}_{imp} while disagreeing with P elsewhere.
910

911 **Anomaly detection.** The model learns the density of normal data and flags deviations. A common
912 approach is to maximize the likelihood on the set of normal data points. Let $T_{\text{normal}} \subset \{1, \dots, T\}$ be
913

918 the set of time indices corresponding to normal data. The loss $\mathcal{L}_{\text{anom}}$ is the negative log-likelihood
 919 on this subset:

$$\mathcal{L}_{\text{anom}}(\theta) = - \sum_{t \in T_{\text{normal}}} \log_2 Q_\theta(x_t | x_{<t}). \quad (25)$$

920 This objective enforces accurate density estimation only within the restricted support of normal
 921 sequences. Probability mass outside this region is largely irrelevant, meaning the model is not
 922 penalized for misrepresenting the full distribution.

923 **Classification.** Classification associates an entire sequence X with a single, discrete label $y \in \mathcal{Y}$,
 924 where \mathcal{Y} is the set of all possible labels. The standard objective is to minimize the cross-entropy
 925 loss, denoted by \mathcal{L}_{cls} :

$$\mathcal{L}_{\text{cls}}(\theta) = - \log_2 Q_\theta(y | X). \quad (26)$$

926 This objective enforces that the model’s conditional label distribution $Q_\theta(y | X)$ approximates the
 927 true one $P(y | X)$, but it does not constrain the sequence distribution $Q_\theta(X)$ itself. A model may
 928 achieve perfect classification by exploiting only a few discriminative features, while ignoring most
 929 temporal dependencies.

930 A.6 FORECASTING: CONSTRAINING ONLY THE CONDITIONAL MEAN

931 Forecasting tasks typically employ the Mean Squared Error (MSE) loss:

$$\mathcal{L}_{\text{forecast}}(\theta) = \mathbb{E}_{X \sim P} \left[\frac{1}{T} \sum_{t=1}^T \|x_t - \hat{x}_t^\theta\|_2^2 \right] \quad (27)$$

932 where the point forecast \hat{x}_t^θ is the conditional expectation under the model: $\hat{x}_t^\theta := \mathbb{E}_{Q_\theta}[x_t | x_{<t}]$.

933 **Mathematical Derivation and Analysis.** To minimize $\mathcal{L}_{\text{forecast}}$, for any given history $x_{<t}$, the
 934 model must select an optimal prediction \hat{x}_t that minimizes the expected squared error under the true
 935 conditional distribution $P(x_t | x_{<t})$. We find this optimal point by taking the derivative with respect
 936 to \hat{x}_t and setting it to zero:

$$\begin{aligned} \frac{\partial}{\partial \hat{x}_t} \mathbb{E}_{P(x_t | x_{<t})} [\|x_t - \hat{x}_t\|_2^2] &= \mathbb{E}_{P(x_t | x_{<t})} \left[\frac{\partial}{\partial \hat{x}_t} (x_t - \hat{x}_t)^T (x_t - \hat{x}_t) \right] \\ &= \mathbb{E}_{P(x_t | x_{<t})} [-2(x_t - \hat{x}_t)] \\ &= -2(\mathbb{E}_{P(x_t | x_{<t})}[x_t] - \hat{x}_t) \end{aligned} \quad (28)$$

937 Setting the derivative to zero yields the optimal forecast $\hat{x}_t^{\text{opt}} = \mathbb{E}_{P(x_t | x_{<t})}[x_t]$. This derivation
 938 proves that minimizing the MSE loss solely drives the mean of the model’s predictive distribution,
 939 $\mathbb{E}_{Q_\theta}[x_t | x_{<t}]$, to match the mean of the true conditional distribution.

940 **Comparison with Compression.** The MSE objective is limited as it only constrains the first moment of the distribution, while remaining insensitive to all higher-order moments and the overall
 941 distributional shape. A model can achieve a perfect MSE score with a unimodal Gaussian prediction,
 942 even if the true distribution is bimodal, leading to a potentially infinite KL divergence.

943 A.7 IMPUTATION: CONSTRAINING A SUBSET OF CONDITIONAL MEANS

944 The imputation loss is also typically an MSE objective:

$$\mathcal{L}_{\text{imp}}(\theta) = \mathbb{E}_M \left[\sum_{t \in M} \|x_t - \hat{x}_t^\theta(x_O)\|_2^2 \right] \quad (29)$$

945 where M is the set of masked indices, O is the set of observed indices, and $\hat{x}_t^\theta(x_O) := \mathbb{E}_{Q_\theta}[x_t | x_O]$.

946 **Mathematical Derivation and Analysis.** To minimize this loss, for any given set of observed
 947 values x_O , the model must find the optimal imputation $\hat{x}_t(x_O)$ that minimizes the expected squared

972 error under the true conditional distribution $P(x_t|x_O)$. We derive this optimal value by taking the
 973 derivative with respect to $\hat{x}_t(x_O)$ and setting it to zero:
 974

$$\begin{aligned} 975 \quad & \frac{\partial}{\partial \hat{x}_t(x_O)} \mathbb{E}_{P(x_t|x_O)} [\|x_t - \hat{x}_t(x_O)\|_2^2] \\ 976 \quad &= \mathbb{E}_{P(x_t|x_O)} \left[\frac{\partial}{\partial \hat{x}_t(x_O)} (x_t - \hat{x}_t(x_O))^T (x_t - \hat{x}_t(x_O)) \right] \\ 977 \quad &= \mathbb{E}_{P(x_t|x_O)} [-2(x_t - \hat{x}_t(x_O))] \\ 978 \quad &= -2(\mathbb{E}_{P(x_t|x_O)} [x_t] - \hat{x}_t(x_O)) \end{aligned} \quad (30)$$

981 Setting the final expression to zero yields the optimal imputation:
 982

$$\hat{x}_t^{\text{opt}}(x_O) = \mathbb{E}_{P(x_t|x_O)} [x_t] \quad (31)$$

984 This derivation formally shows that minimizing the imputation loss solely forces the model’s condi-
 985 tional mean, $\mathbb{E}_{Q_\theta} [x_t|x_O]$, to align with the true conditional mean.
 986

987 **Comparison with Compression.** This derivation highlights two fundamental limitations: (1)
 988 Like forecasting, it only constrains the conditional mean, ignoring the full conditional distribution
 989 $P(x_M|x_O)$. (2) The objective is optimized only over a specific masking strategy, offering no guar-
 990 antee that the model has learned the full joint distribution $P(X)$ required to handle arbitrary patterns
 991 of missingness. Compression, by contrast, requires modeling all conditionals $P(x_t|x_{<t})$ and thus
 992 captures the full joint distribution.

993 A.8 ANOMALY DETECTION: CONSTRAINING LIKELIHOOD ON A RESTRICTED SUPPORT

995 A common anomaly-detection training objective is to maximize (or equivalently minimize negative)
 996 likelihood over normal data only:
 997

$$\mathcal{L}_{\text{anom}}(\theta) = - \sum_{t \in T_{\text{normal}}} \log_2 Q_\theta(x_t | x_{<t}). \quad (32)$$

1000 **Gradient-level analysis.** The gradient of this objective is
 1001

$$\begin{aligned} 1002 \quad & \nabla_\theta \mathcal{L}_{\text{anom}}(\theta) = - \sum_{t \in T_{\text{normal}}} \nabla_\theta \log_2 Q_\theta(x_t | x_{<t}) \\ 1003 \quad &= -\frac{1}{\ln 2} \sum_{t \in T_{\text{normal}}} \frac{\nabla_\theta Q_\theta(x_t | x_{<t})}{Q_\theta(x_t | x_{<t})}. \end{aligned} \quad (33)$$

1008 Only indices in T_{normal} contribute to the gradient; anomalous samples do not appear and thus pro-
 1009 vide no direct learning signal.

1010 **Implication.** Because anomalies are absent from the training gradient, the model is not explic-
 1011 itely encouraged to give them low probability, which is only encouraged to give high probability to
 1012 normal examples. A model could, in principle, assign arbitrarily large probability mass to certain
 1013 anomalous patterns while still maximizing the objective on normal data. In contrast, the compres-
 1014 sion objective enforces low likelihood for rare/unexpected events insofar as assigning mass to those
 1015 events increases expected code length.

1016 **Comparison with Compression.** The gradient analysis proves that the model receives no super-
 1017 vision on how to assign probabilities to anomalous events. The model is not penalized for assigning
 1018 high probability to anomalies, which fundamentally undermines its ability to detect them. The com-
 1019 pression objective $\mathcal{L}_{\text{comp}}(\theta)$ computes the NLL over all data points ($t = 1, \dots, T$), ensuring that
 1020 its gradient reflects the need to assign low probability to rare events to achieve an efficient overall
 1021 codelength.

1022 A.9 CLASSIFICATION: CONSTRAINING ONLY THE LABEL’S POSTERIOR PROBABILITY

1023 The classification objective is to minimize the cross-entropy loss:
 1024

$$\mathcal{L}_{\text{cls}}(\theta) = -\log_2 Q_\theta(y|X) \quad (34)$$

1026 **Mathematical Derivation and Analysis.** The expected loss over the true data distribution
 1027 $P(X, Y)$ is:

$$\begin{aligned}
 1029 \mathbb{E}_{(X, y) \sim P(X, Y)}[-\log_2 Q_\theta(y|X)] &= \sum_{X, y} P(X, y) [-\log_2 Q_\theta(y|X)] \\
 1030 &= \sum_{X, y} P(X, y) \left[-\log_2 P(y|X) + \log_2 \frac{P(y|X)}{Q_\theta(y|X)} \right] \\
 1031 &= H(Y|X) + KL(P(Y|X) || Q_\theta(Y|X)) \tag{35}
 \end{aligned}$$

1032 where $H(Y|X)$ is the true conditional entropy of the labels given the data, a constant with respect
 1033 to the model. This derivation formally shows that the classification objective is solely concerned
 1034 with minimizing the KL divergence between the true conditional label distribution $P(Y|X)$ and the
 1035 model’s prediction $Q_\theta(Y|X)$.

1036 **Comparison with Compression.** The joint distribution of data and labels is $P(X, Y) = P(Y|X)P(X)$. The mathematics clearly shows that the classification objective focuses exclusively
 1037 on the $P(Y|X)$ term and places absolutely no constraints on the modeling of the data distribution
 1038 $P(X)$ itself. A model can achieve perfect classification by learning a mapping from a small, discriminative
 1039 subset of features in X to y , while completely failing to capture the underlying generative
 1040 process of X . Compression, in contrast, directly evaluates the model’s understanding of $P(X)$,
 1041 making the two objectives mathematically orthogonal.

1042 A.10 UNIFIED VIEW AND SUMMARY

1043 The analyses above show that the four canonical tasks evaluate a model by minimizing a divergence
 1044 on a “projection” or “subset” of the true data distribution. We summarize this in Table 6.

1045 Table 6: Unified Mathematical View of Evaluation Tasks

1046 Task	1047 Objective Function $\mathcal{L}_{\text{task}}$	1048 Optimized Statistic/Distribution $\phi(\cdot)$	1049 Key Mathematical Limitation
1050 Compression	$\mathcal{L}_{\text{comp}}(\theta)$	1051 Full Distribution $P(X)$	1052 None (Theoretically global evaluation)
1053 Forecasting	$\mathbb{E}_P[\ x_t - \hat{x}_t^\theta\ _2^2]$	1054 Conditional Mean $\mathbb{E}[x_t x_{<t}]$	1055 Ignores all higher-order moments and shape
1056 Imputation	$\mathbb{E}_M[\ x_t - \hat{x}_t^\theta(x_O)\ _2^2]$	1057 Subset of Cond. Means $\mathbb{E}[x_t x_O]$	1058 Constrains only the mean; depends on mask strategy
1059 Anomaly Det.	$-\sum_{t \in T_{\text{normal}}} \log_2 Q_\theta(x_t x_{<t})$	1060 Dist. on a Subset $P(X) _{X \in \text{Normal}}$	1061 No constraint on probability of anomalous events
1062 Classification	$-\log_2 Q_\theta(y X)$	1063 Label Posterior Dist. $P(y X)$	1064 No constraint on the data distribution $P(X)$

1065 In conclusion, the mathematical derivations confirm that lossless compression, by being equivalent
 1066 to minimizing the full KL divergence, provides a holistic, unified, and strict evaluation of a model’s
 1067 generative capabilities. The canonical tasks, in contrast, examine only specific, and often insuffi-
 1068 cient, aspects of the true data distribution.

1069 A.11 OVERVIEW OF CORE PROCESS OF ARITHMETIC ENCODING

1070 The arithmetic encoder processes byte stream data (with a symbol set of discrete symbols ranging
 1071 from 0 to 255) based on its core principle of interval mapping for data compression: it maps the
 1072 original byte sequence to a continuous decimal number within the interval [0,1), which is then rep-
 1073 resented by the shortest binary form to generate the compressed bitstream. During decoding, the
 1074 probability distribution from the encoding end is reused to iteratively restore the original symbol
 1075 sequence through reverse operations. The encoder’s performance relies on two key logical compo-
 1076 nents: first, cumulative probability modeling, which converts the probability distribution of bytes
 1077 into exclusive subintervals within [0,1), assigning each byte a unique interval range; second, iter-
 1078 ative interval reduction, where the current interval is subdivided using the exclusive subinterval of
 1079 the current symbol during encoding, and symbols are located via interval matching during decoding.
 1080 Both processes share identical interval update rules to ensure lossless data reconstruction. Next, we
 1081 will elaborate on the core workflow of arithmetic encoding in three stages.

1082 **Construction of Cumulative Probability Distribution** The core input of arithmetic encoding is
 1083 not individual probabilities, but the cumulative probability distribution. Because it requires parti-
 1084 tioning the interval [0, 1) using cumulative probabilities to assign each byte a unique subinterval.
 1085 This conversion serves as the bridge connecting the model’s output and the encoding operation.

1080
 1081 First, clarify the form of the time-series model’s output: assume the model predicts the probability
 1082 distribution of the next byte as $P = [p_0, p_1, \dots, p_{255}]$, where p_i is the probability that the next
 1083 byte equals i ($0 \leq i \leq 255$), satisfying $\sum_{i=0}^{255} p_i = 1$. Then, define a cumulative probability array
 1084 $C = [C_0, C_1, \dots, C_{256}]$ of length 257, covering the start and end points of intervals for bytes 0 to
 1085 255. Initialize $C_0 = 0$ (the starting baseline), and compute subsequent elements through cumulative
 1086 probability summation:

$$C_{i+1} = C_i + p_i \quad (36)$$

1088 Ultimately, $C_{256} = 1$, ensuring full coverage of the interval. Through this process, the exclusive
 1089 interval for byte i is $[C_i, C_{i+1})$, with an interval width equal to its probability p_i , aligning with the
 1090 compression principle of assigning wider intervals to high-frequency bytes and narrower intervals to
 1091 low-frequency bytes. For example, suppose the model outputs a set of values as shown in the Table 7.
 1092 Bytes with higher probabilities are assigned longer intervals, which is the key to subsequent short
 1093 encoding.

Table 7: Byte Probability Distribution and Interval Partitioning

Byte i	Probability p_i	Cumulative Probability c_i	Cumulative Probability c_{i+1}	Exclusive Interval for Byte i	Interval Length ($= p_i$)
0-107	Sum 0.1	0.0	0.1	[0.0, 0.1)	0.1
108	0.15	0.1	0.25	[0.1, 0.25)	0.15
109-113	Sum 0.1	0.25	0.35	[0.25, 0.35)	0.1
114	0.45 (Target Byte)	0.35	0.8	[0.35, 0.8)	0.45
115-255	Sum 0.2	0.8	1.0	[0.8, 1.0)	0.2

1104
 1105
 1106 **Narrow down the encoding range using the actual byte’s interval** The essence of arithmetic
 1107 encoding lies in progressively narrowing the interval and using the final interval’s binary represen-
 1108 tation as the encoding result. The narrowing process is guided by the model’s assigned exclusive
 1109 interval for each byte. Specifically, for encoding the actual byte 114, let the initial encoding interval
 1110 be $[0, 1)$. When the actual byte is 114, we use its exclusive interval $[0.35, 0.8)$ to carve the current
 1111 encoding interval $[0, 1)$, resulting in a new encoding interval $[0.35, 0.8)$.

Table 8: The Structure of Binary Sub-intervals for Final Code Selection. This table illustrates how binary fractions of varying lengths (precision) partition the unit interval $[0, 1)$. This principle is used in the final step of arithmetic encoding to select the shortest binary code that uniquely represents a sub-interval contained entirely within the algorithm’s final target range.

Binary Decimal Digits	Division Precision (Interval Length)	Interval Examples (Partial)	Meaning of Binary Fractions
1-digit ($0.x_1$)	$1/2 = 0.5$	$[0, 0.5), [0.5, 1)$	$0.1 \rightarrow [0.5, 1), 0.0 \rightarrow [0, 0.5)$
2-digit ($0.x_1x_2$)	$1/4 = 0.25$	$[0, 0.25), [0.25, 0.5), \dots$	$0.10 \rightarrow [0.5, 0.75)$
3-digit ($0.x_1x_2x_3$)	$1/8 = 0.125$	$[0, 0.125), [0.125, 0.25), \dots$	$0.101 \rightarrow [0.625, 0.75)$
n -digit	$1/2^n$	$[k/2^n, (k + 1)/2^n) \quad (k = 0, 1, \dots, 2^n - 1)$	n -digit binary fractions correspond to intervals of length $1/2^n$

1125
 1126
 1127 **Final Encoded Output** The ultimate goal of the encoding process is to use a sequence of binary
 1128 bits to uniquely represent this interval. For instance, the shortest binary fraction serves as an efficient
 1129 representation, and any two distinct binary fractions must correspond to different numerical values,
 1130 thereby satisfying the prerequisite of encoding uniqueness. For the new interval $(0.35, 0.8)$, we seek
 1131 the shortest binary fraction such that its corresponding subinterval entirely falls within $(0.35, 0.8)$.
 1132 As shown in the Table 8, among 2-bit binary fractions, 0.10_2 (corresponding to the decimal value
 1133 0.5) has a subinterval of $(0.5, 0.75)$, which lies entirely within $(0.35, 0.8)$. Thus, the encoding result
 is 1 0, using only 2 bits, which is significantly fewer than the traditional 8-bit encoding.

1134
1135

A.12 ADDITIONAL EXPERIMENTS

1136
1137
1138
1139
1140

To further validate the effectiveness and robustness of our proposed lossless compression evaluation paradigm, we conduct additional experiments on a diverse set of benchmark datasets. In this appendix, we provide detailed descriptions of each dataset, the parameter settings used in our experiments, and the full results under multiple sequence lengths. This section complements the main text by reporting comprehensive results that could not fit within the page limits.

1141
1142

A.12.1 DATASETS

1143
1144

We evaluate on six widely-used public datasets covering diverse application domains:

1145
1146
1147
1148
1149
1150
1151
1152
1153

- **PEMS04 and PEMS08** are traffic flow datasets collected from the California Department of Transportation’s Performance Measurement System. They contain traffic speed, flow, and occupancy data from hundreds of loop sensors on highway networks. We follow standard preprocessing and use the same train, validation and test splits as prior works.
- **Traffic** contains road occupancy rates measured by 862 sensors on San Francisco Bay Area freeways. It is a canonical benchmark for large-scale multivariate time series forecasting.
- **Electricity** records hourly electricity consumption of 321 customers from 2012–2014. It exhibits strong daily and weekly periodicity, making it a challenging testbed for temporal models.
- **Weather** contains 21 meteorological variables collected from the WeatherBench benchmark. It is commonly used to evaluate long-horizon temporal modeling under rich covariates.
- **ETTh2 and ETTm2** are subsets of the ETT (Electricity Transformer Temperature) benchmark capturing transformer oil temperature and related exogenous factors. ETTh2 has hourly resolution, while ETTm2 has 15-minute resolution, enabling evaluation across different temporal granularities.

1161
1162
1163

We also include several standard lossless compression benchmarks to evaluate the general-purpose capabilities of the models:

1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182

- **Enwik9** is a standard benchmark from the Large Text Compression Benchmark, consisting of the first 1 billion bytes of an English Wikipedia XML dump. It is widely used to test a compressor’s performance on natural language text.
- **Image** is a dataset composed of raw, uncompressed image bitmaps derived from the ImageNet database, designed to evaluate compression performance on visual data with high spatial redundancy.
- **Sound** consists of uncompressed audio waveforms from environmental sound recordings, which tests a model’s ability to capture the temporal structures and periodic patterns typical in audio data.
- **Float** is a dataset containing arrays of 64-bit double-precision floating-point numbers from scientific simulations. It is used to benchmark the compression of high-precision numerical data.
- **Silesia Corpus** is a well-known collection of diverse file types, including text, executables, images, and databases, designed to be a representative benchmark for general-purpose lossless compressors.
- **Backup** is a heterogeneous dataset created to simulate real-world backup archives, containing a mixture of different file types to test a compressor’s ability to adapt to varying data statistics.

1183
1184

A.12.2 PARAMETERS AND EXPERIMENTAL SETUP

1185
1186
1187

The experiments in this section follow the setup described in the main paper. We evaluate a suite of eight representative time series models on six public benchmarks. To assess performance robustness, we test across four distinct sequence lengths: $\{12, 24, 48, 96\}$. All reported results are averaged over three independent runs with different random seeds to ensure reliability.

1188 Table 9: Comprehensive lossless compression results across six benchmark datasets under multiple
 1189 sequence lengths. The best result in each setting is highlighted in **bold**, the second best is underlined,
 1190 and *avg* denotes the average over all tested horizons.

1191

1192 Dataset	Horizon	TimeXer (2025)		iTransformer (2024)		PatchTST (2023)		Autoformer (2023)		DLinear (2023)		LightTS (2023)		SCINet (2022)		Informer (2021)	
		CR	CT	CR	CT	CR	CT	CR	CT	CR	CT	CR	CT	CR	CT	CR	CT
1195 PEMS08	12	0.979	12.42	0.977	23.34	0.980	<u>25.12</u>	0.980	3.33	0.998	33.13	0.985	24.45	0.994	2.36	0.993	2.85
	24	<u>0.979</u>	16.23	0.976	24.19	0.979	21.88	0.980	4.42	0.998	32.54	0.986	<u>24.38</u>	0.983	2.17	0.982	2.73
	48	0.979	16.00	0.978	24.06	0.978	16.23	0.979	1.28	0.997	30.33	0.991	23.62	0.989	1.98	0.980	2.66
	96	0.978	12.55	0.978	<u>18.13</u>	0.978	9.63	0.980	3.24	0.996	30.92	0.989	17.41	0.980	2.74	0.979	2.74
	avg	0.979	14.30	0.978	22.43	0.979	18.22	0.980	3.07	0.997	31.73	0.988	<u>22.47</u>	0.987	2.31	0.984	2.75
1200 Traffic	12	0.139	21.36	<u>0.141</u>	35.89	0.139	<u>38.22</u>	0.171	3.59	0.158	60.74	0.146	35.33	0.357	1.33	0.191	4.55
	24	0.138	20.44	<u>0.140</u>	<u>35.28</u>	0.138	29.46	0.164	4.86	0.154	62.66	0.180	35.15	0.159	1.78	0.172	3.94
	48	0.137	20.23	<u>0.141</u>	<u>36.35</u>	0.137	20.62	0.162	1.30	0.153	59.87	0.174	33.31	0.158	1.27	0.166	4.24
	96	0.137	15.58	0.141	23.21	0.137	11.89	0.151	3.27	0.155	60.06	0.174	<u>24.63</u>	0.140	1.29	0.167	4.18
	avg	0.138	19.40	<u>0.141</u>	<u>32.68</u>	0.138	25.05	0.162	3.26	0.155	60.83	0.169	32.11	0.204	1.42	0.174	4.23
1204 Electricity	12	0.131	20.96	<u>0.132</u>	35.49	0.131	<u>38.10</u>	0.157	3.59	0.178	64.11	0.168	34.67	0.216	2.46	0.209	3.97
	24	0.128	20.78	<u>0.133</u>	<u>36.06</u>	0.128	29.74	0.185	4.87	0.173	65.14	0.180	35.36	0.205	2.72	0.211	4.01
	48	0.119	20.45	0.134	<u>35.75</u>	0.121	21.28	0.267	1.31	0.173	63.41	0.172	33.09	0.168	2.77	0.202	4.13
	96	0.112	16.19	0.142	23.06	<u>0.115</u>	12.32	0.194	3.26	0.176	57.79	0.168	<u>24.33</u>	0.135	2.87	0.194	4.17
	avg	0.123	19.60	0.135	<u>32.59</u>	0.124	25.36	0.201	3.26	0.175	62.61	0.172	31.86	0.181	2.71	0.204	4.07
1208 Weather	12	0.229	20.13	0.236	34.30	<u>0.234</u>	<u>35.78</u>	0.344	3.52	0.418	53.53	0.379	29.69	0.497	3.12	0.482	3.11
	24	0.209	20.02	0.217	<u>33.49</u>	0.212	28.77	0.356	4.75	0.388	53.12	0.377	29.94	0.367	2.99	0.451	2.78
	48	0.208	20.01	0.296	29.08	0.211	20.67	0.359	1.30	0.382	56.08	0.384	<u>31.54</u>	0.343	3.53	0.424	2.83
	96	0.207	15.63	0.268	21.99	0.213	11.76	0.370	2.15	0.382	54.57	0.370	20.56	0.332	3.52	0.418	2.77
	avg	0.213	18.95	0.254	<u>29.72</u>	0.218	24.25	0.357	2.93	0.393	54.33	0.378	27.93	0.385	3.29	0.444	2.87
1213 ETTh2	12	0.267	19.79	<u>0.277</u>	<u>33.74</u>	0.279	32.80	0.393	3.51	0.541	48.62	0.520	29.16	0.499	3.02	0.493	2.73
	24	0.260	19.00	0.279	<u>30.67</u>	0.274	27.14	0.423	4.73	0.504	47.36	0.488	29.52	0.484	3.12	0.478	2.61
	48	0.267	19.15	0.303	31.07	<u>0.279</u>	20.01	0.426	1.32	0.491	51.45	0.536	28.84	0.443	2.97	0.438	2.82
	96	0.262	15.04	0.364	20.50	<u>0.285</u>	11.67	0.404	2.17	0.495	44.72	0.534	<u>22.13</u>	0.412	3.53	0.437	2.74
	avg	0.264	18.25	0.306	<u>29.00</u>	0.279	22.91	0.412	2.93	0.508	48.04	0.520	27.41	0.460	3.16	0.462	2.73
1217 Solar	12	<u>0.073</u>	21.57	0.064	37.28	0.075	38.37	0.093	3.55	0.104	64.92	0.081	<u>38.78</u>	0.078	2.31	0.101	2.33
	24	0.025	21.28	0.030	38.43	<u>0.028</u>	31.38	0.088	4.53	0.074	69.32	0.054	<u>40.47</u>	0.064	2.73	0.098	2.63
	48	0.025	21.42	0.035	36.52	<u>0.028</u>	21.98	0.078	1.33	0.067	70.63	0.053	<u>36.68</u>	0.053	2.87	0.094	2.86
	96	0.027	16.61	0.036	24.70	<u>0.029</u>	21.98	0.074	2.79	0.068	65.55	0.055	<u>27.22</u>	0.049	2.90	0.093	2.79
	avg	0.038	20.22	0.041	34.23	<u>0.040</u>	28.43	0.083	3.05	0.078	67.61	0.061	<u>35.79</u>	0.061	2.70	0.097	2.65

1221

1222

1223

A.12.3 FULL LOSSLESS COMPRESSION RESULTS AND ANALYSIS

1226

An analysis of Table 9 reveals several key findings. Overall, TimeXer consistently achieves the best or second-best CR across nearly all datasets and horizons, affirming its strong capability in capturing data distributions. iTransformer and PatchTST also demonstrate highly competitive compression performance, often securing top-tier rankings. Beyond absolute performance, the results highlight a clear rate-utility trade-off. For example, the simple linear model DLinear exhibits by far the highest CT, making it the fastest method, but this speed comes at the cost of a significantly poorer compression ratio. Conversely, models like TimeXer provide superior compression with more moderate throughput, showcasing how the benchmark can quantify this critical trade-off. The benchmark’s validity is further validated by its ability to characterize datasets: the PEMS08 dataset consistently yields a CR close to 1.0, correctly identifying its pre-compressed nature, while the highly predictable Solar dataset results in very low CR values. Collectively, these detailed results reinforce the importance of lossless compression as a robust and insightful evaluation paradigm. It moves beyond single-purpose metrics to provide a multi-faceted view of a model’s performance, assessing not only its fundamental ability to model data distributions but also its practical trade-offs regarding speed and sensitivity to data characteristics.

1240

1241

Surprisingly, the Solar dataset exhibits extraordinarily strong compressibility: under the TimeXer model, the compressed file size is approximately 3% of the original. To understand this behaviour, we performed a dataset-level diagnostic (Fig. 4). The panel (a) shows that 55.10% of all entries are

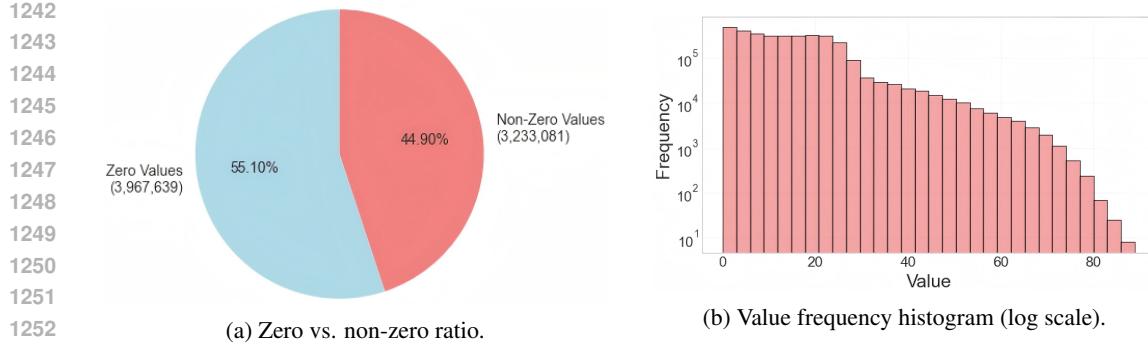


Figure 4: Dataset diagnostics explaining Solar’s exceptional compressibility and PEMS08’s apparent incompressibility. (a) shows that 55.10% of Solar entries are exactly zero; (b) shows a strongly skewed value-frequency distribution with only 2,539 unique values over 7,200,720 samples and values confined to $[0.0, 88.9]$. These properties make Solar highly predictable for neural compressors.

exactly zero, producing long runs of highly predictable values. The panel (b) reveals that the dataset contains 7,200,720 samples but only 2,539 unique values (a repetition rate of roughly 99.96%), with non-zero values confined to a narrow numeric range $[0.0, 88.9]$. These characteristics—high sparsity, extreme redundancy, a limited numeric range, and pronounced diurnal/seasonal periodicity—concentrate probability mass and make the series especially easy for neural autoregressive predictors to model accurately, which in turn yields very low bits-per-byte and excellent compression. By contrast, the apparently poor compressibility of PEMS08 is an artifact of its storage format: PEMS08 is distributed as a `.npz` archive, so the files are already compressed and contain little residual redundancy for further reduction, producing compression ratios close to one.

A.12.4 ANALYSIS OF COMPRESSION DYNAMICS AND MODEL CONVERGENCE

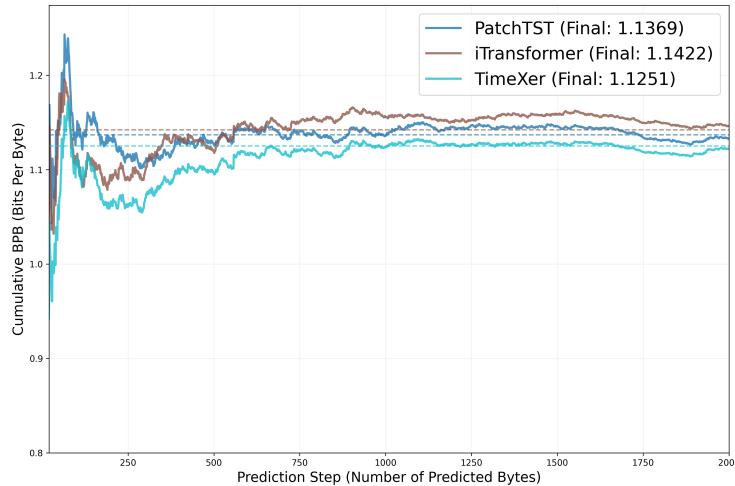
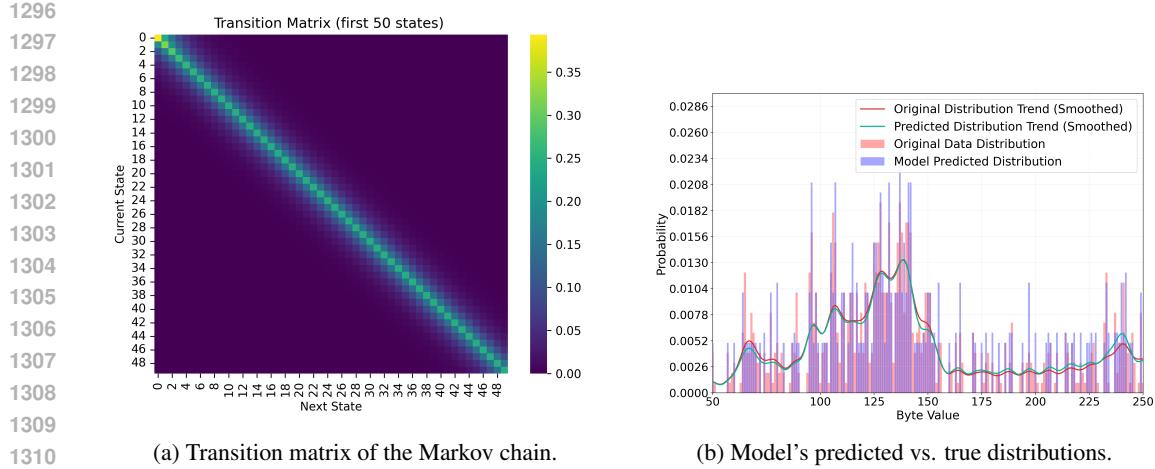


Figure 5: Step-by-step convergence of cumulative bpb for top-performing models on the synthetic dataset. The legend reports the final, stable BPB value achieved by each model after processing 2,000 bytes.

To provide deeper insight into the compression process, we visualize the step-by-step performance of our top models on the synthetic dataset. Figure 5 plots the cumulative bpb as a function of the number of bytes processed. The cumulative bpb acts as a running average of compression efficiency, reflecting how well the model predicts the data stream over time.

The plot reveals several key behaviors. Initially, the bpb for all models is volatile, which is expected when the predictive context is small. However, as the models process more data, their performance



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

(a) Transition matrix of the Markov chain.
(b) Model's predicted vs. true distributions.

Figure 6: Validation on a synthetic Markovian byte sequence. (a) The transition matrix heatmap shows strong local dependencies, with high probabilities concentrated along the diagonal. (b) A comparison of the true conditional byte distribution (red) and the TimeXer model's predicted distribution (blue).

stabilizes, and the cumulative bpb converges to a steady value. This convergence demonstrates that the models are learning a consistent statistical representation of the data and that our benchmark provides a stable and reliable final score for comparison.

Furthermore, this visualization clearly differentiates the final performance ranking of the models. TimeXer converges to the lowest final bpb of 1.1251, indicating the most effective compression and the best approximation of the data's underlying distribution among the three. It is followed by PatchTST (1.1369) and iTransformer (1.1422). This step-by-step analysis complements the aggregate results in the main paper by illustrating the dynamic behavior of the models and visually confirming their performance hierarchy on the compression task.

A.12.5 VALIDATION ON SYNTHETIC MARKOVIAN DATA

To provide a definitive validation of our compression-based evaluation paradigm, we designed a controlled experiment using a synthetic dataset whose theoretical properties are perfectly known. We generated a byte sequence from a 256-state Markov chain, where the transition matrix was constructed to exhibit strong temporal dependencies. The probability of transitioning to a new state is inversely proportional to its distance from the current state. This setup creates a data source with a known generative process, allowing us to precisely calculate its theoretical entropy rate. This rate serves as an absolute ground-truth benchmark against which we evaluated our top-performing model, TimeXer, to assess its ability to learn the known data distribution.

The results of this experiment are visualized in Figure 6. The heatmap of the transition matrix in Figure 6 (a) clearly shows this strong local structure, with probabilities heavily concentrated along the diagonal, indicating that the next byte is highly likely to be close in value to the current byte. This is the explicit statistical rule that a successful time series model must learn. Figure 6 (b) demonstrates how well the TimeXer model captured this underlying rule. It compares the true conditional distribution of the next byte against the distribution predicted by the model. The significant overlap between the original and predicted distributions, especially evident in the smoothed trend lines, confirms that the model successfully approximated the data's true generative properties rather than merely memorizing superficial patterns.

The primary advantage of this controlled experiment is the ability to quantify model performance against a perfect theoretical baseline. For the generated sequence with transition probability parameter $p = 0.9$, the theoretical entropy rate was calculated to be 1.268 bits/byte. When evaluated on this data, our top-performing model, TimeXer, achieved an actual compression rate of 1.956 bits/byte. The resulting gap of 0.688 bits/byte provides a direct and unambiguous measure of the model's fidelity in learning the true data distribution. This result strongly substantiates our paper's

1350 Table 10: CR of our best model backbone (TimeXer), specialised time-series compressors, and
 1351 general-purpose compressors across four datasets.

Dataset	TimeXer	Sprintz	Elf	Chimp	Camel	Gorilla	LZ4	Zstd	Brotli	Xz
Electricity	0.1120	0.1820	0.3065	0.3587	0.4020	0.2269	0.3050	0.2066	0.1969	<u>0.1430</u>
ETTh2	<u>0.2620</u>	0.1220	0.8204	0.7521	0.4790	0.7595	0.3010	0.1506	0.1423	0.1230
Traffic	0.1370	0.2290	0.3120	0.8962	0.2070	0.9794	0.3625	0.2342	0.2226	<u>0.1650</u>
Weather	0.2070	0.3160	0.4052	0.8267	0.3570	0.7642	0.5208	0.3372	0.3001	<u>0.2320</u>

1358
 1359 central thesis: lossless compression serves as a rigorous, principled, and quantitatively verifiable
 1360 benchmark for evaluating a model’s core ability to capture the underlying generative process of a
 1361 time series.

1363 A.12.6 COMPARISON WITH SPECIALIZED COMPRESSORS

1365 To further assess the relative performance of learned models, we compare our best TSCom-Bench
 1366 backbone against specialised lossless time-series compressors such as Sprintz, ELF, Chimp, Camel
 1367 and Gorilla, as well as general-purpose compressors (LZ4, Zstd, Brotli, Xz); detailed numbers are
 1368 reported in Table 10. For clarity, we place the best-performing deep model (TimeXer) in the first
 1369 column. The results show that TimeXer achieves the lowest or near-lowest compression ratio on
 1370 all datasets except ETTh2, despite never being designed as a compressor. The weaker performance
 1371 on ETTh2 is likely due to its limited periodicity and regularity, a well-known characteristic of this
 1372 benchmark in the time-series literature. Overall, these findings are encouraging: they indicate that
 1373 modern time-series models already learn distributional structure rich enough to rival specialised
 1374 compressors. They also suggest that future models explicitly designed for lossless time-series com-
 1375 pression may surpass both current deep models and traditional compressors, and that TSCom-Bench
 1376 provides a natural testbed for exploring this new research direction.

1379 B COMPARISON WITH CANONICAL TASKS

1381 We provide a detailed comparison between lossless compression and the four canonical evaluation
 1382 tasks widely used in time series modeling: forecasting, imputation, anomaly detection, and classifi-
 1383 cation.

1384 **Forecasting.** Forecasting aims to predict the future values given the past. The standard loss is mean
 1385 squared error:

$$1387 \mathcal{L}_{\text{forecast}}(\theta) = \frac{1}{T} \sum_{t=1}^T \|x_t - \hat{x}_t^\theta\|_2^2, \quad \hat{x}_t^\theta = \mathbb{E}_{Q_\theta}[x_t \mid x_{<t}]. \quad (37)$$

1390 Minimizing this loss forces Q_θ to match only the conditional mean. Different distributions can
 1391 share the same mean but have very different variance or tail behaviour, so a model may achieve low
 1392 forecasting loss yet diverge from P in KL divergence.

1393 **Imputation.** Imputation requires the model to reconstruct missing values in a partially observed
 1394 sequence. Let $M \subset \{1, \dots, T\}$ be a randomly sampled set of masked indices, and let O denote the
 1395 complement set of observed indices. A typical objective is to minimize the mean squared error on
 1396 the masked values, denoted by \mathcal{L}_{imp} :

$$1398 \mathcal{L}_{\text{imp}}(\theta) = \mathbb{E}_M \left[\sum_{t \in M} \|x_t - \hat{x}_t^\theta(x_O)\|_2^2 \right], \quad (38)$$

1401 where the expectation \mathbb{E}_M is taken over the distribution of masks, and $\hat{x}_t^\theta(x_O)$ is the model’s re-
 1402 construction of x_t conditioned on the observed values x_O . This criterion enforces local accuracy
 1403 only on masked positions, while unmasked positions are unconstrained. Unless masking covers all
 possible subsets, Q_θ can match \mathcal{L}_{imp} while disagreeing with P elsewhere.

1404
 1405 **Anomaly detection.** The model learns the density of normal data and flags deviations. A common
 1406 approach is to maximize the likelihood on the set of normal data points. Let $T_{\text{normal}} \subset \{1, \dots, T\}$ be
 1407 the set of time indices corresponding to normal data. The loss $\mathcal{L}_{\text{anom}}$ is the negative log-likelihood
 1408 on this subset:

$$\mathcal{L}_{\text{anom}}(\theta) = - \sum_{t \in T_{\text{normal}}} \log_2 Q_\theta(x_t \mid x_{<t}). \quad (39)$$

1409 This objective enforces accurate density estimation only within the restricted support of normal
 1410 sequences. Probability mass outside this region is largely irrelevant, meaning the model is not
 1411 penalized for misrepresenting the full distribution.

1412 **Classification.** Classification associates an entire sequence X with a single, discrete label $y \in \mathcal{Y}$,
 1413 where \mathcal{Y} is the set of all possible labels. The standard objective is to minimize the cross-entropy
 1414 loss, denoted by \mathcal{L}_{cls} :

$$\mathcal{L}_{\text{cls}}(\theta) = - \log_2 Q_\theta(y \mid X). \quad (40)$$

1415 This objective enforces that the model’s conditional label distribution $Q_\theta(y \mid X)$ approximates the
 1416 true one $P(y \mid X)$, but it does not constrain the sequence distribution $Q_\theta(X)$ itself. A model may
 1417 achieve perfect classification by exploiting only a few discriminative features, while ignoring most
 1418 temporal dependencies.

1419 C USE OF LARGE LANGUAGE MODELS

1420 During the preparation of this manuscript, we utilized Large Language Models (LLMs), specifically
 1421 Google’s Gemini, as writing assistants. The use of these models was strictly limited to improving
 1422 grammar, polishing language, and enhancing the clarity of the text. All the core ideas, method-
 1423 ologies, experimental designs, results, and conclusions presented in this paper were conceived and
 1424 developed exclusively by the human authors. LLMs served solely as a tool for refining the written
 1425 expression and did not contribute in any form to the scientific content or intellectual contributions
 1426 of this work.

1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457