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Abstract

Foundation models are resource-intensive but broadly capable. They become1

specialized for downstream tasks through transformations such as fine-tuning,2

adaptation, and quantization. While these processes are often examined through3

individual evaluations or case studies, little work has explored their collective4

dynamics and interactions at scale. This paper analyzes 1.86 million models on5

Hugging Face, a leading peer production platform for model development. Our6

study of model family trees—networks that connect fine-tuned models to their7

base or parent—reveals sprawling fine-tuning lineages that vary widely in size and8

structure. Using an evolutionary biology lens to study ML models, we use model9

metadata and model cards to measure the genetic similarity and mutation of traits10

over model families. We find that models tend to exhibit a family resemblance,11

meaning their genetic markers and traits exhibit more overlap when they belong to12

the same model family. However, these similarities depart in certain ways from13

standard models of asexual reproduction, because mutations are fast and directed,14

such that two ‘sibling’ models tend to exhibit more similarity than parent/child15

pairs. Further analysis of the directional drifts of these mutations reveals qualitative16

insights about the open machine learning ecosystem: insights potentially relevant17

for policymakers and regulators: Licenses counter-intuitively drift from restrictive,18

commercial licenses towards permissive or copyleft licenses, often in violation of19

upstream license’s terms; models evolve from multi-lingual compatibility towards20

english-only compatibility; and model cards reduce in length and standardize by21

turning, more often, to templates and automatically generated text. This work22

shows how platform tools shape derivative development. The structured dataset,23

which traces model lineage at a fine-grained level, enables deeper analysis of how24

models emerge and interact, offering new leverage points for policy and oversight.25

The rapid development of machine learning (ML) models is changing human behaviors and systems26

across domains such as education and medicine. As technologies enter these domains, there is27

limited institutional understanding of model attributes and internals despite the widespread awareness28

of their possible safety risks and social stakes. One reason for this limited understanding is that29

many models are closed-source, meaning that changes to their weights, training data, source code,30

configurations, training procedures, and other details are not publicly available through documentation31

Wu et al. [2025], Qiu et al. [2025], Bommasani et al. [2024]. Without the ability to access these32

artifacts, research has predominantly focused on model outputs, benchmark performance, or individual33

component architectures, rather than dissecting the upstream chains of development, diffusion, and34

evolution towards deployment Kim et al. [2025], Raji et al. [2021]. While analogies to ecosystems35

and biological evolution are frequently drawn Hopkins et al. [2025], Bommasani et al. [2023], we lack36

a large-scale, data-driven account of the mutations of model traits as they transfer from pre-trained37

language models to fine-tuned bespoke products.38

Submitted to Workshop on Regulatable ML at the 39th Conference on Neural Information Processing Systems
(NeurIPS 2025). Do not distribute.



Emerging open-source ecosystems offer a valuable opportunity to study machine learning from an39

evolutionary perspective. Hugging Face, the largest repository of open-source machine learning40

models, hosts roughly two million machine learning models, trained by community members for41

diverse tasks. In addition to rich metadata and documentation via model cards Mitchell et al. [2019],42

the platform records links between models, so that people can see whether one model is a derivative43

of another. These links enable the construction of sprawling graphs representing the models’ “family44

trees,” which can be used to systematically track ancestry, variation, and the inheritance of traits over45

generations of models. Existing work has called for the systematic study of these emerging lineages46

Horwitz et al. [2025], and some have taken steps toward understanding these emerging communities47

from subsets of the vast set of available models Rahman et al. [2025], Choksi et al. [2025].48

Here we analyze a dataset containing the comprehensive population of 1.86 million models accessible49

on Hugging Face.1 We map their lineages and measure their genetic similarities, mutation rates, and50

the directions of drift in traits. We find a high rate of mutation that is strongly directed, such that51

siblings exhibit more similarities to each other than to their parents, on average. Individual traits52

exhibit characteristic drifts—for example, model licenses are observed to evolve from commercial or53

use-restricted varieties to permissive or copyleft varieties Heffan [1996]. Language compatibility54

drifts from general multilingual support towards specialized, single-language support, with an55

overwhelming trend towards English-only compatibility. Documentation practices evolve from wide56

detail and coverage to lean varieties, and distinctive markers emerge among derivative models that57

suggest documentation is automatically generated.58

These drifts in traits are predominantly acyclic, suggestive of evolutionary processes with clear59

directional trends. These trends yield new hypotheses about the environmental pressures on machine60

learning development. For instance, the observation that licenses trend towards permissiveness and61

copyleft varieties suggests that preferences for openness outweigh existing regulatory pressures to62

comply with licenses Shanklin et al. [2025]. The drift towards English-speaking models suggests a63

formidable market for English-language products Nicholas and Bhatia [2023], Solatorio et al. [2024].64

By introducing a new methodological lens for quantifying these changes over the population of65

models, and by making public the largest-to-date dataset of model linkages and documents, we intend66

this study as a first step towards understanding the forces shaping the development and diffusion of67

artificial intelligence (AI) and ML. We discuss open directions for empirical and theoretical work on68

the evolutionary biology of these systems. These perspectives also lay the foundation for governance69

and regulatory approaches in which decision makers use comparative inference to design policies for70

models and their families.71

Snippets of text contain information about traits72

With rich structured data about the relationships between AI models, there are a number of questions73

we can ask about the diffusion of model attributes. Inspired by ecological and genetic perspectives74

Hamilton [1964], Eberhard [1975] and existing work on network diffusion Ugander et al. [2012], we75

explore the relationship between family structure and attribute similarity. Our analysis centers around76

snippets of text for every model, known as the model’s metadata and model card. Model metadata77

comes in a highly structured JSON format and is available for every model through Hugging Face’s78

API. Segments of metadata are depicted in Figure 1c. The model cards, on the other hand, allow79

free-form text detailing model structure, performance, and other attributes, and are available for 1.2580

million models.81

Leveraging these snippets of text and the rich linkage structure between models, we can explore the82

relationship between family structure and the similarity in stored data. If finetuning family trees83

are akin to genetic family trees, we might expect two models finetuned from the same parent model84

(‘siblings’) to be more similar, on average, than any two models selected at random from our dataset.85

Taking the metaphor further, if we think of the encodings of model attributes—including licenses,86

tags, text data, and other metadata information—as akin to DNA in biological species, reproductive87

models would predict that parent-child pairs tend to be more genetically related than uncle-nephew88

pairs or grandparent-grandchild pairs.89

1Our dataset is publicly available at the following link: Hugging Face dataset. Our codebase is available at
the following link: GitHub repository.
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(a) Schematic of an example family tree from
our dataset. If we compare model derivatives to
biological reproduction, we might expect models
that are topologically closer to exhibit similari-
ties in traits. Our analysis aims to characterize
trait inheritance and trait mutation over genera-
tions.

(b) The growth of the largest family trees over time using
the CreatedAt field logged when a model is indexed on
Hugging Face. The growth over time reveals “S-curve” adop-
tion patterns Foster [1986], analogous to other domains with
diffusion over a network. Merges are omitted to show growth
from a single common ancestor.

(c) The diff between two sequences of model metadata. We measure the overall mutation rate and genetic
similarity by tracking rates of overlap and departure between these sequences. The top sequence is metadata from
Qwen/Qwen1.5-72B, the base model depicted in 1a; the bottom sequence is metadata from one of its finetunes.
Additions are shown in green, deletions in red, and substitutions in yellow. Here we depict character-level
mutations corresponding most closely to the Levenshtein distance. We additionally measure and report similarity
on term-level representations (using bag-of-words and TF-IDF), which we believe better captures categorical
shifts in metadata.

(d) Examples of family trees from our dataset. Colored edges represent different forms of derivative models that
are documented as having finetuned, quantized, adapter or merged pre-existing models. Diffusion patterns reveal
large broadcasts and numerous generations of derivatives. All graphs are directed and acyclic. Those without
merges have tree structures (left, center).

Figure 1: Model families.
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In living organisms, genes are encoded in a semantic language through sequences of nucleotide90

bases—or “building blocks”—in DNA. One way of measuring genetic relation is by measuring91

the overlap or similarity in DNA sequences. AI models encode their own forms of semantically92

meaningful instruction sequences through their code bases, model cards, metadata, and model weights.93

Luckily, open models on Hugging Face make some of these resources publicly accessible, enabling94

formal approaches to reasoning about model similarity. Each of these artifacts is different in kind,95

and of course, none are perfect analogies for DNA. Here, we provide a method for measuring genetic96

similarity between models, inspired by the biological genetics. Our approach measures the semantic97

distance between the models’ tokenized metadata. We propose measuring the frequency of different98

terms in the model metadata and tracking differences in these relative frequencies.99

Measuring genetic similarity100

Our aim is to measure the similarities between models residing within different ‘immediate family’101

structures in our large tree graph. Our approach to calculating similarities borrows from classical102

contributions in natural language processing and formal language theory. Our broad approach uses103

differences in tokens between text snippets to determine the level of similarity between two such104

snippets. We replicate our analysis for three measures—the normalized Levenshtein Distance Yujian105

and Bo [2007], which directly computes character-level insertions and deletions as depicted in Figure106

1c, the cosine similarity in term frequency (or “bag-of-words”) embeddings, and the cosine similarity107

in term frequency-inverse document frequency (“TF-IDF”) embeddings. We measure similarities108

across two different model artifacts—metadata JSONs and the text of model cards. Our results across109

these different metrics reveal the same pattern: that models of the same finetuning family tree are110

more genetically similar than randomly paired models, and that genetic similarity is negatively related111

to the generational divide and topological distance. Further information on these various metrics and112

approaches are provided in Appendix C. In the body of the text, we report the cosine similarity on113

TF-IDF embeddings derived from the metadata strings (Figure 2).114

To understand the qualities of genetic similarity in model family trees, we first limit our analysis115

to a specific type of family relation—finetuned models—to control for specific similarity patterns116

within groups and because the other relations rarely produce offspring of their own. This also allows117

us to work with a tree graph, meaning we avoid cases where merged models have more than one118

parent and thus relate to other models in more than one way. Our analysis consists in enumerating119

the possible graph relationships between model pairs—parent/child, grandparent/grandchild, sibling,120

uncle/nephew, and so forth (illustrated in Figure 1b. To be comprehensive, we enumerate all possible121

local family structures of size one, two, three and four, and within these structures, we aim to measure122

the attribute similarity between every possible pair of nodes. A depiction of these possible structures123

is provided in Figures 4 and 2. The challenge with estimating quantities over these local structures is124

that they may appear combinatorically many times in a large graph, creating algorithmic challenges125

Clauset [2005], Kleinberg et al. [1999]. To illustrate what we mean by this, consider the set of all126

pairs of siblings in a tree graph. If one model has 500 children, the total number of pairs of siblings127

among them is
(
500
2

)
or 124, 750. Therefore, estimating the typical similarity over all pairs of siblings128

quickly becomes computationally burdensome. To handle this challenge, we design an estimation129

procedure, where we draw a representative sample from the set of all pairs of models meeting the130

relationship condition. We implement our estimation procedure, sampling 5000 pairs of nodes for131

each distinct subtree topology and pair combination. We then construct 95% confidence intervals132

around our mean similarity estimates treating our graph-wide measurement as the population mean133

and drawing 10,000 bootstrap subsamples from our sample with replacement.134

Family resemblance and diffusion characteristics135

Our main results are depicted in Figure 2. The results suggest that models that are close in network136

topology have considerably more similarity than randomly selected pairs of nodes. This offers some137

evidence that model family trees truly do exhibit family resemblances. However, patterns of similarity138

over family trees are not cleanly predicted by typical models of genetic diffusion. For example, we139

find that siblings are significantly more similar to one another than either is to its parent, on average140

(depicted in the first subfigure labeled ‘C’). This is counter to what an asexual model of genetic141

reproduction with mutation might predict. If we imagine each child model in a family inheriting142
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Figure 2: Cosine similarity between TF-IDF embedding vectors, trained on the model metadata
strings for all models in our dataset. Here, we sample finetunes meeting specific family structures.
We enumerate all possible sub-trees of size 2 (B), 3 (C), and 4 (D), and enumerate all possible pairs
of nodes within each sub-tree. When we compare these genetic similarities to the baseline of the
similarity between any two nodes in the graph (A), we find that all observed family ties strongly
predict attribute similarity. Similarities between pairs of models suggest that models are more related
when they reside at similar depths and when they are topologically close in distance. Mean estimates
are from samples of 5000; confidence intervals are calculated over 10, 000 bootstrap draws from the
sample.

Figure 3: We observe that siblings exhibit greater sim-
ilarity in traits than parent-child pairs. This implies
not only that there is a high rate of mutation, but that
mutations are sufficiently directed.

Topology Occurrences

3,470,193,356,870

191,072

119,795,843

40,922

193,010,561,824

11,847,103

19,932,645

10,965

Figure 4: The graph contains many in-
stances of some family subtrees. Pairwise
similarities within subtrees are estimated
via sampling.

the parent’s genes subject to some rate of random mutation, siblings should be more related to their143

parent than each other, on average. We observe the opposite, suggesting that there is some directional144

effect of fine-tuning whereby all children tend to depart in attributes from their parents, on average,145

in characteristically similar ways (illustrated in Figure 3).146

When we look at pairs of nodes in a variety of subgraphs, we see evidence of three major heuristics147

that seem to dictate the level of similarity between pairs of models. The first is being members of the148

same family. If models belong to the same family tree, they appear to exhibit significantly higher149

levels of similarity, compared to models paired at random over our dataset.150

The second factor that appears relevant to trait similarity is generational divide. When we compare151

two models that are the same generation in their family tree (e.g., siblings or cousins), we find that152

this majorly increases the level of similarity between models. Models that are one generation apart153
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(e.g., parent/child pairs or uncle/nephew pairs) tend to be significantly more similar, on average, than154

models that are two generations apart (e.g., grandparent/grandchild pairs). The same relationship155

holds when comparing grandparent/grandchild pairs to great-grandparent/great-grandchild pairs.156

A third heuristic that seems to explain the observed similarities in model attributes is the network157

distance, that is, the total number of edges one would need to traverse to get from one node pair to158

the other. This is what a genetic model of mutation-based asexual reproduction would predict. This159

factor is supported by the fact that uncle/nephew pairs are observed to be less similar, on average,160

than parent/child pairs belonging to the same subgraph structures (depicted in the second and third161

columns of subfigure D3 in Figure 2). Though most measures suggest generational divide outweighs162

network distance in importance, there is one exception: In the last two similarity measures in D3, we163

observe a parent-child pair with network distance one exhibits higher similarity than a sibling pair164

with network distance two.165

Evolution of traits166

The previous sections examined overall similarities between models across their recorded features.167

We now turn our attention to individual traits arising from structured sequences of the model metadata.168

In many cases, traits remain the same between parent and child. However, if traits were always169

constant between parent and child, we’d observe far less heterogeneity in our data, and we’d find170

perfect similarity across all related model pairs in Figure 2. Because we do, in fact, observe feature171

diversity across models, here we focus on cases where model traits change between a parent and a172

child, that is, cases where the parent has trait i, the child holds trait j, and i ̸= j. Further information173

about our formal way of defining the rate of mutation is provided in Appendix D. In observing these174

instances of mutation, we make a number of specific observations and findings pertaining to the175

individual traits in question, which we discuss in the proceeding sections.176

At a general level, we make two empirical observations that hold descriptively, but are not necessary177

or obvious. First, we observe that mutations tend to be directed. Formally, for any two traits (i, j), it178

is most common that i mostly mutates to j or that j mostly mutates to i, rather than some balance179

of ‘traffic’ of mutations in both directions. We refer to any imbalance in the direction of mutation180

as a drift. Second, when we consider the orientations of all directed mutations, we find that these181

orientations are ordered. If we define the oriented graph of ‘typical’ transitions between traits, we are182

able to find orderings over these transitions that explain virtually all these orientations.183

Notice that the first observation does not imply the second. It could be that i mostly mutates to j,184

which mostly mutates to k, which mostly mutates back to i. We do not observe this for the vast185

majority of drifts. Second, we note that the task of finding an ordering over a directed graph is an186

integer programming problem, NP-hard in the worst cases. Our implementations are able to find187

optimal orderings, not due to luck but due to the natural orderings that emerge from our oriented188

graphs.189

Licenses drift from commercial to permissive and copyleft.190

How do license assignments change and mutate across model lineages? Our analysis of the direction191

of evolution of licenses is summarized in Figures 5a. Figure 5a depicts the twenty most-common192

licenses and the ‘drifts’ between them—that is, the arrows point in the more frequent mutation193

direction over all observed mutations. The graph is an oriented directed graph of all 121 drifts194

between 20 traits, where edge weight depends on the total traffic of mutations. Using the graph,195

we can ask, what ordering over traits is most compatible with these drifts? If mutations were fully196

random, or if cycles were common, we would not be able to produce an ordering that captures more197

than approximately half of the observed mutation directions. However, we are able to produce an198

ordering accounting for 93% of all drift directions, and 85% of all mutations. This suggests a strong199

directedness in the evolution of licenses. Equipped with this ordering, we can begin to develop200

hypotheses about the environmental pressures leading to the observed evolution.201
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(a) Trait evolution for licenses over fine-tune family
trees. Typical mutation directions suggest families often
start with commercial licenses and fine-tune to others.
Many instances show licenses getting less strict or drop-
ping upstream terms.

(b) Trait evolution for language compatibilities over
fine-tune family trees. The graph is fully connected and
shows a marked drift toward English-only support.

Trait Observed
inheritances

Mutation
rate

Drifts compatible
with order

Mutations compatible
with order

License 138,694 19.76% 113/121 (93.39%) 84.61%
Language 115,660 12.80% 186/189 (98.41%) 74.99%

(c) Summary statistics on the evolution of licenses and languages.

(d) Model card length decreases. (e) Evidence of automation increases. (f) Language support declines.

Figure 5: Typical mutation directions reveal emerging patterns in trait evolution across fine-tune
family trees.

Perhaps surprisingly, we observe many instances in which the more restrictive, commercial licenses202

are upstream from the more permissive licenses.2 Consider, as one example, the gemma license, which203

appears first in our observed ordering. The terms of this license include the following requirement:204

“You must provide all third party recipients of Gemma or Model Derivatives a copy of this Agreement.”205

The license lists further restrictions, including on uses that “sexually explicit content, including content206

created for the purposes of pornography or sexual gratification (e.g. sexual chatbots)” Google LLC207

[2025]. This license mutates most frequently to Apache-2.0 and MIT licenses, each which contain208

no such provisions. As a second example, we observe mutation drifts from cc-by-nc-4.0, a creative209

commons license that restricts derivatives from commercial uses, to MIT, which grants permissions210

“without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell”211

2When we refer to the categories of permissive, restrictive, commercial, and copyleft, we are using catego-
rizations from existing scholarship, including Longpre et al. [2024] in the context of data provenance and Choksi
and Grimmelmann [2024] in the context of open-source software.
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Open Source Initiative [1988]. The same non-commercial license also mutates to other licenses of212

the same variety (creative commons) but without the non-commercial agreement, which seems to be213

a strict relaxation of terms.214

These instances of ‘relaxations’ appear to be the norm rather than the exception. Of the first five215

licenses in our ordering, all are commercial (gemma or llama varieties). Of the last five licenses in216

our ordering, the last three are permissive or public domain (cc, afl-3.0, artistic-2.0) and the217

remaining two are copyleft without any restrictions on use (cc-by-*, gpl-3.0). Looking exclusively218

at creative commons licenses, non-commercial restrictions and share-alike provisions lie upstream219

from versions without these previsions.220

Why would licenses weaken and relax even when doing so might constitute a violation of upstream221

agreement terms? The observed mutation drift suggests market and behavioral pressures toward222

openness outweigh the specter of legal enforcement as a motivator for AI developers.223

Documentation thins.224

We now turn our attention to information from the model cards. We are interested in the effort and225

resources devoted to documentation and transparency for models of different generations in the open226

source ecosystem. One significant trend that we observe is that documentation thins. Markers of227

bespoke effort aimed at supporting users, communicating methods, and demonstrating capabilities228

seem to atrophy. Markers of leaner approaches and automation develop and multiply.229

When we look at the state of model cards between parents and children in our family trees, we can230

make a few straight-forward observations. Model cards exist at a very high rate for models that231

belong to family trees. Missing model cards are far more frequent among models with no family232

ties. Among models with family ties, the model card is almost always available, even if it is only a233

few characters long. Among parent-child pairs with model cards, we observe that the length of these234

cards drops by ≈ 5, 000 characters. The parent’s model card is roughly twice the size of the child’s235

model card, on average. Even though the model cards get significantly shorter, we observe that they236

more frequently contain the terms that suggest automatic card generation. About 30% of derivative237

models contain the bigrams automatically generated or generated automatically. These238

results, depicted in Figures 5d and 5e, suggest pressures toward lean documentation and automation239

technologies that remove costs to document and explain models, their capabilities, their uses, and240

other information typically contained in the model card.241

Languages specialize and drift toward English.242

Language traits are different in kind from other categorical features because an individual model can243

be compatible with more than one language, meaning that partial mutations are possible. Consider a244

case where model i finetunes to model j. Model i has language group (A,B,C) and j has language245

group (B,C,D). We say that the overall mutation rate is the shared members of both groups divided246

by the union of both groups (i.e., in this example, the mutation rate would be 1
2 ). Further, we log247

distinct directional mutations from every dropped language to every child language, and from every248

parent language to every added language. To continue our example, we’d log mutations from A to249

B, C, and D and from A,B and C to D. These enable us to produce similar drift diagrams and250

orderings to those produced for licenses. Our findings are summarized in Figures ?? and 5f.251

The language traits show two trends: 1) specialization and 2) drift towards English. The first of252

these trends, specialization, refers to the significant reduction in language compatibility from base253

models to child models. Large base models supporting significant family trees tend to support many254

languages, whereas derivative models tend to list compatibility with one or a handful of languages.255

Therefore, we see a precipitous reduction in the language support between parents and finetuned256

children.257

The second observation we can make about language traits is that they drift overwhelmingly from258

broad language support to English-language support. This drift suggests a considerable market259

pressure towards English-speaking products and compatibilities. This drift is not entirely surprising260

given Hugging Face is a United States-based company. However, an increasing number of Chinese261

models are being developed and hosted and we do not observe a commensurate drift towards Chinese262

compatibility.263
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Discussion264

Limitations265

Limitations to our findings include the fact that we only account for models that have logged fine-266

tuning relationships on Hugging Face. Many models may be related without having these relationships.267

For instance, models released with different numbers of paramaters are often each available as their268

own base model, so we do not consider Qwen/Qwen1.5-0.5B and Qwen/Qwen1.5-1.8B to be269

members of the same family. Though we use metadata and model card snippets as metaphors for270

DNA, there are other sources of semantic information we do not access. Future work may analyze271

model repositories’ config.JSON files to extract architectural parameters, such as vocabulary size272

(inferring the training dataset size and costs), attention heads, and hidden dimensions, to reveal further273

attributes of models and trace how structural traits evolve across the ecosystem. Text from code274

repositories and even the model weights themselves could contain additional low-level semantic275

encodings of model properties and internals. Finally, the timescale of this analysis is limited to the276

lifespan of the Hugging Face platform. However, since open models predate Hugging Face, future277

work could extend this analysis by incorporating historical data from earlier model repositories and278

academic publications to capture the complete evolutionary trajectory of open source ML.279

Changes to the Hub interface (e.g., available fields and auto-generated documentation) affect what280

developers report about their models. For example, the CreatedAt field was introduced in March281

2022 and all existent models were back-filled values equal to the date of feature launch. This could282

possibly inflate the genetic similarity between otherwise unrelated models.283

We see the present work as a first step towards a range of studies that this dataset and perspective284

could support. For example, though our data represent a snapshot in which models exhibit fixed285

qualities, there are a variety of attributes that may be time-dependent or trends that could be uncovered286

with time-series data. Further, where our approach focused on open source models, there is a huge287

industry of closed models and these ecosystems have interesting interactions.288

Structural complexity arises not only from the number of descendants but also from the introduction of289

merges, which combine distinct lineages—essentially ‘marrying families.’ Mergers between models290

could be viewed as a form of ‘sexual reproduction,’ contrasting with the one-to-one parent–child291

mappings that this paper focuses on. As merges become more popular, the Hugging Face graph may292

undergo a phase transition in which nearly all nodes become connected in a single, massive connected293

component. Further analysis is needed to understand model merges and their effect on the ecosystem.294

Future Work295

This work opens several research trajectories. Future studies could extend the ecological framing296

to processes such as niche formation, cooperation, and succession, helping explain how model297

families grow, stabilize, or die out. Another direction is to investigate malignant behaviors in model298

lineages, such as catastrophic inheritance Chen et al. [2024] - and to investigate whether these can be299

inferred from higher-level properties of parent models, potentially offering a more resource-efficient300

alternative to assessing model capabilities than bottom-up approaches Sharma et al. [2025].301

Governance Implications for ML Platforms302

Our empirical findings highlight three governance challenges for ML platforms. First, as development303

becomes more decentralized, platforms must track model dependencies, document performance304

updates, and ensure backward compatibility, with emerging solutions including Model ChangeLists305

Eyuboglu et al. [2024], analogous to Software Bills of Materials (SBOMs) Cyb [2025]. Second,306

while few models release code, those that do often expose vulnerabilities such as leaked API keys and307

credentials, underscoring the need for stronger review practices. Third, documentation standards like308

Croissant, a metadata format for ML-ready datasets Akhtar et al. [2024] now required for NeurIPS,309

could consolidate practices across platforms, though trade-offs remain between transparency and310

developer burden.311
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A Technical Appendices and Supplementary Material456

B Further related work457

This paper aims to measure and analyze the structure of AI fine-tuning and related adaptation and458

transfer learning procedures. These relationships connect finetuned and remixed AI models to459

their ‘parent’ model(s) whose weights, structures, and other elements might influence the child’s460

development. The sources of inspiration for this work come from scholarship on social networks461

and the web, multi-agent interactions and modeling AI development, and finally, approaches462

from theoretical ecology and genetics. We cover relevant work from each of these categories in463

turn.464

Social Networks on the Web. This work takes a quantitative approach to networks of viral propaga-465

tion over the web, evocative of literature on virality and social media Kossinets and Watts [2006],466

Goel et al. [2012], Yang and Counts [2010] Goel et al. [2016] differentiate broadcast diffusion trees467

from viral trees using a metric they term structural virality – this concept helped inspire our work468

because we were surprised that fine-tuning trees are not exclusively broadcast graphs.Many have469

considered the dependence of graph features on local network topology, including in the context of470

attachment Ugander et al. [2012], link prediction Liben-Nowell and Kleinberg [2003], Leskovec471

et al. [2010], feature prediction Grover and Leskovec [2016], Hamilton et al. [2017] and community472

inference Gibson et al. [1998]. In contrast, our approach attempts to predict trait similarity and trait473

transitions over a tree network. Though empirical work on Hugging Face is limited, some strides474

have been made. Horwitz et al. [2025] calls for work mapping an ‘atlas’ of models on Hugging475

Face, demonstrating that directed acyclic graphs representing model relationships can be drawn for476

certain families and providing a dataset with 1.1 million models. Our work answers this call and477

offers an expanded dataset. Castaño et al. [2024] analyze the growth over time and commit patterns478

using the Hugging Face model hub, gathering a dataset of 380,000 models. Choksi et al. [2025]479

explore chats and conversations among community members and contributors, evidence of vibrancy480

and richness among contributing developers. Bommasani et al. [2023] coin ecosystem graphs as an481

abstraction for understanding AI development, and analyze a preliminary set of 128 models that they482

use to demonstrate the usefulness of ecosystems thinking for reasoning about social implications483

and regulation of AI. Duan et al. tracks the frequency of copyleft license violations across model484

derivatives using a dataset of around 15,000 models on Hugging Face. Rahman et al. [2025] use the485

Hugging Face API to create a graph of information about models totaling 402,654 nodes.486

Multi-agent interactions and modeling. Scholars have developed theoretical models and theories487

of the multi-actor system surrounding the development of AI technologies. Laufer et al. [2024]488

create a game-theoretic model to understand how ‘domain specialists’ and ‘generalists’ interact to489

produce the technology. Others have developed depth-one tree structures as a model for understanding490

AI diffusion Jagadeesan et al. [2024], Qiu et al. [2025], Dean et al. [2024], Laufer et al. [2025].491

Hopkins et al. [2025] use directed acyclic graphs (DAGs) of arbitrary depth to allow supply chains492

of interacting actors to understand the dynamics of AI supply chains. There is budding work on493

decision-making along these networks Widder and Nafus [2023], Taitler and Ben-Porat [2025],494

though much of it is theoretical. Further, we claim that perspectives on incentives, competition,495

cooperation have tended to be organized by economic—rather than ecological—metaphors. Here, we496

wish to go deeper with the ecological phenomenology of AI development and diffusion.497

Theoretical Ecology and Genetics. This paper is inspired by perspectives of systems as complex498

adaptive systems, characterized by emergent properties that arise from small-scale interactions499

between components Levin [1998]. Sclocchi et al. [2024], taking a machine learning perspective,500

understand model ‘phylogeny’ as a prediction problem, and show that models with larger normed501

parameter vectors—weights and biases of greater magnitude—tend to be higher up in the family tree.502
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In a different genealogical approach to machine learning, Kalluri et al. [2025] draw links between503

ML papers and downstream produce developments, focusing on surveillance applications.504

C Defining measures of genetic similarity505

Here we provide additional details on how we measure genetic similarity between models, and we506

report results across the range of measures we define.507

Our Figure 2 shows one of six ways we measure genetic similarity between models. These six508

methods align in the general trends and interpretations reported in the paper. Here we provide details509

on all six.510

The measures can be divided by two targets of similarity analysis—the metadata and model cards.511

On each of these pieces of text, we implement three distinct measures. One measure—Levenshtein512

distance—computes the total character-by-character difference. The other two—Bag-of-words513

(BOW) and Term Frequency-Inverse Document Frequency (TF-IDF)—measure differences using the514

set of n-grams in the text.515

C.1 Formal definitions516

Below we state the formal definitions of our various measures of genetic similarity. All take as input517

a pair of strings s1, s2 and output a measure, between 0 and 1, of similarity between them.518

Definition C.1 (Cosine similarity in term frequency). Given two strings (s1, s2) in a set of strings S,519

we compute the cosine similarity in term frequency as follows. Over all strings in S, produce an520

ordered list of the n most frequently appearing terms (unigrams or bigrams). Then, for any string521

si ∈ S, define the vector vi ∈ Rn such that every value vi[k] is the number of times the kth term in522

the list appears in si. The similarity is vivj
||vi||||vj || .523

Definition C.2 (Cosine similarity in term frequency-inverse document frequency). Given two strings524

(s1, s2) in a set of strings S, we compute the cosine similarity in TF-IDF as follows. Over all525

strings in S, produce an ordered list of the n most frequently appearing terms (unigrams or bigrams).526

Then, for any string si ∈ S, define the vector vi ∈ Rn such that every value vi[k] is the product of527

the number of times the kth term appears in si (its term frequency) and the inverse of the fraction528

of documents s ∈ S which contain the term (its inverse document frequency). The similarity is529
vivj

||vi||||vj || .530

Definition C.3 (Normalized Levenshtein Similarity). Given two strings (s1, s2), we define the nor-531

malized Levenshtein distance (NLD) as the minimum number of character-wise insertions, deletions,532

or substitutions to transform s1 into s2, divided by max(length(s1), length(s2)). The normalized533

Levenshtein distance is 1− NLD.534

The above definitions can be computed for a general set of strings, and we report results comparing535

two sets of strings specifically: The metadata, which is highly structured and recorded for every model536

on Hugging Face, and the model cards, which is unstructured, much more variable in length, and537

missing for roughly a third of all models. In the body of the text, we report results on the metadata.538

C.2 Why we prefer term frequency based similarity metrics to edit distances539

We report the TF-IDF similarities in the body of the paper, and the other similarity metrics (which540

match in qualitative conclusions) in the appendix. We do this for two reasons. First, we believe541

mutations over the metadata are more a function of differences in term-based tokens rather than542

character-based tokens. The difference between the snippets ‘license: mit’ and ‘license:543

gemma’ should not depend on how many letters ‘mit’ and ‘gemma’ share. Further, the use of traits544

that happen to have long names does not correspond to a further genetic distance in a meaningful. For545

instance, the tasks ‘reinforcement-learning’ and ‘fill-mask’ are not different because of the546

number of character deletions they require; rather they are different because they are different terms.547

Second, Levenshtein distance is significantly affected by the ordering of terms, such that the existance548

of a long tag somewhere in the middle of the string could skew the distance measure. We believe549

these attributes are much more a function of whether their semantic markers appear in the metadata,550

and less a function of their ordering in the metadata. This is why we prefer term frequency based551
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measures. Finally, we choose to report the measures normalized by inverse-document frequency552

because it is a norm in the field, but generally we note that our qualitative insights and interpretations553

are consistent across the proposed measures.554

Figure 6: Bag of Words Cosine Similarity, Metadata.

Figure 7: Levenshtein distance based similarity measure on the model metadata.

Figure 8: TF-IDF Cosine Similarity, Model Cards.

Figure 9: Bag of Words Cosine Similarity, Model Cards.
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Figure 10: Levenshtein distance based similarity measure using the model cards. We have reason
to believe this is the least reliable measure, as model cards are free text and Levenshtein distance
relies heavily on text ordering, making it more suitable for structured strings. Directional patterns
nonetheless resemble the findings using other metrics.

D Defining the mutation rate555

In the paper, we attempt to measure the mutation rate over model traits. Depending on how various556

traits are logged in the metadata JSON, Hugging Face sometimes allows one model to list multiple557

traits in the same category. For other traits, however, a model can only have one categorical value.558

For example, models can be compatible with multiple languages, because languages are logged in the559

metadata as tags. Models can only have one task (or ‘pipeline_tag’), however. Here we provide a560

definition for the mutation rate over a category of traits. This is the definition used in all cases where561

mutation rate is reported in the paper. It is compatible with both types of traits listed below (those for562

which models can have multiple values, and those for which models can have only one value).563

Definition D.1 (Mutation rate over traits T). Given a set of categorical traits T . Every model i in our564

graph has a group of individual elements denoted ti = {a, b, ...} ∈ T . Then the mutation rate over565

any directed edge (i, j) is given by m(i, j) = 1− ti∩tj
ti∪tj

. The mutation rate over the set T is equal to566 ∑
edges (i,j) m(i,j)

Nedges
.567

Notice that, in cases where every model must have a single categorical value in the set of traits568

(equivalently, ti has cardinality one ∀i), the mutation rate on any edge is 0 if the parent and child569

have the same trait, and 1 if the parent and child have different traits.570

E Data collection and summary statistics571

Here we provide some additional information on the dataset and general exploratory data analysis572

conducted.573

E.1 How we collected the data574

We collected the data for our dataset in two stages. In the first stage, we used the Hugging Face575

‘model’ API to collect the model features and relationships—that is, all pieces of information in our576

dataset aside from the model cards. Hugging Face provides API access to individual lists of models,577

but these lists are capped to only list 1000 models. Using pagination, we were able to iterate over all578

such lists of models to collect the information in our dataset in JSON format. In the second stage,579

we collected the full text of every model’s model card through individual, per-model API calls to580

the model cards API. These cards were significantly more data-intensive—since model cards can be581

quite large and many more API calls were required to find all 1.86 million models in the dataset. In582

total, our full dataset uses memory on the order of 10GB (depending on the file format used), and the583

dataset without model cards uses significantly lower memory, at around 500MB. All calls to the API584

were conducted through the authors’ registered accounts on Hugging Face, and in consultation with585

employees at Hugging Face, including Hugging Face’s in-house librarian.586
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Figure 11: Top ten most frequent licenses, tasks, languages, and libraries (top row). Top ten models
ranked by number of children, datasets, arXiv categories of linked papers, and downloaded models
(bottom row).

E.2 Properties and summary statistics587

Our dataset centers around snippets of text for every model known as the model’s metadata. Model588

metadata comes in JSON format, and this JSON is made readily available for any model through589

Hugging Face’s API. These JSONs include the model_id (a unique identifier for each model590

containing its author and name), likes, trendingScore (a trait defined by Hugging Face for ranking591

models on their website), downloads, pipeline_tag (also known as task—a categorization of592

models into e.g., feature-extraction, text-generation, image-classification, and other593

modalities), library_name (the Hugging Face library used to support development), createdAt594

(the date and time that the model was created3), and tags. Tags contain a structured list of strings,595

some with organized prefixes. For example, tags beginning with base_model:finetune: link a596

finetuned model to its parent’s model id, tags beginning with license: contain the model’s license,597

and those beginning with arxiv: contain links to the arXiv identifiers of accompanying papers.598

Other tags do not have these prefixes, but their meaning can still be inferred. For example, languages599

are listed using two- or three-letter ISO-639 codes.600

A summary of the distributions of the various metadata traits is provided in Figure 11. These601

distributions convey the relative frequencies of different traits, as well as the absolute number602

of papers with these documented traits. Here, we provide some findings these figures convey603

about the state of the open source ecosystem on Hugging Face, reading from left to right and604

top to bottom through the figure. A few trends emerge from these summary statistics and rates.605

First, permissive licenses—especially apache-2.0 and mit are dominant, constituting over 60%606

of all reported licenses. Text-based tasks—and especially text-generation—are most common.607

English is by far the dominant language compatibility on Hugging Face, with over 75% of models608

that document any language compatibility marking english as a supported language. Chinese is609

the second most-common at 4.4%. transformers is the most common Hugging Face library.610

black-forest-labs/FLUX.1-dev is the model that has the most children. imagefolder is the611

most commonly recorded dataset in metadata. Machine Learning and Computers and Society612

codes are the most common among linked arXiv papers. Finally, in the lower right figure, we show613

the most downloaded models, finding that the model Falconsai/nsfw_image_detection is the614

3Tracking of the createdAt date and time began March 2, 2022. According to the Hugging Face documen-
tation, and corroborated by our findings, all models created before that date are back-filled with that date; the
date is accurate for all models uploaded thereafter.
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most downloaded. This model’s purpose is to detect and identify explicit imagery and is perhaps used615

for content moderation and compliance.616

A remarkable amount of information is conveyed in text snippets that Hugging Face stores for every617

model. Throughout the paper, we treat the snippets of text provided by the metadata JSON as618

the models DNA, as it contains rich information about traits and allows us to track changes and619

differences over generations (illustrated in Figure 1c). Before embarking on this genetic analysis, we620

discuss one additional source of genetic information: the model cards.621

Model cards are documents that carry information about the use, performance, compatibilities, risks,622

impacts, and many other pieces of information about models Mitchell et al. [2019]. Model cards are623

the main form of documentation for models on the hub, and they constitute much of the information624

that populates on any given model’s associated webpage. Model cards can be considerably longer625

than metadata, and much less structured. They can therefore contain more information, however,626

not all models have corresponding model cards, and they are considerably less standardized and627

organized. According to our data, 67.04% of models currently have an associated model card. An628

analysis of the 1,247,149 cards available reveals an average model card length of 3575.60 characters629

(≈ 436.06 words), with a median of 2073.0 characters (≈ 238.0 words). This wide range, from a630

minimum of 11 characters to a maximum of 18,289,454 characters (≈ 2,813,762 words), indicates631

that a small number of extremely verbose cards significantly influence the average.632

E.3 Linking papers from arXiv633

To investigate the research inspiring models on the Hub, we extracted all linked papers from model634

metadata. For available arXiv IDs, we queried the arXiv API to retrieve the corresponding titles,635

abstracts, and subject classifications, allowing us to systematically categorize the papers by domain.636

arXiv subject classification IDs (like cs.AI, cs.CL) are extracted from the categories column in the637

full JSON dataset, maps them to readable subject names using a predefined dictionary, and counts638

the frequency of each subject across all models. The process handles both single categories and639

lists of categories per model, flattening all categories into a single list before counting occurrences,640

where models with multiple arXiv categories contribute to the count of each individual category641

(e.g., a model with [‘cs.AI,’ ‘cs.CL’] adds +1 to both “Computer Science, Artificial Intelligence” and642

“Computer Science, Computation and Language”). The top 20 most frequent research domains are643

then visualized in Figure 11.644

E.4 Documentation availability645

We analyze model availability and observe low adoption of Hugging Face complimentary tools646

Goldin and Katz [1996]. Only 5.96% of the models are endpoint-compatible or accessible via the647

Hugging Face API without local hosting. Furthermore, 6.6% of the models released with weights648

use the safetensor file format—the default model weight format developed by Hugging Face in649

2022 Face [2022].4 Additionally, 23.69% of the models use automated training via Hugging Face650

Spaces—containerized web deployment environments. Although only a small subset of Hugging651

Face models have self-assigned DOIs, they are downloaded 29× more than those without. Possible652

explanations include DOIs make models more visible and trustworthy, and people tend to choose653

models that are already popular and well-documented.654

F Further information on sampling subtree topologies655

Here we provide a more complete table as an addendum to Table 4. For each shape of subgraph, we656

implemented a specific sampling method to get a representative sample of models. The sampling657

method is summarized in Table 1.658

4Although the format was developed in 2022, it became the default (as a zero-copy alternative to pickle) in
2023 Yoshimura et al. [2025].
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Subgraph Occurrences Sampling condition Multiplicity|condition

3,470,193,356,870 Two arbitrary nodes. 1

191,072 Single edge (u, v). 1

119,795,843 Node u with more than one
successor.

(
nsucc(u)

2

)
40,922 Edge (u, v) where v has successors. nsucc(v)

193,010,561,824 Node u with more than two
successors.

(
nsucc(u)

3

)
11,847,103 Edge (u, v) where v has more than

one successor.
(
nsucc(v)

2

)
19,932,645 Edge (u, v) where u has multiple

successors and v has successors. nsucc(v)(nsucc(u)− 1)

10,965 Edge (u, v) where u has a
predecessor and v has successors. nsucc(v)

Table 1: Subgraph patterns, their total occurrences, sampling conditions, and associated multiplicities
conditioned on each pattern. nsucc(u) refers to the number of successors (or, equivalently, the out-
degree) of node u.
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• The paper should provide the amount of compute required for each of the individual840
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Answer: [Yes] .848
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deviation from the Code of Ethics.854

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-855

eration due to laws or regulations in their jurisdiction).856
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societal impacts of the work performed?859

Answer: [Yes]860
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open-source AI ecosystems.866
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• The answer NA means that there is no societal impact of the work performed.868

• If the authors answer NA or No, they should explain why their work has no societal869

impact or why the paper does not address societal impact.870

• Examples of negative societal impacts include potential malicious or unintended uses871

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations872
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11. Safeguards890
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release of data or models that have a high risk for misuse (e.g., pretrained language models,892
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with established safety protocols. We provide comprehensive documentation and this paper899
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