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Abstract

Foundation models are resource-intensive but broadly capable. They become
specialized for downstream tasks through transformations such as fine-tuning,
adaptation, and quantization. While these processes are often examined through
individual evaluations or case studies, little work has explored their collective
dynamics and interactions at scale. This paper analyzes 1.86 million models on
Hugging Face, a leading peer production platform for model development. Our
study of model family trees—networks that connect fine-tuned models to their
base or parent—reveals sprawling fine-tuning lineages that vary widely in size and
structure. Using an evolutionary biology lens to study ML models, we use model
metadata and model cards to measure the genetic similarity and mutation of traits
over model families. We find that models tend to exhibit a family resemblance,
meaning their genetic markers and traits exhibit more overlap when they belong to
the same model family. However, these similarities depart in certain ways from
standard models of asexual reproduction, because mutations are fast and directed,
such that two ‘sibling’ models tend to exhibit more similarity than parent/child
pairs. Further analysis of the directional drifts of these mutations reveals qualitative
insights about the open machine learning ecosystem: insights potentially relevant
for policymakers and regulators: Licenses counter-intuitively drift from restrictive,
commercial licenses towards permissive or copyleft licenses, often in violation of
upstream license’s terms; models evolve from multi-lingual compatibility towards
English-only compatibility; and model cards reduce in length and standardize by
turning, more often, to templates and automatically generated text. This work
shows how platform tools shape derivative development, offering new leverage
points for governance.

The rapid development of machine learning (ML) models is changing human behaviors and systems
across domains such as education and medicine. As technologies enter these domains, there is
limited institutional understanding of model attributes and internals despite the widespread awareness
of their possible safety risks and social stakes. One reason for this limited understanding is that
many models are closed-source, meaning that changes to their weights, training data, source code,
configurations, training procedures, and other details are not publicly available through documentation
Wu et al. [2025], Qiu et al. [2025], Bommasani et al. [2024]. Without the ability to access these
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artifacts, research has predominantly focused on model outputs, benchmark performance, or individual
component architectures, rather than dissecting the upstream chains of development, diffusion, and
evolution towards deployment Kim et al. [2025], Raji et al. [2021]. While analogies to ecosystems
and biological evolution are frequently drawn Hopkins et al. [2025], Bommasani et al. [2023], we lack
a large-scale, data-driven account of the mutations of model traits as they transfer from pre-trained
language models to fine-tuned bespoke products.

Emerging open-source ecosystems offer a valuable opportunity to study machine learning from an
evolutionary perspective. Hugging Face, the largest repository of open-source machine learning
models, hosts roughly two million machine learning models, trained by community members for
diverse tasks. In addition to rich metadata and documentation via model cards Mitchell et al. [2019],
the platform records links between models, so that people can see whether one model is a derivative
of another. These links enable the construction of sprawling graphs representing the models’ “family
trees,” which can be used to systematically track ancestry, variation, and the inheritance of traits over
generations of models. Existing work has called for the systematic study of these emerging lineages
Horwitz et al. [2025], and some have taken steps toward understanding these emerging communities
from subsets of the vast set of available models Rahman et al. [2025], Choksi et al. [2025].

Here we analyze a dataset containing the comprehensive population of 1.86 million models accessible
on Hugging Face.2 We map their lineages and measure their genetic similarities, mutation rates, and
the directions of drift in traits. We find a high rate of mutation that is strongly directed, such that
siblings exhibit more similarities to each other than to their parents, on average. Individual traits
exhibit characteristic drifts—for example, model licenses are observed to evolve from commercial or
use-restricted varieties to permissive or copyleft varieties Heffan [1996]. Language compatibility
drifts from general multilingual support towards specialized, single-language support, with an
overwhelming trend towards English-only compatibility. Documentation practices evolve from wide
detail and coverage to lean varieties, and distinctive markers emerge among derivative models that
suggest documentation is automatically generated.

These drifts in traits are predominantly acyclic, suggestive of evolutionary processes with clear
directional trends. These trends yield new hypotheses about the environmental pressures on machine
learning development. For instance, the observation that licenses trend towards permissiveness and
copyleft varieties suggests that preferences for openness outweigh existing regulatory pressures to
comply with licenses Shanklin et al. [2025]. The drift towards English-speaking models suggests a
formidable market for English-language products Nicholas and Bhatia [2023], Solatorio et al. [2024].

By introducing a new methodological lens for quantifying these changes over the population of
models, and by making public the largest-to-date dataset of model linkages and documents, we intend
this study as a first step towards understanding the forces shaping the development and diffusion of
artificial intelligence (AI) and ML. We discuss open directions for empirical and theoretical work on
the evolutionary biology of these systems. These perspectives also lay the foundation for governance
and regulatory approaches in which decision makers use comparative inference to design policies for
models and their families.

Snippets of text contain information about traits

With rich structured data about the relationships between AI models, there are a number of questions
we can ask about the diffusion of model attributes. Inspired by ecological and genetic perspectives
Hamilton [1964], Eberhard [1975] and existing work on network diffusion Ugander et al. [2012], we
explore the relationship between family structure and attribute similarity. Our analysis centers around
snippets of text for every model, known as the model’s metadata and model card. Model metadata
comes in a highly structured JSON format and is available for every model through Hugging Face’s
API. Segments of metadata are depicted in Figure 1c. The model cards, on the other hand, allow
free-form text detailing model structure, performance, and other attributes, and are available for 1.25
million models.

Leveraging these snippets of text and the rich linkage structure between models, we can explore the
relationship between family structure and the similarity in stored data. If finetuning family trees

2Our dataset is publicly available at the following link: Hugging Face dataset. Our codebase is available at
the following link: GitHub repository.
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(a) Schematic of an example family tree from
our dataset. If we compare model derivatives to
biological reproduction, we might expect models
that are topologically closer to exhibit similari-
ties in traits. Our analysis aims to characterize
trait inheritance and trait mutation over genera-
tions.

(b) The growth of the largest family trees over time using
the CreatedAt field logged when a model is indexed on
Hugging Face. The growth over time reveals “S-curve” adop-
tion patterns Foster [1986], analogous to other domains with
diffusion over a network. Merges are omitted to show growth
from a single common ancestor.

(c) The diff between two sequences of model metadata. We measure the overall mutation rate and genetic
similarity by tracking rates of overlap and departure between these sequences. The top sequence is metadata from
Qwen/Qwen1.5-72B, the base model depicted in 1a; the bottom sequence is metadata from one of its finetunes.
Additions are shown in green, deletions in red, and substitutions in yellow. Here we depict character-level
mutations corresponding most closely to the Levenshtein distance. We additionally measure and report similarity
on term-level representations (using bag-of-words and TF-IDF), which we believe better captures categorical
shifts in metadata.

(d) Examples of family trees from our dataset. Colored edges represent different forms of derivative models that
are documented as having finetuned, quantized, adapter or merged pre-existing models. Diffusion patterns reveal
large broadcasts and numerous generations of derivatives. All graphs are directed and acyclic. Those without
merges have tree structures (left, center).

Figure 1: Model families.
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are akin to genetic family trees, we might expect two models finetuned from the same parent model
(‘siblings’) to be more similar, on average, than any two models selected at random from our dataset.
Taking the metaphor further, if we think of the encodings of model attributes—including licenses,
tags, text data, and other metadata information—as akin to DNA in biological species, reproductive
models would predict that parent-child pairs tend to be more genetically related than uncle-nephew
pairs or grandparent-grandchild pairs.

In living organisms, genes are encoded in a semantic language through sequences of nucleotide
bases—or “building blocks”—in DNA. One way of measuring genetic relation is by measuring
the overlap or similarity in DNA sequences. AI models encode their own forms of semantically
meaningful instruction sequences through their code bases, model cards, metadata, and model weights.
Luckily, open models on Hugging Face make some of these resources publicly accessible, enabling
formal approaches to reasoning about model similarity. Each of these artifacts is different in kind,
and of course, none are perfect analogies for DNA. Here, we provide a method for measuring genetic
similarity between models, inspired by the biological genetics. Our approach measures the semantic
distance between the models’ tokenized metadata. We propose measuring the frequency of different
terms in the model metadata and tracking differences in these relative frequencies.

Measuring genetic similarity

Our aim is to measure the similarities between models residing within different ‘immediate family’
structures in our large tree graph. Our approach to calculating similarities borrows from classical
contributions in natural language processing and formal language theory. Our broad approach uses
differences in tokens between text snippets to determine the level of similarity between two such
snippets. We replicate our analysis for three measures—the normalized Levenshtein Distance Yujian
and Bo [2007], which directly computes character-level insertions and deletions as depicted in Figure
1c, the cosine similarity in term frequency (or “bag-of-words”) embeddings, and the cosine similarity
in term frequency-inverse document frequency (“TF-IDF”) embeddings. We measure similarities
across two different model artifacts—metadata JSONs and the text of model cards. Our results across
these different metrics reveal the same pattern: that models of the same finetuning family tree are
more genetically similar than randomly paired models, and that genetic similarity is negatively related
to the generational divide and topological distance. Further information on these various metrics and
approaches are provided in Appendix B.1. In the body of the text, we report the cosine similarity on
TF-IDF embeddings derived from the metadata strings (Figure 2).

To understand the qualities of genetic similarity in model family trees, we first limit our analysis
to a specific type of family relation—finetuned models—to control for specific similarity patterns
within groups and because the other relations rarely produce offspring of their own. This also allows
us to work with a tree graph, meaning we avoid cases where merged models have more than one
parent and thus relate to other models in more than one way. Our analysis consists in enumerating
the possible graph relationships between model pairs—parent/child, grandparent/grandchild, sibling,
uncle/nephew, and so forth (illustrated in Figure 1b. To be comprehensive, we enumerate all possible
local family structures of size one, two, three and four, and within these structures, we aim to measure
the attribute similarity between every possible pair of nodes.

A depiction of these possible structures is provided in Figures 4 and 2. The challenge with estimating
quantities over these local structures is that they may appear combinatorically many times in a large
graph, creating algorithmic challenges Clauset [2005], Kleinberg et al. [1999]. To illustrate what we
mean by this, consider the set of all pairs of siblings in a tree graph. If one model has 500 children,
the total number of pairs of siblings among them is

(
500
2

)
or 124, 750. Therefore, estimating the

typical similarity over all pairs of siblings quickly becomes computationally burdensome. To handle
this challenge, we design an estimation procedure, where we draw a representative sample from the
set of all pairs of models meeting the relationship condition. We implement our estimation procedure,
sampling 5000 pairs of nodes for each distinct subtree topology and pair combination. We then
construct 95% confidence intervals around our mean similarity estimates treating our graph-wide
measurement as the population mean and drawing 10,000 bootstrap subsamples from our sample
with replacement.
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Family resemblance and diffusion characteristics

Our main results are depicted in Figure 2. The results suggest that models that are close in network
topology have considerably more similarity than randomly selected pairs of nodes. This offers some
evidence that model family trees truly do exhibit family resemblances. However, patterns of similarity
over family trees are not cleanly predicted by typical models of genetic diffusion. For example, we
find that siblings are significantly more similar to one another than either is to its parent, on average
(depicted in the first subfigure labeled ‘C’). This is counter to what an asexual model of genetic
reproduction with mutation might predict. If we imagine each child model in a family inheriting
the parent’s genes subject to some rate of random mutation, siblings should be more related to their
parent than each other, on average. We observe the opposite, suggesting that there is some directional
effect of fine-tuning whereby all children tend to depart in attributes from their parents, on average,
in characteristically similar ways (illustrated in Figure 3).

When we look at pairs of nodes in a variety of subgraphs, we see evidence of three major heuristics
that seem to dictate the level of similarity between pairs of models. The first is being members of the
same family. If models belong to the same family tree, they appear to exhibit significantly higher
levels of similarity, compared to models paired at random over our dataset.

The second factor that appears relevant to trait similarity is generational divide. When we compare
two models that are the same generation in their family tree (e.g., siblings or cousins), we find that
this majorly increases the level of similarity between models. Models that are one generation apart
(e.g., parent/child pairs or uncle/nephew pairs) tend to be significantly more similar, on average, than
models that are two generations apart (e.g., grandparent/grandchild pairs). The same relationship
holds when comparing grandparent/grandchild pairs to great-grandparent/great-grandchild pairs.

A third heuristic that seems to explain the observed similarities in model attributes is the network
distance, that is, the total number of edges one would need to traverse to get from one node pair to
the other. This is what a genetic model of mutation-based asexual reproduction would predict. This
factor is supported by the fact that uncle/nephew pairs are observed to be less similar, on average,
than parent/child pairs belonging to the same subgraph structures (depicted in the second and third
columns of subfigure D3 in Figure 2). Though most measures suggest generational divide outweighs
network distance in importance, there is one exception: In the last two similarity measures in D3, we
observe a parent-child pair with network distance one exhibits higher similarity than a sibling pair
with network distance two.

Evolution of traits

The previous sections examined overall similarities between models across their recorded features.
We now turn our attention to individual traits arising from structured sequences of the model metadata.
In many cases, traits remain the same between parent and child. However, if traits were always
constant between parent and child, we’d observe far less heterogeneity in our data, and we’d find
perfect similarity across all related model pairs in Figure 2. Because we do, in fact, observe feature
diversity across models, here we focus on cases where model traits change between a parent and a
child, that is, cases where the parent has trait i, the child holds trait j, and i ̸= j. Further information
about our formal way of defining the rate of mutation is provided in Appendix B.1.3. In observing
these instances of mutation, we make a number of specific observations and findings pertaining to the
individual traits in question, which we discuss in the proceeding sections.

At a general level, we make two empirical observations that hold descriptively, but are not necessary
or obvious. First, we observe that mutations tend to be directed. Formally, for any two traits (i, j), it
is most common that i mostly mutates to j or that j mostly mutates to i, rather than some balance
of ‘traffic’ of mutations in both directions. We refer to any imbalance in the direction of mutation
as a drift. Second, when we consider the orientations of all directed mutations, we find that these
orientations are ordered. If we define the oriented graph of ‘typical’ transitions between traits, we are
able to find orderings over these transitions that explain virtually all these orientations.

Notice that the first observation does not imply the second. It could be that i mostly mutates to j,
which mostly mutates to k, which mostly mutates back to i. We do not observe this for the vast
majority of drifts. Second, we note that the task of finding an ordering over a directed graph is an
integer programming problem, NP-hard in the worst cases. Our implementations are able to find
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Figure 2: Cosine similarity between TF-IDF embedding vectors, trained on the model metadata
strings for all models in our dataset. Here, we sample finetunes meeting specific family structures.
We enumerate all possible sub-trees of size 2 (B), 3 (C), and 4 (D), and enumerate all possible pairs
of nodes within each sub-tree. When we compare these genetic similarities to the baseline of the
similarity between any two nodes in the graph (A), we find that all observed family ties strongly
predict attribute similarity. Similarities between pairs of models suggest that models are more related
when they reside at similar depths and when they are topologically close in distance. Mean estimates
are from samples of 5000; confidence intervals are calculated over 10, 000 bootstrap draws from the
sample.

Figure 3: We observe that siblings exhibit greater sim-
ilarity in traits than parent-child pairs. This implies
not only that there is a high rate of mutation, but that
mutations are sufficiently directed.

Topology Occurrences

3,470,193,356,870

191,072

119,795,843

40,922

193,010,561,824

11,847,103

19,932,645

10,965

Figure 4: The graph contains many in-
stances of some family subtrees. Pairwise
similarities within subtrees are estimated
via sampling.
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(a) Trait evolution for licenses over fine-tune family
trees. Typical mutation directions suggest families often
start with commercial licenses and fine-tune to others.
Many instances show licenses getting less strict or drop-
ping upstream terms.

(b) Trait evolution for language compatibilities over
fine-tune family trees. The graph is fully connected and
shows a marked drift toward English-only support.

Trait Observed
inheritances

Mutation
rate

Drifts compatible
with order

Mutations compatible
with order

License 138,694 19.76% 113/121 (93.39%) 84.61%
Language 115,660 12.80% 186/189 (98.41%) 74.99%

(c) Summary statistics on the evolution of licenses and languages.

(d) Model card length decreases. (e) Evidence of automation increases. (f) Language support declines.

Figure 5: Typical mutation directions reveal emerging patterns in trait evolution across fine-tune
family trees.

optimal orderings, not due to luck but due to the natural orderings that emerge from our oriented
graphs.

Licenses drift from commercial to permissive and copyleft.

How do license assignments change and mutate across model lineages? Our analysis of the direction
of evolution of licenses is summarized in Figures 5a. Figure 5a depicts the twenty most-common
licenses and the ‘drifts’ between them—that is, the arrows point in the more frequent mutation
direction over all observed mutations. The graph is an oriented directed graph of all 121 drifts
between 20 traits, where edge weight depends on the total traffic of mutations. Using the graph,
we can ask, what ordering over traits is most compatible with these drifts? If mutations were fully
random, or if cycles were common, we would not be able to produce an ordering that captures more
than approximately half of the observed mutation directions. However, we are able to produce an
ordering accounting for 93% of all drift directions, and 85% of all mutations. This suggests a strong
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directedness in the evolution of licenses. Equipped with this ordering, we can begin to develop
hypotheses about the environmental pressures leading to the observed evolution.

Perhaps surprisingly, we observe many instances in which the more restrictive, commercial licenses
are upstream from the more permissive licenses.3 Consider, as one example, the gemma license, which
appears first in our observed ordering. The terms of this license include the following requirement:
“You must provide all third party recipients of Gemma or Model Derivatives a copy of this Agreement.”
The license lists further restrictions, including on uses that “sexually explicit content, including content
created for the purposes of pornography or sexual gratification (e.g. sexual chatbots)” Google LLC
[2025]. This license mutates most frequently to Apache-2.0 and MIT licenses, each which contain
no such provisions. As a second example, we observe mutation drifts from cc-by-nc-4.0, a creative
commons license that restricts derivatives from commercial uses, to MIT, which grants permissions
“without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell”
Open Source Initiative [1988]. The same non-commercial license also mutates to other licenses of
the same variety (creative commons) but without the non-commercial agreement, which seems to be
a strict relaxation of terms.

These instances of ‘relaxations’ appear to be the norm rather than the exception. Of the first five
licenses in our ordering, all are commercial (gemma or llama varieties). Of the last five licenses in
our ordering, the last three are permissive or public domain (cc, afl-3.0, artistic-2.0) and the
remaining two are copyleft without any restrictions on use (cc-by-*, gpl-3.0). Looking exclusively
at creative commons licenses, non-commercial restrictions and share-alike provisions lie upstream
from versions without these previsions.

Why would licenses weaken and relax even when doing so might constitute a violation of upstream
agreement terms? The observed mutation drift suggests market and behavioral pressures toward
openness outweigh the specter of legal enforcement as a motivator for AI developers.

Documentation thins

We now turn our attention to information from the model cards. We are interested in the effort and
resources devoted to documentation and transparency for models of different generations in the open
source ecosystem. One significant trend that we observe is that documentation thins. Markers of
bespoke effort aimed at supporting users, communicating methods, and demonstrating capabilities
seem to atrophy. Markers of leaner approaches and automation develop and multiply.

When we look at the state of model cards between parents and children in our family trees, we can
make a few straight-forward observations. Model cards exist at a very high rate for models that
belong to family trees. Missing model cards are far more frequent among models with no family
ties. Among models with family ties, the model card is almost always available, even if it is only a
few characters long. Among parent-child pairs with model cards, we observe that the length of these
cards drops by ≈ 5, 000 characters. The parent’s model card is roughly twice the size of the child’s
model card, on average. Even though the model cards get significantly shorter, we observe that they
more frequently contain the terms that suggest automatic card generation. About 30% of derivative
models contain the bigrams automatically generated or generated automatically. These
results, depicted in Figures 5d and 5e, suggest pressures toward lean documentation and automation
technologies that remove costs to document and explain models, their capabilities, their uses, and
other information typically contained in the model card.

Languages specialize and drift toward English.

Language traits are different in kind from other categorical features because an individual model can
be compatible with more than one language, meaning that partial mutations are possible. Consider a
case where model i finetunes to model j. Model i has language group (A,B,C) and j has language
group (B,C,D). We say that the overall mutation rate is the shared members of both groups divided
by the union of both groups (i.e., in this example, the mutation rate would be 1

2 ). Further, we log
distinct directional mutations from every dropped language to every child language, and from every

3When we refer to the categories of permissive, restrictive, commercial, and copyleft, we are using catego-
rizations from existing scholarship, including Longpre et al. [2024] in the context of data provenance and Choksi
and Grimmelmann [2024] in the context of open-source software.
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parent language to every added language. To continue our example, we’d log mutations from A to
B, C, and D and from A,B and C to D. These enable us to produce similar drift diagrams and
orderings to those produced for licenses. Our findings are summarized in Figures ?? and 5f.

The language traits show two trends: 1) specialization and 2) drift towards English. The first of
these trends, specialization, refers to the significant reduction in language compatibility from base
models to child models. Large base models supporting significant family trees tend to support many
languages, whereas derivative models tend to list compatibility with one or a handful of languages.
Therefore, we see a precipitous reduction in the language support between parents and finetuned
children.

The second observation we can make about language traits is that they drift overwhelmingly from
broad language support to English-language support. This drift suggests a considerable market
pressure towards English-speaking products and compatibilities. This drift is not entirely surprising
given Hugging Face is a United States-based company. However, an increasing number of Chinese
models are being developed and hosted and we do not observe a commensurate drift towards Chinese
compatibility.

Discussion

Limitations

Limitations to our findings include the fact that we only account for models that have logged fine-
tuning relationships on Hugging Face. Many models may be related without having these relationships.
For instance, models released with different numbers of paramaters are often each available as their
own base model, so we do not consider Qwen/Qwen1.5-0.5B and Qwen/Qwen1.5-1.8B to be
members of the same family. Though we use metadata and model card snippets as metaphors for
DNA, there are other sources of semantic information we do not access. Future work may analyze
model repositories’ config.JSON files to extract architectural parameters, such as vocabulary size
(inferring the training dataset size and costs), attention heads, and hidden dimensions, to reveal further
attributes of models and trace how structural traits evolve across the ecosystem. Text from code
repositories and even the model weights themselves could contain additional low-level semantic
encodings of model properties and internals. Finally, the timescale of this analysis is limited to the
lifespan of the Hugging Face platform. However, since open models predate Hugging Face, future
work could extend this analysis by incorporating historical data from earlier model repositories and
academic publications to capture the complete evolutionary trajectory of open source ML.

Changes to the Hub interface (e.g., available fields and auto-generated documentation) influence
what developers record about their models. For instance, the CreatedAt field was introduced in
March 2022, and all preexisting models were backfilled with that launch date — potentially inflating
apparent genetic similarity among otherwise unrelated models. Although our analysis is based on a
fixed snapshot, many traits are time-dependent and may require longitudinal data to fully capture
their evolution.

Structural complexity also arises from merges, which combine distinct lineages — essentially
“marrying families.” These merges resemble a form of sexual reproduction in contrast to the one-
to-one parent–child relationships we emphasize here. If merging behavior continues to grow, the
Hugging Face graph could approach a phase transition in which most models belong to a single giant
connected component. Further analysis is needed to understand the role and consequences of model
merges in this ecosystem.

Future work

This work opens several research trajectories. Future studies could extend the ecological framing to
processes such as niche formation, cooperation, and succession, helping explain how model families
grow, stabilize, or die out. Another direction is to investigate malignant behaviors in model lineages,
such as catastrophic inheritance Chen et al. [2024]—and to investigate whether these can be inferred
from higher-level properties of parent models, potentially offering a more resource-efficient alternative
to assessing model capabilities than bottom-up approaches Sharma et al. [2025]. Additionally, our
analysis focuses on open-source models, but closed ecosystems form a parallel sphere with growing
interaction that remains largely unmapped.
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A Further related work

This paper aims to measure and analyze the structure of AI fine-tuning and related adaptation and
transfer learning procedures. These relationships connect finetuned and remixed AI models to
their ‘parent’ model(s) whose weights, structures, and other elements might influence the child’s
development. The sources of inspiration for this work come from scholarship on social networks
and the web, multi-agent interactions and modeling AI development, and finally, approaches
from theoretical ecology and genetics. We cover relevant work from each of these categories in
turn.

Social Networks on the Web. This work takes a quantitative approach to networks of viral propaga-
tion over the web, evocative of literature on virality and social media Kossinets and Watts [2006],
Goel et al. [2012], Yang and Counts [2010] Goel et al. [2016] differentiate broadcast diffusion trees
from viral trees using a metric they term structural virality – this concept helped inspire our work
because we were surprised that fine-tuning trees are not exclusively broadcast graphs.Many have
considered the dependence of graph features on local network topology, including in the context of
attachment Ugander et al. [2012], link prediction Liben-Nowell and Kleinberg [2003], Leskovec
et al. [2010], feature prediction Grover and Leskovec [2016], Hamilton et al. [2017] and community
inference Gibson et al. [1998]. In contrast, our approach attempts to predict trait similarity and trait
transitions over a tree network. Though empirical work on Hugging Face is limited, some strides
have been made. Horwitz et al. [2025] calls for work mapping an ‘atlas’ of models on Hugging
Face, demonstrating that directed acyclic graphs representing model relationships can be drawn for
certain families and providing a dataset with 1.1 million models. Our work answers this call and
offers an expanded dataset. Castaño et al. [2024] analyze the growth over time and commit patterns
using the Hugging Face model hub, gathering a dataset of 380,000 models. Choksi et al. [2025]
explore chats and conversations among community members and contributors, evidence of vibrancy
and richness among contributing developers. Bommasani et al. [2023] coin ecosystem graphs as an
abstraction for understanding AI development, and analyze a preliminary set of 128 models that they
use to demonstrate the usefulness of ecosystems thinking for reasoning about social implications
and regulation of AI. Duan et al. tracks the frequency of copyleft license violations across model
derivatives using a dataset of around 15,000 models on Hugging Face. Rahman et al. [2025] use the
Hugging Face API to create a graph of information about models totaling 402,654 nodes.

Multi-agent interactions and modeling. Scholars have developed theoretical models and theories
of the multi-actor system surrounding the development of AI technologies. Laufer et al. [2024]
create a game-theoretic model to understand how ‘domain specialists’ and ‘generalists’ interact to
produce the technology. Others have developed depth-one tree structures as a model for understanding
AI diffusion Jagadeesan et al. [2024], Qiu et al. [2025], Dean et al. [2024], Laufer et al. [2025].
Hopkins et al. [2025] use directed acyclic graphs (DAGs) of arbitrary depth to allow supply chains
of interacting actors to understand the dynamics of AI supply chains. There is budding work on
decision-making along these networks Widder and Nafus [2023], Taitler and Ben-Porat [2025],
though much of it is theoretical. Further, we claim that perspectives on incentives, competition,
cooperation have tended to be organized by economic—rather than ecological—metaphors. Here, we
wish to go deeper with the ecological phenomenology of AI development and diffusion.

Theoretical Ecology and Genetics. This paper is inspired by perspectives of systems as complex
adaptive systems, characterized by emergent properties that arise from small-scale interactions
between components Levin [1998]. Sclocchi et al. [2024], taking a machine learning perspective,
understand model ‘phylogeny’ as a prediction problem, and show that models with larger normed
parameter vectors—weights and biases of greater magnitude—tend to be higher up in the family tree.
In a different genealogical approach to machine learning, Kalluri et al. [2025] draw links between
ML papers and downstream produce developments, focusing on surveillance applications.
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Governance implications for ML platforms

Our empirical findings highlight three governance challenges for ML platforms. First, as development
becomes more decentralized, platforms must track model dependencies, document performance
updates, and ensure backward compatibility, with emerging solutions including Model ChangeLists
Eyuboglu et al. [2024], analogous to Software Bills of Materials (SBOMs) Cyb [2025]. Second,
while few models release code, those that do often expose vulnerabilities such as leaked API keys and
credentials, underscoring the need for stronger review practices. Third, documentation standards like
Croissant, a metadata format for ML-ready datasets Akhtar et al. [2024] now required for NeurIPS,
could consolidate practices across platforms, though trade-offs remain between transparency and
developer burden.

B Technical appendices and supplementary material

B.1 Defining measures of genetic similarity

Here we provide additional details on how we measure genetic similarity between models, and we
report results across the range of measures we define.

Our Figure 2 shows one of six ways we measure genetic similarity between models. These six
methods align in the general trends and interpretations reported in the paper. Here we provide details
on all six.

The measures can be divided by two targets of similarity analysis—the metadata and model cards.
On each of these pieces of text, we implement three distinct measures. One measure—Levenshtein
distance—computes the total character-by-character difference. The other two—Bag-of-words
(BOW) and Term Frequency-Inverse Document Frequency (TF-IDF)—measure differences using the
set of n-grams in the text.

B.1.1 Formal definitions

Below we state the formal definitions of our various measures of genetic similarity. All take as input
a pair of strings s1, s2 and output a measure, between 0 and 1, of similarity between them.
Definition B.1 (Cosine similarity in term frequency). Given two strings (s1, s2) in a set of strings S,
we compute the cosine similarity in term frequency as follows. Over all strings in S, produce an
ordered list of the n most frequently appearing terms (unigrams or bigrams). Then, for any string
si ∈ S, define the vector vi ∈ Rn such that every value vi[k] is the number of times the kth term in
the list appears in si. The similarity is vivj

||vi||||vj || .

Definition B.2 (Cosine similarity in term frequency-inverse document frequency). Given two strings
(s1, s2) in a set of strings S, we compute the cosine similarity in TF-IDF as follows. Over all
strings in S, produce an ordered list of the n most frequently appearing terms (unigrams or bigrams).
Then, for any string si ∈ S, define the vector vi ∈ Rn such that every value vi[k] is the product of
the number of times the kth term appears in si (its term frequency) and the inverse of the fraction
of documents s ∈ S which contain the term (its inverse document frequency). The similarity is

vivj
||vi||||vj || .

Definition B.3 (Normalized Levenshtein Similarity). Given two strings (s1, s2), we define the nor-
malized Levenshtein distance (NLD) as the minimum number of character-wise insertions, deletions,
or substitutions to transform s1 into s2, divided by max(length(s1), length(s2)). The normalized
Levenshtein distance is 1− NLD.

The above definitions can be computed for a general set of strings, and we report results comparing
two sets of strings specifically: The metadata, which is highly structured and recorded for every model
on Hugging Face, and the model cards, which is unstructured, much more variable in length, and
missing for roughly a third of all models. In the body of the text, we report results on the metadata.

B.1.2 Why we prefer term frequency based similarity metrics to edit distances

We report the TF-IDF similarities in the body of the paper, and the other similarity metrics (which
match in qualitative conclusions) in the appendix. We do this for two reasons. First, we believe
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mutations over the metadata are more a function of differences in term-based tokens rather than
character-based tokens. The difference between the snippets ‘license: mit’ and ‘license:
gemma’ should not depend on how many letters ‘mit’ and ‘gemma’ share. Further, the use of traits
that happen to have long names does not correspond to a further genetic distance in a meaningful. For
instance, the tasks ‘reinforcement-learning’ and ‘fill-mask’ are not different because of the
number of character deletions they require; rather they are different because they are different terms.
Second, Levenshtein distance is significantly affected by the ordering of terms, such that the existance
of a long tag somewhere in the middle of the string could skew the distance measure. We believe
these attributes are much more a function of whether their semantic markers appear in the metadata,
and less a function of their ordering in the metadata. This is why we prefer term frequency based
measures. Finally, we choose to report the measures normalized by inverse-document frequency
because it is a norm in the field, but generally we note that our qualitative insights and interpretations
are consistent across the proposed measures.

Figure 6: Bag of Words Cosine Similarity, Metadata.

Figure 7: Levenshtein distance based similarity measure on the model metadata.

Figure 8: TF-IDF Cosine Similarity, Model Cards.

B.1.3 Defining the mutation rate

In the paper, we attempt to measure the mutation rate over model traits. Depending on how various
traits are logged in the metadata JSON, Hugging Face sometimes allows one model to list multiple
traits in the same category. For other traits, however, a model can only have one categorical value.
For example, models can be compatible with multiple languages, because languages are logged in the
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Figure 9: Bag of Words Cosine Similarity, Model Cards.

Figure 10: Levenshtein distance based similarity measure using the model cards. We have reason
to believe this is the least reliable measure, as model cards are free text and Levenshtein distance
relies heavily on text ordering, making it more suitable for structured strings. Directional patterns
nonetheless resemble the findings using other metrics.

metadata as tags. Models can only have one task (or ‘pipeline_tag’), however. Here we provide a
definition for the mutation rate over a category of traits. This is the definition used in all cases where
mutation rate is reported in the paper. It is compatible with both types of traits listed below (those for
which models can have multiple values, and those for which models can have only one value).

Definition B.4 (Mutation rate over traits T). Given a set of categorical traits T . Every model i in our
graph has a group of individual elements denoted ti = {a, b, ...} ∈ T . Then the mutation rate over
any directed edge (i, j) is given by m(i, j) = 1− ti∩tj

ti∪tj
. The mutation rate over the set T is equal to∑

edges (i,j) m(i,j)

Nedges
.

Notice that, in cases where every model must have a single categorical value in the set of traits
(equivalently, ti has cardinality one ∀i), the mutation rate on any edge is 0 if the parent and child
have the same trait, and 1 if the parent and child have different traits.

B.2 Data collection and summary statistics

Here we provide some additional information on the dataset and general exploratory data analysis
conducted.

B.2.1 How we collected the data

We collected the data for our dataset in two stages. In the first stage, we used the Hugging Face
‘model’ API to collect the model features and relationships—that is, all pieces of information in our
dataset aside from the model cards. Hugging Face provides API access to individual lists of models,
but these lists are capped to only list 1000 models. Using pagination, we were able to iterate over all
such lists of models to collect the information in our dataset in JSON format. In the second stage,
we collected the full text of every model’s model card through individual, per-model API calls to
the model cards API. These cards were significantly more data-intensive—since model cards can be
quite large and many more API calls were required to find all 1.86 million models in the dataset. In
total, our full dataset uses memory on the order of 10GB (depending on the file format used), and the
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Figure 11: Top ten most frequent licenses, tasks, languages, and libraries (top row). Top ten models
ranked by number of children, datasets, arXiv categories of linked papers, and downloaded models
(bottom row).

dataset without model cards uses significantly lower memory, at around 500MB. All calls to the API
were conducted through the authors’ registered accounts on Hugging Face, and in consultation with
employees at Hugging Face, including Hugging Face’s in-house librarian.

B.2.2 Properties and summary statistics

Our dataset centers around snippets of text for every model known as the model’s metadata. Model
metadata comes in JSON format, and this JSON is made readily available for any model through
Hugging Face’s API. These JSONs include the model_id (a unique identifier for each model
containing its author and name), likes, trendingScore (a trait defined by Hugging Face for ranking
models on their website), downloads, pipeline_tag (also known as task—a categorization of
models into e.g., feature-extraction, text-generation, image-classification, and other
modalities), library_name (the Hugging Face library used to support development), createdAt
(the date and time that the model was created4), and tags. Tags contain a structured list of strings,
some with organized prefixes. For example, tags beginning with base_model:finetune: link a
finetuned model to its parent’s model id, tags beginning with license: contain the model’s license,
and those beginning with arxiv: contain links to the arXiv identifiers of accompanying papers.
Other tags do not have these prefixes, but their meaning can still be inferred. For example, languages
are listed using two- or three-letter ISO-639 codes.

A summary of the distributions of the various metadata traits is provided in Figure 11. These
distributions convey the relative frequencies of different traits, as well as the absolute number
of papers with these documented traits. Here, we provide some findings these figures convey
about the state of the open source ecosystem on Hugging Face, reading from left to right and
top to bottom through the figure. A few trends emerge from these summary statistics and rates.
First, permissive licenses—especially apache-2.0 and mit are dominant, constituting over 60%
of all reported licenses. Text-based tasks—and especially text-generation—are most common.
English is by far the dominant language compatibility on Hugging Face, with over 75% of models
that document any language compatibility marking english as a supported language. Chinese is
the second most-common at 4.4%. transformers is the most common Hugging Face library.
black-forest-labs/FLUX.1-dev is the model that has the most children. imagefolder is the

4Tracking of the createdAt date and time began March 2, 2022. According to the Hugging Face documen-
tation, and corroborated by our findings, all models created before that date are back-filled with that date; the
date is accurate for all models uploaded thereafter.
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most commonly recorded dataset in metadata. Machine Learning and Computers and Society
codes are the most common among linked arXiv papers. Finally, in the lower right figure, we show
the most downloaded models, finding that the model Falconsai/nsfw_image_detection is the
most downloaded. This model’s purpose is to detect and identify explicit imagery and is perhaps used
for content moderation and compliance.

A remarkable amount of information is conveyed in text snippets that Hugging Face stores for every
model. Throughout the paper, we treat the snippets of text provided by the metadata JSON as
the models DNA, as it contains rich information about traits and allows us to track changes and
differences over generations (illustrated in Figure 1c). Before embarking on this genetic analysis, we
discuss one additional source of genetic information: the model cards.

Model cards are documents that carry information about the use, performance, compatibilities, risks,
impacts, and many other pieces of information about models Mitchell et al. [2019]. Model cards are
the main form of documentation for models on the hub, and they constitute much of the information
that populates on any given model’s associated webpage. Model cards can be considerably longer
than metadata, and much less structured. They can therefore contain more information, however,
not all models have corresponding model cards, and they are considerably less standardized and
organized. According to our data, 67.04% of models currently have an associated model card. An
analysis of the 1,247,149 cards available reveals an average model card length of 3575.60 characters
(≈ 436.06 words), with a median of 2073.0 characters (≈ 238.0 words). This wide range, from a
minimum of 11 characters to a maximum of 18,289,454 characters (≈ 2,813,762 words), indicates
that a small number of extremely verbose cards significantly influence the average.

B.2.3 Linking papers from arXiv

To investigate the research inspiring models on the Hub, we extracted all linked papers from model
metadata. For available arXiv IDs, we queried the arXiv API to retrieve the corresponding titles,
abstracts, and subject classifications, allowing us to systematically categorize the papers by domain.

arXiv subject classification IDs (like cs.AI, cs.CL) are extracted from the categories column in the
full JSON dataset, maps them to readable subject names using a predefined dictionary, and counts
the frequency of each subject across all models. The process handles both single categories and
lists of categories per model, flattening all categories into a single list before counting occurrences,
where models with multiple arXiv categories contribute to the count of each individual category
(e.g., a model with [‘cs.AI,’ ‘cs.CL’] adds +1 to both “Computer Science, Artificial Intelligence” and
“Computer Science, Computation and Language”). The top 20 most frequent research domains are
then visualized in Figure 11.

B.2.4 Documentation availability

We analyze model availability and observe low adoption of Hugging Face complimentary tools
Goldin and Katz [1996]. Only 5.96% of the models are endpoint-compatible or accessible via the
Hugging Face API without local hosting. Furthermore, 6.6% of the models released with weights
use the safetensor file format—the default model weight format developed by Hugging Face in
2022 Face [2022].5 Additionally, 23.69% of the models use automated training via Hugging Face
Spaces—containerized web deployment environments. Although only a small subset of Hugging
Face models have self-assigned DOIs, they are downloaded 29× more than those without. Possible
explanations include DOIs make models more visible and trustworthy, and people tend to choose
models that are already popular and well-documented.

B.3 Further information on sampling subtree topologies

Here we provide a more complete table as an addendum to Table 4. For each shape of subgraph, we
implemented a specific sampling method to get a representative sample of models. The sampling
method is summarized in Table 1.

5Although the format was developed in 2022, it became the default (as a zero-copy alternative to pickle) in
2023 Yoshimura et al. [2025].
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Subgraph Occurrences Sampling condition Multiplicity|condition

3,470,193,356,870 Two arbitrary nodes. 1

191,072 Single edge (u, v). 1

119,795,843 Node u with more than one
successor.

(
nsucc(u)

2

)
40,922 Edge (u, v) where v has successors. nsucc(v)

193,010,561,824 Node u with more than two
successors.

(
nsucc(u)

3

)
11,847,103 Edge (u, v) where v has more than

one successor.
(
nsucc(v)

2

)
19,932,645 Edge (u, v) where u has multiple

successors and v has successors. nsucc(v)(nsucc(u)− 1)

10,965 Edge (u, v) where u has a
predecessor and v has successors. nsucc(v)

Table 1: Subgraph patterns, their total occurrences, sampling conditions, and associated multiplicities
conditioned on each pattern. nsucc(u) refers to the number of successors (or, equivalently, the out-
degree) of node u.

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claims are summarized in the abstract and introductory paragraphs.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We detail our methodology in the paper and explicitly discuss the limitations
of our approach in the discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We describe our sampling strategies and define different notions of similarity
in the body of our work 1c in our appendix 1.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We make both the dataset and the accompanying code publicly available, and
we provide detailed documentation of our collection and analysis procedures within the
paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide links to our code on GitHub and to the datasets on Hugging Face,
released under a CC-BY-4.0 license, with detailed documentation of our procedures in the
paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA] .

Justification: [NA] .

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Upon review of the NeurIPS Code of Ethics, we affirm that our research
adheres to its guidelines to the best of our knowledge and ability.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our analysis of 1.86M Hugging Face models provides transparency into open-
source AI development and governance patterns. Our findings reveal concerning trends:
license drift, declining multilingual support, privacy vulnerabilities, and risks of misuse for
surveillance or disinformation. By releasing this dataset to the research community, we
aim to support empirical ML research while highlighting these challenges in large-scale
open-source AI ecosystems.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We release only metadata and aggregate properties of models (e.g., licensing
information, documentation statistics, language support), not the actual model weights
or training data. Our dataset consists entirely of summary statistics and derived features
extracted from information already publicly available on Hugging Face, a vetted platform
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with established safety protocols. We provide comprehensive documentation and this paper
to help researchers navigate the dataset responsibly. This approach enables transparency
research while avoiding distribution of potentially harmful content.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We list all external assets used and respect their licenses and terms of use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide links to the corresponding data and code repositories alongside
this paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM do not impact the core methodology in this work and were used for for
writing, editing, or formatting purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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