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Abstract

While general-purpose large language models
(LLMs) demonstrate broad capabilities, effec-
tive domain knowledge adaptation requires spe-
cialized training through continual pre-training
(CPT). A key factor in knowledge injection dur-
ing CPT is exposure times—how often a model
encounters specific knowledge. This paper
presents the first systematic study of the scal-
ing relationship between exposure and injec-
tion effectiveness. Using synthesized fictitious
and real-world datasets, we train models from
0.5B to 7B parameters. Results show that in-
jection follows a log-sigmoid trajectory across
exposures, with consistent learning phases re-
gardless of model size or knowledge type. We
find that required exposure scales with model
size following a power law, enabling predic-
tions from small-scale experiments. Notably,
relation type—not prior knowledge—primarily
determines saturation. We also propose a data
synthesis pipeline for more realistic, control-
lable training setups. These findings reveal pre-
dictable scaling behaviors in CPT, offering im-
plications for developing domain-specific lan-
guage models efficiently.

1 Introduction

In recent years, general large language models
(LLMs) have shown remarkable capabilities (Liu
et al., 2024a; Yang et al., 2024; Dubey et al.,
2024), but domain-specific scenarios—such as fi-
nance, law, or culturally nuanced contexts—require
specialized “expert” models rather than broad
generalists (Ling et al., 2023). This shift in-
volves trading some generality for superior do-
main performance. Due to the high cost of train-
ing from scratch, adapting existing models via
continual training—including further pre-training,
fine-tuning, and preference alignment—is the most
practical approach (Shi et al., 2024). A key part
of this process is enhancing domain knowledge
through continual pre-training on specialized cor-

pora, which lays the foundation for downstream
task adaptation (Song et al., 2025; Wu et al., 2023;
Gururangan et al., 2020; Huang et al., 2024; Bari
et al., 2025; Liang et al., 2024). As this phase is
computationally intensive, understanding its scal-
ing laws offers valuable insights for optimizing
training efficiency (Song et al., 2025).

Recent studies on CPT scaling laws have primar-
ily focused on macroscopic optimization strategies.
For instance, the D-CPT Law (Que et al., 2024)
models domain loss reduction as a function of to-
ken quantity and domain data proportion, while the
CMR Scaling Law (Gu et al., 2024) identifies criti-
cal mixture ratios that balance general and domain-
specific capabilities. Foundational work has also
established that sufficient exposure' —defined as
the number of times a model encounters a specific
piece of knowledge during training—is crucial for
effective knowledge retention (Allen-Zhu and Li,
2023; Lu et al., 2024; Allen-Zhu and Li, 2024a;
Chang et al., 2024). However, these scaling law
studies implicitly assume domain data homogene-
ity, neglecting a pivotal question:

What is the scaling relationship between the ex-
posure of knowledge during CPT and the learning
outcomes?

Both approaches equate increased token volume
with stronger knowledge reinforcement, but more
tokens do not necessarily result in better retention.
Furthermore, while they identify optimal domain
proportions, they do not address how knowledge
should be repeated within those proportions. In this
era where publicly available data is about to run out,
this oversight is particularly critical for domain-
specific data synthesis, especially as the scarcity
of domain-specific data becomes even more severe

'The concept of exposure differs from epoch. While an
epoch counts how many times the entire training corpus is
processed, exposure measures how often a specific piece of
knowledge is encountered, counting each distinct formulation

separately. In this work, all models are trained for a single
epoch.



Table 1: Comparison of Existing Scaling Laws. PT and CPT stand for pre-training from scratch and continual

pre-training, respectively.

Scaling Law Training Synthetic Analysis Over  Main Focus
Phase Data Exposure
D-CPT CPT No No Corpora Mixing Ratios
(Que et al., 2024)
CMR CPT No No Corpora Mixing Ratios
(Gu et al., 2024)
Cross-Lingual CPT CPT No No Compute-Optimal Allocation
(Zheng et al., 2024) in Cross-Lingual Transfer
Knowledge Capacity Scaling PT Yes No Knowledge Capacity
(Allen-Zhu and Li, 2024b)
Fact Memorization Scaling PT Yes No Knowledge Capacity
(Lu et al., 2024)
Ours CPT Yes Yes Required Knowledge Exposure

(Yang et al., 2025b,a; Abdin et al., 2024; Dubey
et al., 2024; Su et al., 2024; Muennighoff et al.,
2023; Liu et al., 2024b; Long et al., 2024). Unlike
naturally occurring data, synthetic corpora require
deliberate repetition patterns to balance knowledge
coverage and reinforcement efficiency—a task cur-
rently lacking theoretical guidance. This gap is es-
pecially consequential: without understanding how
knowledge injection efficacy scales with exposure
times, practitioners cannot preemptively design rep-
etition patterns, leading to inefficient trial-and-error
curation. Therefore, establishing scaling laws for
exposure times is crucial to connect macro-level
allocation strategies (e.g., CMR) with micro-level
knowledge reinforcement mechanisms.

To investigate the knowledge exposure scaling
law on different model scales, we designed training
data with precise control over the number of facts
and exposure times. We used two synthesis meth-
ods: one based on entirely fictitious biographical
knowledge following (Allen-Zhu and Li, 2023), en-
suring a controlled experimental environment, and
another based on authentic domain-specific knowl-
edge to better reflect real-world conditions where
models encounter partially known facts across di-
verse relations. Using these datasets, we conducted
continual pre-training experiments on four open-
source models ranging from 0.5B to 7B parameters.
Injection effectiveness was evaluated by measuring
the model’s ability to extract injected knowledge
through fine-tuning and testing on question-answer
pairs. Our key findings are as follows:

First, knowledge injection effectiveness follows
a log-sigmoid trajectory across exposures, with
consistent warmup, rapid learning, and saturation
phases across all models and datasets. Larger mod-
els exhibit steeper learning slopes and reach satura-

tion faster than smaller counterparts under equiva-
lent exposure conditions.

Second, the number of exposures required for a
given performance gain scales according to a power
law with model size, enabling accurate estimation
of exposure needs for large models via small-scale
experiments.

Third, the relation type is the primary determi-
nant of the exposure count needed for saturation,
rather than whether the knowledge was initially
familiar to the model.

Our core contributions can be summarized in the
following two aspects:

1) To the best of our knowledge, this work
presents the first systematic study of quantitative ex-
posure scaling laws for factual knowledge injection
in the CPT setting. Our findings reveal predictable
efficiency patterns (e.g., power-law scaling of ex-
posure needs with model size), enabling guidance
for optimized domain corpus synthesis.

2) We propose a data synthesis pipeline specif-
ically designed for real-world domain-specific
knowledge, enabling precise control over knowl-
edge volume and exposure count while better ap-
proximating practical training conditions.

2 Related Works

CPT Scaling Laws. Current research on scal-
ing laws in the CPT scenario primarily focuses
on determining the optimal mixing ratio between
general-purpose corpora and domain-specific cor-
pora. (Que et al., 2024) introduces the D-CPT and
Cross-Domain D-CPT Laws, which can predict the
general and downstream performance of arbitrary
mixture ratios. Similarly, (Gu et al., 2024) pro-
poses the CMR Scaling Law to balance general
and specialized capabilities. In cross-lingual CPT,



(Zheng et al., 2024) investigates resource allocation
for learning new languages.

Knowledge Injection Scaling Laws. Recent
work has explored the scaling laws of knowledge
injection during pretraining from scratch. Allen-
Zhu et al. (Allen-Zhu and Li, 2024b) found that,
under conditions of 1,000 exposures per knowl-
edge item with diverse formulations, the model’s
knowledge capacity is approximately 2 bits. While
their work provided many valuable insights, the
study did not delve deeply into the scaling laws
concerning the number of exposures. Similarly, Lu
etal. (Lu et al., 2024) investigated the scaling laws
of fact memorization in this setting and discovered
that the effectiveness of fact capacity linearly scales
with model size.

As summarized in Table 1, our work presents the
first and only scaling law analysis specifically tar-
geting knowledge exposure dynamics in continual
pre-training.

3 Preliminary and Background

3.1 Factual Knowledge and Factual
Knowledge Space

Factual knowledge refers to the collection of ob-
jective, verifiable information about the world, typ-
ically expressed in structured or semi-structured
forms. Formally, a piece of factual knowledge 7
can be represented as a triple 7 = (h, 7, t), where
h,t € & are the head and tail entities, respectively,
each representing a sequence of tokens that en-
codes specific semantic meaning, with £ denoting
the entity space, and r € R represents the relation
type drawn from the relation space R. Each triple
T captures a factual statement about the world.
For instance, the triple (Saudi Arabia, capital city,
Riyadh) expresses the factual statement “the capital
of Saudi Arabia is Riyadh.” 2

Building on this formal representation, a factual
knowledge space K is defined as the structured
collection of all factual knowledge, encompassing
all possible entities and relations expressible in
the form of triples, subject to a unique mapping
constraint from the combination of head entities
and relation types to tail entities. Formally,

K={(h,rt)| hte&reR} (1)

2Although different triplets may express the same fac-
tual knowledge—for example, (Saudi Arabia, capital, city of
Riyadh) could convey identical information—we assume for
simplicity that each triplet represents unique knowledge. This
assumption is practical since avoiding such overlaps during
data construction is not particularly difficult.

where the elements satisfy the unique mapping g :
(h,r) + t, ensuring the uniqueness of the tail
entity t for any given head entity h and relation r.

3.2 Assessment of Model’s Factual Knowledge
Proficiency

Although we can directly compute metrics that eval-
uate a model’s fit to the training data by leverag-
ing token probabilities obtained from next-token
prediction on the training corpus in CPT-trained
models , prior research has demonstrated that the
ability to memorize training data word-by-word
does not equate to the capacity for extracting and
utilizing the underlying knowledge (Allen-Zhu and
Li, 2023), which is the true focus of our interest
in building domain-specific models. Therefore, in
this study, we adopt the methodology proposed
by (Allen-Zhu and Li, 2023) to assess the model’s
knowledge mastery by evaluating its knowledge
extraction capabilities. Specifically, this evalua-
tion framework can be operationalized through the
following three steps:

Knowledge Partitioning. Let /C denote the set
of factual knowledge triples injected into the model,
where each triple is represented as 7 = (h,r,t).
The set K is partitioned into two disjoint subsets:
K = Kirain U est;  Kirain N Ciest = O where KCirain
contains half of the injected knowledge used for
fine-tuning, and Ces; contains the remaining half
used for evaluation.

Fine-Tuning on /C¢ajn.  After injection K
through CPT, the model is fine-tuned using
question-answer (QA) pairs derived from Kyin.
Specifically, for each 7 = (h,r,t) € Kiain, a
QA pair (q,a) is constructed such that: ¢ =
Query(h,r), a = t, where Query(h,r) repre-
sents a natural language query formulated from the
head entity A and relation r.

Evaluation on [Cet. The model’s ability to ac-
curately retrieve the remaining injected knowledge
is assessed using QA pairs derived from /Cieg. For
each T = (h,r,t) € Kst, @ QA pair (g,a) is
constructed the same way in fine-tuning. The ex-
traction based knowledge proficiency evaluation
metric Pg(K) is defined as the accuracy of the
model in predicting the correct answer a given the
query g:

1
| Kest]

Pg(K) > I(folg)=0a) @

T €L test

where fg(z) is the output of model 6 given in-
put x, I(+) is an indicator function that equals 1 if



the model’s prediction exactly matches the ground
truth answer, and 0 otherwise.

3.3 Domain Knowledge Datasets

Ficticious Knowledge. First, following the ap-
proach proposed by (Allen-Zhu and Li, 2023), We
generated 50,000 entirely fictitious biographical
knowledge about individuals, referred to as the
Biography Knowledge Set or the Fictitious Knowl-
edge Set ICr. This type of knowledge is guaranteed
to be unseen by the pre-trained model, allowing us
to establish an idealized experimental setting.

Realistic Knowledge. To explore knowledge
injection in a context closer to real-world condi-
tions, we also developed a data synthesis pipeline
to generate training data based on authentic domain-
specific knowledge. This pipeline was applied to
Wikipedia pages related to Middle East works>,
referred to as the Middle East Works Knowledge
Set or the Realistic Knowledge Set Cr. (For more
details, please refer to Section 5.)

3.4 Continual Pretraining Data Synthesis

Having obtained the knowledge set K = {7}, our
goal is to synthesize these triples into natural lan-
guage training data for continual pretraining, while
ensuring scalable exposure times for each piece of
factual knowledge. Previous studies (Allen-Zhu
and Li, 2023; Dubey et al., 2024) have highlighted
the crucial role of expression diversity in enhancing
training effectiveness, which presents a key chal-
lenge: generating large-scale, semantically natural,
and diverse expressions for each fact. To ensure
sufficient diversity of expressions across varying
exposure times, we adopt the methodology pro-
posed in (Ge et al., 2024), which leverages the rich
persona descriptions from Persona Hub to construct
sentence templates for data synthesis. For further
details, see Section 5 and Appendix D. Examples
of Synthesized data are shown in Figure 16.

4 Scaling Behavior of Knowledge
Injection in CPT with Varying
Exposure Times

To investigate the scaling law of knowledge in-
jection effectiveness with respect to exposure
times, we conducted continual pretraining on four

3Technically, we can select any realistic corpus containing
a large amount of factual knowledge. We chose the Middle
East Works dataset because its topic strikes a balance between
global popularity and regional specificity.

different-sized variants of the Qwen2.5 series mod-
els, ranging from 0.5B to 7B parameters, using
CPT data based on both Fictitious and Realistic
knowledge . We then evaluated the knowledge
extraction performance under various exposure
settings using the methodology described in Sec-
tion 3.2. Our results show that, across different
model sizes and knowledge types, the effectiveness
of knowledge extraction consistently follows a log-
sigmoid trend with respect to exposure time. In
Sections 4.1 and 4.2, we provide a formal defini-
tion of this scaling law and identify three distinct
phases in its progression. Further analysis in Sec-
tions 4.3 and 4.4 explores how this scaling behavior
correlates with model scale and dataset characteris-
tics.

4.1 Knowledge Extraction Performance: A
Log-Sigmoidal Scaling with Exposure
Times

As shown in Figure 1, our experiments reveal that
the model’s proficiency of knowledge exhibits a
log-sigmoid relationship with the number of expo-
sures to the knowledge:

a

PE(’Q”):/S‘FW

3)

where n represents the number of exposures to the
knowledge in knowledge space IC, k controls the
steepness of the curve, 5 denotes the minimum
extraction ability for IC, a determines the range
of the proficiency scaling and ng is the inflection
point, indicating the exposure times at which the
proficiency improves most rapidly. This pattern
holds consistently across both fictitious and realis-
tic datasets, suggesting that the observed learning
dynamics are generalizable and not tied to any spe-
cific data distribution.

4.2 The Three Phases of Knowledge Injection
in CPT

As shown in Figure 1, when ordered by the number
of exposures from low to high, the sigmoid curve
can be roughly divided into three distinct phases:
1) the warmup phase, 2) the rapid learning phase,
and 3) the saturation phase.

Formally, given a threshold ratio of the total gain
«, denoted by A 5 the warmup phase extends from

*We keep |KCr| = |Kr| = 50, 000 for all experiments and
analysis for simplicity, as shown in Figure 6, change the size
of knowledge does not affect the log-sigmoid trend.

>We set A = 0.05 for all results in this paper.
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Figure 1: The relationship between LLM knowledge extraction capability and exposure times during CPT: A
comparison of models across two datasets. Subfigures (a)-(d) show Middle-East-Works dataset results for 0.5B,
1.5B, 3B, and 7B parameter models, while (e)-(h) display Biography dataset experiments, both dataset contain
50, 000 knowledge. Background shading indicates learning phases: Warmup (blue), Rapid Learning (green), and
Saturation (pink). Curves show predicted capability (orange) with actual data points (blue), bounded by asymptotic
limits, fitted parameters are presented below the subfigures.

n = 0 to the point where performance reaches a
fraction A of the total gain .. That is,

Pg(K;inw) =8+ Aa 4
Solving for n,,, we obtain:
N\ Uk
Ny = No <1_)\> (5)

The rapid learning phase refers to the regime
in which performance increases sharply with addi-
tional exposures. It begins at n = n,, and ends at
n = ng, the point at which performance reaches
1 — X of the total gain:

Prp(Kins) =+ (1 —Na (6)
Solving for n,, we get:
11—\ 1/k
(5 o

Finally, the saturation phase begins at n
ns and continues as n — co. During this phase,
performance asymptotically approaches its upper

bound 3 + «, and further improvements become
increasingly marginal.

Warmup Phase. During the warmup phase, al-
though the training loss decreases steadily (see Fig-
ure 5), the model exhibits little to no improvement
in extracting new knowledge, indicating that initial
computational effort is spent on domain adaptation
rather than actual learning. This behavior mirrors
the “undo” effect observed by (Zheng et al., 2025)
in early stages of continual fine-tuning, where mod-
els first discard old patterns before adapting to new
tasks. These findings suggest that the warmup
phase serves as a critical realignment process, bal-
ancing plasticity and stability to prevent disruptive
interference with existing knowledge before mean-
ingful integration can occur.

Rapid Learning Phase. In the rapid learning
phase, the model’s mastery of the injected knowl-
edge increases most rapidly, exhibiting a log-linear
scaling behavior near n ng, despite only a
marginal decrease in training loss compared to the
warmup phase. This suggests that computational
resources are now primarily allocated to actual
knowledge acquisition, rather than domain adap-
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Figure 2: Power law scaling of required exposures
n, (M) with model size on two knowledge datasets.

tation. Combined with the observations from the
warmup phase, this indicates a clear transition in
the model’s learning dynamics: once the initial re-
alignment of representations is complete, the model
enters a regime of efficient knowledge integration,
where performance improves rapidly with addi-
tional exposure.

Saturation Phase. In the saturation phase, the
model’s knowledge extraction ability approaches
its maximum capacity, reflecting diminishing re-
turns as exposure increases further. This phase
highlights the natural limits of knowledge acqui-
sition under the current setup. Notably, for the
realistic knowledge set, smaller models such as
Qwen2.5-0.5B and Qwen2.5-1.5B reached satura-
tion before approaching near 100% extraction per-
formance, indicating a lower ceiling for knowledge
injection in smaller-scale models.

4.3 Exposure Requirements Scale with Model
Size via a Power Law

Critical Exposure Requirements. The three criti-
cal values ny,, ng, ns in the log-sigmoid curve cor-
respond to key exposure requirements during the
knowledge injection process of models: specifi-
cally, n,, represents the minimum exposure count
required for initial adaptation, ng marks the expo-
sure level where maximum learning efficiency oc-
curs, and ng denotes the exposure quantity needed
to achieve performance saturation. These metrics
enable estimation of training costs for knowledge
injection and predictive modeling of achievable
performance under fixed computational budgets.
Importantly, these exposure requirements are not
constant across model sizes. Instead, we observe

that larger models typically require fewer expo-
sures to acquire the same knowledge compared to
smaller models. This suggests that increased model
capacity enhances the efficiency of knowledge ab-
sorption, reducing the amount of data or training
time needed to reach a given performance level.

Power-Law Scaling Between Exposure Re-
quirements and Model Size. As illustrated in
Figure 2, we observe that for specific knowledge
sets, these exposure requirements exhibit power-
law scaling with model size:

ny(M) = aM® + ¢ (8)

Where M denotes the number of model parame-
ters, ny represent one of n,, ng or ng, a, b and
c are fitted constants. This empirical scaling law
reveals a predictable relationship between model
size and knowledge exposure demands. The exis-
tence of this scaling relationship enables practical
applications in resource planning and model de-
velopment. By measuring exposure requirements
on small-scale models, one can extrapolate the ex-
pected training costs and performance limits for
much larger models. This allows for more informed
decision-making in computational investment, sup-
porting efficient prototyping, budget allocation, and
predictive modeling of training dynamics.

4.4 Acquiring Realistic Knowledge Is More
Challenging Than Fictitious Knowledge

Higher Complexity in Realistic Knowledge. Al-
though one might expect synthetic, unseen knowl-
edge to be harder for models to learn, Figures 1 and
Figure 2 clearly demonstrate that realistic knowl-
edge requires significantly more exposure to ac-
quire compared to fictitious knowledge even when
both contain the same amount of factual knowledge.
This discrepancy suggests a deeper distinction be-
tween the two types of knowledge beyond mere
authenticity: diversity. The fictitious dataset con-
tains only six unique relations, all of which share
a common head entity (“name”). In contrast, the
realistic dataset includes 19 distinct relations and
does not impose such structural uniformity. These
differences in relation diversity and structure likely
contribute to the increased difficulty in learning
realistic knowledge.

Knowledge Diversity Has a Greater Impact
Than Familiarity in CPT Knowledge Injection.
Figure 3 examines how model parameters vary
across different relations within each dataset for the



3500

1.0 = - Nw
a+B 3000 No
0.8 B Ns
2500+
0.6
o 2000
3 =]
[} ©
> > 1500
0.4
1000
0.2 0
500 -
: ? Lt -
— =
0.0 0 =
Realistic Fictitious Realistic Fictitious

(a)

Figure 3: (a) Distribution of baseline (/3) and saturated
performance levels (5 + «) across different relations
under Realistic and Fictitious Knowledge. (b) Distribu-
tion of n, across different relations under Realistic and
Fictitious Knowledge.

Qwen2.5-3B model. As shown in Figure 3 (a), the
baseline performance exhibits significantly higher
variance on the realistic dataset than on the ficti-
tious one. Since S reflects the model’s knowledge
extraction capability before injection, this suggests
that certain relations in the realistic dataset are in-
herently more familiar to the pre-trained model,
leading to varied performance. This is expected, as
modern LLMs are typically pretrained on corpora
such as Wikipedia, which contain real-world fac-
tual knowledge. In contrast, the fictitious dataset
shows little variation, as all knowledge is novel.
However, this familiarity does not translate into
faster learning, contrary to intuition. As seen in
Figure 3 (b), learning realistic knowledge requires
significantly more exposures than learning unseen,
fictitious knowledge. This suggests that the diver-
sity of knowledge has a greater impact on CPT
knowledge injection than its familiarity with the
pre-trained model.

Saturation Exposure Varies by Relation Type,
but Warmup Exposure Is Robust. As illus-
trated in Figure 3 (b), the variance of n, (including
N, N0, Ng) follows a similar trend across relation
types. The high variance in the realistic dataset
indicates that the amount of exposure required for
effective learning varies significantly depending
on the specific relation being acquired. In particu-
lar, the substantial differences in n;, the saturation
point, suggest that the relation type strongly influ-
ences how quickly the model can fully internalize

new knowledge. In contrast, the relatively small
variance in n,,, which corresponds to the exposures
needed during the warmup phase, implies that ini-
tial adaptation is less affected by the specific char-
acteristics of each relation. This observation, to-
gether with the trend shown in Figure 1, where n,,
remains nearly constant across model sizes for ficti-
tious knowledge but decreases notably for realistic
knowledge as model size increases, suggests that
n,, 18 largely determined by the model’s general
real-world knowledge capacity—which improves
with scale and is more closely tied to the realistic
dataset. Together, these findings indicate that while
saturation exposure is highly dependent on relation
type, the early phase of adaptation remains rela-
tively consistent across different kinds of knowl-
edge. See Figure 7 and Figure 8 for relation-wise
results.

5 Realistic Domain Knowledge
Extraction and Data Synthesis

Conducting scaling law research on CPT knowl-
edge injection requires obtaining realistic training
data with precise control over both the quantity of
knowledge and its exposure times. To tackle this
challenge, as illustrated in Figure 4, we developed
a framework for data synthesis based on domain-
specific corpora. This framework consists of two
main steps: a) extraction of factual knowledge from
the corpus, and b) synthesis of training data based
on the extracted factual knowledge. Section 5.1
details the multi-stage pipeline for extracting high-
quality factual knowledge triples from raw corpora
by LLMs. Section 5.2 describes the method for
synthesizing training data with precisely controlled
exposure times using these knowledge triples.

5.1 High-Quality Factual Knowledge
Extraction

Defining High-Quality Knowledge Triplets. To
support scaling law training and evaluation, we de-
fine high-quality factual knowledge triplets based
on three criteria: (1) the tail entity must be uniquely
inferable from the head and relation; (2) both en-
tities and relations must be clearly and precisely
expressed; and (3) the triplet should carry domain-
relevant information. We observe that LLMs often
extract low-quality triples from open-domain cor-
pora lacking predefined relation scopes—such as
(“Mike”, “travels to”, “New York™) or (“Arabic
Sands”, “is a”, “book™).
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A Multi-Stage Extraction Pipeline. To address
this, we designed a four-stage prompting pipeline
(see Figure 9) for extracting and refining high-
quality triples from Wikipedia. The process begins
with Prompt A for initial extraction, followed by
Prompt B to remove invalid or implausible triples.
Then, Prompt C classifies and standardizes rela-
tions into a unified schema, resolving linguistic
variations (e.g., “author” vs. ‘“was written by”).
Finally, Prompt D re-extracts triples using the re-
fined relation set R = {r} to improve the qual-
ity of triples. This multi-stage approach yields a
clean, consistent dataset for downstream tasks. Full
prompts and implementation details are provided
in Appendix D.

5.2 Knowledge based Training Data Synthesis

Given structured knowledge triples Kr = {7Tr},
our goal is to synthesize them into natural language
training data for CPT, ensuring each fact is ex-
posed multiple times in diverse expressions. Prior
work highlights the importance of expression di-
versity for effective training. However, generat-
ing large-scale, semantically coherent variations
remains challenging. To address this, we adopt the
approach from (Ge et al., 2024), leveraging the ex-
tensive persona descriptions in Persona Hub to gen-
erate sentence templates tailored to each relation
type. This approach enhances linguistic diversity
while preserving semantic consistency.

Relation Specified Template Libraries. For
each relation » € R, we construct a prompt us-
ing persona descriptions. These prompts are then

processed by Qwen2.5-72B-Instruct to generate N
% unique natural language templates per relation,
forming the template library L,.. For instance, for
the relation “birth year”, example templates include

“name was born in year” and “name first appeared

in the world in year”. These templates enable di-
verse yet semantically meaningful expressions of
factual knowledge. Subsequently, for each triple
Tr = (h,r,t) € Kg, we apply all corresponding
templates in L, to generate the final sentences.

6 Conclusion

This study systematically establishes scaling laws
of exposures for domain knowledge injection in
CPT, identifying two core phenomena: (1) knowl-
edge injection performance follows a log-sigmoid
trajectory, and (2) the required exposure scales as
a power law with model capacity. These insights
provide practical guidance for predicting data syn-
thesis and resource needs in domain-specific train-
ing, enabling more efficient use of computational
resources. Our new data synthesis framework fur-
ther offers a flexible and robust tool for studying
knowledge injection in real-world settings. This
work thus provides both theoretical and practical
foundations for next-generation domain-specific
language models.

Limitation

Our study investigates the scaling behavior of fac-
tual knowledge injection corresponding to expo-
sures during CPT and introduces a data synthesis
pipeline; however, several limitations remain: 1)
Although we have made progress in creating more
realistic synthetic data, a gap still exists between
natural corpora and synthesized corpora, and mini-
mizing this gap presents an interesting and mean-
ingful avenue for future research; 2) Due to con-
straints on computational resources and the avail-
ability of pretrained models, our experiments were
limited to the Qwen2.5 series, and a broader ex-
ploration of scaling laws across different model
families is warranted in future work; 3) As this
work focuses solely on the efficacy of knowledge
injection, the issue of catastrophic forgetting in
CPT remains unexplored and should be addressed
in future studies.

®To avoid confusion with the concept of epochs, we set N
to the maximum number of exposure times used in our model
training across experiments.
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Figure 5: Training loss of CPT for models of 0.5B
(blue), 1.5B (red), 3B (purple), and 7B (green) parame-
ters

B Training Details

CPT Training Setup. We set the learning rate to
T7e — 6 for all experiments. For data with differ-
ent exposure times, we used different global batch
size values to ensure sufficient updates during the
training process, specifically, for n = 10, 50, and
100, we conducted separate training sessions with
a global batch of 32 instead of 96 used for larger
exposures. In our experiment, the average number
of tokens per data sample is 32, with the maximum
sequence length set to 2,048. When performing
data concatenation, we followed the approach used
in DeepSeek-V3 (Liu et al., 2024a) to ensure the
integrity of the content was preserved. More hyper-
parameters are shown in Table 2.

Supervised Fine-Tuning Setup. For the Fine-
tuning process described in Section 3.2, we em-
ployed a learning rate corresponding to 10% of
the original learning rate used in the CPT process,
maintaining a global batch size of 96 across all
experiments. Through systematic experimentation
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Table 2: The list of hyperparameters.

Hyperparameters Value
Warm-up Steps 0
Gradient Accumulation Steps 2

Max Sequence Length 2048
Learning Rate Te-6

Min Learning Rate Te-7
Learning Rate Scheduler cosine with min Ir

with varying epoch numbers, our results demon-
strated that the model achieved optimal QA per-
formance at 2 training epochs. This configuration
was therefore selected as the optimal training du-
ration, yielding peak performance metrics in our
evaluations.

C More Exposure Scaling Results of
Knowledge Injection in CPT

Here we present the exposure scaling results com-
paring different number facts in Figure 6, and dif-
ferent relation types in Figure 7 and Figure 8.
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Figure 6: The relationship between LLM knowledge
extraction capability and exposure times during CPT on
Qwen2.5-0.5B across knowledge sizes of 10,000 and
5,000.

D Details of Factual knowledge extraction
pipeline.

The factual knowledge extraction pipeline is shown
in Figure 9, and all the related prompts are shown
in Figure 10 to Figure 14.
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Figure 7: The relationship between LLM knowledge extraction capability and exposure times during CPT on
Qwen2.5-3B for different relations in realistic dataset.
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Figure 8: The relationship between LLM knowledge extraction capability and exposure times during CPT on
Qwen2.5-3B for different relations in fictitious dataset.
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Figure 9: Factual knowledge extraction pipeline. The process begins by extracting low-quality triples from
Wikipedia pages using Prompt A. These triples are filtered using Prompt B to remove invalid triples (red-highlighted
examples). The filtered triples are then categorized based on their relations using Prompt C, such as “author” (blue)
and “publication year” (green). Manual refinement unifies variations of the same relation within each category.
These refined relations are embedded into Prompt D to re-extract high-quality, standardized triples from the original
pages, ensuring structured and accurate factual knowledge construction.
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Prompt A: Low-Quality Triples Extraction

Extract factual knowledge triples from the text below. Follow these rules:
1. Only include static facts (e.g., dates, authorship, locations).

2. Format each triple as: -[Head Entity | Relationship | Tail Entity], which is equivalent to [Subject | Predicate | Object].
3. Extract at least 20 triples.

4. No explanations needed.
Text:

{text}

Output format:

-[Entity 1 | relationship 1 | Entity 2]
-[Entity 3 | relationship 2 | Entity 4]

Figure 10: Prompt for extracting low-quality triples from Wikipedia pages.
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Prompt B: Triples Filtering Prompt \

Analyze whether each extracted triple represents a **unique factual relationship** where the tail entity has no other
possible values for the given head entity and relationship. Follow these steps:

1. For each triple, check:

- If the tail entity **must be unique** (e.g., publication year, locations).
- Exclude ambiguous relationships (e.g., "crossed by", professions, "travels to", "moved to").
- Fix incorrect triples by swapping head/tail entities if logically inverted.

2. Examples:
**nvalid**

1. [Wilfred Thesiger | profession | explorer] -> Invalid. "profession" allows multiple values.
2. [Aziz Nesin | created character | Ziibiik] -> Invalid. Head/tail inversion because "Ziibiik" is not the only valid value
for the tail entity when head is "Aziz Nesin" and the relation is "created character".
- Correction: [Ziibiik | created by | Aziz Nesin], "Aziz Nesin" is the only valid value for the tail entity in this triple.
3. [The Image Book | Award | Special Palme d'Or] -> Invalid. The Image Book has won more than one award. "Special
Palme d'Or" could be replaced by others.
4. [Brush teeth | timeframe | 8:00 AM] -> Invalid. The entity "Brush teeth" is ambiguous without specifying who
performed the brushing.
5. [J.K. Rowling | wrote | Harry Potter] -> Invalid. Head/tail inversion because "Harry Potter" is not the only valid value
for the tail entity when the head is "J.K. Rowling" and the relation is "wrote".
- Correction: [Harry Potter | written by | J.K. Rowling], "J.K. Rowling" is the only valid value for the tail entity in this
triple.
6. [Mike | travels to | New York] -> Invalid. Mike may travels to other cities, not only "New York" can be the valid
value for the tail entity.

**Valid**

1. [Manwakh | located in | Yemen] -> Valid. "located in" is fixed.
2. [TCP/IP | publication year | 1974] -> Valid. "Publication years" are singular factual events.

3. Analyze each triple below:

Triples to validate:
{triples}

Output format:
Analysis:

1.[Triple 1] — [Valid/Invalid]. *[Brief reason]*.
- Correction: '[New Head | New Relation | New Tail]" (if applicable)
2[...]

The Valid/Corrected Triples:

-[Head | Relation | Tail]
L]

N J

Figure 11: Triples Filtering Prompt: Steps and examples for analyzing and verifying unique factual relations. In this
process, each triple is examined to determine whether the tail entity is unique for a given head entity and relation,
meaning that the tail entity cannot have alternative possible values.
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Prompt C: Triples Classification Prompt

You are a knowledge graph expert. I will provide you with some triples below. These triples involve many categories.
Please help me summarize how these triples can be categorized based on their relations. For each category, please output
a few of the triples I provided as examples. Place the categories with a higher proportion at the top.

Triples:
{triples}

Figure 12: Triples Classification Prompt: Summarize relation classes and provide examples.
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Prompt D: High-Quality Triples Extraction

Please extract triples in the form of (Entity1, Relation, Entity2) from the text provided below. Ensure that each "Relation"
is strictly selected from the predefined list of relations provided. If no matching relation can be found in the text based on
the predefined list, output "None'.

### Predefined Relations:
- **author**: Indicates that Entity2 is the author of Entityl.
- *Example*: ["Harry Potter", "author", "J.K. Rowling"]' means J.K. Rowling is the author of Harry Potter.
- **director**: Indicates that Entity?2 is the director of Entity1.
- *Example*: "["A", "director", "B"]" means B is the director of A.
- **creater**: Indicates that Entity?2 is the creater of Entity1.
- **birth date**: Represents the birth date of Entityl.
- *Example*: *["Mike", "birth date", "January 1, 1990"]*
- **birth year**: Represents the birth year of Entityl.
- *Example*: *["Mike", "birth year", "1990"]"

#i# Triple Extraction Examples
*HText*:

_**Willow and Wind** (Persian: Beed-o baad ) is a 2000 Iranian drama film directed by Mohammad-Ali Talebi and
written by Abbas Kiarostami.

## Cast

* Dariush Afshar as Soraya Esfandiari *Arman Naderi as Yasmin Khorrami

**Output**:
*"'json
{
"triples": [
["Willow and Wind", "director", "Mohammad-Ali Talebi"],
["Willow and Wind", "author", "Abbas Kiarostami"],
["Willow and Wind", "made in", "[ran"],
["Willow and Wind", "release year", "2000"],
]

}

### Text for Analysis:
***{content} "

Please return the results in JSON format as follows:
*'json

{

"triples": [
[Entity1, relation, Entity2],
[.]

1

!
s

If no triples can be extracted based on the predefined relations, please output:
json

{

"triples": null
| J

Figure 13: High-quality Triples Extraction and Classification: Extracting triples from text based on a predefined list
of 26 relation types (partially shown in the figure for brevity). Relations include: B.A. from, Ph.D. from, academic
advisor, author, birth city, birth country, birth date, birth year, creator, death date, death year, director, father’s name,
located in, made in, master’s degree from, mother’s name, nationality, portrayed by, publish year, publisher, release
by, release date, release year, total gross, wife’s name. Each extracted triple strictly adheres to this predefined
schema.
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Prompt E: Template Generation Prompt \

Assume you are the persona described below, and you are crafting a sentence in the persona's style to describe the
relationship between a person and the specific date of their birth.

Requirements:

1.placeholders such as {Head} and {Tail} should be used.
2.The output should be in English.

Persona:

an IT project manager who adopted extreme programming (XP) methodologies on his own team.
Output:

{Head} came into existence on the timeline of life on {Tail}, marking the starting point of their journey.

Persona:

A nature photographer who wants to showcase their stunning photographs with sustainable and unique frames
Output:

{Head} entered the world on the beautiful day of {Tail}, a moment that would inspire a lifetime of capturing nature's
splendor.

Persona:
{persona}

\_ Output: )

Figure 14: Template Generation Prompt: Generate sentences in the style of a specific person that can be filled with
head and tail entities (using the relation between a person and their birth date as an example). To ensure diversity in
the generated templates, allow the use of statements similar to the relation in the template for substitution.

Template Examples N

Persona: A paralyzed individual who hopes to regain some motor control through brain-computer interface therapy.
Template: {Head} was born on the significant date of {Tail}, initiating a life marked by resilience and the pursuit of
groundbreaking advancements in brain-computer interface therapy.

Persona: A blogger who writes in-depth reviews and reflections on each monthly read.
Template: {Head} embarked on their life's narrative on the page of time known as {Tail}, setting the stage for a lifetime
of turning the pages of countless stories.

. J

Figure 15: Template Example: Sentences describing entity relations in the style of a specific person (using the
relation between a person and their birth date as an example). Fill in the person’s name at Head and the birth date at
Tail.

Synthesis Data Examples N\

Data: Saul Bellow was born on the significant date of April 5, 2005, initiating a life marked by resilience and the pursuit
of groundbreaking advancements in brain-computer interface therapy.

Head: Saul Bellow

Relation: death date

Tail: April 5, 2005

Data: Bernard Lewis embarked on their life's narrative on the page of time known as May 19 2018, setting the stage for a
lifetime of turning the pages of countless stories.

Head: Bernard Lewis

Relation: death date

Tail: May 19, 2018

Figure 16: Synthetic Data Example. (using the relation between a person and their birth date as an example)
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