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Abstract

While general-purpose large language models001
(LLMs) demonstrate broad capabilities, effec-002
tive domain knowledge adaptation requires spe-003
cialized training through continual pre-training004
(CPT). A key factor in knowledge injection dur-005
ing CPT is exposure times—how often a model006
encounters specific knowledge. This paper007
presents the first systematic study of the scal-008
ing relationship between exposure and injec-009
tion effectiveness. Using synthesized fictitious010
and real-world datasets, we train models from011
0.5B to 7B parameters. Results show that in-012
jection follows a log-sigmoid trajectory across013
exposures, with consistent learning phases re-014
gardless of model size or knowledge type. We015
find that required exposure scales with model016
size following a power law, enabling predic-017
tions from small-scale experiments. Notably,018
relation type—not prior knowledge—primarily019
determines saturation. We also propose a data020
synthesis pipeline for more realistic, control-021
lable training setups. These findings reveal pre-022
dictable scaling behaviors in CPT, offering im-023
plications for developing domain-specific lan-024
guage models efficiently.025

1 Introduction026

In recent years, general large language models027

(LLMs) have shown remarkable capabilities (Liu028

et al., 2024a; Yang et al., 2024; Dubey et al.,029

2024), but domain-specific scenarios—such as fi-030

nance, law, or culturally nuanced contexts—require031

specialized “expert” models rather than broad032

generalists (Ling et al., 2023). This shift in-033

volves trading some generality for superior do-034

main performance. Due to the high cost of train-035

ing from scratch, adapting existing models via036

continual training—including further pre-training,037

fine-tuning, and preference alignment—is the most038

practical approach (Shi et al., 2024). A key part039

of this process is enhancing domain knowledge040

through continual pre-training on specialized cor-041

pora, which lays the foundation for downstream 042

task adaptation (Song et al., 2025; Wu et al., 2023; 043

Gururangan et al., 2020; Huang et al., 2024; Bari 044

et al., 2025; Liang et al., 2024). As this phase is 045

computationally intensive, understanding its scal- 046

ing laws offers valuable insights for optimizing 047

training efficiency (Song et al., 2025). 048

Recent studies on CPT scaling laws have primar- 049

ily focused on macroscopic optimization strategies. 050

For instance, the D-CPT Law (Que et al., 2024) 051

models domain loss reduction as a function of to- 052

ken quantity and domain data proportion, while the 053

CMR Scaling Law (Gu et al., 2024) identifies criti- 054

cal mixture ratios that balance general and domain- 055

specific capabilities. Foundational work has also 056

established that sufficient exposure1—defined as 057

the number of times a model encounters a specific 058

piece of knowledge during training—is crucial for 059

effective knowledge retention (Allen-Zhu and Li, 060

2023; Lu et al., 2024; Allen-Zhu and Li, 2024a; 061

Chang et al., 2024). However, these scaling law 062

studies implicitly assume domain data homogene- 063

ity, neglecting a pivotal question: 064

What is the scaling relationship between the ex- 065

posure of knowledge during CPT and the learning 066

outcomes? 067

Both approaches equate increased token volume 068

with stronger knowledge reinforcement, but more 069

tokens do not necessarily result in better retention. 070

Furthermore, while they identify optimal domain 071

proportions, they do not address how knowledge 072

should be repeated within those proportions. In this 073

era where publicly available data is about to run out, 074

this oversight is particularly critical for domain- 075

specific data synthesis, especially as the scarcity 076

of domain-specific data becomes even more severe 077

1The concept of exposure differs from epoch. While an
epoch counts how many times the entire training corpus is
processed, exposure measures how often a specific piece of
knowledge is encountered, counting each distinct formulation
separately. In this work, all models are trained for a single
epoch.
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Table 1: Comparison of Existing Scaling Laws. PT and CPT stand for pre-training from scratch and continual
pre-training, respectively.

Scaling Law Training
Phase

Synthetic
Data

Analysis Over
Exposure

Main Focus

D-CPT
(Que et al., 2024)

CPT No No Corpora Mixing Ratios

CMR
(Gu et al., 2024)

CPT No No Corpora Mixing Ratios

Cross-Lingual CPT
(Zheng et al., 2024)

CPT No No Compute-Optimal Allocation
in Cross-Lingual Transfer

Knowledge Capacity Scaling
(Allen-Zhu and Li, 2024b)

PT Yes No Knowledge Capacity

Fact Memorization Scaling
(Lu et al., 2024)

PT Yes No Knowledge Capacity

Ours CPT Yes Yes Required Knowledge Exposure

(Yang et al., 2025b,a; Abdin et al., 2024; Dubey078

et al., 2024; Su et al., 2024; Muennighoff et al.,079

2023; Liu et al., 2024b; Long et al., 2024). Unlike080

naturally occurring data, synthetic corpora require081

deliberate repetition patterns to balance knowledge082

coverage and reinforcement efficiency—a task cur-083

rently lacking theoretical guidance. This gap is es-084

pecially consequential: without understanding how085

knowledge injection efficacy scales with exposure086

times, practitioners cannot preemptively design rep-087

etition patterns, leading to inefficient trial-and-error088

curation. Therefore, establishing scaling laws for089

exposure times is crucial to connect macro-level090

allocation strategies (e.g., CMR) with micro-level091

knowledge reinforcement mechanisms.092

To investigate the knowledge exposure scaling093

law on different model scales, we designed training094

data with precise control over the number of facts095

and exposure times. We used two synthesis meth-096

ods: one based on entirely fictitious biographical097

knowledge following (Allen-Zhu and Li, 2023), en-098

suring a controlled experimental environment, and099

another based on authentic domain-specific knowl-100

edge to better reflect real-world conditions where101

models encounter partially known facts across di-102

verse relations. Using these datasets, we conducted103

continual pre-training experiments on four open-104

source models ranging from 0.5B to 7B parameters.105

Injection effectiveness was evaluated by measuring106

the model’s ability to extract injected knowledge107

through fine-tuning and testing on question-answer108

pairs. Our key findings are as follows:109

First, knowledge injection effectiveness follows110

a log-sigmoid trajectory across exposures, with111

consistent warmup, rapid learning, and saturation112

phases across all models and datasets. Larger mod-113

els exhibit steeper learning slopes and reach satura-114

tion faster than smaller counterparts under equiva- 115

lent exposure conditions. 116

Second, the number of exposures required for a 117

given performance gain scales according to a power 118

law with model size, enabling accurate estimation 119

of exposure needs for large models via small-scale 120

experiments. 121

Third, the relation type is the primary determi- 122

nant of the exposure count needed for saturation, 123

rather than whether the knowledge was initially 124

familiar to the model. 125

Our core contributions can be summarized in the 126

following two aspects: 127

1) To the best of our knowledge, this work 128

presents the first systematic study of quantitative ex- 129

posure scaling laws for factual knowledge injection 130

in the CPT setting. Our findings reveal predictable 131

efficiency patterns (e.g., power-law scaling of ex- 132

posure needs with model size), enabling guidance 133

for optimized domain corpus synthesis. 134

2) We propose a data synthesis pipeline specif- 135

ically designed for real-world domain-specific 136

knowledge, enabling precise control over knowl- 137

edge volume and exposure count while better ap- 138

proximating practical training conditions. 139

2 Related Works 140

CPT Scaling Laws. Current research on scal- 141

ing laws in the CPT scenario primarily focuses 142

on determining the optimal mixing ratio between 143

general-purpose corpora and domain-specific cor- 144

pora. (Que et al., 2024) introduces the D-CPT and 145

Cross-Domain D-CPT Laws, which can predict the 146

general and downstream performance of arbitrary 147

mixture ratios. Similarly, (Gu et al., 2024) pro- 148

poses the CMR Scaling Law to balance general 149

and specialized capabilities. In cross-lingual CPT, 150
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(Zheng et al., 2024) investigates resource allocation151

for learning new languages.152

Knowledge Injection Scaling Laws. Recent153

work has explored the scaling laws of knowledge154

injection during pretraining from scratch. Allen-155

Zhu et al. (Allen-Zhu and Li, 2024b) found that,156

under conditions of 1,000 exposures per knowl-157

edge item with diverse formulations, the model’s158

knowledge capacity is approximately 2 bits. While159

their work provided many valuable insights, the160

study did not delve deeply into the scaling laws161

concerning the number of exposures. Similarly, Lu162

et al. (Lu et al., 2024) investigated the scaling laws163

of fact memorization in this setting and discovered164

that the effectiveness of fact capacity linearly scales165

with model size.166

As summarized in Table 1, our work presents the167

first and only scaling law analysis specifically tar-168

geting knowledge exposure dynamics in continual169

pre-training.170

3 Preliminary and Background171

3.1 Factual Knowledge and Factual172

Knowledge Space173

Factual knowledge refers to the collection of ob-174

jective, verifiable information about the world, typ-175

ically expressed in structured or semi-structured176

forms. Formally, a piece of factual knowledge T177

can be represented as a triple T = (h, r, t), where178

h, t ∈ E are the head and tail entities, respectively,179

each representing a sequence of tokens that en-180

codes specific semantic meaning, with E denoting181

the entity space, and r ∈ R represents the relation182

type drawn from the relation space R. Each triple183

T captures a factual statement about the world.184

For instance, the triple (Saudi Arabia, capital city,185

Riyadh) expresses the factual statement “the capital186

of Saudi Arabia is Riyadh.” 2187

Building on this formal representation, a factual188

knowledge space K is defined as the structured189

collection of all factual knowledge, encompassing190

all possible entities and relations expressible in191

the form of triples, subject to a unique mapping192

constraint from the combination of head entities193

and relation types to tail entities. Formally,194

K = {(h, r, t) | h, t ∈ E , r ∈ R} (1)195

2Although different triplets may express the same fac-
tual knowledge—for example, (Saudi Arabia, capital, city of
Riyadh) could convey identical information—we assume for
simplicity that each triplet represents unique knowledge. This
assumption is practical since avoiding such overlaps during
data construction is not particularly difficult.

where the elements satisfy the unique mapping g : 196

(h, r) 7→ t, ensuring the uniqueness of the tail 197

entity t for any given head entity h and relation r. 198

3.2 Assessment of Model’s Factual Knowledge 199

Proficiency 200

Although we can directly compute metrics that eval- 201

uate a model’s fit to the training data by leverag- 202

ing token probabilities obtained from next-token 203

prediction on the training corpus in CPT-trained 204

models , prior research has demonstrated that the 205

ability to memorize training data word-by-word 206

does not equate to the capacity for extracting and 207

utilizing the underlying knowledge (Allen-Zhu and 208

Li, 2023), which is the true focus of our interest 209

in building domain-specific models. Therefore, in 210

this study, we adopt the methodology proposed 211

by (Allen-Zhu and Li, 2023) to assess the model’s 212

knowledge mastery by evaluating its knowledge 213

extraction capabilities. Specifically, this evalua- 214

tion framework can be operationalized through the 215

following three steps: 216

Knowledge Partitioning. Let K denote the set 217

of factual knowledge triples injected into the model, 218

where each triple is represented as T = (h, r, t). 219

The set K is partitioned into two disjoint subsets: 220

K = Ktrain∪Ktest, Ktrain∩Ktest = ∅ where Ktrain 221

contains half of the injected knowledge used for 222

fine-tuning, and Ktest contains the remaining half 223

used for evaluation. 224

Fine-Tuning on Ktrain. After injection K 225

through CPT, the model is fine-tuned using 226

question-answer (QA) pairs derived from Ktrain. 227

Specifically, for each T = (h, r, t) ∈ Ktrain, a 228

QA pair (q, a) is constructed such that: q = 229

Query(h, r), a = t, where Query(h, r) repre- 230

sents a natural language query formulated from the 231

head entity h and relation r. 232

Evaluation on Ktest. The model’s ability to ac- 233

curately retrieve the remaining injected knowledge 234

is assessed using QA pairs derived from Ktest. For 235

each T = (h, r, t) ∈ Ktest, a QA pair (q, a) is 236

constructed the same way in fine-tuning. The ex- 237

traction based knowledge proficiency evaluation 238

metric PE(K) is defined as the accuracy of the 239

model in predicting the correct answer a given the 240

query q: 241

PE(K) =
1

|Ktest|
∑

T ∈Ktest

I(fθ(q) = a) (2) 242

where fθ(x) is the output of model θ given in- 243

put x, I(·) is an indicator function that equals 1 if 244
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the model’s prediction exactly matches the ground245

truth answer, and 0 otherwise.246

3.3 Domain Knowledge Datasets247

Ficticious Knowledge. First, following the ap-248

proach proposed by (Allen-Zhu and Li, 2023), We249

generated 50,000 entirely fictitious biographical250

knowledge about individuals, referred to as the251

Biography Knowledge Set or the Fictitious Knowl-252

edge Set KF . This type of knowledge is guaranteed253

to be unseen by the pre-trained model, allowing us254

to establish an idealized experimental setting.255

Realistic Knowledge. To explore knowledge256

injection in a context closer to real-world condi-257

tions, we also developed a data synthesis pipeline258

to generate training data based on authentic domain-259

specific knowledge. This pipeline was applied to260

Wikipedia pages related to Middle East works3,261

referred to as the Middle East Works Knowledge262

Set or the Realistic Knowledge Set KR. (For more263

details, please refer to Section 5.)264

3.4 Continual Pretraining Data Synthesis265

Having obtained the knowledge set K = {T }, our266

goal is to synthesize these triples into natural lan-267

guage training data for continual pretraining, while268

ensuring scalable exposure times for each piece of269

factual knowledge. Previous studies (Allen-Zhu270

and Li, 2023; Dubey et al., 2024) have highlighted271

the crucial role of expression diversity in enhancing272

training effectiveness, which presents a key chal-273

lenge: generating large-scale, semantically natural,274

and diverse expressions for each fact. To ensure275

sufficient diversity of expressions across varying276

exposure times, we adopt the methodology pro-277

posed in (Ge et al., 2024), which leverages the rich278

persona descriptions from Persona Hub to construct279

sentence templates for data synthesis. For further280

details, see Section 5 and Appendix D. Examples281

of Synthesized data are shown in Figure 16.282

4 Scaling Behavior of Knowledge283

Injection in CPT with Varying284

Exposure Times285

To investigate the scaling law of knowledge in-286

jection effectiveness with respect to exposure287

times, we conducted continual pretraining on four288

3Technically, we can select any realistic corpus containing
a large amount of factual knowledge. We chose the Middle
East Works dataset because its topic strikes a balance between
global popularity and regional specificity.

different-sized variants of the Qwen2.5 series mod- 289

els, ranging from 0.5B to 7B parameters, using 290

CPT data based on both Fictitious and Realistic 291

knowledge 4. We then evaluated the knowledge 292

extraction performance under various exposure 293

settings using the methodology described in Sec- 294

tion 3.2. Our results show that, across different 295

model sizes and knowledge types, the effectiveness 296

of knowledge extraction consistently follows a log- 297

sigmoid trend with respect to exposure time. In 298

Sections 4.1 and 4.2, we provide a formal defini- 299

tion of this scaling law and identify three distinct 300

phases in its progression. Further analysis in Sec- 301

tions 4.3 and 4.4 explores how this scaling behavior 302

correlates with model scale and dataset characteris- 303

tics. 304

4.1 Knowledge Extraction Performance: A 305

Log-Sigmoidal Scaling with Exposure 306

Times 307

As shown in Figure 1, our experiments reveal that 308

the model’s proficiency of knowledge exhibits a 309

log-sigmoid relationship with the number of expo- 310

sures to the knowledge: 311

PE(K;n) = β +
α

(1 + (n0
n )k)

(3) 312

where n represents the number of exposures to the 313

knowledge in knowledge space K, k controls the 314

steepness of the curve, β denotes the minimum 315

extraction ability for K, α determines the range 316

of the proficiency scaling and n0 is the inflection 317

point, indicating the exposure times at which the 318

proficiency improves most rapidly. This pattern 319

holds consistently across both fictitious and realis- 320

tic datasets, suggesting that the observed learning 321

dynamics are generalizable and not tied to any spe- 322

cific data distribution. 323

4.2 The Three Phases of Knowledge Injection 324

in CPT 325

As shown in Figure 1, when ordered by the number 326

of exposures from low to high, the sigmoid curve 327

can be roughly divided into three distinct phases: 328

1) the warmup phase, 2) the rapid learning phase, 329

and 3) the saturation phase. 330

Formally, given a threshold ratio of the total gain 331

α, denoted by λ 5, the warmup phase extends from 332

4We keep |KF | = |KR| = 50, 000 for all experiments and
analysis for simplicity, as shown in Figure 6, change the size
of knowledge does not affect the log-sigmoid trend.

5We set λ = 0.05 for all results in this paper.
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Figure 1: The relationship between LLM knowledge extraction capability and exposure times during CPT: A
comparison of models across two datasets. Subfigures (a)-(d) show Middle-East-Works dataset results for 0.5B,
1.5B, 3B, and 7B parameter models, while (e)-(h) display Biography dataset experiments, both dataset contain
50, 000 knowledge. Background shading indicates learning phases: Warmup (blue), Rapid Learning (green), and
Saturation (pink). Curves show predicted capability (orange) with actual data points (blue), bounded by asymptotic
limits, fitted parameters are presented below the subfigures.

n = 0 to the point where performance reaches a333

fraction λ of the total gain α. That is,334

PE(K;nw) = β + λα (4)335

Solving for nw, we obtain:336

nw = n0

(
λ

1− λ

)1/k

(5)337

The rapid learning phase refers to the regime338

in which performance increases sharply with addi-339

tional exposures. It begins at n = nw and ends at340

n = ns, the point at which performance reaches341

1− λ of the total gain:342

PE(K;ns) = β + (1− λ)α (6)343

Solving for ns, we get:344

ns = n0

(
1− λ

λ

)1/k

(7)345

Finally, the saturation phase begins at n =346

ns and continues as n → ∞. During this phase,347

performance asymptotically approaches its upper348

bound β + α, and further improvements become 349

increasingly marginal. 350

Warmup Phase. During the warmup phase, al- 351

though the training loss decreases steadily (see Fig- 352

ure 5), the model exhibits little to no improvement 353

in extracting new knowledge, indicating that initial 354

computational effort is spent on domain adaptation 355

rather than actual learning. This behavior mirrors 356

the “undo” effect observed by (Zheng et al., 2025) 357

in early stages of continual fine-tuning, where mod- 358

els first discard old patterns before adapting to new 359

tasks. These findings suggest that the warmup 360

phase serves as a critical realignment process, bal- 361

ancing plasticity and stability to prevent disruptive 362

interference with existing knowledge before mean- 363

ingful integration can occur. 364

Rapid Learning Phase. In the rapid learning 365

phase, the model’s mastery of the injected knowl- 366

edge increases most rapidly, exhibiting a log-linear 367

scaling behavior near n = n0, despite only a 368

marginal decrease in training loss compared to the 369

warmup phase. This suggests that computational 370

resources are now primarily allocated to actual 371

knowledge acquisition, rather than domain adap- 372

5



Figure 2: Power law scaling of required exposures
n⋆(M) with model size on two knowledge datasets.

tation. Combined with the observations from the373

warmup phase, this indicates a clear transition in374

the model’s learning dynamics: once the initial re-375

alignment of representations is complete, the model376

enters a regime of efficient knowledge integration,377

where performance improves rapidly with addi-378

tional exposure.379

Saturation Phase. In the saturation phase, the380

model’s knowledge extraction ability approaches381

its maximum capacity, reflecting diminishing re-382

turns as exposure increases further. This phase383

highlights the natural limits of knowledge acqui-384

sition under the current setup. Notably, for the385

realistic knowledge set, smaller models such as386

Qwen2.5-0.5B and Qwen2.5-1.5B reached satura-387

tion before approaching near 100% extraction per-388

formance, indicating a lower ceiling for knowledge389

injection in smaller-scale models.390

4.3 Exposure Requirements Scale with Model391

Size via a Power Law392

Critical Exposure Requirements. The three criti-393

cal values nw, n0, ns in the log-sigmoid curve cor-394

respond to key exposure requirements during the395

knowledge injection process of models: specifi-396

cally, nw represents the minimum exposure count397

required for initial adaptation, n0 marks the expo-398

sure level where maximum learning efficiency oc-399

curs, and ns denotes the exposure quantity needed400

to achieve performance saturation. These metrics401

enable estimation of training costs for knowledge402

injection and predictive modeling of achievable403

performance under fixed computational budgets.404

Importantly, these exposure requirements are not405

constant across model sizes. Instead, we observe406

that larger models typically require fewer expo- 407

sures to acquire the same knowledge compared to 408

smaller models. This suggests that increased model 409

capacity enhances the efficiency of knowledge ab- 410

sorption, reducing the amount of data or training 411

time needed to reach a given performance level. 412

Power-Law Scaling Between Exposure Re- 413

quirements and Model Size. As illustrated in 414

Figure 2, we observe that for specific knowledge 415

sets, these exposure requirements exhibit power- 416

law scaling with model size: 417

n⋆(M) = aM b + c (8) 418

Where M denotes the number of model parame- 419

ters, n⋆ represent one of nw, n0 or ns, a, b and 420

c are fitted constants. This empirical scaling law 421

reveals a predictable relationship between model 422

size and knowledge exposure demands. The exis- 423

tence of this scaling relationship enables practical 424

applications in resource planning and model de- 425

velopment. By measuring exposure requirements 426

on small-scale models, one can extrapolate the ex- 427

pected training costs and performance limits for 428

much larger models. This allows for more informed 429

decision-making in computational investment, sup- 430

porting efficient prototyping, budget allocation, and 431

predictive modeling of training dynamics. 432

4.4 Acquiring Realistic Knowledge Is More 433

Challenging Than Fictitious Knowledge 434

Higher Complexity in Realistic Knowledge. Al- 435

though one might expect synthetic, unseen knowl- 436

edge to be harder for models to learn, Figures 1 and 437

Figure 2 clearly demonstrate that realistic knowl- 438

edge requires significantly more exposure to ac- 439

quire compared to fictitious knowledge even when 440

both contain the same amount of factual knowledge. 441

This discrepancy suggests a deeper distinction be- 442

tween the two types of knowledge beyond mere 443

authenticity: diversity. The fictitious dataset con- 444

tains only six unique relations, all of which share 445

a common head entity (“name”). In contrast, the 446

realistic dataset includes 19 distinct relations and 447

does not impose such structural uniformity. These 448

differences in relation diversity and structure likely 449

contribute to the increased difficulty in learning 450

realistic knowledge. 451

Knowledge Diversity Has a Greater Impact 452

Than Familiarity in CPT Knowledge Injection. 453

Figure 3 examines how model parameters vary 454

across different relations within each dataset for the 455
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Figure 3: (a) Distribution of baseline (β) and saturated
performance levels (β + α) across different relations
under Realistic and Fictitious Knowledge. (b) Distribu-
tion of n⋆ across different relations under Realistic and
Fictitious Knowledge.

Qwen2.5-3B model. As shown in Figure 3 (a), the456

baseline performance exhibits significantly higher457

variance on the realistic dataset than on the ficti-458

tious one. Since β reflects the model’s knowledge459

extraction capability before injection, this suggests460

that certain relations in the realistic dataset are in-461

herently more familiar to the pre-trained model,462

leading to varied performance. This is expected, as463

modern LLMs are typically pretrained on corpora464

such as Wikipedia, which contain real-world fac-465

tual knowledge. In contrast, the fictitious dataset466

shows little variation, as all knowledge is novel.467

However, this familiarity does not translate into468

faster learning, contrary to intuition. As seen in469

Figure 3 (b), learning realistic knowledge requires470

significantly more exposures than learning unseen,471

fictitious knowledge. This suggests that the diver-472

sity of knowledge has a greater impact on CPT473

knowledge injection than its familiarity with the474

pre-trained model.475

Saturation Exposure Varies by Relation Type,476

but Warmup Exposure Is Robust. As illus-477

trated in Figure 3 (b), the variance of n⋆ (including478

nw, n0, ns) follows a similar trend across relation479

types. The high variance in the realistic dataset480

indicates that the amount of exposure required for481

effective learning varies significantly depending482

on the specific relation being acquired. In particu-483

lar, the substantial differences in ns, the saturation484

point, suggest that the relation type strongly influ-485

ences how quickly the model can fully internalize486

new knowledge. In contrast, the relatively small 487

variance in nw, which corresponds to the exposures 488

needed during the warmup phase, implies that ini- 489

tial adaptation is less affected by the specific char- 490

acteristics of each relation. This observation, to- 491

gether with the trend shown in Figure 1, where nw 492

remains nearly constant across model sizes for ficti- 493

tious knowledge but decreases notably for realistic 494

knowledge as model size increases, suggests that 495

nw is largely determined by the model’s general 496

real-world knowledge capacity—which improves 497

with scale and is more closely tied to the realistic 498

dataset. Together, these findings indicate that while 499

saturation exposure is highly dependent on relation 500

type, the early phase of adaptation remains rela- 501

tively consistent across different kinds of knowl- 502

edge. See Figure 7 and Figure 8 for relation-wise 503

results. 504

5 Realistic Domain Knowledge 505

Extraction and Data Synthesis 506

Conducting scaling law research on CPT knowl- 507

edge injection requires obtaining realistic training 508

data with precise control over both the quantity of 509

knowledge and its exposure times. To tackle this 510

challenge, as illustrated in Figure 4, we developed 511

a framework for data synthesis based on domain- 512

specific corpora. This framework consists of two 513

main steps: a) extraction of factual knowledge from 514

the corpus, and b) synthesis of training data based 515

on the extracted factual knowledge. Section 5.1 516

details the multi-stage pipeline for extracting high- 517

quality factual knowledge triples from raw corpora 518

by LLMs. Section 5.2 describes the method for 519

synthesizing training data with precisely controlled 520

exposure times using these knowledge triples. 521

5.1 High-Quality Factual Knowledge 522

Extraction 523

Defining High-Quality Knowledge Triplets. To 524

support scaling law training and evaluation, we de- 525

fine high-quality factual knowledge triplets based 526

on three criteria: (1) the tail entity must be uniquely 527

inferable from the head and relation; (2) both en- 528

tities and relations must be clearly and precisely 529

expressed; and (3) the triplet should carry domain- 530

relevant information. We observe that LLMs often 531

extract low-quality triples from open-domain cor- 532

pora lacking predefined relation scopes—such as 533

(“Mike”, “travels to”, “New York”) or (“Arabic 534

Sands”, “is a”, “book”). 535
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Figure 4: The framework of CPT data synthesis
pipeline.

A Multi-Stage Extraction Pipeline. To address536

this, we designed a four-stage prompting pipeline537

(see Figure 9) for extracting and refining high-538

quality triples from Wikipedia. The process begins539

with Prompt A for initial extraction, followed by540

Prompt B to remove invalid or implausible triples.541

Then, Prompt C classifies and standardizes rela-542

tions into a unified schema, resolving linguistic543

variations (e.g., “author” vs. “was written by”).544

Finally, Prompt D re-extracts triples using the re-545

fined relation set R = {r} to improve the qual-546

ity of triples. This multi-stage approach yields a547

clean, consistent dataset for downstream tasks. Full548

prompts and implementation details are provided549

in Appendix D.550

5.2 Knowledge based Training Data Synthesis551

Given structured knowledge triples KR = {TR},552

our goal is to synthesize them into natural language553

training data for CPT, ensuring each fact is ex-554

posed multiple times in diverse expressions. Prior555

work highlights the importance of expression di-556

versity for effective training. However, generat-557

ing large-scale, semantically coherent variations558

remains challenging. To address this, we adopt the559

approach from (Ge et al., 2024), leveraging the ex-560

tensive persona descriptions in Persona Hub to gen-561

erate sentence templates tailored to each relation562

type. This approach enhances linguistic diversity563

while preserving semantic consistency.564

Relation Specified Template Libraries. For565

each relation r ∈ R, we construct a prompt us-566

ing persona descriptions. These prompts are then567

processed by Qwen2.5-72B-Instruct to generate N 568
6 unique natural language templates per relation, 569

forming the template library Lr. For instance, for 570

the relation “birth year”, example templates include 571

“name was born in year” and “name first appeared 572

in the world in year”. These templates enable di- 573

verse yet semantically meaningful expressions of 574

factual knowledge. Subsequently, for each triple 575

TR = (h, r, t) ∈ KR, we apply all corresponding 576

templates in Lr to generate the final sentences. 577

6 Conclusion 578

This study systematically establishes scaling laws 579

of exposures for domain knowledge injection in 580

CPT, identifying two core phenomena: (1) knowl- 581

edge injection performance follows a log-sigmoid 582

trajectory, and (2) the required exposure scales as 583

a power law with model capacity. These insights 584

provide practical guidance for predicting data syn- 585

thesis and resource needs in domain-specific train- 586

ing, enabling more efficient use of computational 587

resources. Our new data synthesis framework fur- 588

ther offers a flexible and robust tool for studying 589

knowledge injection in real-world settings. This 590

work thus provides both theoretical and practical 591

foundations for next-generation domain-specific 592

language models. 593

Limitation 594

Our study investigates the scaling behavior of fac- 595

tual knowledge injection corresponding to expo- 596

sures during CPT and introduces a data synthesis 597

pipeline; however, several limitations remain: 1) 598

Although we have made progress in creating more 599

realistic synthetic data, a gap still exists between 600

natural corpora and synthesized corpora, and mini- 601

mizing this gap presents an interesting and mean- 602

ingful avenue for future research; 2) Due to con- 603

straints on computational resources and the avail- 604

ability of pretrained models, our experiments were 605

limited to the Qwen2.5 series, and a broader ex- 606

ploration of scaling laws across different model 607

families is warranted in future work; 3) As this 608

work focuses solely on the efficacy of knowledge 609

injection, the issue of catastrophic forgetting in 610

CPT remains unexplored and should be addressed 611

in future studies. 612

6To avoid confusion with the concept of epochs, we set N
to the maximum number of exposure times used in our model
training across experiments.
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A Training loss of CPT 928

Figure 5: Training loss of CPT for models of 0.5B
(blue), 1.5B (red), 3B (purple), and 7B (green) parame-
ters

B Training Details 929

CPT Training Setup. We set the learning rate to 930

7e − 6 for all experiments. For data with differ- 931

ent exposure times, we used different global batch 932

size values to ensure sufficient updates during the 933

training process, specifically, for n = 10, 50, and 934

100, we conducted separate training sessions with 935

a global batch of 32 instead of 96 used for larger 936

exposures. In our experiment, the average number 937

of tokens per data sample is 32, with the maximum 938

sequence length set to 2, 048. When performing 939

data concatenation, we followed the approach used 940

in DeepSeek-V3 (Liu et al., 2024a) to ensure the 941

integrity of the content was preserved. More hyper- 942

parameters are shown in Table 2. 943

Supervised Fine-Tuning Setup. For the Fine- 944

tuning process described in Section 3.2, we em- 945

ployed a learning rate corresponding to 10% of 946

the original learning rate used in the CPT process, 947

maintaining a global batch size of 96 across all 948

experiments. Through systematic experimentation 949
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Table 2: The list of hyperparameters.

Hyperparameters Value
Warm-up Steps 0
Gradient Accumulation Steps 2
Max Sequence Length 2048
Learning Rate 7e-6
Min Learning Rate 7e-7
Learning Rate Scheduler cosine with min lr

with varying epoch numbers, our results demon-950

strated that the model achieved optimal QA per-951

formance at 2 training epochs. This configuration952

was therefore selected as the optimal training du-953

ration, yielding peak performance metrics in our954

evaluations.955

C More Exposure Scaling Results of956

Knowledge Injection in CPT957

Here we present the exposure scaling results com-958

paring different number facts in Figure 6, and dif-959

ferent relation types in Figure 7 and Figure 8.960

Figure 6: The relationship between LLM knowledge
extraction capability and exposure times during CPT on
Qwen2.5-0.5B across knowledge sizes of 10, 000 and
5, 000.

D Details of Factual knowledge extraction961

pipeline.962

The factual knowledge extraction pipeline is shown963

in Figure 9, and all the related prompts are shown964

in Figure 10 to Figure 14.965
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Figure 7: The relationship between LLM knowledge extraction capability and exposure times during CPT on
Qwen2.5-3B for different relations in realistic dataset.

14



Figure 8: The relationship between LLM knowledge extraction capability and exposure times during CPT on
Qwen2.5-3B for different relations in fictitious dataset.

Figure 9: Factual knowledge extraction pipeline. The process begins by extracting low-quality triples from
Wikipedia pages using Prompt A. These triples are filtered using Prompt B to remove invalid triples (red-highlighted
examples). The filtered triples are then categorized based on their relations using Prompt C, such as “author” (blue)
and “publication year” (green). Manual refinement unifies variations of the same relation within each category.
These refined relations are embedded into Prompt D to re-extract high-quality, standardized triples from the original
pages, ensuring structured and accurate factual knowledge construction.
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Figure 10: Prompt for extracting low-quality triples from Wikipedia pages.

16



Figure 11: Triples Filtering Prompt: Steps and examples for analyzing and verifying unique factual relations. In this
process, each triple is examined to determine whether the tail entity is unique for a given head entity and relation,
meaning that the tail entity cannot have alternative possible values.
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Figure 12: Triples Classification Prompt: Summarize relation classes and provide examples.
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Figure 13: High-quality Triples Extraction and Classification: Extracting triples from text based on a predefined list
of 26 relation types (partially shown in the figure for brevity). Relations include: B.A. from, Ph.D. from, academic
advisor, author, birth city, birth country, birth date, birth year, creator, death date, death year, director, father’s name,
located in, made in, master’s degree from, mother’s name, nationality, portrayed by, publish year, publisher, release
by, release date, release year, total gross, wife’s name. Each extracted triple strictly adheres to this predefined
schema.

19



Figure 14: Template Generation Prompt: Generate sentences in the style of a specific person that can be filled with
head and tail entities (using the relation between a person and their birth date as an example). To ensure diversity in
the generated templates, allow the use of statements similar to the relation in the template for substitution.

Figure 15: Template Example: Sentences describing entity relations in the style of a specific person (using the
relation between a person and their birth date as an example). Fill in the person’s name at Head and the birth date at
Tail.

Figure 16: Synthetic Data Example. (using the relation between a person and their birth date as an example)
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