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Abstract
Widespread eye conditions such as cataracts, diabetic retinopathy, and glaucoma impact people worldwide. Ophthal-

mology uses fundus photography for diagnosing these retinal disorders, but fundus images are prone to image quality

challenges. Accurate diagnosis hinges on high-quality fundus images. Therefore, there is a need for image quality

assessment methods to evaluate fundus images before diagnosis. Consequently, this paper introduces a deep learning model

tailored for fundus images that supports large images. Our division method centres on preserving the original image’s high-

resolution features while maintaining low computing and high accuracy. The proposed approach encompasses two fun-

damental components: an autoencoder model for input image reconstruction and image classification to classify the image

quality based on the latent features extracted by the autoencoder, all performed at the original image size, without

alteration, before reassembly for decoding networks. Through post hoc interpretability methods, we verified that our model

focuses on key elements of fundus image quality. Additionally, an intrinsic interpretability module has been designed into

the network that allows decomposing class scores into underlying concepts quality such as brightness or presence of

anatomical structures. Experimental results in our model with EyeQ, a fundus image dataset with three categories (Good,

Usable, and Rejected) demonstrate that our approach produces competitive outcomes compared to other deep learning-

based methods with an overall accuracy of 0.9066, a precision of 0.8843, a recall of 0.8905, and an impressive F1-score of

0.8868. The code is publicly available at https://github.com/saifalkhaldiurv/VISTA_-Image-Quality-Assessment.
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1 Introduction

Diagnosing conditions like diabetic retinopathy (DR) [1]

and other retinal diseases relies heavily on fundus imaging

[2]. However, inadequate fundus images may contain

artefacts or inconsistencies, leading to misinterpretations or

incorrect diagnoses when processed automatically [3].

Assessing image quality beforehand reduces the risk of

inaccurate outcomes, ensuring efficient use of computa-

tional resources and time by focusing on analysing high-

quality images with automated diagnostic tools.

High-resolution retinal scans play a pivotal role in

clearly presenting crucial components such as the optic

disc, arteries, and lesions, enabling ophthalmologists and

autonomic systems to make informed clinical judgments.

Early diagnosis is imperative to treat patients before the

disease progresses beyond a manageable threshold. Con-

sequently, acquiring good, clear, high-resolution images

early is essential. Low-quality images can confuse reviews

due to the excessive brightness and colour range in retina

images, reducing the contrast between target areas (e.g.

vessels and lesions) and the background. This, in turn, can

befuddle ophthalmologists during fundus assessments and

pose significant challenges for computer-aided retinal

image analysis systems. Approximately 25% of retinal

images are deemed unfit for diagnosis due to their low

quality [4]. As a result, there is a growing need for Retinal

Image Quality Assessment (Retinal-IQA). In clinical

practice, optometrists typically perform this assessment

manually, which is time-consuming and highly dependent

on the operator’s experience. Hence, automated Retinal-

IQA is essential to streamline the process of retinal image

acquisition. The primary objective of IQA in this context is

to categorize images into three classes (based on quality

metrics [5]): Good, Usable, and Rejected. Various tech-

niques have been employed for Retinal-IQA over the years.

Early approaches involved template matching [6] and

intensity-based histogram analysis using high-quality reti-

nal images as templates. Later methods, such as those

proposed by Dias et al. [7] and Wang et al. [8], focused on

training classifiers for retinal image quality grading, con-

sidering various distortions. However, these techniques

have limitations in encoding quality measurements effec-

tively. Contemporary convolutional neural networks

(CNNs), such as Inception v3 [9], have revolutionized

Retinal-IQA. Colour space fusion networks like MCF-Net

[5] integrate information from different colour spaces for

Retinal-IQA. Multitask frameworks, such as MFIQA [10],

enhance Retinal-IQA by incorporating additional tasks.

However, it is important to note that most methods utilize

low-resolution images (e.g. 512 � 512) with the developed

models to reduce model complexity. The use of low-

resolution images severely impacts the visual features of

the fundus images, leading to inadequate assessments and

potentially hindering overall performance.

In this paper, we aim to tackle the challenges of large

image sizes and unclear visual details. To address these

issues, we propose a comprehensive deep learning frame-

work that consists of two sequential networks. A CNN

network is employed to extract local and global features

from the retinal images. Subsequently, these features are

fed into a CNN-based classifier. The primary function of

the encoder in our framework is to extract crucial features

about the quality of the retinal images. These extracted

features are then utilized as input for the classifier, which is

responsible for categorizing the quality of the retinal

images.

Current deep learning-based fundus image grading

methods often lack transparency, leading to a trust deficit

among ophthalmologists. Explainable deep learning mod-

els assist in understanding the decision-making process and

identifying abnormal regions in fundus images, which is

crucial in the medical field [11]. Despite advances in retinal

image quality assessment, interpretability tools for these

networks remain limited [12, 13]. Our paper proposes

integrating various off-the-shelf interpretability techniques

to generate interpretable visual feedback, enabling a com-

prehensive understanding of our model’s grading process

and facilitating image quality improvement. Our post hoc

and intrinsic dual categorization uncovers deep learning

models’ decision-making in fundus image quality assess-

ment, aiding in revealing the relationships between model

inputs, internal representations, and gradability classifica-

tions, addressing the critical need for transparency and

comprehension in medical image analysis. Figure 1 illus-

trates the structure of our proposed method termed

‘‘VISTA’’ for image gradability classification. The main

contributions of this work can be summarized as follows:

• Introducing a novel ‘‘data streaming’’ approach that

allows input images to be processed without the need

for resizing, thus preserving the original large image

size of 1280 � 1280. This strategy reduces the training

cost, enhances model efficiency, and conserves com-

puter resources.

• Proposing a multi-layer deep network that can extract

both local and global features from images. This design

facilitates the capture of intricate details, thereby

improving image classification performance.

• Integrating the two networks into a unified pipeline,

which combines the extracted local and global features.

These merged features are subsequently utilized by the

decoder to reconstruct the input image, thereby sup-

porting the learning process of our model.

23150 Neural Computing and Applications (2024) 36:23149–23168

123



• Introducing a convolutional neural network (CNN)

classifier that effectively utilizes the latent features

learned by the encoder network to classify fundus

images as either gradable or ungradable.

• Implementing a composite error approach that combi-

nes a mean squared error (MSE) loss with standard

categorical cross-entropy (CE) during the training of the

autoencoder model. Additionally, for the classification

task, we employ the CE loss function in conjunction

with the CNN classifier to categorize fundus images

based on their gradability status.

• Integrating between post hoc and intrinsic interpretabil-

ity methods for the developed model to understand and

validate the classification process of the developed deep

learning model for ensuring its transparency and

reliability in clinical settings.

The structure of this paper is as follows: Sect. 2 dis-

cusses the related work. Section 3 outlines our proposed

methodology to categorize fundus images as gradable or

ungradable using both networks. Section 4 offers an in-

depth methodological explanation for the interpretability of

our model. Section 5 presents experimental results and

performance evaluations. Section 6 presents the results and

discussion. Finally, in Sect. 7, we conclude our work and

suggest potential avenues for future research.

2 Related work

As mentioned in the previous section, deep learning-based

fundus IQA methods have emerged as powerful tools for

automatically assigning quality grades to fundus images.

Leveraging intricate neural network architectures such as

U-Net, ResNet, and EfficientNet, these methods are cap-

able of capturing subtle patterns and features, thereby

enabling a nuanced evaluation of image quality. These

advancements are crucial for addressing the challenges

highlighted in the introduction, particularly the need for

accurate and efficient image quality assessment to support

early diagnosis and treatment of retinal diseases. For a

comprehensive overview of recent developments in fundus

IQA methods, refer to Table 1.

Several studies for IQA of fundus images, including

those proposed in [5] and [14], adopt a binary classification

system, categorizing image quality as either Good or

Rejected. However, this approach has inherent subjectivity,

reliant on specific diseases and the discretion of ophthal-

mologists. Moreover, the binary labels fail to represent the

continuum of image quality, potentially leading to classi-

fication errors. A numerical estimation of image quality

could bolster diagnostic confidence. While some studies

focus on specific attributes like focus and contrast, they

often overlook critical elements such as macular and optic

disc visibility. Additionally, benchmarking algorithm

Fig. 1 An overview of the VISTA model. Retinography generates a fundus image, which our model processes. The outputs gradability results

and interpretability feedback to ophthalmologists
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performance remains challenging, with varied labelling

standards hindering the evaluation of generalizability.

Furthermore, most IQA methods rely on low-resolution

fundus images to streamline the developed deep learning

models. Table 1 shows many works using image sizes of

224 � 224 [5], 480 � 480 [15] or maximum 512 � 512

[16]. However, utilizing such low-resolution images for

assessment compromises critical details, impeding accurate

identification and a comprehensive understanding of image

quality. The resulting loss of intricate visual information

distorts crucial components, potentially leading to misin-

terpretations of ocular irregularities and incorrect diag-

nostic conclusions. Additionally, the restricted resolution

limits the capture of subtle textures and colour nuances,

impacting the sensitivity and specificity of quality assess-

ment. Therefore, low-resolution images present a

Table 1 Comparisons of the proposed methods in state-of-the-art on Eye-Quality. (Inter) refers to Interpretability, (F1) refers to F1-score

# No. of

class

Image

size

Model and

references

F1 Contribution Inter

1 3 224 �
224

MCF-Net [5] 0.8551 Re-annotate an EyeQ dataset and analyse the influences on Retinal-IQA of

different colour spaces (DenseNet121v 3v 1)

NO

2 2 224 �
224

NBIQA [21] 0.7441 Hand-crafted feature-based methods simultaneously consider the features from

both the spatial and transform domains

NO

3 2 224 �
224

BRISQU [22] 0.7112 Hand-crafted feature-based methods adopt local normalization brightness

coefficients for image quality

NO

4 2 224 �
224

TS-CNN [23] 0.7481 Natural-IQA includes an image stream focusing on grey information structure

stream focusing on image gradient details

NO

5 2 224 �
224

HVS [8] 0.6991 Hand-crafted methods apply HVS features, multichannel sensation, noticeable

blur, and contrast sensitivity measure

NO

6 3 512 �
512

MR-CNN [16] 0.8694 CNN consists of 4 pre-trained models (Inception-V3, ResNet-151, DenseNet-

121, Xception) to derive the optimized features

NO

7 3 224 �
224

DenseNet121 [5] 0.8551 Dense blocks and transition layers exist between two adjacent dense blocks along

with a global average pooling layer

NO

8 3 224 �
224

ResNet-18 [5] 0.808 Residual blocks, skip connections, basic building blocks, pooling, and fully

connected layers are included

NO

9 3 224 �
224

Single-branch

SalStructIQA [14]

0.8662 A single CNN branch first fuses the retinal image and salient structures Yes

10 3 224 �
224

Dual-branch

SalStructIQA [14]

0.8723 Two parallel CNN branches are used for deep feature learning NO

11 2 224 �
224

CNN combined [19] 0.878 A CNN model is used to assess the quality and combine deep and generic texture

features, using a RandomForest classifier

NO

12 2 &3 480 �
480

FGR-

Net(Autoencoder-

vgg-16) [15]

0.8782 A deep autoencoder reconstructs the input image to extract the visual

characteristics based on self-supervised learning

Yes

13 2 &3 224 �
224

MFQ-Net [24] 0.8564 A deep learning-based model in a smartphone consists of two main blocks: PFE

and IC block

NO

14 3 224 �
224

SG-Net [25] 0.8676 The model consists of a vessel segmentation module (VSM), an optic disc

segmentation (ODSM), a quality assessment module (QAM), and uses U-Net

NO

15 3 224 �
224

blood

vessels(ResNet-

50-p) [26]

0.7967 An end-to-end learning-based method is used for segmenting the blood vessels of

the input image by U-Net

Yes

16 3 224 �
224

UW-OCTA [27] – A fully automated convolutional neural network-based method (EfficientNet-B2)

is presented

NO

17 2 224 �
224

Retinal image

quality [28]

0.7572 A CNN pre-trained on non-medical images is used for extracting general image

features

NO

18 2 224 �
224

MRDB-CNN [29] 0.7697 A modified residual dense block convolution neural network (MRDB-CNN) uses

ResNet-34

NO

19 2 224 �
224

A siamese network

[30]

0.7830 A siamese network with two weight-shared branches is used to compare the

quality of two images of the same scene

NO

20 2 224 �
224

SCNN [20] 0.7568 A CNN based on a shuffle unit mixes up the extracted features NO
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significant challenge to achieving precise and dependable

quality assessment, undermining the effectiveness and

accuracy of clinical evaluations. Incorporating high-reso-

lution images can enhance the performance of deep

learning models. This can be achieved through a ‘‘data

streaming’’ approach via extracting local features in the

input image and then merging the features to get global

image representation, facilitating the processing of input

images with larger dimensions [17, 18].

In addition, the majority of deep learning-based methods

for image quality assessment depend on CNN for classifi-

cation [19]. However, their efficacy diminishes when

dealing with fundus images from different cameras, as

CNNs merely replicate the training data. Expanding the

convolutional layers in the encoder network can result in

the loss of information, leading to misclassifications by the

classifier layer. An autoencoder network compresses input

features before quality classification to tackle this issue, as

described in [15]. The autoencoder prioritizes essential

image characteristics and learns significant properties from

the data. Furthermore, the encoder functions as a feature

extractor, transmitting latent features to the classifier net-

work, thereby encoding all crucial visual attributes neces-

sary for accurate IQA.

Deep learning-based methods for image quality assess-

ment have often operated opaquely, lacking interpretability

in their decision-making, which limits clinicians’ trust [20].

The opacity of many models has contributed to scepticism

due to the absence of transparency. Therefore, integrating

interpretability tools into image quality assessment is vital

to illuminate the intricate features influencing decisions.

Interpretability enhances trust by elucidating the decision-

making process, allowing clinicians valuable insights into

factors contributing to quality assignments [15]. Incorpo-

rating both post hoc and intrinsic interpretability methods

is essential for enabling explainability in the developed

model, providing a comprehensive understanding of how

the model arrives at specific quality assessments. This

approach addresses the historical limitation of opacity and

improves the acceptance and reliability of deep learning-

based image quality assessment methods in medical diag-

nostics.<Table ID="

3 Proposed deep learning model

3.1 VISTA (Split and reconstruct image
for fundus image quality assessment)

This section introduces the proposed model, VISTA, for

assessing the gradability of retinal images. Additionally,

interpretability techniques are presented to offer visual

insights into the criteria used by VISTA for gradability

classification. Figure 2 illustrates our model for evaluating

the gradability of fundus images. Initially, the model splits

the original large-size image (1280 � 1280) into n� n

segments without resizing for training. This approach

facilitates training on large, high-resolution images,

reducing memory usage and processing time. Conse-

quently, the n� n smaller sub-images or patches will be

individually processed during training using shared CNN

blocks, with variations in size to accommodate the model’s

requirements and memory capacity. Parallel processing on

CPUs or GPUs accelerates the training process. This

strategy effectively manages memory demands, enabling

training on high-resolution images without encountering

memory limitations. The model operates as follows.

3.1.1 Encoder

The encoder component is employed to extract both local

and global features from images. Local features refer to

details and patterns within small image regions (e.g. n� n

sub-images). Our model architecture adeptly captures local

spatial patterns using filters or kernels, scanning the sub-

image to learn features like edges, corners, and blobs. The

third layer of the model generates a collection of feature

maps that represent the image’s local features for each sub-

image. The local feature extraction is achieved using

shared n� n convolutional blocks. Global features

encompass the overall image structure and context by

amalgamating all local features into one comprehensive

feature map. Subsequent layers aim to extract high-level

features (i.e. latent features) that signify the crucial visual

attributes of the input fundus image. Table 2 shows the

detailed structure of the encoder network.

3.1.2 Decoder

The decoder architecture in our model plays a pivotal role

in reconstructing high-resolution images from abstracted

feature representations. The decoder architecture is defined

by a sequence of seven blocks. The block in the provided

neural network architecture is a pivotal component

responsible for upsampling, contributing to the hierarchical

feature refinement in the decoding process. This block has

two main elements: a transposed convolutional layer and a

convolutional block. The transposed convolutional layer

facilitates a 2 � 2 upsampling, effectively doubling the

spatial dimensions of the input. This operation is crucial for

recovering finer spatial details lost during earlier down-

sampling stages. The convolutional block module in the

provided neural network architecture is a fundamental

feature extraction and processing building block. Com-

prising convolutional layers, batch normalization, and

rectified linear unit (ReLU) activation, this block captures
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and enhances intricate features within the input data.

Employing transposed convolutional layers and convolu-

tional blocks to facilitate upsampling and feature refine-

ment. Its role is crucial in achieving the high-fidelity

reconstruction of the original fundus images in the broader

context of medical image analysis. For a comprehensive

understanding of the structural configuration and the

specific details of each layer within the decoder block, refer

to the elaborated information provided in Table 3. This

table offers a detailed breakdown of the kernel sizes, layer

types, and other pertinent architectural aspects, providing

valuable insights into the decoder.

3.1.3 Classifier

The resulting feature map (i.e. latent feature) from the

encoder network, sized at 15 � 15 � 512, serves as input

for a classifier network responsible for categorizing retinal

fundus image quality into distinct gradability categories.

The classifier network consists of four fully connected

Fig. 2 General overview of the proposed model in train and test stage
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layers, followed by a ReLU activation layer. Table 4 has a

detailed outline of the classifier network’s architecture.

3.2 Training

This study employs two loss functions to enhance the

performance of the developed model. The first function is

dedicated to the classification task (i.e. the classification

loss). In contrast, the second function is utilized for self-

supervision training (i.e. the reconstruction loss).

Initially, we assessed the model’s performance using

different reconstruction loss functions (Lrec). We then

chose the most effective model to compare input images

with their corresponding reconstructed counterparts within

self-supervised learning. We explored standard loss func-

tions to underscore the importance of the autoencoder

architecture in enabling the network to identify pertinent

patterns related to image quality characteristics, irrespec-

tive of the specific loss function chosen.

The first reconstruction loss was evaluated for the

training of the autoencoder network as an MSE, LMSE,

computed from the features extracted from the input image

I and the reconstructed image Î. MSE is a widely used loss

function for regression tasks, measuring the mean of the

squared differences between actual and predicted values. It

is defined as follows:

LMSEðI; ÎÞ ¼
1

n

Xn

i¼1

ðIi � ÎiÞ2; ð1Þ

where IðiÞ is the input image of pixel i, ÎðiÞ is the recon-

structed image and the n is the numbers of pixels in an

image.

The second tested reconstruction loss function, LVGG,

was the Perceptual Loss, also known as VGG Loss. It

measures the similarity between the features of the input

image and the reconstructed images obtained from a pre-

trained convolutional neural network, typically a VGG

network. This loss function assesses the ability of the

reconstructed image to capture the crucial features of the

original input image, as identified by the pre-trained neural

network.

LVGGðI; ÎÞ ¼ 1

Nm

XNm

i¼1

jj/iðIÞ � /iðÎÞjj22; ð2Þ

where /i is the feature map extracted by the VGG network

at the ith layer, and Nm is the total number of feature maps.

The loss function calculates the mean squared difference

between the feature maps of the input and reconstructed

images using the L2-norm. k:k2 represents the L2-norm,

and k:k2
denotes the square of the L2-norm, applied to the

Table 2 The detailed structure for input and output of the encoder

network

Layer Scales Input size Output size

Input Image (1280 9 1280)

Block 1 Scale 1 3 9 640 9 640 64 9 320 9 320

Scale 2 3 9 640 9 640 64 9 320 9 320

Scale 3 3 9 640 9 640 64 9 320 9 320

Scale 4 3 9 640 9 640 64 9 320 9 320

Block 2 Scale 1 64 9 320 9 320 128 9 160 9 160

Scale 2 64 9 320 9 320 128 9 160 9 160

Scale 3 64 9 320 9 320 128 9 160 9 160

Scale 4 64 9 320 9 320 128 9 160 9 160

Block 3 Scale 1 128 9 160 9 160 256 9 80 9 80

Scale 2 128 9 160 9 160 256 9 80 9 80

Scale 3 128 9 160 9 160 256 9 80 9 80

Scale 4 128 9 160 9 160 256 9 80 9 80

Block 4 Scale 1 256 9 80 9 80 512 9 40 9 40

Block 5 Scale 1 512 9 40 9 40 512 9 10 9 10

Table 3 The detailed structure for input and output of the decoder

network

Conv Input size Output size

Input Image (1280 9 1280)

Upsample-1 512 9 10 9 10 512 9 20 9 20

Block 1 512 9 20 9 20 512 9 20 9 20

Upsample-2 512 9 20 9 20 512 9 40 9 40

Block 2 512 9 40 9 40 512 9 40 9 40

Upsample-3 512 9 40 9 40 256 9 80 9 80

Block 3 256 9 80 9 80 256 9 80 9 80

Upsample-4 256 9 80 9 80 128 9 160 9 160

Block 4 128 9 160 9 160 128 9 160 9 160

Upsample-5 128 9 160 9 160 64 9 320 9 320

Block 5 64 9 320 9 320 64 9 320 9 320

Upsample-6 64 9 320 9 320 32 9 640 9 640

Block 6 32 9 640 9 640 32 9 640 9 640

Upsample-7 32 9 640 9 640 32 9 1280 9 1280

Block 7 32 9 1280 9 1280 3 9 1280 9 1280

Table 4 The detailed structure of the classifier network. The output of

classifier4 depends on the number of classes

Layers Layer type Input features Output features Bias

Classifier1 Linear 512 256 True

Classifier2 Linear 256 128 True

Classifier3 Linear 128 64 True

Classifier4 Linear 64 No. of classes True
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difference between the corresponding feature maps at each

layer.

The third reconstruction loss function, LSSIM, is

derived from the structural similarity index Measure

(SSIM), a technique used for assessing the perceived

quality of digital images. SSIM quantifies the similarity

between two images, serving as a comprehensive metric for

evaluating the quality of reconstructed images compared to

their corresponding input images.

In contrast to L1 and L2 loss functions emphasizing

pixel-level disparities, the SSIM metric assesses image

likeness based on essential parameters: Luminance, con-

trast, and structure. Thus, SSIM is a well-established

measure for quantifying the distinctions between two

images.

SSIM can be mathematically defined as:

LSSIMðI; ÎÞ ¼ ð2lÎlI þ c1Þð2rÎI þ c2Þ
ðl2

Î
þ l2

I þ c1Þðr2
Î
þ r2

I þ c2Þ
; ð3Þ

where lÎ is the mean of Î, rÎ is the standard deviation of Î,

lI is the mean of I, rI is the standard deviation of I, rÎI is

the covariance of Î, c1 ¼ 0:012 and c2 ¼ 0:032, as descri-

bed in [31]. The choice of these constants is based on

extensive experimentation and evaluation across various

image processing applications, where they have demon-

strated effectiveness in balancing the trade-off between

sensitivity to structural information and numerical stability.

The fourth reconstruction loss function, denoted as

LPSNR, is based on the peak signal-to-noise ratio (PSNR).

PSNR is a widely employed loss function for image

reconstruction, serving as a metric to quantify the dissim-

ilarity between the input image and the reconstructed

image in terms of the peak signal-to-noise ratio. PSNR is

commonly used to assess the quality of the reconstructed

image by comparing it to the original input image.

LPSNRðI; ÎÞ ¼ 10 � log10

MAX2
I

MSE

� �
; ð4Þ

where MAXI is the maximum possible pixel value (i.e. 255

for an 8-bit image), and MSE is the mean squared error

between the input image I and the reconstructed image Î.

The PSNR measures the ratio of the maximum possible

power of a signal to the power of corrupting noise that

affects the fidelity of its representation. It is often used to

evaluate the quality of reconstructed images.

The fifth reconstruction loss function, denoted as LTL
and known as the Tversky loss function, is typically uti-

lized in segmentation tasks, where the primary goal is to

predict a binary mask indicating the presence or absence of

an object in each pixel of an image. However, it is possible

to adapt this loss function for image reconstruction tasks.

Here is one approach to defining the Tversky loss function

for image reconstruction:

LTLa;bðI; ÎÞ ¼
P

i IiÎiP
i IiÎi þ a

P
i Iið1 � ÎiÞ þ b

P
ið1 � IiÞÎi

;

ð5Þ

where x and x̂ are the input and reconstructed images,

respectively, and N is the total number of pixels in the

image (each summation in the loss function is taken over

all N pixels in the image). In this formula, the Tversky loss

function measures the similarity between the ground truth

and predicted images, with larger values indicating more

significant similarity. The weight factors a and b can be

used to balance the importance of the false positive and

false negative rates in the loss function, similar to the

segmentation case.

The second loss function for the classification task, used

for the quality labelling task, is denoted as LCE and is

based on CE. This loss function depends on the predicted

class from the classifier ŷ and the corresponding target

value y. The CE loss, LCE, is defined as follows:

LCEðŷi; yiÞ ¼ �
Xn

i¼1

yi � logðŷiÞ; ð6Þ

where ŷi represents the ith scalar value in the classifier

output, yi is the corresponding target value, and the output

size indicates the number of scalar values in the model

output. This loss is an excellent measure of how distin-

guishable two discrete probability distributions are from

each other. In this context, yi represents the probability of

event i occurring, and the sum of all yi equals 1, signifying

that exactly one event may occur. The minus sign ensures

that the loss decreases as the distributions approach each

other.

The final objective loss function, L, to optimize the

VISTA model, including the autoencoder and classifier

networks, is a combination between the reconstruction loss

Lrec (i.e. one of the aforementioned loss functions yields

the best performance) and the classification loss function

Lc, as:

L ¼ aLrecðI; ÎÞ þ ð1 � aÞLcðŷi; yiÞ; ð7Þ

where a is a weight factor set to 0.5 in this work.

4 Methodological overview
of interpretability for the VISTA model

Our proposed approach encompasses a dual categorization

of interpretability methods, a pivotal aspect in elucidating

the decision-making processes of deep learning models in
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fundus image quality assessment. These methods fall into

two overarching groups: post hoc and intrinsic.

The integration of both post hoc and intrinsic methods in

our study allows for a comprehensive exploration of the

interpretability landscape in the context of fundus image

quality assessment. This dual-method strategy equips us to

elucidate the intricate relationships between model inputs,

internal representations, and the ultimate gradability clas-

sifications, addressing the imperative need for transparency

and comprehension in medical image analysis.

For reasons of brevity, in this section, we only focus on

the Good and Rejected classes of the dataset, which rep-

resent 81% of its samples.

4.1 Post hoc approaches

Attribution methods are a subtype of post hoc methods that

gauge the significance of individual components by intro-

ducing modifications to the input or internal elements and

subsequently observing the resulting impact on the model’s

performance. Attribution methods provide insights into

which features the model considers decisive for its grad-

ability predictions, thereby enhancing transparency.

In this work, we leverage three prominent attribution

methods: Gradient, Grad-CAM, Occlusion, and RISE.

The Gradient or Saliency Maps method provides

insights into feature importance by measuring the sensi-

tivity of the model’s output concerning changes in indi-

vidual pixel values [32]. This approach involves

calculating the gradient of the class score concerning the

input fundus image. Green values in the resulting visual-

izations indicate that increasing a pixel’s brightness con-

tributes to a higher model score. In turn, Grad-CAM is

another gradient-based technique that leverages the gradi-

ents of the target class by streaming them into the final

convolutional layer. This process results in a coarse

localization map highlighting crucial regions in the fundus

image for predicting the target class [33]. The output of

Grad-CAM is usually interpreted as the importance of each

region for a specific class (i.e. in or case two classes),

regardless of sign. The method visually highlights crucial

areas for the model’s decision-making process.

In perturbation-based approaches, the Occlusion method

quantifies the impact of systematically occluding various

segments of the input image on the model’s class scores

[32]. Green values signify regions where occlusion

increases the class score, while red values indicate the

opposite. However, Occlusion can be very compute-in-

tensive for larger images and suffers from biases in

choosing the occluded area’s shape and size. Therefore,

Occlusion’s result can be improved upon by RISE (Ran-

domized Input Sampling for Explanation), a perturbation-

based approach that employs a Monte Carlo integral

approximation algorithm to generate pixel importance

maps [34]. It samples random occlusion masks, considers

spatial structure, and produces saliency maps by combining

sub-sampled shows.

4.2 Intrinsic approaches

Intrinsic methods, on the other hand, endeavour to

enhance the interpretability of internal representations by

incorporating techniques that are inherently part of the

VISTA model’s architecture. They allow training of tra-

ditional black box models in such a way that their internal

representations are more interpretable. Unlike attribution

methods, intrinsic approaches focus on refining the inter-

pretability within the model itself, thereby elevating fide-

lity, clarity, and parsimony in the attribution of importance

to specific features.

For intrinsic interpretation, our model is trained using

Concept Whitening (CW) [35], aligning model represen-

tation with key concepts, thus enhancing interpretability.

To apply CW to the VISTA architecture, the layer was

placed in Block 4 after the last convolution operation.

CW shapes the latent space of a model by compelling it

to learn the representation of key concepts using concept

vectors [35]. Similarly to a whitening transformation, CW

aligns the axes of the latent space with known auxiliary

concepts of interest. Concepts are user-defined and facili-

tate the separability of the latent space, enhancing the

interpretability of the model’s internal representations.

Using CW in a network requires minimal modifications to

the architecture itself.

During inference, the activation pattern CW layer

quantifies those concepts as an auxiliary explanation.

5 Experiments

5.1 Eye-quality dataset

There are several publicly available Retinal-IQA datasets

with manual quality annotations, such as HRF [7],

DRIMDB [13], and DR2 [11]. However, these datasets

have various drawbacks. First, more than one dataset is

based on binary labels, i.e. Good and Rejected without any

intermediate level. However, several images fall between

these two categories and are essential for classification. For

example, some fundus images with poor quality, contain-

ing a few artefacts, or are slightly blurred, are still grad-

able, so they should not be labelled as Rejected. Still, they

may mislead automated medical analysis methods, so they

cannot be labelled as Good. Second, retinal images of the

existing Retinal-IQA datasets are often captured by the

same camera, which cannot be used to evaluate the
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robustness of Retinal-IQA methods against various imag-

ing modalities. Third, existing datasets are limited in size;

large-scale quality grade datasets are lacking for develop-

ing deep learning methods.

In our paper, we use the Eye-Quality (EyeQ) dataset [5]

from the EyePACS dataset, which has three classes (Good,

Usable, and Rejected) and a large image of 1280 � 1280.

EyeQ contains 26,000 samples captured by different

models and types of cameras under various imaging con-

ditions. It is divided into a training set of 12,417 images, a

test set of 13,430 images, and a validation set of 153

images. The dataset utilizes a three-level quality grading

system by considering four common quality indicators:

blurring, uneven illumination, low contrast, and artefacts.

The three quality grades are defined as follows: (1) A

retinal image is graded as Good if it exhibits no low-quality

factors and all retinopathy characteristics are visible. (2)

Alternatively, it is graded as Usable if it displays some

slight low-quality indicators, such as low contrast, blurri-

ness or artefacts, which may affect automated medical

analysis methods. However, the main structures (such as

the disc and macula regions) and lesions must still be

discernible by ophthalmologists. For cases where uneven

illumination is present, a retinal image is considered

Usable if the readable region of the fundus image is more

significant than 80% of the total image area. (3) A retinal

image is graded as Rejected if it exhibits serious quality

issues that render it unsuitable for providing a complete

and reliable diagnosis, even by ophthalmologists. A fundus

image with no visible disc or macula region is also clas-

sified as Rejected.

5.2 Experimental setup

In our experiments, we employed a dedicated setup for our

data processing pipeline.1

5.2.1 Data augmentation

Deep neural networks depend on the training data available

to achieve optimal performance. Additionally, the dataset

requires increasing training data for a stable model because

unbalanced data will lead to overfitting the EyeQ dataset.

After augmentation, our dataset contains 22,996 in retinal

images for training. Figure 3 shows some examples of the

augmentation applied to each input image. The transfor-

mations employed Crop, Flip, Rotate, and ColorJitter.

Figure 4 shows the class distribution before and after

augmentation.

5.2.2 Hyperparameters

We used the stochastic gradient descent (SGD) with c ¼
0:1 and an initial learning rate of 0.001. A batch size of 2

and 50 epochs yielded the best combination. For a more

detailed overview of the hyperparameters setting of our

proposed network architecture, please refer to Table 5.

5.3 Evaluation measures

We used four metrics to measure the resulting perfor-

mance: accuracy, sensitivity, specificity, and F1-score. In

medical diagnosis, the most important measure of the

model’s performance is the sensitivity measure, which

refers to our model’s ability to correctly identify high-

quality images, i.e. measuring the percentage of true pos-

itives. In contrast, specificity measures the model’s ability

to correctly identify low-quality images.

Table 6 compares class-specific evaluation metrics for

the VISTA model across the three classes (Good, Usable,

and Rejected). Notably, the VISTA model demonstrates

exceptional precision, recall, and F1-score in the Good and

Rejected classes, indicating robust performance. The

Usable class, presenting a challenge due to its intermediary

nature between Good and Rejected, still achieves accept-

able results. In summary, the VISTA model attains an

overall Accuracy of approximately 0.91, with a precision

of 0.88, recall of 0.89, and an impressive F1-score of 0.89.

5.4 Ablation study

Initially, we assessed the performance of various models

using distinct backbones for the autoencoder network.

Specifically, we implemented Mobilenetv2 [36], Dense-

Net169 [37], ResNet-50 [38], ResNeXt101 [39], CoAtNets

[40], Inception-v4 [41], and VGG-16 [42]. Each network

Fig. 3 Examples of transformations applied to an input image of each

class of the EyeQ dataset

1 The experimental environment is a computer with an Intel Xeon

E5-2667 CPU, 64 GB of RAM, and NVIDIA 1080 Ti GPU running

Ubuntu 18.04. We use the PyTorch library to implement our

architecture.
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underwent training from the ground up, and the quantita-

tive outcomes are detailed in Table 7. Notably, VGG-16

exhibited superior results among all the tested backbones.

We believe that VGG-16, distinguished by its 16 convo-

lutional layers compared to other tested networks like

ResNet-50, possesses a superior capacity to discern intri-

cate features and nuanced patterns within fundus images.

Given the complex structures and subtle variations inherent

in fundus images, VGG-16’s architecture enables it to

capture these details effectively. Additionally, our exten-

sive experimentation and evaluation on our dataset have

consistently revealed VGG-16’s superiority over other

backbone networks in terms of accuracy, precision, and

recall for fundus image quality assessment tasks. While the

precise reasons for its outstanding performance may vary

depending on specific dataset characteristics, these empir-

ical findings reaffirm the efficacy of VGG-16 as a back-

bone network within our research domain. Consequently,

for our model (VISTA), we opted for VGG-16 as the

backbone, considering its optimal performance across the

four metrics outlined in Table 6.

In the next phase of our ablation study, we focused on

identifying the optimal reconstruction loss function,

denoted as Lrec, for the VISTA model. To accomplish this,

we trained the VISTA model with a VGG-16 backbone,

employing six different loss functions for reconstruction.

These included the MSE loss, along with others such as

Tversky, SSIM, VGG Perceptual, PSNR, and a composite

loss function named Sum Loss. Our experiments, illus-

trated in Fig. 5, involved evaluating the model’s perfor-

mance using the EyeQ dataset. Notably, the MSE loss

function outperformed the six alternative loss functions

across all four evaluation metrics-Accuracy, Recall, Pre-

cision, and F1-score, as depicted in Table 8. Consequently,

we selected MSE as the loss function to optimize the

autoencoder network, aiming to minimize the error

between reconstructed and input images.

5.5 Experimental setup of a post hoc
interpretable VISTA model

In order to improve efficiency, we evaluate interpretability

methods utilizing half-precision for faster computation and

computational efficiency. We found no difference in results

when using larger single or double precision.

In the execution of interpretability methods, specific

parameters and considerations were carefully tailored to

enhance the validity and relevance of the obtained insights.

The nuances of these considerations are elucidated for each

method below:

For RISE, the spectrum of values is automatically

stretched to the range 0–1 for plotting (min-max normal-

ization). In the application of Grad-CAM, the last

Fig. 4 Class distribution before and after data augmentation over

EyeQ dataset

Table 5 Hyperparameters setting of our proposed network

architecture

Hyperparameter Value

Objective function MSE

Optimizer SGD

Gamma 0.1

Momentum 0.9

Learning rate 0.001

Batch dize 2

Epochs 50

Table 6 Comparison between the evaluation metrics for classification

model for each class of VISTA model

Class label Precision Recall F1-score

Good 0.95829 0.93561 0.94681

Usable 0.76813 0.83434 0.79987

Rejected 0.92654 0.90161 0.91391

Macro avg 0.88432 0.89052 0.88686

Table 7 Evaluation of the VISTA model based on different back-

bones for the autoencoder network on EyeQ

Method Accuracy Precision Recall F1-score

VISTA-Mobile net v2 0.8786 0.8584 0.8324 0.8441

VISTA-Densenet169 0.8439 0.8135 0.7742 0.7905

VISTA-Resnet-50 0.8942 0.8766 0.8776 0.8754

VISTA-ResNeXt101 0.8882 0.8723 0.8667 0.8667

VISTA-CoAtNet-1 0.8742 0.8536 0.8764 0.8621

VISTA-Inception-v4 0.8830 0.8486 0.8544 0.8479

VISTA-VGG-16 0.9066 0.8843 0.8905 0.8868
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convolutional was chosen as an intermediate representation

for backpropagation.

Then, considerable adjustments were made to the

Occlusion method to account for the larger image size by

using hyperparameters adapted from a previous study [15],

where the stride was set to 3x120x120, and the sliding

window was configured as 3 9 240 9 240.

5.6 Design of concept decomposition
for an intrinsic interpretable VISTA model

To annotate the intermediate concepts, we employed

LabelStudio, iterating through multiple labelling cycles

and final dataset curation stages, to ensure non-contami-

nation of the training data. The annotated concepts illu-

mination-bright and illumination-dark were selected as

they represent mutually exclusive conditions, overexposure

and underexposure, respectively.

We annotated a total of 312 images, with 254 belonging

to the first concept and 258 to the second one. Additionally,

a concept labelled as ‘‘good’’ was annotated for 312 images

as well to enable the model to comprehend the distinction

between images of poor and good quality.

We previously experimented with using more concepts

to further refine the interpretability of the method. How-

ever, we found that the CW layer is unable to learn

complex decompositions of quality issues in fundus ima-

ges. Figure 6 shows one failure case, where the model

consistently grouped only the illumination-bright and il-

lumination-dark concepts. We hypothesize that the under-

lying issue is rooted in the multiple superposed factors that

contribute to the decrease of quality in fundus images. For

instance, most images that suffer from low contrast also

have brightness anomalies (too bright or too dark areas).

Artefacts can be confounded by small areas with unusual

brightness. Blurring is usually accompanied by a lack of

contrast. Therefore, the concepts were deliberately selected

to avoid these ambiguities.

6 Results and discussion

6.1 Comparisons with state-of-the-art models

To compare the VISTA model with modern gradability

assessment methods, we compared VISTA to the state-of-

the-art three class (Good, Usable, and Rejected) gradability

assessment on the public EyeQ dataset. Table 9 summa-

rizes the results of the VISTA with eight methods: two

methods are based on handcrafted features; BRISQUE [22]

and NBIQA [21], and six methods based on deep learning

designed for retinal fundus image quality assessment; TS-

CNN [23], HVS-based method [8], MCF-Net [5], multi-

variate regression CNN(MR-CNN) [16], the Double branch

network, SalStructIQA [14] and multilevel quality assess-

ment network [19]. The VISTA used VGG-16 as a back-

bone and MSE as a loss function. Our model demonstrates

a notable enhancement across all four metrics-Accuracy,

Precision, Recall, and F1-score-showing improvements of

approximately 2, 1, 2, and 1.5%, respectively, when com-

pared to two existing variations, SalStructIQA [14] and

CNN combined [19]. The approach introduced in [14]

involves segmenting two salient features before assessing

fundus image quality, adding complexity to their model.

Similarly, the method proposed in [19] combines deep and

Fig. 5 Comparison of the

VISTA model with six loss

functions (MSE, SSIM,

Tversky, VGG Perceptual,

PSNR and Sum Loss) on EyeQ

Table 8 Comparison between the VISTA model with different loss

functions on EyeQ

Loss function Accuracy Precision Recall F1-score

MSE 0.9066 0.8843 0.8905 0.8868

SSIM 0.9006 0.8775 0.8770 0.8767

Tversky 0.9006 0.8748 0.8792 0.8767

VGG perceptual 0.9048 0.8799 0.8820 0.8808

PSNR 0.8875 0.8560 0.8592 0.8573

Sum loss 0.9035 0.8841 0.8788 0.8814
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Fig. 6 Model’s tendency to consistently group only the illumination-bright and illumination-dark concepts, reinforcing our intentional selection

to focus exclusively on these concepts

Table 9 Comparison of the VISTA model with different exiting methods with the EyeQ dataset

Method Accuracy Precision Recall F1-score

BRISQUE [22] 0.7692 0.7608 0.7095 0.7112

NBIQA [21] 0.7917 0.7641 0.7509 0.7441

TS-CNN [23] 0.7926 0.7976 0.7446 0.7481

HVS-based [8] – 0.7404 0.6945 0.6991

MR-CNN [16] 0.8843 0.8697 0.8700 0.8694

DenseNet121-MCF [5] – 0.8645 0.8497 0.8551

DenseNet121-MCF [5] 0.8722 0.8563 0.8482 0.8506

DenseNet121-RGB [5] – 0.8194 0.8114 0.815

DenseNet121-RGB [5] 0.8568 0.8481 0.8239 0.8315

ResNet-18-RGB [5] – 0.804 0.816 0.808

ResNet-18-HSVB [5] – 0.801 0.816 0.808

ResNet-50-RGBB [5] – 0.812 0.807 0.810

Resenet-50-HSVB [5] – 0.770 0.777 0.773

Single-branch SalStructIQA [14] 0.8847 0.8715 0.8645 0.8662

Dual-branch SalStructIQA [14] 0.8897 0.8748 0.8721 0.8723

CNN-RGB [19] – 0.860 0.862 0.860

CNN combined [19] – 0.878 0.880 0.878

FGR-Net [15] 0.8947 0.8800 0.8765 0.8782

VISTA 0.9066 0.8843 0.8905 0.8868
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handcrafted features for quality assessment. In contrast,

VISTA is a straightforward model designed for high-res-

olution images. Our model utilizes only the encoder net-

work and the classifier during testing without extracting

prior information from the input fundus images. Notably,

VISTA outperforms our previous model, FGR-Net [15],

which shares a similar structure but employs low-resolution

images of 512 � 512. This suggests that preserving the

original image’s size improves the classification rate. In

summary, the results underscore the significant improve-

ment achieved by VISTA across all evaluated measures.

To check the scalability and upgradability of the VISTA

model on the EyeQ dataset with three classes (Good,

Usable, and Rejected), we also computed the confusion

matrix with loss functions (MSE) and overall classification

accuracy in the test set. Figure 7 shows TPs and TNs of

VISTA with a test set of 13, 430 images with loss func-

tions. The model classifies the fundus images into three

classes with few mispredictions. For instance, the model

with MSE and the first class Good classified only six

Rejected images as Good images and 247 Usable images as

Good. This result is intuitive since both Usable and Good

have similar characteristics. Among the different recon-

struction losses, MSE yields the highest TP and TN on the

test set of the EyeQ dataset.

6.2 Post hoc interpretable results for the VISTA
model

The results are illustrated in Figs. 8 and 9, directly stem

from the application of attribution methods: Gradient,

Grad-CAM, Occlusion, and RISE.

6.2.1 Result analysis

In general terms, the post hoc interpretability algorithms

gave similar results regarding the pixels of the image that

the model considers for the classification process of a given

class.

Specifically focusing on the Good class, the results

highlighted in Fig. 8 show that some results focus purely

on the optic disc and veins. In contrast, others have a

preference only for the optic disc (about Grad-CAM and

RISE). Also, with RISE, it is clear that, on average, the

focus is on the area of the optic disc. In contrast, the

Occlusion method yielded more variable and sparse

importance maps, possibly due to its reliance on single-

patch occlusion. Grad-CAM exhibited a more pronounced

impact on the optic disc and veins, with the influence of the

crop-and-split operation at the beginning of the pipeline

more evident for class Rejected, as shown in Fig. 9. Par-

ticularly for this class, there is still a notable similarity

between the results obtained by RISE and Grad-CAM, but

the difference with the Occlusion results has increased

significantly. Due to the model’s crop-and-split prepro-

cessing, which involves dividing the image into four pat-

ches at the beginning of the pipeline, we observed a

significant impact compared to the previous choice of

Grad-CAM as the state-of-the-art method [15]. This shift in

results led us to adopt RISE as a more suitable solution for

the current configuration. RISE’s ability to generate

smooth masks covering multiple patches allowed for a

more coherent representation of values of positive impor-

tance. These findings underscore the nuanced differences in

interpretability outputs, emphasizing the importance of

selecting an appropriate method tailored to the character-

istics of the model and dataset.

Finally, applying clustering methods to RISE outputs

from 150 samples of each class, a notable observation is

the pronounced focus on the optic disc region, as Fig. 10

suggests. This concentration reaffirms the clinical signifi-

cance of the optic disc in fundus image analysis, empha-

sizing its pivotal role in influencing model predictions.

It is crucial to emphasize the substantial difference

between utilizing larger image sizes in training in our

enhanced model design, unlike our previous approach [15].

As a result, we observed that it improved both local and

global feature extraction facilitated by this updated

architecture.

6.2.2 Clustering and global insights

In tandem with individual interpretability methods, we

explore techniques that combine local insights to derive a

holistic understanding of the fundus images. Specifically,

Fig. 7 Confusion matrix for the testing set of the EyeQ dataset with

the VISTA model
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we employ the k-means clustering method. This approach

captures patterns and groups salient regions, providing a

global perspective on the fundus images.

Moreover, the integration of clustering on RISE results

yields distinctive patterns, shedding light on localized

regions that collectively contribute to the model’s decision-

making. This comprehensive approach, merging local

insights through RISE with global understanding through

k-means clustering, enriches our comprehension of the

intricate relationships between diverse regions within the

fundus images.

6.2.3 Computational time evaluation for real-time
feedback

Visualizations highlighting the features on which the

model focuses play a crucial role in enabling medical

practitioners and technicians to validate the quality of

fundus image acquisition. Particularly in the context of

mobile fundus photography, real-time feedback on image

quality facilitates the capture of high-quality images using

cost-effective devices. Considering that the decoder part is

not utilized for inference, we assessed the performance of

each visualization method on the proposed model. We

conducted the tests on GPU NVIDIA Pascal X Titan with

12 GB of RAM-running on an Intel i7 CPU with 32 GB of

RAM. The mean computation time over 50 runs was

measured, each consisting of a batch with a single sample

to simulate real-time conditions. Table 10 outlines the

computation time for various methods.2 The image pre-

diction latency can be used as a baseline, where for the

Good class, the computation time is 0.18 s (standard

deviation: 0.16), and for the Rejected class, it is 0.14 s

(standard deviation: 0.01).

While RISE outperforms other methods in terms of

results because its unique ability to generate

Fig. 8 Comparison of Gradient, Grad-CAM, Occlusion and RISE

techniques applied to our model for three class samples Good. The

gradient method only focuses on low-level features mostly found in

blood vessels. Grad-CAM focuses on the optical disc and main

vessels but also includes or excludes other areas arbitrarily. Occlusion

includes the disc but also various random areas. Finally, RISE

improves on all previous methods by focusing on the optic disc and

main vessels

2 It’s essential to highlight that these timings were obtained using a

stock PyTorch implementation, with half-precision and no optimiza-

tions, including Captum’s stock implementation of all interpretability

measures, except for RISE, that our own customized implementation

was used, which also fulfil the design considerations from Captum

[34]; thus, performance enhancement is feasible.
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comprehensive saliency maps underscores its value in

unravelling the intricacies of fundus image quality assess-

ment, it’s essential to acknowledge the significant time

investment linked to its execution in comparison to other

interpretability techniques is crucial. The computational

complexity of RISE is prohibitively high (roughly 100 or

more times slower than Grad-CAM) because it involves a

Monte Carlo integral approximation.

6.3 Intrinsic interpretable results for the VISTA
model

The results are shown in Fig. 11, directly arising from

incorporating CW into the VISTA architecture for intrinsic

interpretation.

6.3.1 Results analysis

In the context of CW, the visualization of activation scores

during testing plays a crucial role in understanding the

model’s decision-making process. Figure 11 shows CW’s

activation scores at the output layer. Scores are normalized

to 0–1 and displayed alongside each image with a corre-

sponding bar, providing insights into concept activation.

For the ‘‘good’’ concept, there is minimal confusion with

the other two concepts, indicating a clear model response.

However, as we shift our focus to the illumination-bright

and illumination-dark concepts, the level of confusion

increases. Nevertheless, the model still accurately recog-

nizes these concepts.

The strategic placement of the CW layer within the

model architecture is paramount for capturing high-level

feature representations; placement in previous layers did

not yield a reasonable decomposition. Also, the incorpo-

ration of CW’s optimization processes maintained a

Fig. 9 Comparison of Gradient, Grad-CAM, Occlusion and RISE techniques applied to our model for three class samples Rejected. As with class

Good, RISE provides better results, indicating the crescent-shaped artefact area in the first row and the over-dark areas in the other two rows
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comparable training duration and accuracy with respect to

the baseline model, highlighting the efficiency of the

implemented methods without imposing a substantial time

penalty on the training process. It’s well-established that

the addition or replacement of CW layers in a model does

not significantly impact its classification accuracy [35].

The experiments unveil the intricate interplay between

interpretability methods, training strategies, and dataset

curation, emphasizing the meticulous considerations

essential for robust model development in fundus image

quality assessment.

7 Conclusion and future work

This work proposed a deep learning model, VISTA, com-

bining a model for extracting global and local features and

autoencoder and multi-layer classifier networks for pre-

dicting the gradability of retinal fundus images. The

autoencoder consists of two networks: encoder and deco-

der. The autoencoder network is used to reconstruct the

input fundus image. Our model also includes a multi-layer

classifier fed by features extracted from the encoder net-

work to rank the gradability of the fundus image as Good

or Usable and Rejected. VISTA’s learning approach com-

bines the CE loss function based on supervised learning

and self-supervised learning by comparing the recon-

structed image to the target image (i.e. the input image).

The VISTA model based on the VGG-16 backbone as the

base of the encoder network and using the MSE as a

reconstruction loss function achieved an overall accuracy

of 0.91, precision of 0.88, recall of 0.89, and F1-score of

0.89. Our model outperformed the state-of-the-art retinal

gradability assessment in the three class (Good, Usable,

and Rejected) tasks. The VISTA model can correctly

identify the visual features of eye image gradability for a

more precise grading system. In essence, the integration of

Fig. 10 Clustering analysis using k-means on RISE outputs, revealing uncovering unique arrangements and underscoring the relevance of the

optic disc in enhancing the interpretability of fundus image quality assessment

Table 10 Average time (with standard deviation) in seconds for each

interpretation method in different classes. The coefficient of variation

measures relative variability relative to the mean

Class Gradient Grad-CAM Occlusion RISE

Good 0.21 (0.01) 0.25 (0.01) 16.99 (1.04) 414.59 (15.52)

Rejected 0.20 (0.01) 0.24 (0.01) 15.93 (1.27) 392.29 (20.31)
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interpretability methods serves as a means to provide

ophthalmologists with interpretable visual feedback, elu-

cidating how our model evaluates the quality of fundus

images. We will also consider further incorporating inter-

pretability metrics directly into the optimization process to

ensure a more holistic approach to model development and

refinement. This emphasis on interpretability is pivotal,

particularly in medical image analysis, where transparency

and trust are primary. Additionally, despite its time-inten-

sive nature, we are proactively engaged in ongoing opti-

mization efforts to enhance the efficiency of RISE. Our

goal is to streamline RISE for real-time applications

further.
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