Realizing LLMs’ Causal Potential Requires
Science-Grounded, Novel Benchmarks

Abstract

Recent claims of strong performance by Large Language Models (LLMs) on causal
discovery tasks are undermined by a critical flaw: many evaluations rely on bench-
marks likely included in LLMs’ pretraining data, raising concerns that apparent
success reflects memorization rather than genuine reasoning. This risks creating a
misleading narrative that LLM-only methods, which ignore observational data, out-
perform classical statistical approaches. We challenge this view by asking whether
LLMs truly reason about causal structure, how such reasoning can be measured
reliably without leakage, and whether LLMs can be trusted for causal discovery
in real scientific domains. We argue that realizing their potential for accelerating
scientific discovery requires two shifts: developing robust evaluation protocols
based on recent, unseen scientific studies to avoid dataset leakage, and designing
hybrid methods that combine LL.M-derived world knowledge with statistical ap-
proaches. To this end, we outline a practical recipe for constructing causal graphs
from post-training scientific publications, ensuring evaluations remain leakage-free
while encompassing both established and novel causal relationships.

1 Introduction

Causal discovery, the task of learning an underlying causal graph, is a cornerstone of causal inference.
It enables identification of adjustment variables for treatment effect estimation [44}37]], and reveals
pathways of interventions in interventional and counterfactual analyses [36,|38]. Classical approaches
rely on observational data, including constraint-based methods that use statistical tests to infer
conditional independencies [48} 47, 15, 49], score-based methods that optimize a goodness-of-fit
score over candidate graphs [[16} 10,35, 158]], and functional-causal models exploiting assumptions
such as additive noise or non-Gaussian residuals [[17, [55) 145]. Yet, these methods face inherent
limitations: observational data alone cannot disambiguate causal direction between dependent
variables without strong assumptions or external supervision [[13} 14} (19} 25]].

Recent advances in Large Language Models (LLMs) have sparked interest in leveraging their encoded
world knowledge for causal discovery [27, 3,131,152]. However, evaluations often rely on well-known
benchmarks such as BNLearn, which likely appeared in LLM pretraining corpora, raising concerns
that reported success reflects memorization rather than reasoning [53]]. Indeed, Jin et al. [23| 22]]
show that when domain knowledge is stripped away, LLMs fail to infer causal relationships reliably.
This casts doubt on the narrative that LLM-only approaches can outperform statistical methods by
ignoring observational data.

Despite this, LLMs hold promise for supporting scientific discovery. Scientific studies often mix well-
established and novel variables: even if LLMs only recall known relationships, they can accelerate
graph construction, while any genuine reasoning ability would add further value. To realize this
potential, we argue that two challenges must be addressed: (1) Developing principled evaluation
benchmarks that eliminate dataset leakage by using recent scientific studies. (2) Designing hybrid
methods that integrate LLM-derived knowledge with data-driven inference. Our work contributes
to both directions: we introduce a recipe for obtaining leakage-free, science-grounded benchmarks
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Figure 1: (a) Our novel benchmarks were created by scientists post-2021 with expert consensus, unlike
BNLearn graphs from the 1990s likely memorized by LLMs. Using pre-2021 LLM checkpoints ensures fair
evaluation on unseen graphs. (b) Comparing PC, LLM-BFS, and hybrid PC+LLM on Asia vs. Alzheimers
(post-2021, unseen) shows the performance gap between PC and LLM diminishes significantly on unseen data.

Dataset M1 M2 M3 (Nodes) M3 (Edges)

0% 25% 50% 75% || 0% 25% 50% 75% | 0% 25% 50% 75% | 0% 25% 50% 75%
Asia 0.75 091 1.00 1.00(/1.00 1.00 1.00 1.00([0.25 1.00 1.00 1.00({/0.00 1.00 1.00 1.00
Cancer 1.00 1.00 1.00 0.5(/1.00 1.00 1.00 1.00|/1.00 1.00 0.80 1.00|/1.00 0.86 1.00 0.67
Earthquake || 0.60 0.75 0.67 0.50(/1.00 1.00 1.00 1.00 || 1.00 0.86 1.00 1.00|/1.00 1.00 1.00 1.00
Child 1.00 0.11 0.06 0.53]/0.44 0.55 0.44 0.36(/1.00 0.85 0.89 0.00(/0.17 0.00 0.30 0.16
Insurance 0.06 0.11 045 0.59(0.36 0.44 0.24 0.00(0.21 0.25 0.92 0.77|/0.00 0.00 0.00 0.00
Alarm 1.00 0.72 0.79 0.891(/0.49 0.38 0.12 0.00(0.97 0.72 0.92 0.00(/0.43 0.10 0.00 0.00

Table 1: F1 scores for memorization tests (M1-M3) across datasets at varying context levels ().

leveraging recent publications that are released after the training cut-offs of the LLMs, and we
demonstrate that hybrid methods combining LLM predictions with classical algorithms outperform
both approaches individually (Figure|[T).

2 Limitations of Existing Benchmarks and the Case for Science-Grounding

We critically examine existing causal discovery benchmarks to assess their suitability for LLM-based
causal discovery. Our analysis reveals that many benchmarks are compromised by memorization, ne-
cessitating the development of novel, science-grounded datasets. For example, popular datasets such
as BNLearn are often memorized by LLMs, undermining fair evaluation. Detecting memorization is
particularly challenging for closed-source models like GPT-4, where training data is unknown. Prior
work [[7] shows that overlap with training data does not necessarily imply memorization, as it depends
on factors such as model size and data frequency in the corpus. Hence, explicit memorization tests are
needed, and current techniques typically rely on carefully designed prompts that reveal partial data
and test whether LLMs reproduce missing parts verbatim. Such methods have proven effective for
tabular [6], image [29], and text data [34. 5] [18} 8] 28]]. Building on this, our paper extends the idea to
causal graphs by designing reconstruction-based tests, where LLMs are prompted with partial graph
information and evaluated on their ability to infer missing structures across three natural categories:

M1 Given the dataset name and a random a'% subset of nodes, predict the remaining nodes.
M2 Given dataset name, the full list of nodes, and an a% of edges, identify the remaining edges.
M3 Given a dataset and an a-subgraph, predict the remaining graph.

Table|[T]shows F1 scores for M1-M3 across datasets and context levels («), with prompts detailed in
Appendix [E] Several trends emerge: (i) many datasets yield near-perfect F1 even at v = 0, strongly
indicating memorization; (ii) M2 achieves high accuracy even with only node lists, questioning the
value of traversal-based strategies like LLM-BFS; (iii) performance drops as graph size grows, evident
in Child and Insurance; and (iv) these patterns collectively cast doubt on existing benchmarks and
emphasize the need for leakage-free alternatives.

In summary, our experiments show that LLMs can reproduce BNLearn [42] graphs with near-perfect
accuracy, strongly indicating memorization and undermining their credibility as benchmarks.



In-Degree

Causal Graph Nodes Edges Colliders | Min Median Max | Longest Path
Alzheimer’s 11 19 1 0 2 4 5
COVID-19 Respiratory 11 20 1 0 2 4 7
Sweden Transport 11 10 3 0 1 3 3
COVID-19 Complications 63 138 23 0 2 7 23

Table 2: Characteristics of novel science datasets introduced in our work.

Dataset M1 M2 M3 (Nodes) M3 (Edges)
0% 25% 50% 75% || 0% 25% 50% 75% | 0% 25% 50% 75% | 0% 25% 50% 75%
Alz. 0.00 0.11 0.12 0.00[[0.00 0.00 0.00 0.00[/0.00 0.62 0.67 0.80]/0.00 0.34 0.23 0.00

C19-small | 0.00 0.00 0.00 0.00|/0.00 0.00 0.00 0.000.00 0.00 091 1.00([0.00 0.00 0.12 0.00
C19-large [|0.00 0.00 0.00 0.00|{0.00 0.00 0.00 0.000.00 0.00 0.00 0.00(/0.00 0.00 0.00 0.00
Sweden 0.00 0.00 0.00 0.00{/0.00 0.00 0.00 0.00|[0.00 0.67 0.67 0.00|/0.00 0.00 0.06 0.07

Table 3: Results of memorization tests conducted on the novel science datasets.

2.1 Science-Grounded Datasets

To ensure fair evaluation, we construct new benchmarks grounded in recent scientific literature. Prior
work [23 |9, 22]] often relies on synthetic or toy scenarios with limited real-world relevance. Inspired
by the original BNLearn construction, we design datasets that reflect the complexity of scientific
studies. Our methodology involves: (a) identifying recent studies that provide or imply causal graphs,
and (b) extracting source data when available, or generating synthetic data otherwise.

We curated four datasets from their corresponding papers: (1) Alzheimer’s [1]], modeling causal
relations among clinical phenotypes and MRI-derived radiological features; (2) COVID-19 Respi-
ratory [33], capturing disease progression within the respiratory system; (3) COVID-19 Compli-
cations [33]], extending (2) to multi-organ variables including heart and kidneys; and (4) Sweden
Traffic [57], describing bus delay propagation from Google Transit Feed Specification data. Dataset
statistics are reported in Table [2] with detailed descriptions in App |C] Since these graphs lack
observational data, we generate both linear and non-linear synthetic observational datasets (App [D).

Memorization Tests. Applying reconstruction tests to these datasets yields F1 scores near zero
(Table [3), indicating science-grounded datasets are substantially less prone to leakage and better
suited for fair benchmarking.

3 Call for Hybrid Methods

We evaluate LLM-only methods on the four science-grounded datasets, highlighting their limita-
tions and motivating hybrid approaches that combine LLMs with statistical methods. Experiments
span state-of-the-art techniques including GES [10]], NOTEARS [58], PC [48]], FCI [47], Direct
LiINGAM [46], ICA LiINGAM [45], ANM, and LLM-based methods LLM Pairwise [27]] and LLM
BFS (details in Appendix [B).

LLM-Only Methods Fall Short on Novel Science Datasets. Table 4| shows LLM-only methods
achieve markedly lower accuracy on science-grounded datasets compared to standard BNLearn
benchmarks [24]. F1 scores fall below 0.3 on Sweden Transport and Covid-19 Complications, and
remain under 0.6 on Covid-19 Respiratory and Alzheimers. Among statistical baselines, LINGAM
variants perform best. For LLM-only methods, LLM BFS proves most effective while requiring
fewer prompts than pairwise querying, though it struggles with coherence on the largest benchmark
(Covid-19 Respiratory Complications), where statistical methods also degrade.

Hybrid Methods Bridge the Gap. We evaluate LLM+PC, which uses LLM BFS to generate a
prior graph Gpyior guiding PC during skeleton discovery and edge orientation. Prior edges X — Y
or X < Y prevent PC from removing X <+ Y, even when statistical tests detect conditional
independence. Table [f] shows hybrid variants using Fisher’s Z-test and KCI consistently achieve the
highest F1 scores, outperforming LLM-only and statistical baselines while maintaining robustness
across datasets. We now explore several LLM+PC variants.

Ablation 1: Dropping Edges. We evaluate post-processing LLM+PC by pruning edges using
statistical tests. After ensuring acyclicity, we identify witness sets for remaining edges, perform
conditional independence tests, and remove the top a% edges with lowest p-values (o« = 0% is
unaltered LLM+PC; higher « yields sparser graphs). Table [5] shows edge pruning consistently



Methods || Covid-19 Resp. || Alzheimers Sweden Transport || Covid-19 Compl.
Pre| Rec F1 Pre| Rec F1 Pre| Rec F1 Pre| Rec F1
GES 0.25] 0.10| 0.14]| 0.08| 0.05| 0.06] 0.27] 0.27| 0.27 - -
PC(Fisherz) 0.14] 0.05| 0.07|| 050| 0.52| 0.51| 0.54| 0.60 | 0.57| 0.05| 0.03| 0.04
PC(KCI) 0.33] 0.10| 0.15|| 036| 0.21| 0.27| 0.28 04| 0.33|| 0.05| 0.01]| 0.02
ICA LINGAM 0.44 02| 0.28| 0.58| 0.52| 0.55] 0.71 | 0.50| 0.59( 0.07 | 0.01| 0.01
Direct LINGAM 0.33] 0.10| 0.15|| 0.50| 0.10| 0.17] 0.62| 0.50| 0.55| 0.00| 0.00
ANM 0.44| 020 0.28| 0.30| 0.15| 0.20|| 0.22 0.2] 021 0.04] 0.04| 0.04
FCI 0.30| 0.15| 0.20|| 0.42| 0.26| 0.32] 0.50 0.3| 0.38|| 0.02]| 0.03| 0.03
LLM pairwise 0.26| 0.35| 030 0.17| 031| 0.22]] 0.20| 0.50| 0.29 - -
LLM BFS 0.90 | 0.45 | 0.60 || 0.69 | 0.47| 0.56| 0.25 04| 0311 0.06 | 0.04| 0.05
PC(Fisherz) + LLM || 0.64 | 0.80 | 0.71 0.58| 0.78 | 0.66 || 0.64 | 0.70 | 0.67 || 0.06 | 0.07 | 0.07
PC(KCI) + LLM 0.90 | 0.45 | 0.60 || 0.64 | 0.84 | 0.73 0.50| 0.50| 0.50( 0.07 | 0.05 | 0.06

Table 4: Results on Non-Linear Observational Dataset. GES and LLM-pairwise are compute-intensive methods
and were not feasible to run for the larger Covid-19 Complications dataset.

degrades F1 scores across datasets, indicating the original LLM+PC output should be retained
without aggressive post-hoc pruning.

055 050 0.52 053 053 053 062 050 055
042 025 o31fj 061 o042 o0s0f o4 02 027 Table 7: Sweden dataset with expert-provided
ground-truth negative prior

% Edges COVID-19 Alzheimer’s Sweden

o b P R F1 P R Fl P R F1 P R F1
0 064 080 071 || 058 078 0.66 || 0.63 070 0.67 PC 0.54 0.60 0.57
5 064 070 067 || 058 074 065 060 060 060 PC+LLM 0.64 0.70 0.67
10 062 065 063] 057 068 062] 0.66 060 0.63 PC+LLM (-ve prior) 0.70 0.70 0.70

Table 5: Removing edges based on p-Value

a% COVID-19 Resp. Alz.
R Fl P R F1
go g0 100 (LLM) 090 045 060 || 0.69 047 056
o ze 0(PCALLM) || 057 070 0.63 056 070 0.62
25 060 062 061 056 061 058
50 060 054 050 || 055 055 055
% Covid-19 Resp ‘Alzheimers °°Covid-19 Resp Alzheimers 75 0.67 0.48 0.56 0.61 0.49 0.54
(2) GPT-4 Turbo (b) Llama 3.1 Table 8: PC+LLM performance under varying levels

Table 6: Evaluation of GPT-4-Turbo and Llama 3.1 ! randomly sampled LLM-derived negative priors

Ablation 2: Incorporating Priors on Missing Edges. We evaluate whether PC should use both
positive and negative edge priors. Negative edges come from expert knowledge or LLM inferences
(e.g., edges not in top-k predictions). We modify LLM+PC to forcibly remove negative prior
edges during skeleton discovery. Ground-truth negative priors improve performance with precision
gains without recall loss (Sweeden Traffic, Tab. 6). However, LLM-derived negative priors show
inconsistent improvements due to noise. Varying o (percentage of non-LLM edges used as negative
priors) shows standard PC+LLM (a = 0) achieves best F1 compared to LLM-only (o« = 100) in
Tab. 7. Results demonstrate negative priors benefit performance only when high-quality.

Ablation 3: Extensions using Open-Source
LLMs. We explore open-source LLMs instead
of proprietary models, investigating: 1) train-
ing domain-specific models for causal inference,
and 2) end-to-end integration with discovery
methods. Both GPT-4-Turbo and Llama 3.1
maintain competitive performance on our bench-
marks, with Llama 3.1 showing interesting be- (a) GPT-4 Turbo (b) Llama 3.1

havior where pairwise comparison strategies outperform BFS methods. These results demonstrate our
benchmarks remain relevant for evaluating newer language models, supporting evaluation framework
robustness across different model architectures and training approaches.

F1 Score

*°Covid-19 Resp Alzheimers Covid-19 Resp Alzheimers.

4 Conclusion

We showed that many benchmarks in LLM-based causal discovery are compromised by leakage
and fail to test genuine reasoning. To address this, we introduced a lightweight strategy for building
robust, science-grounded benchmarks. Our results challenge the view that LLM-only methods suffice,
instead demonstrating the promise of hybrid approaches that combine LLMs with observational data,
pointing to a feasible way of using LLMs in scientific causal discovery.
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A Code

We release the anonymous code at the url : https://anonymous.4open.science/r/novographs-5005/

B Background: Types of causal discovery algorithms

We categorize related work into: (a) data-driven methods, which rely solely on observational datasets
to infer the causal graph, (b) LLM-based methods, which rely solely on prompt responses, and (c¢)
hybrid methods, which use both LLMs and observational datasets.

Data-Driven Methods. Constraint-based methods for causal discovery, such as the PC algorithm [48]]
and the FCI algorithm [47], identify causal relationships by testing conditional independencies. Vari-
ants of these methods [12} 41 20,51} 154, 43]] aim to improve scalability and accommodate different
assumptions. While some of these methods offer asymptotic consistency guarantees, their perfor-
mance in practice often depends on the power of the statistical hypothesis tests applied to determine
conditional independencies from observational data, a factor we examine in our experiments. Standard
tests include Fisher’s z-test [49] for linear dependencies and kernel-based tests [56]] for non-linear
dependencies. Other methods include score-based methods [10l 35} 21}, 40] that optimize a score
function over graphs, including recent versions based on continuous optimization [S8]; and parametric
methods that assume parametric assumptions about the functional relationships among nodes in a
causal graph, e.g., assuming non-gaussian noise [45} 30].

Leveraging LLMs for learning Causal Graphs. There is a growing interest in augmenting obser-
vational data with meta-knowledge, aiming for improved causal predictions [1]. Large Language
Models (LLMs) offer a promising source of such augmentation, requiring minimal manual effort.
For instance, the pairwise approach [27, 52} 132] finds the causal graph using prompts like “Does A
cause B?” for each pair of nodes, then coalesces the graph based on the responses. While effective,
this method requires O(n?) prompts for n nodes, making it costly. Alternative approaches [24]
reduce prompt complexity by building the graph with a breadth-first search. Another recent approach
considers querying LLMs over triplet of variables [S0].

Hybrid Approaches. ALCM [26] is a recent approach that begins with the PC algorithm and
subsequently queries the LLM to validate each edge predicted by the PC. Other methods in this
category initiate with a prior LLM-based graph and adjust it using observational data [4} 2] or
use LLM as a post-processing critic for data-based output [31}150]. [L1] introduces a method that
adaptively defers to either expert (LLM) recommendations or data-driven causal discovery based on
their reliability. In their work, [24] presented a variant that incorporates the p-values from statistical
tests into the prompts while constructing the causal graph. However, the authors found that the
inclusion of p-values does not yield any improvement over their standalone LLM variant. This
indicates that merely adding superficial data statistics to the prompts is less effective, highlighting the
necessity for explicit mechanisms to integrate LLM and data-driven graph predictions, and for testing
such mechanisms on non-memorized benchmarks.

However, almost all of the above studies use popular, existing graph datasets such as bnlearn for
evaluation of LLM-based methods. In the next section, we show why such evaluation is not reliable.

C Detailed Description of the Datasets

In this section we discuss the four causal graphs, each developed in a recent publication through
careful expert elicitation and consensus. Key statistics for these graphs are summarized in Table 2]
As new LLMs are introduced, the recipe can be repeated to generate more novel datasets.

Alzheimer’s Graph The first dataset is the Alzheimer’s graph from [1]], developed with input from
five domain experts. It includes two broad categories of variables: clinical phenotypes (e.g., age, sex,
education) and radiological features extracted from MRI scans (e.g., brain and ventricular volumes),
as illustrated in Fig.[3| The consensus graph was built by retaining only those edges that were agreed
upon by at least two of the five experts. As highlighted in Figure 21 of [1]], there is substantial
disagreement among the individual expert graphs, underscoring the difficulty for automated methods
such as LLMs to infer a consensus graph. Although the graph’s structure was developed independently,
its variables align with a subset of those used in the Alzheimer’s Disease Neuroimaging Initiative [39].



COVID-19 Respiratory Graph The second graph models the progression of COVID-19 within
the respiratory system, as introduced in [33]. It tracks the disease’s path from initial viral entry to
pulmonary dysfunction and symptomatic manifestations. The graph was developed through iterative
elicitation sessions involving 7—-12 domain experts and released on medRxiv in February 2022.
Figure 2] presents the graph with color-coded nodes corresponding to different stages of infection:
viral entry (pink), lung mechanics (yellow), infection-induced complications (orange), and observable
symptoms (cyan). Each variable captures a phase in the progression from infection to respiratory
distress. The graph was refined through group workshops and follow-ups, followed by independent
expert validation to ensure consensus and accuracy.

COVID-19 Complications Graph The third dataset extends the respiratory model to include systemic
complications resulting from COVID-19, again from [33]]. This graph captures how the virus can
affect organs beyond the lungs, such as the heart, liver, kidneys, and vascular system. It includes
variables like vascular tone, blood clotting, cardiac inflammation, and ischemia, while retaining
key pulmonary indicators such as hypoxemia and hypercapnia (see Fig. [2). Constructed using a
similar expert elicitation process, this graph focuses on mapping primary pathways that lead to severe
complications, including immune overreactions and multi-organ failure. It distinguishes between
observable variables used in clinical monitoring and latent variables that reflect complex physiological
states. With 63 nodes and 138 edges, this is the most complex of the four graphs and presents a
challenging testbed for causal discovery algorithms.

The Sweden Traffic Dataset The Sweden traffic dataset was introduced in a recent study [S7] aimed
at modeling bus delay propagation through a causal graph. Each node corresponds to a variable that
influences delays, such as arrival_delays, dwell_time, and scheduled_travel_time. Unlike
the previous three studies, a notable feature of this work is that the true graph is not known since it
deals with real-world bus traffic data. Instead, the authors provide expert annotations specifying a
subset of edge that should definitely exist, and a subset that are forbidden. Thus, the ground-truth
contains not only positive edges that should be present in the causal graph but also negative edges
that must be absent. The dataset is inspired by the General Transit Feed Specification (GTFS),
a standardized format for public transit schedules and geographic data. As such, benchmarking
causal discovery methods on this dataset holds promise for informing real-world applications in
transportation systems analysis.

D Description of the Synthetic Observational Data

For datasets where source data is unavailable, we generate synthetic observational data based on
expert-designed causal graphs, following the approach used in the BNLearn benchmark. We consider
two settings: (a) Linear and (b) Non-Linear, differing in the form of structural equations used
for each node. Data is generated in topological order over the graph. Root nodes are sampled
as x; ~ N(0,1). For non-root nodes, we use: x; ~ f;(Pa;) + ¢; where Pa; denotes the values
of the parents of node 7, and ¢; ~ N(0,1) is an exogenous noise term. In the Linear setting,
fi(Pa;) = w'Pa; with weights w drawn from 2/(0,2) to ensure consistent scaling across graph
depths. In the Non-Linear setting, f; is parameterized by a randomly initialized 3-layer MLP with
ReLU activations and four neurons per hidden layer: f;(Pa;) = MLP(Pa;) This setup enables flexible
modeling of complex non-linear relationships, as in prior work [59].

E Prompts for Memorization Tasks

Prompt Template for M1 Task

You are provided with the name of the bnlearn dataset: {dataset_name} and the following
nodes: {given_nodes}. Give me the remaining nodes. Strictly output the nodes in the
format: [’nodel’, ’node2’, ’node3’].

Note: Add bnlearn if it is a bnlearn dataset.
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Prompt Template for M2 Task

You are provided with the name of the bnlearn dataset: {dataset_name}, all nodes:
{all_nodes}, and the following edges: {given_edges}. Give me the remaining edges of
the graph. Strictly output the edges in the format: [[’nodel’, ’node2’], [’nodel’,
’node3’], [’node2’, ’node3’]].

Note: Add bnlearn if it is a bnlearn dataset.

Prompt Template for M3 Task

You are provided with the name of the bnlearn dataset: {dataset_name}, the following
nodes: {given_nodes}, and the following edges: {given_edges}. Give me the remaining
nodes and edges. Strictly output the nodes and edges in the format and do not add any text
before or after the list:

{’remaining nodes’: [’nodel’, ’node2’, ’node3’], ’remaining _edges’:
[[’nodel’, ’node2’], [’nodel’, ’node3’], [’node2’, ’node3’]]}

Note: Add bnlearn if it is a bnlearn dataset.

F Visualizations of Novel Sciences benchmark

The Covid-19 respiratory dataset represents the full pathway of Covid-19’s impact on the body,
organized into six distinct subsystems: vascular, pulmonary, cardiac, system-wide, background, and
other organs. This dataset provides a comprehensive view of Covid-19’s effects as observed across
various aspects of human anatomy.

The complexity of this dataset stems from the high level of interconnections between the subsystems,
resulting in a dense causal graph structure with 63 nodes and 138 edges. This density, along with
numerous collider structures, makes it exceptionally challenging to analyze, even with advanced
statistical algorithms and causal discovery methods.
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Figure 2: Covid-19 Complications Graph, reproduced from [33]].
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dataset reproduced from [33].

F.1 Sweden Urban Bus Operation Delays (Sweden Transport) Dataset Description

The Sweden Transport dataset [57] contains temporal and operational information from a public bus
network. The variables in the dataset are defined as follows:
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Figure 4: Causal graph obtained from the Sweden Urban Bus Operation Delays dataset.

True assertion False assertion

Preceding stop delay — arrival delay Dwell time - preceding stop delay
Dwell time — arrival delay Dwell time — preceding section travel time
Scheduled travel time — arrival delay Scheduled headway — dwell time

Scheduled travel time — previous bus delay Section length — preceding section travel time
Preceding section travel time — preceding stop delay Preceding stop delay — preceding section travel time
Previous bus travel time — previous bus delay Previous bus delay - previous bus travel time
Recurrent delay — previous bus travel time Preceding stop delay — previous bus delay

Origin delay - preceding stop delay Scheduled travel time — preceding section travel time
Preceding section travel time — dwell time Section length — origin delay

Section length — scheduled travel time Origin delay — previous bus delay

Figure 5: Edges obtained from the Sweden Transport dataset. Both positive and negative causal edges
are shown. These tables are quoted from the original paper [57]] for ease of reference.

* Arrival Delays: Arrival delay of bus j at stop ¢; the difference between the actual arrival
time and the scheduled arrival time.

* Dwell Time: Actual dwell time at the preceding stop (i — 1); the difference between actual
departure and arrival time at stop ¢ — 1 for bus j.

* Preceding Section Travel Time: Actual running time between stops ¢+ — 2 and ¢ — 1; the
difference between arrival at 2 — 1 and departure from ¢ — 2.

* Scheduled Travel Time: Scheduled running time between stops ¢ — 1 and i; the difference
between scheduled arrival at ¢ and scheduled departure from 7 — 1.

* Preceding Stop Delay: Arrival delay of bus j at stop ¢ — 1; the difference between actual
and scheduled arrival time at stop ¢ — 1.

* Previous Bus Delay: Arrival delay (knock-on effect) of preceding bus 7 — 1 at stop ¢; the
difference between its actual and scheduled arrival time.

* Previous Bus Travel Time: Actual running time of bus j — 1 between stops ¢ — 1 and ¢;
used to indicate current traffic conditions.

* Recurrent Delay: Historical mean travel time of bus j at stop ¢ during the same hour on
weekdays; reflects recurrent congestion patterns.

* Origin Delay: Departure delay of bus j at the first stop; the difference between actual and
scheduled departure time.

* Scheduled Headway: Planned time interval between arrival times of buses j — 1 and j at
stop <.

* Section Length: Distance between stop ¢ — 1 and ¢ (in metres).
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Table 9: Results on Linear Observational Dataset.

methods || Covid-19 Resp. || Alzheimers || Sweden Transport || Covid-19 Compl.
Pre| Rec F1 Pre| Rec F1 Pre| Rec F1 Pre| Rec F1
GES 0.16| 0.20| 0.18| 0.26| 0.26| 0.26| 0.21| 0.30| 0.25 - -
PC(Fisherz) 0.31| 045| 0.37|| 047| 047| 047| 044| 0.80 | 0.57| 0.04| 0.02| 0.03
PC(KCI) 0.27| 0.25| 0.26|| 0.57| 042| 0.48] 0.66 | 0.80 | 0.72 0.03|0.015| 0.02
NOTEARS 0.13] 0.10| 0.11| 0.16| 0.26] 0.20| 0.16| 0.20| 0.18 - -
ICA LiINGAM 0.25] 0.20| 0.22 0.11| 0.26| 0.15] 0.21] 0.30| 0.25| 0.05 | 0.17| 0.07
Direct LINGAM 0.18| 0.35] 0.24| 0.20| 0.30| 0.24] 0.16] 0.30| 0.21|| 0.03| 0.17] 0.05
ANM 0.25] 0.20| 0.22 0.19 0.2| 0.19 0 0 -|| 0.04| 0.58 | 0.07
FCI 0.12] 0.15] 0.13]] 0.60 | 0.16| 0.25] 0.50| 0.40| 0.44| 0.04| 0.01] 0.01
LLM Pairwise 0.26| 035| 030 0.17| 031| 0.22 0.20| 0.50 | 0.29 - -
LLM BFS 0.90 | 045| 0.60 || 0.69 | 047| 0.56| 0.25| 0.40| 0.31] 0.06 | 0.04| 0.05
PC(Fisherz) + LLM || 0.46| 0.70 | 0.56| 0.54| 0.68 | 0.60 || 0.53 | 0.80 | 0.64 || 0.06 | 0.06 | 0.06
PC(KCI) + LLM 0.63 | 0.60 | 0.61 || 0.60 | 0.78 | 0.68 || 0.66 | 0.80 | 0.72 || 0.06 | 0.05| 0.05

G Results on Linear Observational Dataset

Statistical methods were applied to linearly generated data, and results were obtained using GPT-4
with a 2021 cutoff, facilitating a comparison of performance between traditional algorithms, the
LLM-based approach and our hybrid method.

H Ablations using Linear dataset

We conduct ablation studies using GPT-4 Turbo and LLaMA 3.1 on linearly generated data and ob-
served that our hybrid PC+LLM method outperforms both individual baselines. This demonstrates the
advantage of combining PC’s statistical rigor with LLM’s contextual reasoning for causal discovery.

m pPC i PC

[ LLM Pairwise [ LLM Pairwise
0.8/ HEE LLM BFS 0.8/ EEE LLM BFS
[ PC + LM [ PC + LM

°
o

F1 Score
o

F1 Score

0.2

0.0

Covid-19 Resp Alzheimers Covid-19 Resp Alzheimers

(a) GPT-4 Turbo (b) Llama 3.1

Figure 6: Evaluation of GPT-4-Turbo and Llama 3.1 models on Novel Sciences benchmarks. Notably, these
models were trained after the release of these datasets, so there is a possibility that they may have encountered
our datasets during training.

I Experiments for Research Question: RQ4

We conduct a series of ablation studies to assess the robustness and generalization ability of our
hybrid PC+LLM approach under various modifications to the data generation process.

Ablation 1: MLP Depth. We evaluate the impact of increasing the depth of the nonlinear generators
by replacing 3-layer MLPs in our default setting with 5-layer MLPs. The results in Table [I0] (left)
indicate that performance remains consistent, suggesting insensitivity to architectural depth.
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Ablation 2: Noise Distribution. To assess robustness under different exogenous noise assumptions,
we replace the default A/(0, 1) noise with A/(0,0.1) and /(0,1). As shown in Table [10] (right),
PC+LLM consistently outperforms the PC baseline across all settings.

Method COVID-19 Resp. Alzheimers Noise Method H CI?VID-I;Resp.Fl H l)Alzheml;ers -
P R F1 P R F1
N(0,0.1) PC H 0.34 0.40 0.37 H 0.38 0.37 0.38
LLM 0.90 0.45 0.60 0.69 0.47 0.56 e PC+LLM 0.58 0.70 0.63 0.56 0.68 0.62
PC 0.35 0.25 0.30 0.44 0.42 0.43 PC 0.60 030 040 058 036 045
PC+LLM || 073 055 063 || 060 078 0.68 u(,1) H . ‘ ; H ‘ ) ‘

PC+LLM || 085 0.60 0.70 060 0.63  0.62

Table 10: Left: Effect of deeper MLPs on performance. Right: Performance under noisy LLM-derived priors.

Ablation 3: MLP Initialization. We compare three initialization strategies for MLP weights:
uniform /(0, 1), standard normal, and Xavier normal. As seen in Table|1 1|(left), the hybrid method
retains its advantage across all configurations.

Ablation 4: Linear Coefficient Sampling. We vary the distribution used for sampling linear
SEM coefficients, testing ¢/(0,2), N'(0,2), and U (—1,1). Table|11] (right) shows that PC+LLM
consistently achieves superior recall and F1 scores.

Init. Method COVID-19 Resp. Alzheimers Coeff. Dist. Method COVID-19 Resp. Alzheimers
R F1 P R F1 P R F1 P R F1
Std Normal PC 0.44 0.20 0.28 0.35 0.37 0.36 N(0,2) PC 0.14 0.20 0.16 0.44 0.42 0.43
PC+LLM | 0.73 0.55 0.63 0.50 0.57 0.54 PC+LLM 0.66 0.70 0.68 0.59 0.68 0.63
. PC 0.38 0.40 0.39 0.40 0.47 0.43 PC 0.26 0.55 0.36 0.48 0.63 0.54
Xavier Normal Uu(-1,1)
PC+LLM | 0.59 0.80 0.68 0.54 0.68 0.60 PC+LLM 0.59 0.65 0.62 0.53 0.79 0.64

Table 11: Left: Performance across different MLP initializations. Right: Effect of different coefficient sampling
distributions.

In Summary, these results collectively demonstrate the robustness and effectiveness of our method
across a wide range of data-generating assumptions. Across all ablations, our PC+LLM hybrid
approach consistently outperforms the standalone PC method. These experiments effectively illustrate
the robustness of hybrid approaches.
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