
AMR Parsing with Action-Pointer Transformer

Anonymous

Abstract

Abstract Meaning Representation parsing be-
longs to a category of sentence-to-graph pre-
diction tasks where the target graph is not ex-
plicitly linked to the sentence tokens. How-
ever, nodes or subgraphs are semantically re-
lated to subsets of the sentence tokens, and
locality between words and related nodes is
often preserved. Transition-based approaches
have recently shown great progress in cap-
turing these inductive biases but still suffer
from limited expressiveness. In this work we
propose a transition-based system that com-
bines hard-attention over sentences with a
target-side action pointer mechanism to de-
couple source tokens from node representa-
tions. We model the transitions as well as
the pointer mechanism using a single Trans-
former model. Parser state and graph structure
information is efficiently encoded using atten-
tion heads. We show that our approach leads
to increased expressiveness while capitalizing
inductive biases and attains new state-of-the
SMATCH scores on AMR 1.0 (78.5) and AMR
2.0 (81.8).

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a sentence level seman-
tic formalism that encodes the meaning of a sen-
tence into a rooted directed acyclic graph where
nodes represent concepts and edges represent re-
lations (see Figure 1). For AMR parsing, the task
of generating the graph from a sentence, transition-
based algorithms (Nivre, 2008) derived from de-
pendency parsing are often applied. To account
for the higher complexity of AMR, various exten-
sions have been explored, such as transforming the
dependency parses into AMR (Wang et al., 2015),
introducing additional lookup tables for AMR con-
cepts (Damonte et al., 2016; Vilares and Gómez-
Rodríguez, 2018), dynamically adding extra tokens
for additional nodes (Guo and Lu, 2018; Vilares

boy

want-01

go-02 city name

YorkNew

ARG0

ARG0 ARG4 name

op1 op2ARG1

Figure 1: AMR graph expressing the meaning of the
sentence The boy wants to go to New York.

and Gómez-Rodríguez, 2018), utilizing a SWAP

action and collapsing nodes (Ballesteros and Al-
Onaizan, 2017; Naseem et al., 2019; Astudillo et al.,
2020) or a cache data structure (Peng et al., 2018).
These approaches explicitly capture the local graph-
sentence interaction and hold current state-of-the-
art results (Astudillo et al., 2020; Lee et al., 2020).

Despite their success, the transition-based ap-
proaches still suffer from limited expressiveness be-
cause some of the design principles of the original
dependency parsers do not transfer well to AMR.
For instance, in AMR multiple graph nodes may
correspond to one sentence token, but the transition
based parsers use the tokens to refer to both them-
selves and the graph nodes, requiring additional
workarounds for AMR. Another potential draw-
back of transition based AMR parsers is lengthy
action sequences. Most algorithms allow arcs only
between adjacent words in the stack. AMR has fre-
quent non-projective attachments, requiring addi-
tional actions to bring non-adjacent tokens together.
Long action sequences affect both a model’s ability
to learn and its decoding speed.

In contrast, another view of AMR parsing treats
it as a graph generation problem conditioned on
the source text, loosening the local semantic cor-
respondence between graph nodes and source to-
kens. The graph-based approaches (Zhang et al.,
2019a,b; Cai and Lam, 2020) directly tackle node
generation through seq-to-seq models and edge
generation with variants of attention mechanism by
comparing node representations (Peng et al., 2017;
Dozat and Manning, 2018). These approaches

le
m
m
a

REDUCE COPY SHIFT COPY LA(,ARG0) SHIFT REDUCE PRED(go-02) RA(,ARG1) LA(,ARG0)

The boy wants to go to New York .

1 2 3 4 5 6 7 8 9

se
ns
e-
01

boy want-01 go-02
ARG0

ARG1

Sentence

Actions

Graph

10

ARG0

22 4

Figure 2: Source sentence, target actions and AMR graph for the sentence The boy wants to go to New York
(partially parsed). The black arrow marks the current token cursor position. The circles contain the action indices
(used as ids), black circles indicate node creating actions. Only these actions are available for edge attachments.
Notice that the edge actions (at steps 5, 9 and 10) explicitly refer to past nodes using the id of the action that created
the node. The other participant of the edge action is implicitly assumed to be the most recently created graph node.

achieve competitive results without the restrictions
of transition-based approaches, but require graph
re-categorization, a form of graph normalization,
for performance.

In this work, we propose a novel AMR pars-
ing system, referred to as Action-Pointer sys-
tem, that combines the advantages of both the
transition-based approaches and more general
graph-generation approaches. We model parsing as
sequence-to-sequence problem, predicting graph
building actions from a source sentence. The core
idea is to put the target action sequence to a dual
use – as a mechanism for graph generation as well
as the representation of the graph itself. Inspired
by recent progress in pointer-based parsers (Ma
et al., 2018a; Fernández-González and Gómez-
Rodríguez, 2020), we replace the stack and buffer
by a cursor that moves from left to right and in-
troduce a pointer network (Vinyals et al., 2015)
as mechanism for edge creation. Unlike previous
works, we use the pointer mechanism on the target
side, pointing to past node generation actions to
create edges. This eliminates the node generation
and attachment restrictions of previous transition-
based parsers. It is also more natural for graph
generation, essentially resembling the generation
process in the graph-based approaches, but keeping
the graph and source aligned.

We model both the action generation and the
pointer prediction with a single Transformer model
(Vaswani et al., 2017). Similar to Astudillo et al.
(2020), we model the parser state by masking cross-
attention. In our case, it is based simply on a mono-
tonic action-source alignment indicating cursor po-
sition, rather than stack and buffer contents. Finally
we also embed the AMR graph structural informa-
tion in the target decoder, through a novel step-
wise incremental graph message passing method

(Gilmer et al., 2017) enabled by the decoder self-
attention mechanism.

Experiments on both AMR 1.0 and AMR 2.0
benchmark datasets show the effectiveness of our
Action-Pointer system. We establish a new state-
of-the-art on both datasets for AMR parsing, sur-
passing even the best models trained with large
amounts of silver data.

2 AMR Generation with Action-Pointer

We describe the process of generating the AMR
graph from a source sentence through a sequence
of actions, reducing the graph generation problem
to an action sequence generation problem. Figure 2
shows a partially parsed example of the source sen-
tence, action sequence and associated AMR graph
for the proposed transitions. Given a source sen-
tence x = x1, x2, . . . , xS , our transition system
works by scanning the sentence from left to right
using a cursor ct ∈ {1, 2, . . . , S}. Cursor is oper-
ated by actions at step t:

SHIFT moves cursor one position to the right,
such that ct+1 = ct + 1. SHIFT happens after all
the nodes and edges spawned by the current token
are completed.

REDUCE is a special case of SHIFT used to
indicate that no action was performed conditioned
on the token at current cursor position.

At a cursor position ct, we can generate any num-
ber of nodes and edges through following actions:

COPY predicts an AMR node at the current to-
ken xct . Since AMR nodes are often lemmas or
propbank frames, two versions of this action exist
to copy the lemma of xct or provide the first sense
(frame−01) constructed from the lemma. This cov-
ers a large portion of the total AMR nodes. It also

helps generalize for predictions of unseen nodes.
We use an external lemmatizer for this action.

PRED(LABEL) predicts an AMR node with
name LABEL from the node names seen at train
time and not predictable by the COPY actions.

LA(ID,LABEL) creates an arc with LABEL from
the most recently generated node to a previous node
with position ID. Note that action indices are used
for this pointing mechanism and we can only point
to past node generating actions.

RA(ID,LABEL) creates an arc with LABEL

from the node at position ID to the most recently
generated node.

The node prediction actions are followed by edge
creation actions. Therefore, It is always possible to
establish an edge between the last predicted node
and any previous node. The use of a cursor variable
ct decouples node reference from source tokens, al-
lowing to produce multiple nodes and edges (see
Figure 3), even the entire AMR graph if necessary,
from a single token.The only restriction is that all
inbound or outbound edges between current node
and all previously produced nodes need to be gen-
erated before predicting a new node or shifting the
cursor. This provides more expressiveness and flex-
ibility than previous transition-based AMR parsers,
while keeping a strong inductive bias.

The above listed basic actions can naturally gen-
erate multi-node subgraphs from single tokens.
However, we found that in practice, breaking such
subgraphs into individual actions improves parser
performance only when such breakdown is nec-
essary to recover the gold graph. In other words,
when internal nodes of the subgraph have exter-
nal attachments. Furthermore, sometimes spans of
multiple tokens correspond to one or more nodes
in the graph. This is mainly the case for dates and
named-entities. Similarly to Ballesteros and Al-
Onaizan (2017), two additional actions are used to
spawn entire subgraphs from one or more tokens
(see Figure 6 in Appendix for an example):

MERGE merges tokens xct and xct+1 and moves
the cursor one position to the right. Usually used
before SUBGRAPH action described below.

SUBGRAPH(LABEL) produces a subgraph with
a LABEL for current token(s). Since nodes are
represented by actions, the whole subgraph has

Actions Sentence Graph

COPY_LEMMA your opinion matters

PRED(thing) your opinion matters

PRED(opine-01) your opinion matters

RA(2,ARG1-of) your opinion matters

LA(1,ARG0) your opinion matters

SHIFT your opinion matters

COPY_SENSE01 your opinion matters

LA(2,ARG0) your opinion matters
ARG0

2

3

7

6

5

4

1

8

ARG1-of
you thing opine-01 matter-01

ARG1-of
thing opine-01 matter-01you

ARG1-of
thing opine-01you

ARG1-of
thing opine-01you

ARG1-of
thing opine-01you

thing opine-01you

thingyou

you

ARG0

ARG0

ARG0

ARG0

Figure 3: Step-by-step actions on the sentence your
opinion matters. Creates subgraph from a single word
(thing :ARG1-of opine-01) and allows attachment to all
its nodes. The cursor is at underlined words.

only one action representing it. Any future attach-
ments can only be made to the root of the subgraph.

Similar to prior transition-based approaches, at
train time an oracle provides the optimal action se-
quence for a given sentence and graph. This oracle
acts as rule-base teacher informed by pre-computed
word-node alignments. We use the alignments gen-
eration method from Astudillo et al. (2020). For the
proposed action set, it is easy to see that it suffices
to produce all nodes aligned to a word. The ora-
cle assumes that in such cases, the aligned nodes
make a connected subgraph which is traversed in
pre-order for node generation. The closer arcs are
generated before the further ones.

3 Action-Pointer Transformer

3.1 Basic Architecture
The backbone of our model is the multi-layer
encoder-decoder Transformer (Vaswani et al.,
2017), combined with a pointer network (Vinyals
et al., 2015). The probability of an action se-
quence y = y1, y2, . . . , yT for input tokens x =
x1, x2, . . . , xS is given in our model by

P(y | x) =
T∏
t=1

P(yt | y<t,x)

=

T∏
t=1

P(at, pt | y<t,x)

=

T∏
t=1

P(at | a<t,p<t,x)P(pt | a≤t,p<t,x)

(1)

where at each time step t, we decompose the target
action yt into the pointer-removed action and the
pointer value with yt = (at, pt). A dummy pointer
pt = null is fixed for non-edge actions, therefore
we have

P(pt | a≤t,p<t,x) = [P(pt | a<t,p<t,x)]γ(at)

where γ(at) is an indicator variable set to 0 if at is
not an edge action and 1 otherwise.

Given a sequence to sequence Transformer
model with N encoder layers and M decoder lay-
ers, each decoder layer is defined by

dm = FFm(CAm(SAm(dm−1,dm−1), eN))

where FFm(), CAm() and SAm() are feed-
forward, multi-head cross-attention and multi-head
self-attention components respectively1. eN is the
output of last encoder layer and dm−1 is the output
of the previous decoder layer, initialized to be the
embeddings of the action history y<t concatenated
with a start symbol.

We model P(at | y<t,x) the standard way by
projecting dMt into the action vocabulary D. We
model P(pt | y<t,x) using one self-attention head
at the top layer of the decoder SAM . This is a
natural choice, since this head is likely to have high
values for the nodes involved in the edge direction
and label prediction. Note that the edge action
and its pointing value are both output at the same
step from the top decoder layer. This essentially
lets the model multitask. However, the specialized
pointer head is also part of the overall self-attention
mechanism used to compute the model’s hidden
representations, thus making actions distribution
aware of the pointer distribution.

Our transition system moves the cursor ct over
the source from left to right during parsing, essen-
tially maintaining a monotonic alignment between
target actions and source tokens. We encode the
alignment ct with hard attentions in cross-attention
heads CAm() with m = 1 · · ·M at every decoder
layer. We mask one head of the cross-attention to
see only the aligned source token at ct, and aug-
ment it with another head masked to see only po-
sitions > ct. This is similar to the hard attention
in Peng et al. (2018) and parser state encoding in
Astudillo et al. (2020).

As in prior works, we restrict the output space of
our model to only allow valid actions given x,y<t.

1Each of these are wrapped around with residual, dropout
and layer normalization operations removed for simplicity

The restriction is not only enforced at inference, but
is also internalized with the model during training
so that the model can always focus on relevant
action subsets when making predictions.

3.2 Graph Embedding

Incrementally generated graphs are usually mod-
eled via graph neural networks (Li et al., 2018),
where a node’s representation is updated from the
collection of it’s neighboring nodes’ representa-
tions by message passing (Gilmer et al., 2017).
However, this requires re-computation of all node
representations every time the graph is modified,
which is expensive, prohibiting its use in previous
graph-based AMR parsing works (Cai and Lam,
2020). To better utilize the intermediate topologi-
cal graph information without losing the efficient
parallelization of Transformer, we propose to use
the edge creation actions as updated views of each
node, that encode this node’s neighboring subgraph.
This does not change the past computations and
can be done by altering the hard masking of the
self-attention heads of decoder layers SAm() . By
interpreting the decoder layers as implementing
message passing vertically, we can fully encode
graphs up to depth M .

Given a node generating action at = v, it is fol-
lowed by k ≥ 0 edge actions at+1, at+2, . . . , at+k
that connect the current node with previous nodes,
pointed by pt+1, pt+2, . . . , pt+k on the target side.
This also defines k graph modifications, expand-
ing the graph neighborhood on the current node.
Figure 4 shows an example for the sentence The
boy wants to go to New York, with node prediction
actions at positions t = 2, 4, 8, with k being 0, 1,
2, respectively. We use the steps from t to t+ k in
the Transformer decoder to encode this expanding
neighborhood. In particular, we fix the decoder
input as the current node action v for these steps,
as illustrated in the input actions in Figure 4. At
each intermediate step τ ∈ [t, t + k], 2 decoder
self-attention heads SAm() are restricted to only
attend to the direct graph neighbors of the current
node, represented by previous nodes at positions
pt, pt+1, · · · , pτ as well as the current position τ .
This essentially builds sub-sequences of node rep-
resentations with richer graph information step by
step, and we use the last reference of the same node
for pointing positions when generating new edges.
Moreover, when propagating this masking pattern
alongm layers, each node encodes itsm-hop neigh-

. . .

. . .

. . .

. . .

. . .

. . .

. . .

.

.

.

PRED1010PRED 9PRED 8COPY 22 COPY44 COPY 5

go-02 go-02 go-02want-01boy want-01

2LA() 2LA()5RA()SHIFT SHIFT SHIFT

Input
Action

Graph
Message
Passing

Expanding
Graph

Output
Action

5LA 9RA 1010LA

Figure 4: Incremental graph embedding in the decoder
self-attention heads. Only node actions are considered,
and they are attending to their neighboring nodes at
different steps progressively based on the newly added
edge at each step. For better illustration, We ignore the
labels inside actions but only keep the edge pointers
which use the latest reference of a node.

borhood information. This defines a message pass-
ing procedure as shown in Figure 4, encoding the
compositional relations between nodes. Since the
edges have directions indicated by LA and RA, we
also encode the direction information by separat-
ing the two heads with each only considering one
direction.

4 Training and Inference

Our model is trained by maximizing the log like-
lihood defined by taking the log of Equation (1).
The valid action space, action-source alignment ct,
and the graph embedding mask at each step t are
pre-calculated during training time. For inference,
we modify the beam search algorithm to jointly
search for actions and edge pointers and combine
them to find the action sequence that maximizes
Equation (1). We also consider hard constraints in
the searching process such as valid output actions
and valid target pointing values at different steps to
ensure the AMR graph is recoverable. For the struc-
tural information that is extracted from the parsing
state such as ct and graph embedding masks, we
compute them on the fly at each new step of de-
coding based on the current results, which are then
used by the model for the next step decoding. We
detail our search algorithm in the Appendix.

5 Experimental Setup

Data and Evaluation We test our approach
on two widely used AMR parsing benchmark
datasets: AMR 2.0 (LDC2017T10) and AMR

1.0 (LDC2014T12). The AMR graphs are all
human annotated. The two datasets have 36521
and 10312 training AMRs, respectively, and share
1368 development AMRs and 1371 testing AMRs2.
We also report results on the lastest AMR 3.0
(LDC2020T02) dataset, which is larger in size but
has not been fully explored, with 55635 training
AMRs and 1722 and 1898 AMRs for development
and testing set. Wiki links are removed in the pre-
processing of data, and we run a wikification ap-
proach in post-processing to recover Wikipedia en-
tries in the AMR graphs as in Naseem et al. (2019).

For evaluation, we use the SMATCH (F1) scores
(Cai and Knight, 2013) and further the fine-grained
evaluation metrics (Damonte et al., 2016) to assess
the model’s AMR parsing performance.

Model Configuration Our base setup has 6 lay-
ers and 4 attention heads for both the Transformer
encoder and decoder, with model size 256 and feed-
forward size 512. We also compare with a small
model with 3 layers in encoder and decoder but
identical otherwise. The pointer network is always
tied with one target self-attention head of the top
decoder layer, which is supervised during train-
ing and used for decoding during testing. We use
the cross-attention of all decoder layers for action-
source alignment. For graph embedding, we use 2
heads of the bottom 3 layers for the base model and
bottom 2 layers for the small model. We use the
contextualized embeddings extracted from the pre-
trained RoBERTa (Liu et al., 2019) large model for
the source sentence, with average of all layer states
and BPE tokens mapped to words by averaging as
in (Lee et al., 2020). The pre-trained embeddings
are fixed. For the target action dictionary we train
our own embeddings along with the model.

Implementation Details We use the Adam opti-
mizer with β1 of 0.9 and β2 of 0.98 for training.
Each data batch has 3584 maximum number of to-
kens, and the learning rate schedule is the same as
Vaswani et al. (2017), where we use the maximum
learning rate of 5e−4 with 4000 warm-up steps.
We use a dropout rate of 0.3 and label smoothing
rate of 0.01. We train all the models for a maxi-
mum number of 120 epochs, and average the best
5 epoch checkpoints among the last 40 checkpoints
based on the SMATCH scores on the development
data with greedy decoding. We use a default beam

2Although there are annotation revisions from AMR 1.0
to AMR 2.0. Link to data: https://amr.isi.edu/download.html.

Transition system Avg. #actions Oracle SMATCH

Naseem et al. (2019)∗ 73.6 93.3
Astudillo et al. (2020)∗ 76.2 98.0

Ours 41.6 98.9

Table 1: Average number of actions and oracle
SMATCH on AMR 2.0 training data. The average
source length is 18.9. ∗ from author correspondence.

size of 10 for decoding. We implement our model
with the FAIRSEQ toolkit (Ott et al., 2019). All
models are trained and tested on a single Nvidia
Titan RTX GPU. Training takes about 10 hours on
AMR 2.0 and 3.5 hours on AMR 1.0.

6 Results and Analysis

6.1 Main Results

Table 1 compares the oracle data SMATCH and
average action sequence length on the AMR 2.0
training set among recent transition systems. Our
approach yields much shorter action sequences due
to the target-side pointing mechanism. It has also
the best coverage on training AMR graphs, due to
the flexibility of our transitions that can capture
the majority of graph components. We chose not
to tackle a number of small corner cases, such as
disconnected subgraphs for a token, that account
for the missing oracle performance.

We compare our model with existing approaches
in Table 23. We indicate the use of pre-
trained BERT embeddings with B and graph re-
categorization with G. Graph re-categorization
(Lyu and Titov, 2018; Zhang et al., 2019a; Cai
and Lam, 2020) removes node senses and groups
certain nodes together such as named entities in pre-
processing. It reverts these back in post-processing
with the help of a name entity recognizer.

We achieve better results than all previous ap-
proaches, both with our small and base models,
establishing the new state-of-the-art parsing scores
of 81.8 on AMR 2.0 and 78.5 on AMR 1.0 on aver-
age, which improves 1.6 points over the best model
trained only with gold data. Our small model only
trails the base model by a small margin and we
achieve high performance on AMR 1.0, which has a
small training set. This indicates that our approach
benefits from having good inductive bias towards
the problem so that the learning is efficient. More
remarkably, we even surpass the scores reported in

3We exclude Xu et al. (2020) AMR1.0 numbers since they
report 16833 train sentences, not 10312.

Corpus Model SMATCH (%)

AMR
1.0

Pust et al. (2015) 67.1
Flanigan et al. (2016) 66.0
Wang and Xue (2017)G 68.1
Guo and Lu (2018)G 68.3 ±0.4

Zhang et al. (2019a)B,G 70.2 ±0.1

Zhang et al. (2019b)B,G 71.3 ±0.1

Cai and Lam (2020)B,G 75.4
Astudillo et al. (2020)∗ B,G 76.9 ±0.1

Lee et al. (2020)B (85K silver) 78.2 ±0.1

Ours smallB 78.2 / 78.2 ±0.0

Ours baseB 78.5 / 78.3 ±0.1

AMR
2.0

Van Noord and Bos (2017) 71.0
Groschwitz et al. (2018)G 71.0
Lyu and Titov (2018)G 74.4 ±0.2

Cai and Lam (2019) 73.2
Lindemann et al. (2019) 75.3 ±0.1

Naseem et al. (2019)B 75.5
Zhang et al. (2019a)B,G 76.3 ±0.1

Zhang et al. (2019b)B,G 77.0 ±0.1

Cai and Lam (2020)B,G 80.2
Astudillo et al. (2020)∗ B,G 80.2 ±0.0

Xu et al. (2020) (4M silver) 80.2
Lee et al. (2020)B (85K silver) 81.3 ±0.0

Ours smallB 81.7 / 81.5 ±0.2

Ours baseB 81.8 / 81.7 ±0.1

AMR
3.0

Lyu et al. (2020) 75.8

Ours baseB 80.4 / 80.3 ±0.1

Table 2: SMATCH scores on AMR 1.0, 2.0, and 3.0
test sets. B indicates pre-trained BERT/RoBERTa em-
beddings, G use of graph re-categorization, ∗ improved
results reported in Lee et al. (2020). We report the
best/average score ± standard deviation over 3 seeds.

Lee et al. (2020) combining various self-learning
techniques and utilizing 85000 extra sentences for
self-annotation (silver data). We believe our ap-
proach could also benefit from these techniques for
further improvement. For the most recent AMR 3.0
dataset, we report our results for future reference.

Table 3 shows the fine-grained AMR2.0 evalua-
tion of (Damonte et al., 2016). Our model achieves
the best scores among all sub-tasks except nega-
tions and wikification, handled by post-processing
on the best performing approach. We obtain large
improvement on edge related sub-tasks including
SRL (ARG arcs) and Reentrancies, proving the ef-
fectiveness of our target-side pointer mechanism.

6.2 Analysis

Ablation of Model Components We evaluate
the contribution of different components in our
model in Table 4. The top part of the table shows

Model SMATCH Unlabeled No WSD Concepts Named Ent. Negations Wikification Reentrancies SRL

Van Noord and Bos (2017) 71.0 74 72 82 79 62 65 52 66
Groschwitz et al. (2018)G 71.0 74 72 84 78 57 71 49 64

Lyu and Titov (2018)G 74.4 77.1 75.5 85.9 86.0 58.4 75.7 52.3 69.8
Cai and Lam (2019) 73.2 77.0 74.2 84.4 82.0 62.9 73.2 55.3 66.7

Naseem et al. (2019)B 75.5 80 76 86 83 67 80 56 72
Zhang et al. (2019a)B,G 76.3 79.0 76.8 84.8 77.9 75.2 85.8 60.0 69.7
Zhang et al. (2019b)B,G 77.0 80 78 86 79 77 86 61 71
Cai and Lam (2020)B,G 80.2 82.8 80.8 88.1 81.1 78.9 86.3 64.6 74.2

Astudillo et al. (2020)∗ B,G 80.2 84.2 80.7 88.1 87.5 64.5 78.8 70.3 78.2

Ours smallB 81.7 85.4 82.2 88.9 88.9 67.5 78.7 70.6 80.7
Ours baseB 81.8 85.5 82.3 88.7 88.5 69.7 78.8 71.1 80.8

Table 3: Fine-grained F1 scores on the AMR 2.0 test set. B and G marks uses of pre-trained BERT embeddings
and graph re-categorization processing. ∗ We cite improved results reported in Lee et al. (2020). We report results
with our single best model for fair comparison.

Model Configuration SMATCH (%)

Mono.
Alignment

Graph
embedding

AMR
1.0

AMR
2.0

72.2 ±0.4 77.5 ±0.2

3 78.0 ±0.1 81.5 ±0.1

3 3 78.3 ±0.1 81.7 ±0.1

No subspace restriction 78.0 ±0.1 80.9 ±0.1

RoBERTa base embeddings 78.0 ±0.1 81.3 ±0.1

Table 4: Ablation study of model components. The
analysis is with our base model size.

effects of 2 major components that utilize parser
state information and the graph structural infor-
mation in the Transformer decoder. The baseline
model is a free Transformer model with pointers
(row 1), which is greatly boosted by including the
monotonic action-source alignment via hard atten-
tion (row 2) on both AMR 1.0 and AMR 2.0 corpus,
and combining it with the graph embedding (row
3) gives further improvements of 0.3 and 0.2 for
AMR 1.0 and AMR 2.0. This highlights that in-
jecting hard encoded structural information in the
Transformer decoder greatly helps our problem.

The bottom part of Table 4 evaluates the contri-
bution of output space restriction for target and in-
put pre-trained embeddings for source, respectively.
Removing the restriction for target output space i.e.
the valid actions, hurts the model performance, as
the model may not be able to learn the underly-
ing rules that govern the target sequence restric-
tions. Switching the RoBERTa large embeddings
to RoBERTa base also hurts the performance, indi-
cating that the contextual embeddings from large
pre-trained models better equip the parser to cap-
ture semantic relations in the source sentence.

Data oracle
variation

SMATCH (%)
Train oracle Model test

None 98.9 81.7 ±0.1

No subgraph breakdown 97.8 80.6 ±0.1

Create farther edges first 98.9 81.4 ±0.2

Post-order subgraph traversal 98.9 81.8 ±0.1

Table 5: Results of model performance with different
data oracles on AMR 2.0 corpus.

Effect of Oracle Setup As our model directly
learns from the oracle actions, we study how the
upstream transition system affects the model per-
formance by varying transition setups in Table 5.
We try three variations of the oracle. In the first
setup, we measure the impact of breaking down
SUBGRAPH action into individual node generation
and attachment actions. We do this by using the
SUBGRAPH for all cases of multi-node alignments.
This degrades the parser performance and oracle
SMATCH considerably, dropping by absolute 1.1
points. This is expected, since SUBGRAPH action
makes internal nodes of the subgraph unattachable.
In the second setup, we vary the order of edge
creation actions. We reverse it so that the edges
connecting farther nodes are built first. Although
this does not affect the oracle score, we observe that
the model performance on this oracle drops by 0.3.
The reason might be that the easy close-range edge
building actions become harder when pushed far-
ther, also making easy decisions first is less prone
to error propagation. Finally, we also change the
order in which the various nodes connected to a
token are created. Instead of generating the nodes
from the root downwards, we perform a post-order
traversal, where leaves are generated before parents.
This also does not affect oracle score, however it

2 4 6 8 10
beam size

81.2

81.4

81.6

81.8
Sm

at
ch

 (%
)

Figure 5: Effect of decoding beam size for SMATCH,
with our best base model on AMR 2.0 test set.

gave a minor gain in parser performance.

Effect of Beam Size Figure 5 shows perfor-
mance for different beam sizes. Ideally, if the
model is more certain and accurate in making right
predictions at different steps, the decoding perfor-
mance should be less impacted by beam size. The
results show that performance improves with beam
size, but the gains saturate at beam size 3. This in-
dicates that a smaller beam size can be considered
for application scenarios with time constraints.

7 Related Work

With the exception of Astudillo et al. (2020), other
works introducing stack and buffer information into
sequence-to-sequence attention parsers (Liu and
Zhang, 2017; Zhang et al., 2017; Buys and Blun-
som, 2017), are based on RNNs and do not at-
tain high performances. Liu and Zhang (2017);
Zhang et al. (2017) tackle dependency parsing
and propose modified attention mechanisms while
Buys and Blunsom (2017) predicts semantic graphs
jointly with their alignments and compares stack-
based with latent and fixed alignments. Compared
to the stack-Transformer (Astudillo et al., 2020),
we propose the use of an action pointing mecha-
nism to decouple word and node representation,
remove the need for stack and buffer and model
graph structure on the decoder side. We show that
these improvements yield superior performance
while exploiting the same inductive biases and at-
taining good performances with little train data or
small models.

Vilares and Gómez-Rodríguez (2018) proposed
an AMR-CONVINGTON system for unrestricted non-
projective AMR parsing, comparing the current

word with all previous words for arc attachment
as we propose. However, their comparison is done
with sequential actions whereas we use an efficient
pointer mechanism to parallelize the process.

Regarding the use of pointer mechanisms for
arc attachment, Ma et al. (2018b) proposed the
stack-pointer network to build partial graph repre-
sentations, and Fernández-González and Gómez-
Rodríguez (2020) adopted pointers along with the
left-to-right scan of the sentence, greatly improv-
ing the efficiency. Compared with these works, we
tackle a more general text-to-graph problem, where
nodes are only loosely related to words, by utilizing
the action-pointer mechanism. Our method is also
able to build up to depth M graph representations.

While not explicitly stated, graph-based ap-
proaches (Zhang et al., 2019a; Cai and Lam, 2020)
generate edges with a pointing mechanism, either
with a deep biaffine classifier (Dozat and Man-
ning, 2018) or with attention (Vaswani et al., 2017).
They also model inductive biases indirectly through
graph re-categorization, detailed in Section 6.1,
which requires a name entity recognition system
at test time. Re-categorization was proposed in
Lyu and Titov (2018), which reformulated align-
ments as a differentiable permutation problem, in-
terpretable as another form of inductive bias.

Finally, augmenting seq-to-seq models with
graph structures has been explored in various NLP
areas, including machine translation (Hashimoto
and Tsuruoka, 2017; Moussallem et al., 2019), text
classification (Lu et al., 2020), AMR to text gener-
ation (Zhu et al., 2019), etc. Most of these works
model graph structure in the encoder since the com-
plete source sentence and graph are known. We
embed a dynamic graph in the Transformer decoder
during parsing. This is similar to broad graph gener-
ation approaches (Li et al., 2018) relying on graph
neural networks (Li et al., 2019), but our approach
is much more efficient as we do not require heavy
re-computation of node representations.

8 Conclusion

We present an Action-Pointer mechanism that can
naturally handle the generation of arbitrary graph
constructs, including re-entrancies and multiple
nodes per token. Although we focus on AMR
graphs in this work, our system can essentially be
adopted to any task generating graphs from texts
where copy mechanisms or hard-attention plays a
central role.

References
Ramon Fernandez Astudillo, Miguel Ballesteros,

Tahira Naseem, Austin Blodgett, and Radu Flo-
rian. 2020. Transition-based parsing with stack-
transformers. arXiv preprint arXiv:2010.10669.

Miguel Ballesteros and Yaser Al-Onaizan. 2017.
Amr parsing using stack-lstms. arXiv preprint
arXiv:1707.07755.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th linguistic
annotation workshop and interoperability with dis-
course, pages 178–186.

Jan Buys and Phil Blunsom. 2017. Robust incremen-
tal neural semantic graph parsing. arXiv preprint
arXiv:1704.07092.

Deng Cai and Wai Lam. 2019. Core semantic first: A
top-down approach for amr parsing. arXiv preprint
arXiv:1909.04303.

Deng Cai and Wai Lam. 2020. Amr parsing via
graph-sequence iterative inference. arXiv preprint
arXiv:2004.05572.

Shu Cai and Kevin Knight. 2013. Smatch: an evalua-
tion metric for semantic feature structures. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 748–752.

Marco Damonte, Shay B Cohen, and Giorgio Satta.
2016. An incremental parser for abstract meaning
representation. arXiv preprint arXiv:1608.06111.

Timothy Dozat and Christopher D Manning. 2018.
Simpler but more accurate semantic dependency
parsing. arXiv preprint arXiv:1807.01396.

Daniel Fernández-González and Carlos Gómez-
Rodríguez. 2020. Transition-based semantic
dependency parsing with pointer networks. arXiv
preprint arXiv:2005.13344.

Jeffrey Flanigan, Chris Dyer, Noah A Smith, and
Jaime G Carbonell. 2016. Cmu at semeval-2016
task 8: Graph-based amr parsing with infinite ramp
loss. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 1202–1206.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley,
Oriol Vinyals, and George E Dahl. 2017. Neu-
ral message passing for quantum chemistry. arXiv
preprint arXiv:1704.01212.

Jonas Groschwitz, Matthias Lindemann, Meaghan
Fowlie, Mark Johnson, and Alexander Koller. 2018.
Amr dependency parsing with a typed semantic al-
gebra. arXiv preprint arXiv:1805.11465.

Zhijiang Guo and Wei Lu. 2018. Better transition-
based amr parsing with a refined search space. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
1712–1722.

Kazuma Hashimoto and Yoshimasa Tsuruoka. 2017.
Neural machine translation with source-side latent
graph parsing. arXiv preprint arXiv:1702.02265.

Young-Suk Lee, Ramon Fernandez Astudillo, Tahira
Naseem, Revanth Gangi Reddy, Radu Florian,
and Salim Roukos. 2020. Pushing the limits of
amr parsing with self-learning. arXiv preprint
arXiv:2010.10673.

Michael Lingzhi Li, Meng Dong, Jiawei Zhou, and
Alexander M Rush. 2019. A hierarchy of graph neu-
ral networks based on learnable local features. arXiv
preprint arXiv:1911.05256.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu,
and Peter Battaglia. 2018. Learning deep generative
models of graphs. arXiv preprint arXiv:1803.03324.

Matthias Lindemann, Jonas Groschwitz, and Alexan-
der Koller. 2019. Compositional semantic
parsing across graphbanks. arXiv preprint
arXiv:1906.11746.

Jiangming Liu and Yue Zhang. 2017. Encoder-decoder
shift-reduce syntactic parsing. In Proceedings of
the 15th International Conference on Parsing Tech-
nologies, pages 105–114, Pisa, Italy. Association for
Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Zhibin Lu, Pan Du, and Jian-Yun Nie. 2020. Vgcn-bert:
Augmenting bert with graph embedding for text clas-
sification. In European Conference on Information
Retrieval, pages 369–382. Springer.

Chunchuan Lyu, Shay B Cohen, and Ivan Titov. 2020.
A differentiable relaxation of graph segmentation
and alignment for amr parsing. arXiv preprint
arXiv:2010.12676.

Chunchuan Lyu and Ivan Titov. 2018. Amr parsing
as graph prediction with latent alignment. arXiv
preprint arXiv:1805.05286.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng,
Graham Neubig, and Eduard Hovy. 2018a. Stack-
pointer networks for dependency parsing. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1403–1414, Melbourne, Australia.
Association for Computational Linguistics.

https://www.aclweb.org/anthology/W17-6315
https://www.aclweb.org/anthology/W17-6315
https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.18653/v1/P18-1130

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng,
Graham Neubig, and Eduard Hovy. 2018b. Stack-
pointer networks for dependency parsing. arXiv
preprint arXiv:1805.01087.

Diego Moussallem, Mihael Arčan, Axel-
Cyrille Ngonga Ngomo, and Paul Buitelaar. 2019.
Augmenting neural machine translation with knowl-
edge graphs. arXiv preprint arXiv:1902.08816.

Tahira Naseem, Abhishek Shah, Hui Wan, Radu
Florian, Salim Roukos, and Miguel Ballesteros.
2019. Rewarding smatch: Transition-based amr
parsing with reinforcement learning. arXiv preprint
arXiv:1905.13370.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics, 34(4):513–553.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensi-
ble toolkit for sequence modeling. arXiv preprint
arXiv:1904.01038.

Hao Peng, Sam Thomson, and Noah A Smith. 2017.
Deep multitask learning for semantic dependency
parsing. arXiv preprint arXiv:1704.06855.

Xiaochang Peng, Linfeng Song, Daniel Gildea, and
Giorgio Satta. 2018. Sequence-to-sequence models
for cache transition systems. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1842–1852.

Michael Pust, Ulf Hermjakob, Kevin Knight, Daniel
Marcu, and Jonathan May. 2015. Parsing english
into abstract meaning representation using syntax-
based machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1143–1154.

Rik Van Noord and Johan Bos. 2017. Neural seman-
tic parsing by character-based translation: Experi-
ments with abstract meaning representations. arXiv
preprint arXiv:1705.09980.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

David Vilares and Carlos Gómez-Rodríguez. 2018. A
transition-based algorithm for unrestricted amr pars-
ing. arXiv preprint arXiv:1805.09007.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in neural in-
formation processing systems, pages 2692–2700.

Chuan Wang and Nianwen Xue. 2017. Getting the
most out of amr parsing. In Proceedings of the
2017 conference on empirical methods in natural
language processing, pages 1257–1268.

Chuan Wang, Nianwen Xue, and Sameer Pradhan.
2015. A transition-based algorithm for amr parsing.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 366–375.

Dongqin Xu, Junhui Li, Muhua Zhu, Min Zhang, and
Guodong Zhou. 2020. Improving amr parsing with
sequence-to-sequence pre-training. arXiv preprint
arXiv:2010.01771.

Sheng Zhang, Xutai Ma, Kevin Duh, and Ben-
jamin Van Durme. 2019a. Amr parsing as
sequence-to-graph transduction. arXiv preprint
arXiv:1905.08704.

Sheng Zhang, Xutai Ma, Kevin Duh, and Ben-
jamin Van Durme. 2019b. Broad-coverage se-
mantic parsing as transduction. arXiv preprint
arXiv:1909.02607.

Zhirui Zhang, Shujie Liu, Mu Li, Ming Zhou, and En-
hong Chen. 2017. Stack-based multi-layer attention
for transition-based dependency parsing. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1677–
1682, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Jie Zhu, Junhui Li, Muhua Zhu, Longhua Qian, Min
Zhang, and Guodong Zhou. 2019. Modeling graph
structure in transformer for better amr-to-text gener-
ation. arXiv preprint arXiv:1909.00136.

https://doi.org/10.18653/v1/D17-1175
https://doi.org/10.18653/v1/D17-1175

A A More Detailed Example of
Action-Pointer Transitions

We present a step-by-step walk-through of our ac-
tions on a less trivial example for generating the
AMR in Figure 6. The sentence contains a named
entity which also demonstrates the MERGE and
SUBGRAPH usage of our transition system.

B Action-Pointer Decoding

We outlined the decoding algorithm for our model,
to combine the actions with pointers, as well as tak-
ing in parsing states and graph structures. Detailed
beam search process is ignored.

C Number of Parameters

Our model is a single Transformer (Vaswani et al.,
2017) model. The pointer distribution, action-
source alignment encoding from parsing state, and
structural graph embedding are all contained in cer-
tain attention layers and heads, without introducing
any extra parameters on original Transformer. We
fix our model size and all the embedding size to
be 256, and the feedforward hidden size in Trans-
former as 512. And they are the same for our base
model with 6 layers and 4 heads and our small
model with 3 layers and 4 heads, both for encoder
and decoder.

We use pre-trained RoBERTa embeddings for
the source token embeddings. The embeddings
are extracted in pre-processing and fixed. The
RoBERTa model parameters are fixed and not
trained with our model. We have a projection layer
to project the RoBERTa embedding size 1024/768
to our model size 256.

The target side dictionary is built from all the
oracle actions without pointers on training data.
The dictionary size for AMR 1.0 is 4640, for AMR
2.0 is 9288, and for AMR 3.0 is 12008. We build
the target action embeddings along with the model
for the action prediction on top of Transformer
decoder. The dictionary embedding size is fixed at
256.

Overall, the total number of parameters for our
6 layer base model is 14,852,096 on AMR 1.0,
21,438,464 on AMR 2.0, and 25,718,784 on AMR
3.0 (difference is in target dictionary embedding
size). The total number of parameter for our 3
layer small model is 10,898,432 for AMR 1.0 and
17,484,800 on AMR 2.0 (difference is in target
dictionary embedding size).

Algorithm 1: Constrained beam search for
action-pointer decoding
Input: Initial token a0 =</s>, beam size k,

max step Tmax, action dictionary D
without pointers, model M that
outputs both distribution over D and
the pointer distribution from
self-attention

Output: Decoded results
y1 = (a1, p1), y2 =
(a2, p2), · · · , yT = (aT , pT)

initialization: step t = 1
while t <= Tmax do

1) Get the valid action dictionary
Dt ⊂ D, previous node action
positions Nt ⊂ {0, 1, 2, . . . , t}, current
token cursor ct, and current graph Gt;

2) Input prefix a0, a1, · · · , at−1 and
Dt, ct, Gt into model, get output
distribution P(at|y<t), and the
self-attention distribution Q(p) from
pointer head with p over {0, 1, . . . , t};

3) Take the most likely valid pointer
value, with p∗ = argmaxp∈Nt

Q(p),
and its score q∗ = maxp∈Nt Q(p);

for each possible action a from D do
if a is an edge action then

combine the action probability
with pointer probability
P(yt) = P(at|y<t) · q∗, with
yt = (a, p∗)

else
set P(yt) = P(at|y<t), with
yt = (a, null)

end
end
Do beam search with P(yt) over yt to
get k decoded results.

end

0 COPY_LEMMA Only Mao Zedong thought can save the nation

1 SHIFT Only Mao Zedong thought can save the nation

2 MERGE Only Mao Zedong thought can save the nation

3 SUBGRAPH(person,name) Only Mao Zedong thought can save the nation

4 SHIFT Only Mao Zedong thought can save the nation

5 PRED(thing) Only Mao Zedong thought can save the nation

6 LA(0,mod) Only Mao Zedong thought can save the nation

7 PRED(think-01) Only Mao Zedong thought can save the nation

8 RA(5,ARG1-of) Only Mao Zedong thought can save the nation

9 LA(3,ARG0) Only Mao Zedong thought can save the nation

10 SHIFT Only Mao Zedong thought can save the nation

11 PRED(possible-01) Only Mao Zedong thought can save the nation

12 SHIFT Only Mao Zedong thought can save the nation

13 PRED(save-02) Only Mao Zedong thought can save the nation

14 RA(11,ARG1) Only Mao Zedong thought can save the nation

15 LA(5,ARG0) Only Mao Zedong thought can save the nation

16 SHIFT Only Mao Zedong thought can save the nation

17 REDUCE Only Mao Zedong thought can save the nation

18 COPY_LEMMA Only Mao Zedong thought can save the nation

19 RA(13,ARG1) Only Mao Zedong thought can save the nation

only

only

only

only person

only person

only person thing

only person thing
mod

only person thing think-01
mod

only person thing think-01
mod ARG1-of

ARG0
possible-01 save-02

ARG1

ARG0
nation

only person thing think-01
mod ARG1-of

only person thing think-01
mod ARG1-of

ARG0

only person thing think-01
mod ARG1-of

ARG0
possible-01

only person thing think-01
mod ARG1-of

ARG0
possible-01 save-02

only person thing think-01
mod ARG1-of

ARG0
possible-01

only person thing think-01
mod ARG1-of

ARG0

only person thing think-01
mod ARG1-of

ARG0
possible-01 save-02

ARG1

only person thing think-01
mod ARG1-of

ARG0
possible-01 save-02

ARG1

ARG0

only person thing think-01
mod ARG1-of

ARG0
possible-01 save-02

ARG1

ARG0

only person thing think-01
mod ARG1-of

ARG0
possible-01 save-02

ARG1

ARG0

only person thing think-01
mod ARG1-of

ARG0
possible-01 save-02

ARG1

ARG0
nation

ARG1

Figure 6: Step-by-step actions based on our action-pointer transition system. We illustrate the use of MERGE and
SUBGRAPH with the named entity of a person’s name in this example.

