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Abstract
The recent rapid progress in (self) supervised
learning models is in large part predicted by em-
pirical scaling laws: a model’s performance scales
proportionally to its size. Analogous scaling
laws remain elusive for reinforcement learning do-
mains, however, where increasing the parameter
count of a model often hurts its final performance.
In this paper, we demonstrate that incorporating
Mixture-of-Expert (MoE) modules, and in particu-
lar Soft MoEs (Puigcerver et al., 2023), into value-
based networks results in more parameter-scalable
models, evidenced by substantial performance in-
creases across a variety of training regimes and
model sizes. This work thus provides strong em-
pirical evidence towards developing scaling laws
for reinforcement learning. We make our code
publicly available.

1. Introduction
Deep Reinforcement Learning (RL) – the combination of re-
inforcement learning algorithms with deep neural networks
– has proven effective at producing agents that perform com-
plex tasks at super-human levels (Mnih et al., 2015; Berner
et al., 2019; Vinyals et al., 2019; Fawzi et al., 2022; Belle-
mare et al., 2020). While deep networks are critical to
any successful application of RL in complex environments,
their design and learning dynamics in RL remain a mystery.
Indeed, recent work highlights some of the surprising phe-
nomena that arise when using deep networks in RL, often
going against the behaviours observed in supervised learn-
ing settings (Ostrovski et al., 2021; Kumar et al., 2021a;
Lyle et al., 2022a; Graesser et al., 2022; Nikishin et al.,
2022; Sokar et al., 2023; Ceron et al., 2023).
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Figure 1. The use of Mixture of Experts allows the perfor-
mance of DQN (top) and Rainbow (bottom) to scale with an
increased number of parameters. While Soft MoE helps in both
cases and improves with scale, Top1-MoE only helps in Rainbow,
and does not improve with scale. The corresponding layer in the
baseline is scaled by the number of experts to (approximately)
match parameters. IQM scores computed over 200M environment
steps over 20 games, with 5 independent runs each, and error bars
showing 95% stratified bootstrap confidence intervals. The replay
ratio is fixed to the standard 0.25.

The supervised learning community convincingly showed
that larger networks result in improved performance, in par-
ticular for language models (Kaplan et al., 2020). In contrast,
recent work demonstrates that scaling networks in RL is
challenging and requires the use of sophisticated techniques
to stabilize learning, such as supervised auxiliary losses,
distillation, and pre-training (Farebrother et al., 2022; Taiga
et al., 2022; Schwarzer et al., 2023). Furthermore, deep RL
networks are under-utilizing their parameters, which may
account for the observed difficulties in obtaining improved
performance from scale (Kumar et al., 2021a; Lyle et al.,
2022a; Sokar et al., 2023). Parameter count cannot be scaled
efficiently if those parameters are not used effectively.

Architectural advances, such as transformers (Vaswani et al.,
2017), adapters (Houlsby et al., 2019), and Mixtures of Ex-
perts (MoEs; Shazeer et al., 2017), have been central to the
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Figure 2. Incorporating MoE modules into deep RL networks.
Top left: Baseline architecture; bottom left: Baseline with penul-
timate layer scaled up; right: Penultimate layer replaced with an
MoE module.

scaling properties of supervised learning models, especially
in natural language and computer vision problem settings.
MoEs, in particular, are crucial to scaling networks to bil-
lions (and recently trillions) of parameters, because their
modularity combines naturally with distributed computa-
tion approaches (Fedus et al., 2022). Additionally, MoEs
induce structured sparsity in a network, and certain types of
sparsity have been shown to improve network performance
(Evci et al., 2020; Gale et al., 2019).

In this paper, we explore the effect of mixture of experts
on the parameter scalability of value-based deep RL net-
works, i.e., does performance increase as we increase the
number of parameters? We demonstrate that incorporating
Soft MoEs (Puigcerver et al., 2023) strongly improves the
performance of various deep RL agents, and performance
improvements scale with the number of experts used. We
complement our positive results with a series of analyses
that help us understand the underlying causes for the results
in Section 4. For example, we investigate different gating
mechanisms, motivating the use of Soft MoE, as well as
different tokenizations of inputs. Moreover, we analyse dif-
ferent properties of the experts hidden representations, such
as dormant neurons (Sokar et al., 2023), which provide em-
pirical evidence as to why Soft MoE improves performance
over the baseline.

Finally, we present a series of promising results that pave
the way for further research incorporating MoEs in deep RL
networks in Section 5. For instance, in Section 5.1 we show
preliminary results that Soft MoE outperforms the baseline
on a set of Offline RL tasks; in Section 5.2, we evaluate
Soft MoE’s performance in low-data training regimes; and
lastly, we show that exploring different architectural designs
is a fruitful direction for future research in Section 5.3.

2. Preliminaries
2.1. Reinforcement Learning

Reinforcement learning methods are typically employed in
sequential decision-making problems, with the goal of find-
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Figure 3. Tokenization types considered: PerConv (per convolu-
tion), PerFeat (per feature), and PerSamp (per sample).

ing optimal behavior within a given environment (Sutton
& Barto, 1998). These environments are typically formal-
ized as Markov Decision Processes (MDPs), defined by the
tuple 〈X ,A,P,R, γ〉, where X represents the set of states,
A the set of available actions, P : X × A → ∆(X )1 the
transition function, R : X × A → R the reward function,
and γ ∈ [0, 1) the discount factor.

An agent’s behaviour, or policy, is expressed via a mapping
π : X → ∆(A). Given a policy π, the value V π of a state
x is given by the expected sum of discounted rewards when
starting from that state and following π from then on:
V π(x) := E

π,P
[
∑∞
t=i γ

tR (xt, at) | x0 = x] . The state-

action function Qπ quantifies the value of first taking action
a from state x, and then following π thereafter: Qπ(x, a) :=
R(x, a) + γ E

x′∼P(x,a)
V π(x′). Every MDP admits an opti-

mal policy π∗ in the sense that V π
∗

:= V ∗ ≥ V π uniformly
over X for all policies π.

When X is very large (or infinite), function approximators
are used to express Q, e.g., DQN by Mnih et al. (2015) uses
neural networks with parameters θ, denoted as Qθ ≈ Q.
The original architecture used in DQN, hereafter referred
to as the CNN architecture, comprises of 3 convolutional
layers followed by 2 dense layers, with ReLu nonlineari-
ties (Fukushima, 1969) between each pair of layers. In this
work, we mostly use the newer Impala architecture (Espe-
holt et al., 2018), but will provide a comparison with the
original CNN architecture. DQN also used a replay buffer:
a (finite) memory where an agent stores transitions received
while interacting with the environment, and samples mini-
batches from to compute gradient updates. The replay ratio2

is defined as the ratio of gradient updates to environment

1∆(X) denotes a distribution over the set X .
2 In the hyperparameters established in (Mnih et al., 2015), the

policy is updated every 4 environment steps collected, resulting in
a replay ratio of 0.25.
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Figure 4. Soft MoE yields performance gains even at high re-
play ratio values. DQN (left) and Rainbow (right) with 8 experts.
See Section 4 for training details.

interactions, and plays a role in our analyses below.

Rainbow (Hessel et al., 2018) extended the original DQN
algorithm with multiple algorithmic components to improve
learning stability, sample efficiency, and overall perfor-
mance. Rainbow was shown to significantly outperform
DQN and is an important baseline in deep RL research.

2.2. Mixtures of Experts

Mixtures of experts (MoEs) have become central to the archi-
tectures of most modern Large Language Models (LLMs).
They consist of a set of n “expert” sub-networks activated
by a gating network (typically learned and referred to as
the router), which routes each incoming token to k experts
(Shazeer et al., 2017). In most cases, k is smaller than the
total number of experts (k=1 in our work), thereby inducing
sparser activations (Fedus et al., 2022). These sparse acti-
vations enable faster inference and distributed computation,
which has been the main appeal for LLM training. MoE
modules typically replace the dense feed forward blocks in
transformers (Vaswani et al., 2017). Their strong empirical
results have rendered MoEs a very active area of research in
the past few years (Shazeer et al., 2017; Lewis et al., 2021;
Fedus et al., 2022; Zhou et al., 2022; Puigcerver et al., 2023;
Lepikhin et al., 2020; Zoph et al., 2022; Gale et al., 2023).

Such hard assignments of tokens to experts introduce a
number of challenges such as training instabilities, drop-
ping of tokens, and difficulties in scaling the number of
experts (Fedus et al., 2022; Puigcerver et al., 2023). To
address some of these challenges, Puigcerver et al. (2023)
introduced Soft MoE, which is a fully differentiable soft as-
signment of tokens-to-experts, replacing router-based hard
token assignments.

Soft assignment is achieved by computing (learned) mixes
of per-token weightings for each expert, and averaging their
outputs. Following the notation of Puigcerver et al. (2023),
let us define the input tokens as X ∈ Rm×d, where m is the
number of d-dimensional tokens. A Soft MoE layer applies
a set of n experts on individual tokens,

{
fi : Rd → Rd

}
1:n

.
Each expert has p input- and output-slots, represented re-
spectively by a d-dimensional vector of parameters. We
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Figure 5. Scaling down the dimensionality of Soft MoE experts
has no significant impact on performance in Rainbow. See
Section 4 for training details.

denote these parameters by Φ ∈ Rd×(n·p).

The input-slots X̃ ∈ R(n·p)×d correspond to a weighted
average of all tokens: X̃ = D>X, where

Dij =
exp ((XΦ)ij)∑m
i′=1 exp ((XΦ)i′j)

.

D is typically referred to as the dispatch weights. We then
denote the expert outputs as Ỹi = fbi/pc

(
X̃i

)
. The output

of the Soft MoE layer Y is the combination of Ỹ with the
combine weights C according to Y = CỸ, where

Cij =
exp ((XΦ)ij)∑n·p

j′=1 exp ((XΦ)ij′)
.

Note how D and C are learned only through Φ, which we
will use in our analysis. The results of Puigcerver et al.
(2023) suggest that Soft MoE achieves a better trade-off
between accuracy and computational cost compared to other
MoE methods.

3. Mixture of Experts for Deep RL
Below we discuss some important design choices in our in-
corporation of MoE modules into DQN-based architectures.

Where to place the MoEs? Following the predomi-
nant usage of MoEs to replace dense feed-forward layers
(Shazeer et al., 2017; Fedus et al., 2022; Gale et al., 2023),
we replace the penultimate layer in our networks with an
MoE module, where each expert has the same dimension-
ality as the original dense layer. Thus, we are effectively
widening the penultimate layer’s dimensionality by a fac-
tor equal to the number of experts. Figure 2 illustrates our
deep RL MoE architecture. We discuss some alternatives in
Section 5.3.
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Figure 6. Comparison of different tokenization methods on
Rainbow with 8 experts. Soft MoE with PerConv achieves the
best results. Top1-MoE works best with PerFeat. PerSamp is worst
over both architectures. See Section 4 for training details.

What is a token? MoEs sparsely route inputs to a set
of experts (Shazeer et al., 2017) and are mostly used in
the context of transformer architectures where the inputs
are tokens (Fedus et al., 2022). For the vast majority of
supervised learning tasks where MoEs are used there is a
well-defined notion of a token; except for a few works using
Transformers (Chen et al., 2021), this is not the case for deep
RL networks. Denoting by C(h,w,d) ∈ R3 the output of the
convolutional encoders, we define tokens as d-dimensional
slices of this output; thus, we split C into h× w tokens of
dimensionality d (PerConv in Figure 3). This approach to
tokenization is taken from what is often used in vision tasks
(see the Hybrid architecture of Dosovitskiy et al. (2021)).
We did explore other tokenization approaches (discussed in
Section 4.2), but found this one to be the best performing
and most intuitive. Finally, a trainable linear projection is
applied after each expert to maintain the token size d at the
output.

What flavour of MoE to use? We explore the top-k gat-
ing architecture of Shazeer et al. (2017) following the sim-
plified k = 1 strategy of Fedus et al. (2022), as well as the
Soft MoE variant proposed by Puigcerver et al. (2023); for
the rest of the paper we refer to the former as Top1-MoE and
the latter as Soft MoE. We focus on these two, as Top1-MoE
is the predominantly used approach, while Soft MoE is sim-
pler and shows evidence of improving performance. Since
Top1-MoEs activate one expert per token while Soft MoEs
can activate multiple experts per token, Soft MoEs are ar-
guably more directly comparable in terms of the number of
parameters when widening the dense layers of the baseline.

4. Empirical evaluation
We focus our investigation on DQN (Mnih et al., 2015)
and Rainbow (Hessel et al., 2018), two value-based agents
that have formed the basis of a large swath of modern deep
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Figure 7. In addition to the Impala encoder, MoEs also show
performance gains for the standard CNN encoder on DQN
(left) and Rainbow (right), with 8 experts. See Section 4 for
training details.

RL research. Recent work has demonstrated that using the
ResNet architecture (Espeholt et al., 2018) instead of the
original CNN architecture (Mnih et al., 2015) yields strong
empirical improvements (Graesser et al., 2022; Schwarzer
et al., 2023), so we conduct most of our experiments with
this architecture. As in the original papers, we evaluate on
20 games from the Arcade Learning Environment (ALE), a
collection of a diverse and challenging pixel-based environ-
ments (Bellemare et al., 2013b).

Our implementation, included with this submission, is built
on the Dopamine library (Castro et al., 2018)3, which adds
stochasticity (via sticky actions) to the ALE (Machado et al.,
2018). We use the recommendations from Agarwal et al.
(2021) for statistically-robust performance evaluations, in
particular focusing on interquartile mean (IQM). Every ex-
periment was run for 200M environment steps, unless re-
ported otherwise, with 5 independent seeds, and we report
95% stratified bootstrap confidence intervals. All experi-
ments were run on NVIDIA Tesla P100 GPUs, and each
took on average 4 days to complete.

4.1. Soft MoE Helps Parameter Scalability

To investigate the efficacy of Top1-MoE and Soft MoE on
DQN and Rainbow, we replace the penultimate layer with
the respective MoE module (see Figure 2) and vary the
number of experts. Given that each expert is a copy of the
original penultimate layer, we are effectively increasing the
number of parameters of this layer by a factor equal to the
number of experts. To compare more directly in terms of
number of parameters, we evaluate simply widening the
penultimate layer of the base architectures by a factor equal
to the number of experts.

As Figure 1 demonstrates, Soft MoE provides clear perfor-
mance gains, and these gains increase with the number of
experts; for instance in Rainbow, increasing the number of
experts from 1 to 8 results in a 20% performance improve-

3Dopamine code available at https://github.com/
google/dopamine.
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Figure 8. (Left) Evaluating the performance on 60 Atari 2600
games; (Right) Evaluating the performance of Soft MoE with
a random Φ matrix. (Left) Even over 60 games, Soft MoE per-
forms better than the baseline. (Right) Learning Φ is beneficial
over a random phi, indicating that Soft MoE’s perfomance gains
are not only due to the distribution of tokens to experts. Both plots
run with Rainbow using the Impala architecture and 8 experts. See
Section 4 for training details.

ment. In contrast, the performance of the base architectures
declines as we widen its layer; for instance in Rainbow, as
we increase the layer multiplier from 1 to 8 there is a perfor-
mance decrease of around 40%. This is a finding consistent
with prior work demonstrating the difficulty in scaling up
deep RL networks (Farebrother et al., 2022; Taiga et al.,
2022; Schwarzer et al., 2023). Top1-MoE seems to provide
gains when incorporated into Rainbow, but fails to exhibit
the parameter-scalability we observe with Soft MoE.

It is known that deep RL agents are unable to maintain
performance when scaling the replay ratio without explicit
interventions (D’Oro et al., 2023; Schwarzer et al., 2023).
In Figure 4 we observe that the use of Soft MoEs maintains
a strong advantage over the baseline even at high replay
ratios, further confirming that they make RL networks more
parameter efficient.

4.2. Impact of Design Choices

Number of experts Fedus et al. (2022) argued that the
number of experts is the most efficient way to scale models
in supervised learning settings. Our results in Figure 1
demonstrate that while Soft MoE does benefit from more
experts, Top1-MoE does not.

Dimensionality of experts As Figure 1 confirms, scal-
ing the corresponding layer in the base architectures does
not match the performance obtained when using Soft MoEs
(and in fact worsens it). We explored dividing the dimen-
sionality of each expert by the number of experts, effectively
bringing the number of parameters on-par with the origi-
nal base architecture. Figure 5 demonstrates that Soft MoE
maintains its performance, even with much smaller experts.
This suggests the observed benefits come largely from the
structured sparsity induced by Soft MoEs, and not necessar-
ily the size of each expert.
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Figure 9. Load-balancing losses from Ruiz et al. (2021) are un-
able to improve the performance of Top1-MoE with 8 experts
on neither DQN (left) nor Rainbow (right). See Section 4 for
training details.

Gating and combining Top1-MoEs and Soft MoEs use
learned gating mechanisms, albeit different ones: the former
uses a top-1 router, selecting an expert for each token, while
the latter uses dispatch weights to assign weighted tokens to
expert slots. The learned “combiner” component takes the
output of the MoE modules and combines them to produce
a single output (see Figure 2). If we use a single expert,
the only difference between the base architectures and the
MoE ones are then the extra learned parameters from the
gating and combination components. Figure 1 suggests that
most of the benefit of MoEs comes from the combination
of the gating/combining components with multiple experts.
Interestingly, Soft MoE with a single expert still provides
performance gains for Rainbow, suggesting that the learned
Φ matrix (see Section 2.2) has a beneficial role to play.
Indeed, the right panel of Figure 8, where we replace the
learned Φ with a random one, confirms this.

Tokenization As mentioned above, we focus most of our
investigations on PerConv tokenization, but also explore
two others: PerFeat is essentially a transpose of PerConv,
producing d tokens of dimensionality h×w; PerSamp uses
the entire output of the encoder as a single token (see Fig-
ure 3). In Figure 6 we can observe that while PerConv works
best with Soft MoE, Top1-MoE seems to benefit more from
PerFeat.

Encoder Although we have mostly used the encoder from
the Impala architecture (Espeholt et al., 2018), in Figure 7
we confirm that Soft MoE still provides benefits when used
with the standard CNN architecture from Mnih et al. (2015).

Game selection To confirm that our findings are not lim-
ited to our choice of 20 games, we ran a study over all the
60 Atari 2600 games with 5 independent seeds, similar to
previous works (Fedus et al., 2020; Ceron et al., 2023). In
the left panel of Figure 8, we observe that Soft MoE results
in improved performance over the full 60 games in the suite.
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Figure 10. Additional analyses: both standard Top1-MoE and Soft MoE architectures exhibit similar properties of the hidden representa-
tion: both are more robust to dormant neurons and have higher effective rank of both the features and the gradients. We also see that the
MoE architectures exhibit less feature norm growth than the baseline. See Section 4 for training details.

Number of active experts A crucial difference between
the two flavors of MoEs considered here is in the activation
of experts: Top1-MoE activates only one expert per forward
pass (hard-gating), whereas Soft MoE activates all of them.
Hard-gating is known to be a source of training difficulties,
and many works have explored adding load-balancing losses
(Shazeer et al., 2017; Ruiz et al., 2021; Fedus et al., 2022;
Mustafa et al., 2022). To investigate whether Top1-MoE
is underperforming due to improper load balancing, we
added the load and importance losses proposed by Ruiz
et al. (2021) (equation (7) in Appendix 2). Figure 9 suggests
the addition of these load-balancing losses is insufficient to
boost the performance of Top1-MoE. While it is possible
other losses may result in better performance, these find-
ings suggest that RL agents benefit from having a weighted
combination of the tokens, as opposed to hard routing.

4.3. Additional Analysis

In the previous sections, we have shown that deep RL agents
using MoE networks are better able to take advantage of
network scaling, but it is not obvious a priori how they
produce this effect. While a fine-grained analysis of the
effects of MoE modules on network optimization dynamics
lies outside the scope of this work, we zoom in on three
properties known to correlate with training instability in
deep RL agents: the rank of the features (Kumar et al.,
2021a), interference between per-sample gradients (Lyle
et al., 2022b), and dormant neurons (Sokar et al., 2023).
We conduct a deeper investigation into the effect of MoE
layers on learning dynamics by studying the Rainbow agent

using the Impala architecture, and using 8 experts for the
runs with the MoE modules. We track the norm of the
features, the rank of the empirical neural tangent kernel
(NTK) matrix (i.e. the matrix of dot products between per-
transition gradients sampled from the replay buffer), and the
number of dormant neurons – all using a batch size of 32 –
and visualize these results in Figure 10.

We observe significant differences between the baseline ar-
chitecture and the architectures that include MoE modules.
The MoE architectures both exhibit higher numerical ranks
of the empirical NTK matrices than the baseline network,
and have negligible dormant neurons and feature norms.
These findings suggest that the MoE modules have a stabi-
lizing effect on optimization dynamics, though we refrain
from claiming a direct causal link between improvements
in these metrics and agent performance. For example, while
the rank of the ENTK is higher for the MoE agents, the best-
performing agent does not have the highest ENTK rank. The
absence of pathological values of these statistics in the MoE
networks does however, suggest that whatever the precise
causal chain is, the MoE modules have a stabilizing effect
on optimization.

5. Future directions
To provide an in-depth investigation into both the resulting
performance and probable causes for the gains observed, we
focused on evaluating DQN and Rainbow with Soft MoE
and Top1-MoE on the standard ALE benchmark. The ob-
served performance gains suggest that these ideas would
also be beneficial in other training regimes. In this section
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we provide strong empirical results in a number of different
training regimes, which we hope will serve as indicators for
promising future directions of research.

5.1. Offline RL

We begin by incorporating MoEs in offline RL, where agents
are trained on a fixed dataset without environment interac-
tions. Following prior work (Kumar et al., 2021b), we train
the agents over 17 games and 5 seeds for 200 iterations,
where 1 iteration corresponds to 62,500 gradient updates.
We evaluated on datasets composed of 5%, 10%, 50% of
the samples (drawn randomly) from the set of all environ-
ment interactions collected by a DQN agent trained for
200M steps (Agarwal et al., 2020). In Figure 11 we observe
that combining Soft MoE with two modern offline RL algo-
rithms (CQL (Kumar et al., 2020) and CQL+C51 (Kumar
et al., 2022)) attains the best aggregate final performance.
Top1-MoE provides performance improvements when used
in conjunction with CQL+C51, but not with CQL. Simi-
lar improvements can be observed when using 10% of the
samples (see Figure 17).

5.2. Agent Variants For Low-Data Regimes

DQN and Rainbow were both developed for a training
regime where agents can take millions of steps in their
environments. Kaiser et al. (2020) introduced the 100k4

benchmark, which evaluates agents on a much smaller data
regime (100k interactions) on 26 games. We evaluate the
performance on two popular agents for this regime: DrQ(ε),
an agent based on DQN (Yarats et al., 2021; Agarwal et al.,
2021), and DER (Van Hasselt et al., 2019), an agent based on
Rainbow. When trained for 100k environment interactions
we saw no real difference between the different variants,
suggesting that the benefits of MoEs, at least in our current
setup, only arise when trained for a significant amount of
interactions. However, when trained for 50M steps we do
see gains in both agents, in particular with DER (Figure 12).
The gains we observe in this setting are consistent with what
we have observed so far, given that DrQ(ε) and DER are
based on DQN and Rainbow, respectively.

5.3. Expert Variants

Our proposed MoE architecture replaces the feed-forward
layer after the encoder with an MoE, where the experts
consist of a single feed-forward layer (Figure 2). This is
based on what is common practice when adding MoEs to
transformer architectures, but is by no means the only way
to utilize MoEs. Here we investigate three variants of using
Soft MoE for DQN and Rainbow with the Impala archi-

4Here, 100k refers to agent steps, or 400k environment frames,
due to skipping frames in the standard training setup.

tecture: Big: Each expert is a full network.The final linear
layer is included in DQN (each expert has its own layer), but
excluded from Rainbow (so the final linear layer is shared
amongst experts).5 All: A separate Soft MoE is applied
at each layer of the network, excluding the last layer for
Rainbow. Regular: the setting used in the rest of this paper.
For Big and All, the routing is applied at the the input level,
and we are using PerSamp tokenization (see Figure 3).

Puigcerver et al. (2023) propose using `2 normalization to
each Soft MoE layer for large tokens, but mention that it
makes little difference for smaller tokens. Since the tokens
in our experiments above are small (relative to the large
models typically using MoEs) we chose not to include this in
the experiments run thus far. This may no longer be the case
with Big and All, since we are using PerSamp tokenization
on the full input; for this reason, we investigated the impact
of `2 normalization when running these results.

Figure 13 summarizes our results, from which we can draw a
number of conclusions. First, these experiments confirm our
intuition that not including regularization in the setup used in
the majority of this paper performs best. Second, consistent
with Puigcerver et al. (2023), normalization seems to help
with Big experts. This is particularly noticeable in DQN,
where it even surpasses the performance of the Regular
setup; the difference between the two is most likely due to
the last layer being shared (as in Rainbow) or non-shared
(as in DQN). Finally, using separate MoE modules for each
layer (All) seems to not provide many gains, especially
when coupled with normalization, where the agents are
completely unable to learn.

In summary, our results suggest there may be promise in
exploring alternative architectures for use with mixtures of
experts.

6. Related Work
Mixture of Experts MoEs were first proposed by Jacobs
et al. (1991) and have recently helped scaling language
models up to trillions of parameters thanks to their mod-
ular nature, facilitating distributed training, and improved
parameter efficiency at inference (Lepikhin et al., 2020;
Fedus et al., 2022). MoEs are also widely studied in com-
puter vision (Wang et al., 2020; Yang et al., 2019; Abbas &
Andreopoulos, 2020; Pavlitskaya et al., 2020), where they
enable scaling vision transformers to billions of parame-
ters while reducing the inference computation cost by half
(Riquelme et al., 2021), help with vision-based continual
learning (Lee et al., 2019), and multi-task problems (Fan
et al., 2022). MoEs also help performance in transfer- and

5This design choice was due to the use of C51 in Rainbow,
which makes it non-trivial to maintain‘ the “token-preserving”
property of MoEs.
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Figure 11. Normalized performance across 17 Atari games for
CQL (left) and CQL + C51 (right), with the ResNet (Espeholt
et al., 2018) architecture and 8 experts trained on offline data.
Soft MoE not only remains generally stable with more training,
but also attains higher final performance. See Section 4 for training
details.

multi-task learning settings, e.g. by specializing experts to
sub-problems (Puigcerver et al., 2020; Chen et al., 2023; Ye
& Xu, 2023) or by addressing statistical performance issues
of routers (Hazimeh et al., 2021). There have been few
works exploring MoEs in RL for single (Ren et al., 2021;
Akrour et al., 2022) and multi-task learning (Hendawy et al.,
2024). However their definition and usage of “mixtures-of-
experts” is somewhat different than ours, focusing more on
orthogonal, probabilistic, and interpretable MoEs.

Parameter Scalability and Efficiency in Deep RL Lack
of parameter scalability in deep RL can be partly explained
by a lack of parameter efficiency. Parameter count cannot
be scaled efficiently if those parameters are not used effec-
tively. Recent work shows that networks in RL under-utilize
their parameters. Sokar et al. (2023) demonstrates that net-
works suffer from an increasing number of inactive neurons
throughout online training. Similar behavior is observed
by Gulcehre et al. (2022) in offline RL. Arnob et al. (2021)
shows that 95% of the network parameters can be pruned
at initialization in offline RL without loss in performance.
Numerous works demonstrate that periodic resetting of the
network weights improves performance (Nikishin et al.,
2022; Dohare et al., 2021; Sokar et al., 2023; D’Oro et al.,
2022; Igl et al., 2020; Schwarzer et al., 2023).

Another line of research demonstrates that RL networks can
be trained with a high sparsity level (∼90%) without loss in
performance (Tan et al., 2022; Sokar et al., 2022; Graesser
et al., 2022; Ceron et al., 2024). These observations call
for techniques to better utilize the network parameters in
RL training, such as using MoEs, which we show decreases
dormant neurons drastically over multiple tasks and archi-
tectures. To enable scaling networks in deep RL, prior
works focus on algorithmic methods (Farebrother et al.,
2022; Taiga et al., 2022; Schwarzer et al., 2023; Farebrother
et al., 2024). In contrast, we focus on alternative network
topologies to enable robustness towards scaling.
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Figure 12. Normalized performance across 26 Atari games for
DrQ(ε) (left) and DER (right), with the ResNet architecture (Es-
peholt et al., 2018) and 8 experts (see Figure 16, for 4 experts).
Soft MoE not only remains generally stable with more training, but
also attains higher final performance. We report interquantile mean
performance with error bars indicating 95% confidence intervals.

7. Discussion and Conclusion
As RL continues to be used for increasingly complex tasks,
we will likely require larger networks. As recent research
has shown (and which our results confirm), naı̈vely scaling
up network parameters does not result in improved perfor-
mance. Our work shows empirically that MoEs have a
beneficial effect on the performance of value-based agents
across a diverse set of training regimes.

Mixtures of Experts induce a form of structured sparsity
in neural networks, prompting the question of whether the
benefits we observe are simply a consequence of this spar-
sity rather than the MoE modules themselves. Our results
suggest that it is likely a combination of both: Figure 1
demonstrates that in Rainbow, adding an MoE module with
a single expert yields statistically significant performance
improvements, while Figure 5 demonstrates that one can
scale down expert dimensionality without sacrificing per-
formance. The right panel of Figure 8 further confirms the
necessity of the extra parameters in Soft MoE modules.

Recent findings in the literature demonstrate that while RL
networks have a natural tendency towards neuron-level spar-
sity which can hurt performance (Sokar et al., 2023), they
can benefit greatly from explicit parameter-level sparsity
(Graesser et al., 2022). When taken in combination with
our findings, they suggest that there is still much room for
exploration, and understanding, of the role sparsity can play
in training deep RL networks, especially for parameter scal-
ability.

Even in the narrow setting we have focused on (replacing the
penultimate layer of value-based agents with MoEs for off-
policy learning in single-task settings), there are many open
questions that can further increase the benefits of MoEs:
different values of k for Top1-MoEs, different tokenization
choices, using different learning rates (and perhaps opti-
mizers) for routers, among others. Of course, expanding
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Figure 13. Normalized performance over 20 games for expert
variants with DQN (left) and Rainbow (right), also investigating
the use of the normalization of Puigcerver et al. (2023). We report
interquantile mean performance with shaded areas indicating 95%
confidence intervals.

beyond the ALE could provide more comprehensive results
and insights, potentially at a fraction of the computational
expense (Ceron & Castro, 2021).

The results presented in Section 5 suggest MoEs can play
a more generally advantageous role in training deep RL
agents. More broadly, our findings confirm the impact ar-
chitectural design choices can have on the ultimate per-
formance of RL agents. We hope our findings encourage
more researchers to further investigate this – still relatively
unexplored – research direction.

Acknowledgements
The authors would like to thank Gheorghe Comanici, Owen
He, Alex Muzio, Adrien Ali Taı̈ga, Rishabh Agarwal, Hugo
Larochelle, Ayoub Echchahed, and the rest of the Google
DeepMind Montreal team for valuable discussions during
the preparation of this work; Gheorghe deserves a special
mention for providing us valuable feedback on an early
draft of the paper. We thank the anonymous reviewers for
their valuable help in improving our manuscript. We would
also like to thank the Python community (Van Rossum &
Drake Jr, 1995; Oliphant, 2007) for developing tools that
enabled this work, including NumPy (Harris et al., 2020),
Matplotlib (Hunter, 2007), Jupyter (Kluyver et al., 2016),
Pandas (McKinney, 2013) and JAX (Bradbury et al., 2018).

Impact statement
This paper presents work whose goal is to advance the field
of Machine Learning, and reinforcement learning in particu-
lar. There are many potential societal consequences of our
work, none which we feel must be specifically highlighted
here.

References
Abbas, A. and Andreopoulos, Y. Biased mixtures of experts:

Enabling computer vision inference under data transfer

limitations. IEEE Transactions on Image Processing, 29:
7656–7667, 2020.

Agarwal, R., Schuurmans, D., and Norouzi, M. An
optimistic perspective on offline reinforcement learn-
ing. In III, H. D. and Singh, A. (eds.), Proceed-
ings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 104–114. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/
v119/agarwal20c.html.

Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C.,
and Bellemare, M. Deep reinforcement learning at the
edge of the statistical precipice. Advances in neural in-
formation processing systems, 34:29304–29320, 2021.

Akrour, R., Tateo, D., and Peters, J. Continuous action
reinforcement learning from a mixture of interpretable
experts. IEEE Trans. Pattern Anal. Mach. Intell., 44(10):
6795–6806, oct 2022. ISSN 0162-8828. doi: 10.1109/
TPAMI.2021.3103132. URL https://doi.org/10.
1109/TPAMI.2021.3103132.

Arnob, S. Y., Ohib, R., Plis, S., and Precup, D. Single-shot
pruning for offline reinforcement learning. arXiv preprint
arXiv:2112.15579, 2021.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation platform
for general agents. Journal of Artificial Intelligence Re-
search, 47:253–279, June 2013a. ISSN 1076-9757. doi:
10.1613/jair.3912. URL http://dx.doi.org/10.
1613/jair.3912.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013b.

Bellemare, M. G., Candido, S., Castro, P. S., Gong, J.,
Machado, M. C., Moitra, S., Ponda, S. S., and Wang, Z.
Autonomous navigation of stratospheric balloons using
reinforcement learning. Nature, 588:77 – 82, 2020.

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P.,
Dennison, C., Farhi, D., Fischer, Q., Hashme, S., Hesse,
C., et al. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv:1912.06680, 2019.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., et al. Jax: composable transfor-
mations of python+ numpy programs. 2018.

Castro, P. S., Moitra, S., Gelada, C., Kumar, S., and Belle-
mare, M. G. Dopamine: A Research Framework for
Deep Reinforcement Learning. 2018. URL http:
//arxiv.org/abs/1812.06110.

9

https://proceedings.mlr.press/v119/agarwal20c.html
https://proceedings.mlr.press/v119/agarwal20c.html
https://doi.org/10.1109/TPAMI.2021.3103132
https://doi.org/10.1109/TPAMI.2021.3103132
http://dx.doi.org/10.1613/jair.3912
http://dx.doi.org/10.1613/jair.3912
http://arxiv.org/abs/1812.06110
http://arxiv.org/abs/1812.06110


Mixtures of Experts Unlock Parameter Scaling for Deep RL

Ceron, J. S. O. and Castro, P. S. Revisiting rainbow: Pro-
moting more insightful and inclusive deep reinforcement
learning research. In International Conference on Ma-
chine Learning, pp. 1373–1383. PMLR, 2021.

Ceron, J. S. O., Bellemare, M. G., and Castro, P. S. Small
batch deep reinforcement learning. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
id=wPqEvmwFEh.

Ceron, J. S. O., Courville, A., and Castro, P. S. In value-
based deep reinforcement learning, a pruned network is
a good network. In Forty-first International Conference
on Machine Learning. PMLR, 2024. URL https://
openreview.net/forum?id=seo9V9QRZp.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. arXiv preprint arXiv:2106.01345, 2021.

Chen, Z., Shen, Y., Ding, M., Chen, Z., Zhao, H., Learned-
Miller, E. G., and Gan, C. Mod-squad: Designing mix-
tures of experts as modular multi-task learners. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pp. 11828–11837, 2023.

Ding, X., Zhang, X., Han, J., and Ding, G. Scaling up your
kernels to 31x31: Revisiting large kernel design in cnns.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 11963–11975, 2022.

Dohare, S., Sutton, R. S., and Mahmood, A. R. Continual
backprop: Stochastic gradient descent with persistent
randomness. arXiv preprint arXiv:2108.06325, 2021.

D’Oro, P., Schwarzer, M., Nikishin, E., Bacon, P.-L., Belle-
mare, M. G., and Courville, A. Sample-efficient rein-
forcement learning by breaking the replay ratio barrier. In
Deep Reinforcement Learning Workshop NeurIPS 2022,
2022. URL https://openreview.net/forum?
id=4GBGwVIEYJ.

D’Oro, P., Schwarzer, M., Nikishin, E., Bacon, P.-L., Belle-
mare, M. G., and Courville, A. Sample-efficient rein-
forcement learning by breaking the replay ratio barrier.
In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.
net/forum?id=OpC-9aBBVJe.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference
on Learning Representations, 2021. URL https://
openreview.net/forum?id=YicbFdNTTy.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,
V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning,
I., et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In Pro-
ceedings of the International Conference on Machine
Learning (ICML), 2018.

Evci, U., Gale, T., Menick, J., Castro, P. S., and
Elsen, E. Rigging the lottery: Making all tickets
winners. In III, H. D. and Singh, A. (eds.), Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 2943–2952. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/
v119/evci20a.html.

Fan, Z., Sarkar, R., Jiang, Z., Chen, T., Zou, K., Cheng, Y.,
Hao, C., Wang, Z., et al. M3vit: Mixture-of-experts vision
transformer for efficient multi-task learning with model-
accelerator co-design. Advances in Neural Information
Processing Systems, 35:28441–28457, 2022.

Farebrother, J., Greaves, J., Agarwal, R., Le Lan, C.,
Goroshin, R., Castro, P. S., and Bellemare, M. G. Proto-
value networks: Scaling representation learning with aux-
iliary tasks. In The Eleventh International Conference on
Learning Representations, 2022.

Farebrother, J., Orbay, J., Vuong, Q., Taı̈ga, A. A., Chebotar,
Y., Xiao, T., Irpan, A., Levine, S., Castro, P. S., Faust,
A., Kumar, A., and Agarwal, R. Stop regressing: Train-
ing value functions via classification for scalable deep
rl. In Forty-first International Conference on Machine
Learning. PMLR, 2024.

Fawzi, A., Balog, M., Huang, A., Hubert, T., Romera-
Paredes, B., Barekatain, M., Novikov, A., R Ruiz, F. J.,
Schrittwieser, J., Swirszcz, G., et al. Discovering
faster matrix multiplication algorithms with reinforce-
ment learning. Nature, 610(7930):47–53, 2022.

Fedus, W., Ramachandran, P., Agarwal, R., Bengio, Y.,
Larochelle, H., Rowland, M., and Dabney, W. Revisiting
fundamentals of experience replay. In International Con-
ference on Machine Learning, pp. 3061–3071. PMLR,
2020.

Fedus, W., Zoph, B., and Shazeer, N. Switch transform-
ers: Scaling to trillion parameter models with simple
and efficient sparsity. The Journal of Machine Learning
Research, 23(1):5232–5270, 2022.

Fukushima, K. Visual feature extraction by a multilayered
network of analog threshold elements. IEEE Trans. Syst.
Sci. Cybern., 5(4):322–333, 1969. doi: 10.1109/TSSC.
1969.300225. URL https://doi.org/10.1109/
TSSC.1969.300225.

10

https://openreview.net/forum?id=wPqEvmwFEh
https://openreview.net/forum?id=wPqEvmwFEh
https://openreview.net/forum?id=seo9V9QRZp
https://openreview.net/forum?id=seo9V9QRZp
https://openreview.net/forum?id=4GBGwVIEYJ
https://openreview.net/forum?id=4GBGwVIEYJ
https://openreview.net/forum?id=OpC-9aBBVJe
https://openreview.net/forum?id=OpC-9aBBVJe
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://proceedings.mlr.press/v119/evci20a.html
https://proceedings.mlr.press/v119/evci20a.html
https://doi.org/10.1109/TSSC.1969.300225
https://doi.org/10.1109/TSSC.1969.300225


Mixtures of Experts Unlock Parameter Scaling for Deep RL

Gale, T., Elsen, E., and Hooker, S. The state of sparsity
in deep neural networks. CoRR, abs/1902.09574, 2019.
URL http://arxiv.org/abs/1902.09574.

Gale, T., Narayanan, D., Young, C., and Zaharia, M.
MegaBlocks: Efficient Sparse Training with Mixture-of-
Experts. Proceedings of Machine Learning and Systems,
5, 2023.

Graesser, L., Evci, U., Elsen, E., and Castro, P. S.
The state of sparse training in deep reinforcement
learning. In Chaudhuri, K., Jegelka, S., Song, L.,
Szepesvari, C., Niu, G., and Sabato, S. (eds.), Pro-
ceedings of the 39th International Conference on Ma-
chine Learning, volume 162 of Proceedings of Machine
Learning Research, pp. 7766–7792. PMLR, 17–23 Jul
2022. URL https://proceedings.mlr.press/
v162/graesser22a.html.

Gulcehre, C., Srinivasan, S., Sygnowski, J., Ostrovski, G.,
Farajtabar, M., Hoffman, M., Pascanu, R., and Doucet,
A. An empirical study of implicit regularization in deep
offline rl. arXiv preprint arXiv:2207.02099, 2022.

Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers,
R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J.,
Berg, S., Smith, N. J., et al. Array programming with
numpy. Nature, 585(7825):357–362, 2020.

Hazimeh, H., Zhao, Z., Chowdhery, A., Sathiamoorthy, M.,
Chen, Y., Mazumder, R., Hong, L., and Chi, E. Dselect-k:
Differentiable selection in the mixture of experts with
applications to multi-task learning. Advances in Neural
Information Processing Systems, 34:29335–29347, 2021.

Hendawy, A., Peters, J., and D’Eramo, C. Multi-task rein-
forcement learning with mixture of orthogonal experts.
In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.
net/forum?id=aZH1dM3GOX.

Hessel, M., Modayil, J., Hasselt, H. V., Schaul, T., Ostrovski,
G., Dabney, W., Horgan, D., Piot, B., Azar, M. G., and
Silver, D. Rainbow: Combining improvements in deep
reinforcement learning. In AAAI, 2018.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for NLP.
In Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceed-
ings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learn-
ing Research, pp. 2790–2799. PMLR, 09–15 Jun 2019.
URL https://proceedings.mlr.press/v97/
houlsby19a.html.

Hunter, J. D. Matplotlib: A 2d graphics environment. Com-
puting in science & engineering, 9(03):90–95, 2007.

Igl, M., Farquhar, G., Luketina, J., Boehmer, W., and White-
son, S. Transient non-stationarity and generalisation in
deep reinforcement learning. In International Conference
on Learning Representations, 2020.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E.
Adaptive mixtures of local experts. Neural computation,
3(1):79–87, 1991.

Jesson, A., Lu, C., Gupta, G., Filos, A., Foerster, J. N.,
and Gal, Y. Relu to the rescue: Improve your on-policy
actor-critic with positive advantages. arXiv preprint
arXiv:2306.01460, 2023.

Kaiser, L., Babaeizadeh, M., Miłos, P., Osiński, B., Camp-
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A. Experimental details
Unless otherwise specified, in all experiments below we report the interquantile mean after 40 million environment steps;
error bars indicate 95% stratified bootstrap confidence intervals (Agarwal et al., 2021). Most of our experiments were run
with 20 games from the ALE suite (Bellemare et al., 2013a), as suggested by Fedus et al. (2020). However, for the Atari
100k agents (subsection 5.2), we used the standard set of 26 games (Kaiser et al., 2020) to be consistent with the benchmark.
Finally, we also ran some experiments with the full set of 60 games. The specific games are detailed below.

20 game subset: AirRaid, Asterix, Asteroids, Bowling, Breakout, DemonAttack, Freeway, Gravitar, Jamesbond, Mon-
tezumaRevenge, MsPacman, Pong, PrivateEye, Qbert, Seaquest, SpaceInvaders, Venture, WizardOfWor, YarsRevenge,
Zaxxon.

26 game subset: Alien, Amidar, Assault, Asterix, BankHeist, BattleZone, Boxing, Breakout, ChopperCommand, Crazy-
Climber, DemonAttack, Freeway, Frostbite, Gopher, Hero, Jamesbond, Kangaroo, Krull, KungFuMaster, MsPacman, Pong,
PrivateEye, Qbert, RoadRunner, Seaquest, UpNDown.

60 game set: The 26 games above in addition to: AirRaid, Asteroids, Atlantis, BeamRider, Berzerk, Bowling, Carnival,
Centipede, DoubleDunk, ElevatorAction, Enduro, FishingDerby, Gravitar, IceHockey, JourneyEscape, MontezumaRevenge,
NameThisGame, Phoenix, Pitfall, Pooyan, Riverraid, Robotank, Skiing, Solaris, SpaceInvaders, StarGunner, Tennis,
TimePilot, Tutankham, Venture, VideoPinball, WizardOfWor, YarsRevenge, Zaxxon.

B. Hyper-parameters list
Default hyper-parameter settings for DER (Van Hasselt et al., 2019) and DrQ(ε) (Kaiser et al., 2020; Agarwal et al., 2021)
agents. Table 1 shows the default values for each hyper-parameter across all the Atari games.

Table 1. Default hyper-parameters setting for DER and DrQ(ε) agents.

Atari

Hyper-parameter DER DrQ(ε)

Adam’s(ε) 0.00015 0.00015
Adam’s learning rate 0.0001 0.0001

Batch Size 32 32
Conv. Activation Function ReLU ReLU

Convolutional Width 1 1
Dense Activation Function ReLU ReLU

Dense Width 512 512
Normalization None None

Discount Factor 0.99 0.99
Exploration ε 0.01 0.01

Exploration ε decay 2000 5000
Minimum Replay History 1600 1600

Number of Atoms 51 0
Number of Convolutional Layers 3 3

Number of Dense Layers 2 2
Replay Capacity 1000000 1000000
Reward Clipping True True
Update Horizon 10 10
Update Period 1 1
Weight Decay 0 0
Sticky Actions False False
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Default hyper-parameter settings for DQN (Mnih et al., 2015) and Rainbow (Hessel et al., 2018) agents. Table 2 shows the
default values for each hyper-parameter across all the Atari games.

Table 2. Default hyper-parameters setting for DQN and Rainbow agents.

Atari

Hyper-parameter DQN Rainbow

Adam’s (ε) 1.5e-4 1.5e-4
Adam’s learning rate 6.25e-5 6.25e-5

Batch Size 32 32
Conv. Activation Function ReLU ReLU

Convolutional Width 1 1
Dense Activation Function ReLU ReLU

Dense Width 512 512
Normalization None None

Discount Factor 0.99 0.99
Exploration ε 0.01 0.01

Exploration ε decay 250000 250000
Minimum Replay History 20000 20000

Number of Atoms 0 51
Number of Convolutional Layers 3 3

Number of Dense Layers 2 2
Replay Capacity 1000000 1000000
Reward Clipping True True
Update Horizon 1 3
Update Period 4 4
Weight Decay 0 0
Sticky Actions True True
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Default hyper-parameter settings for CQL (Kumar et al., 2020) and CQL+C51 (Kumar et al., 2022) offline agents. Table 3
shows the default values for each hyper-parameter across all the Atari games.

Table 3. Default hyper-parameters setting for CQL and CQL+C51 agents.

Atari

Hyper-parameter CQL CQL+C51

Adam’s(ε) 0.0003125 0.00015
Batch Size 32 32

Conv. Activation Function ReLU ReLU
Convolutional Width 1 1

Dense Activation Function ReLU ReLU
Normalization None None
Dense Width 512 512

Discount Factor 0.99 0.99
Learning Rate 0.00005 0.0000625

Number of Atoms 0 51
Number of Convolutional Layers 3 3

Number of Dense Layers 2 2
Fixed Replay Capacity 2,500,000 steps 2,500,000 steps

Reward Clipping True True
Update Horizon 1 3
Update Period 1 1
Weight Decay 0 0

Replay Scheme Uniform Uniform
Dueling False True

Double DQN False True
CQL coef 0.1 0.1

Default hyper-parameter settings for CNN architecture (Mnih et al., 2015) and Impala-based ResNet (Espeholt et al., 2018)
Table 4 shows the default values for each hyper-parameter across all the Atari games.

Table 4. Default hyper-parameters for neural networks.

Atari

Hyper-parameter CNN architecture (Mnih et al., 2015) Impala-based ResNet (Espeholt et al., 2018)

Observation down-sampling (84, 84) (84, 84)
Frames stacked 4 4

Q-network (channels) 32, 64, 64 32, 64, 64
Q-network (filter size) 8 x 8, 4 x 4, 3 x 3 8 x 8, 4 x 4, 3 x 3

Q-network (stride) 4, 2, 1 4, 2, 1
Num blocks - 2

Use max pooling False True
Skip connections False True

Hardware Tesla P100 GPU Tesla P100 GPU
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C. Extra results

Figure 14. Results for architectural ablations as described in Section 5.3 on DQN. Additionally, we investigate the effect of the normaliza-
tion that was proposed in the original Soft MoE paper.
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Figure 15. Results for architectural exploration as described in Section 5.3 on Rainbow. Additionally, we investigate the effect of the
normalization that was proposed in the original Soft MoE paper.
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Figure 16. Normalized performance across 26 Atari games for DrQ(ε) (left) and DER (right), with the ResNet architecture (Espeholt
et al., 2018) and 4 experts. Soft MoE not only remains generally stable with more training, but also attains higher final performance. We
report interquantile mean performance with error bars indicating 95% confidence intervals.
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Figure 17. Normalized performance across 17 Atari games for CQL+C51. x-axis represents gradient steps; no new data is collected.
Left: 10% and Right: 50% uniform replay. We report IQM with 95% stratified bootstrap CIs (Agarwal et al., 2021)
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D. Varying Impala filter sizes
When dealing with small models, it’s common to scale them up to enhance performance. This makes the scaling strategy
crucial for balancing accuracy and efficiency. For Convolutional Neural Networks (CNNs), traditional scaling methods
usually emphasize model depth, width, and input resolution (Ding et al., 2022), as well as the filter. The default filter size is
3x3 for the Impala CNN, and we ran experiments with and without SoftMoE using 4x4 and 6x6 filters to investigate the
filter size scaling benefits. In both cases, SoftMoE outperforms the baseline.
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Figure 18. Normalized performance across 20 Atari games with the ResNet architecture. SoftMoE achieves the best results in both
scenarios; default filter size (3x3) is increased to (4x4) and (6x6).

E. Measuring runtime
We plotted IQM performance against wall time, instead of the standard environment frames. SoftMoE and baseline have no
noticeable difference in running time, whereas Top1-MoE is slightly faster than both.
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Figure 19. Measuring wall-time versus IQM of human-normalized scores in Rainbow over 20 games. Left: ImpalaCNN and Right:
CNN network. Each experiment had 3 independent runs, and the confidence intervals show 95% confidence intervals.
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F. Experiments with PPO
Based on reviewer suggestions, we have run some initial experiments with PPO and SAC on MuJoCo. We have not observed
significant performance gains nor degradation with SoftMoE; with Top1-MoE we see a degradation in performance, similar
to what we observed in our submission. We see a few possible reasons for the lack of improvement with SoftMoE:

1. For ALE experiments, all agents use Convolutional layers, whereas for the MuJoCo experiments (where we ran SAC
and PPO) the networks only use dense layers. It is possible the induced sparsity provided by MoEs is most effective
when combined with convolutional layers.

2. The suite of environments in MuJoCo are perhaps less complex than the set of experiments in the ALE, so performance
with agents like SAC and PPO is somewhat saturated.
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Figure 20. Left: Evaluating SAC with SoftMoE on 28 MuJoCo environments and Right: Evaluatin PPO on 9 MuJoCo-Brax environments.
SoftMoEs seems to provide no gains nor degradation, whereas TopK seems to degrade performance (consistent with paper’s findings).
MuJoCo scores are normalized between 0 and 1000, with 5 seeds each; error bars indicate 95% stratified bootstrap confidence intervals.
MuJoCo-Brax scores are normalized with respect to Jesson et al. (2023).
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