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ABSTRACT

Image segmentation and recognition occur simultaneously, with recognition relying
on the underlying segmentation to form a continuous visual grouping hierarchy.
For example, the same object can be parsed into different part-to-whole structures,
resulting in varying recognitions. Despite this, most prior works treated segmenta-
tion and recognition as separate tasks. In this paper, we aim to devise a learning
framework that involves segmentation in the recognition process, utilizing hierar-
chical segmentation for recognition, which is learned by recognition. Specifically,
we propose CAST, which realizes this concept through designs inspired by vi-
sion transformers, enabling concurrent segmentation and recognition with a single
model. The core idea of CAST is to employ adaptive segment tokens that group
the finest pixels into coarser segments, using the latest embedding to represent the
entire image for recognition. Trained solely on image recognition objectives, CAST
automatically discovers the hierarchy of segments. Our experiments demonstrate
that CAST provides consistent hierarchical segmentation and recognition, which
is impossible with state-of-the-art segmentation methods such as SAM. Addition-
ally, CAST offers several advantages over the standard ViT, including improved
semantic segmentation, computational efficiency, and object-centric attention.'

1 INTRODUCTION

Human vision has two pathways: 1) bottom-up processing, where the composition of distinctive
parts facilitates coarse scene understanding (Biederman, 1987), and 2) top-down processing, where
coarse recognition explains connected parts (Maurer et al., 2002). These two pathways necessitate
recognition for both parts and wholes to be done concurrently, influencing each other (Tanaka & Farah,
1993; Tanaka & Simonyi, 2016; Tanaka et al., 2019). Take the famous girl vs. woman illusion in
Fig. 1, for example. When we look at the girl, we perceive her profile face but not the nose of the old
woman. In contrast, observing a mouth helps us discern the ol/d woman. It appears that our recognition
of individual parts is intricately connected to our ability to recognize the whole. In computer vision,
the recognition of parts and the whole is often formulated as hierarchical segmentation and image
recognition problems. We are thus motivated to ask: Can we develop a vision framework integrating
this part-to-whole segmentation structure in the loop for image recognition?

Prior works often treat segmentation and recognition as separate tasks, each involving distinct models
and annotations. Recognition models are supervised with per-image labels, such as categories (Deng
et al., 2009) or instances (Wu et al., 2018). These methods encode input images into global fea-
tures (He et al., 2016; Dosovitskiy et al., 2020), disregarding local pixel-level information but focusing
on the most distinguishing parts (Selvaraju et al., 2017). Conversely, segmentation models are super-
vised with pixel labels (Long et al., 2015; Kirillov et al., 2023). Segmentation models often inject
global information into local pixel features with skip connections (Lin et al., 2017; Cheng et al., 2021),
facilitating pixel label prediction. Due to distinct architectural designs, recognition models cannot be
used out-of-the-box for segmentation tasks (Ding et al., 2022), but require additional adaptation of
architectures and fine-tuning on segmentation labels. Meanwhile, image-level information requires
structural modulation so as to be useful for segmentation models (Ahn & Kwak, 2018).
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Figure 1: Motivation. Our insight is that image segmentation
——— segmentation [recognition] and recognition are a continuum of visual grouping hierarchy
? s at segment- and image- levels, and their consistency is more
> ink essential than what we recognize from the image. Given
the girl vs. woman illusion, we may recognize ink, girl,
or woman. While the identified foreground (colored areas)
may vary, there is always a consistent hierarchical segmen-
tation: ink blobs when is recognized,
or parts (e.g., face, hair) of the recognized as girl
or woman. Instead of treating segmentation and recognition
as separate tasks, we model them concurrently by putting
segmentation in the loop for recognition. Consequently, with
—woman only recognition objectives at the image level, we can learn
image segmentation for free, and obtain better performance
by capturing intrinsic part-whole grouping consistency.

> girl

In this paper, we propose a new learning paradigm that incorporates segmentation into the recognition
process. Fig. 2 illustrates our concept, which views segmentation and recognition as a continuum
within a visual grouping hierarchy, rather than as two separate tasks. Specifically, our model processes
the input image into fine-to-coarse segmentation, corresponding to part-to-whole recognition, ulti-
mately resulting in a global image embedding that represents the entire image. It is important to note
that segmentation serves solely as a means for recognition, not as the end objective. Consequently,
the model can be trained solely based on the objectives of the final image embeddings, without the
need for fine-grained supervision of intermediate features.

Our concept can be summarized as: “segmentation of recognition, by recognition, and for recognition.”
1) “Of” implies our motivation, that segmentation is a citizen of recognition, with each segment
participating in the recognition of semantics. 2) “By” implies our learning process, reliant solely on
image-level objectives, without the need for fine-grained annotations. 3) “For” implies the outcomes
of our model, learning part-to-whole structures grounding recognition. Through this process, our
model automatically discovers consistent and semantically aligned hierarchical segmentation.

We implement this concept using a method inspired by Vision Transformer (ViT) (Dosovitskiy et al.,
2020). To achieve this, we propose two novel components for ViT. 1) We use superpixels instead of
square grids as units for ViT. 2) We group the tokens as layers progress to form a hierarchy with graph
pooling. These two components make the intermediate features correspond to segments, forming
a hierarchy with finer ones for lower layers and coarser ones for higher layers. This part-to-whole
structure is solely learned from image recognition objectives, either unsupervised (He et al., 2020)
or supervised (Touvron et al., 2021). In summary, our model Concurrently learns segmentation and
recognition using Adaptive Segment Tokens, so we call it CAST. We remark that superpixels are
natural choice for designing a vision transformer, unlike text-inspired ViTs using square patches.

We introduce a novel vision model-CAST—that inherently incorporates both bottom-up and top-down
pathways and naturally put segmentation in the loop of image recognition. We highlight the insights
of this paper:

1. CAST naturally derives hierarchical segmentation by grouping segment tokens in a fine-to-coarse
manner. The pixel groupings remain consistent along the hierarchy. In stark contrast, state-of-
the-art segmentation models like Segment Anything (SAM) (Kirillov et al., 2023) are trained
on huge amounts of segmentation labels (1 billion masks), yet still lack the understanding of
part-of-the-whole relationships. SAM fails to generate consistent hierarchical segmentation.

2. CAST learns to generate hierarchical segmentation for free from the image recognition objective.
Our model adapts such intermediate representations to best explain the final image recognition.
Moreover, by optimizing our model with a test-time adaptation (TTA) setup (Sun et al., 2020),
our intermediate segmentations improve with the final recognition results (Fig. 3 and Appx. B).

3. CAST concurrently performs segmentation and recognition, achieving competitive performance
with prior works—HSG (Ke et al., 2022) for hierarchical segmentation and Swin Transformer
(Liu et al., 2021) for classification—which require specially designed architectures for each task.

4. CAST is a natural design of a vision transformer that takes input tokens as superpixels instead
of square patches. Such a design enables our model to predict segmentation more accurately
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compared to prior patch-based ViTs, outperforming on multiple tasks, including unsupervised/su-
pervised semantic segmentation and attention-based figure-ground segmentation.

2 RELATED WORK

Recognition by segmentation. This concept was explored before the deep learning era. Recognition
by grouping compatible patches and segmentation by grouping visually similar pixels were simultane-
ously addressed through detected pixel-patch relations, resulting in object-specific segmentation (Yu
et al., 2002; Yu & Shi, 2003b) and figure-ground segmentation (Maire, 2010; Maire et al., 2011).
However, these approaches relied on manually crafted features, grouping cues, and pre-trained object
part detectors. In contrast, our work does not rely on any such prior information.

Vision transformers. Since the remarkable success of Vision Transformer (ViT) for image recogni-
tion (Dosovitskiy et al., 2020), numerous advanced architectures have emerged (Han et al., 2022).
One notable direction explores hierarchical transformers, aiming to reduce the number of tokens
for improved efficiency. This reduction can be achieved through spatial pooling, drawing on con-
cepts from hierarchical convolution (Liu et al., 2021; Heo et al., 2021; Dong et al., 2022; Ma et al.,
2023). Another approach involves measuring token significance scores and pruning tokens accord-
ingly (Goyal et al., 2020; Rao et al., 2021; Marin et al., 2021; Zeng et al., 2022; Bolya et al., 2023).
While CAST shares technical similarities with the second approach, 1) Clustering is a byproduct of
implementing our concept, unlike prior works targeting efficiency. 2) CAST can produce consistent
hierarchical segmentation, which was not achievable with previous ViT-based models.

Hierarchical image segmentation. The task is to decompose an image into segments in a fine-
to-coarse manner. Classic methods often consider the task as an agglomerative clustering problem
(Arbelaez et al., 2010; Sharon et al., 2006), which extracts pixel features, initializes clusterings
of pixels, and merges clusters based on feature similarity. Recent works often adopt a supervised
approach through top-down decomposition, detecting coarse-semantic instances and breaking each
instance into fine-semantic parts (de Geus et al., 2021; Wei et al., 2024; Li et al., 2022b;a). As parts
are expensive to annotate, self-supervised methods are used to augment part segmentation of novel
categories, through cross-image pixel correspondence (Sun et al., 2023) or feature clustering (Pan
et al., 2023). Another line of works predict part- and object-level segmentation separately (Li et al.,
2023; Wang et al., 2024; Qi et al., 2024), resulting in misalignment of segmentation across different
granularities. CAST modernizes the agglomerative approach, integrating 1) representation learning,
2) hierarchical segmentation, and 3) image recognition within a transformer architecture.

Additional related works, such as superpixels and clustering methods, can be found in Appx. C.

3 OUR CAST FRAMEWORK

Prior arts, such as ViT, are not designed to tackle recognition and segmentation concurrently. 1) They
often use fixed-shape patch tokens, which do not align precisely with object contours (Bolya et al.,
2022). 2) They do not explicitly model segmentation (pixel groupings). The grouping information is
encoded implicitly in the attention map and is not enforced to be hierarchical.
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We develop our CAST framework, which explicitly predicts intermediate hierarchical segmentation
to support the final image recognition, based on the transformer architecture (Vaswani et al., 2017).
Our method has two technical insights: 1) CAST adopts adaptive segment tokens, not fixed-shape
patches, and 2) CAST adaptively clusters the finer segments into coarser regions with a graph pooling
module in the intermediate layers. These design choices not only ensure high-quality and consistent
hierarchical segmentation but also unify both segmentation and recognition tasks. In Fig. 3, we show
that the intermediate segmentation adapts to the input image with the final image recognition.

Our model alternates between transformer encoder blocks and graph pooling to extract features for
each segment token and merge finer segments into coarser segment tokens. We present an overview
of the framework in Fig. 4 and show the detailed algorithm in Appx. D.1. We describe segment
tokens, the graph pooling module, and implementation details in the following subsections.

3.1 SEGMENT TOKENS FROM SUPERPIXELS

For processing an input image, we begin with the finest-level pixel groupings, denoted as Sy, which
represent the initial image segmentation. These groupings are based on low-level visual cues and
designed to align with image contours. Specifically, we use oversegmentation methods, such as
SEEDS (Bergh et al., 2012),? to partition the image into locally connected and color-wise coherent
regions, known as superpixels. Then, we progressively group these superpixels into coarser regions
to create a hierarchical segmentation with precisely localized contours.

To extract features from the superpixels, which can have arbitrary shapes, we initiate the process by
generating pixel features from the input image, denoted as Xy, using convolutional layers. These
pixel features are then aggregated within each superpixel in Sy to create the initial segment tokens,
referred to as X. These tokens possess dimensions corresponding to the number of superpixels
and the number of feature channels. Specifically, we compute X by averaging the CNN features
Xem across all pixels 7 within each superpixel a: X, = |—i| > ica Xemli]|a € So. Following this, we
append a class token X5, and positional encodings E,.s into the initial features X ;. We set Lo to
align with the resolution of the CNN features X, and then average it within each superpixel. The
resulting input segment features are defined as Zy = [Xcjass; Xs| + [0; Eyos]. We apply transformer
encoder blocks for extracting visual features from such input tokens. We refer to Dosovitskiy et al.
(2020) for more details on the encoder block.

In contrast to existing methods, such as SegSort (Hwang et al., 2019) and HSG (Ke et al., 2022), which
handle image segmentation and feature extraction separately, our approach seamlessly integrates
image segmentation into the model architecture during feature extraction. We initiate pixel groupings
early in the process, allowing us to extract corresponding features for each segment. These segment
features are then carried to subsequent layers, enabling the model to derive image segmentations
directly from the segment index of each pixel, eliminating the need for post-processing.

?Further discussions on the choice of superpixel methods are in Appx. A.2.
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Figure 4: CAST framework. We implement our learning principle using a ViT-inspired architecture.
In our CAST model, we concurrently predict hierarchical image segmentation and recognition by
employing adaptive segment tokens. CAST employs two technical contributions over ViT: it uses
superpixels instead of square patches and applies graph pooling to adaptively cluster them. Our
model does not need any fine-grained part-of-the-whole annotation, but learns to generate consistent
hierarchical segmentation with an image recognition objective, such as self-supervised instance
discrimination or supervised image classification.

3.2 GRAPH POOLING FOR HIERARCHICAL SEGMENTATION

Starting with superpixels Sy, we group fine-grained segment tokens Z into L levels of coarser region
tokens (Z1, ..., Z1) to capture a more comprehensive global visual context. This fine-to-coarse
segment grouping enables us to create hierarchical image segmentations (S1, . .., .Sy,) directly for an
input image, reframing the task as a multi-scale feature clustering and pooling problem.

To obtain coarser segmentations, we merge finer segments into coarser regions by calculating the soft
assignment probability P;. This probability maps a fine segment a at level I — 1 to a coarse region ¢
at level [. We initiate the next-level coarse regions by sampling centroids from segment tokens Z;_
at level [ — 1 based on token similarity in the feature space and compute P;, with C representing the
sampled centroid indices. The relationship is defined as follows:

P, = Prob(a, ¢) «x sim(Z;_1[al, Z;—_1]c]),c € C. (1

The coarser segmentation S;, representing the segment index of each pixel at level [, is obtained by
combining the initial segmentation Sy with clustering assignments across levels:

Sl:Sl,1XB:SOXP1X-~-X‘Pl. (2)

To derive segment tokens Z; corresponding to the coarser segmentation S;, we aggregate previous-
level tokens Z;_; using P, and add them to the sampled token centroids. We apply a non-linear
function f(a,b) = a + MLP(b) to enhance feature extraction:

Zi = f(Zialdle € C. B Ziea /BT Y). )
We can obtain hierarchical segmentation by backtracking the clustering assignments (Eqn 2).’

In practice, we have two considerations: adjusting the number of coarser segments, and achieving
optimal input partitioning. Existing methods (Xu et al., 2022; Ke et al., 2022) use learnable embed-
dings for clustering, resulting in a fixed segmentation granularity. However, the optimal number of
segments varies with image size: larger images require more segments, and smaller ones need fewer.
Instead, we conduct feature clustering with an arbitrary number of centroids, where the number of
centroids determines the segmentation granularity. Specifically, we use the Farthest Point Sampling
(FPS) algorithm (Qi et al., 2017) to select a subset of token features as initial centroids. The FPS
algorithm allows for flexible clustering settings and ensures that sampled centroids cover input feature
distributions without bias toward dominant features, leading to improved partitioning.

3 We compare the backtracking strategy for CAST with the naive segmentation strategy for ViT. For ViT, we
apply K-means clustering to the tokens in a hierarchical manner (details in Appx. D.4). Note that ViT fails to
segment images accurately (Fig. 5, Fig. 6).
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Figure 5: Hierarchical segmentation. Segmentation hierarchy of ViT and CAST on ImageNet, where
images are divided into 8, 16, and 32 regions from top to bottom, accompanied by corresponding
superpixels (which contours). CAST produces consistent and semantic hierarchical segments.

3.3 ARCHITECTURE AND TRAINING

CAST can be integrated into any existing ViT architecture by replacing the patch encoder with our
segment encoder and inserting the graph pooling module within the ViT blocks. We use the SEEDS
algorithm to extract superpixels and apply the convolutional layer from Xiao et al. (2021) to obtain
initial segment features, ensuring a fair comparison with ViT. Following the original ViT configu-
ration, our models are named CAST-(S/B), corresponding to ViT-(S/B). Segmentation granularity
is set to 64, 32, 16, 8 after 3, 3, 3, 2 encoder blocks, referred to as level 1, 2, 3, 4 segments, with 196
superpixels as input (level O segments). CAST is trained either through supervised (DeiT (Touvron
etal., 2021) and Segmenter (Strudel et al., 2021)) or self-supervised learning (MoCo (He et al., 2020))
on ImageNet (Deng et al., 2009) or COCO (Lin et al., 2014) datasets.

4 EXPERIMENTS

In the experiments section, we demonstrate the following:

* Sec. 4.1. Our CAST produces consistent and semantically aligned hierarchical segmentation,
which can be utilized for part-to-whole recognition in an unsupervised manner, i.e., without using
fine-grained part annotations. This cannot be achieved by state-of-the-art models; for example,
Segment Anything (SAM) (Kirillov et al., 2023) fails to capture such semantic hierarchy.

¢ Sec. 4.2. CAST not only discovers the hierarchy but also enhances flat semantic segmentation,
indicating that it learns richer dense representations compared to ViT.

* Sec. 4.3. CAST can perform classification in addition to segmentation concurrently, matching
ViT’s accuracy but with greater efficiency. Also, CAST makes attention more object-centric.

Outline of the Appendix. We present extra experiments and analyses in the Appendix. 1) Ablation
studies on design choices, including token pooling, centroid initialization, and superpixel methods,
are conducted in Appx. A. We compare Graph Pooling with other approaches like ToMe (Bolya et al.,
2023). 2) We demonstrate the adaptiveness of our intermediate hierarchical segmentation to final
image recognition using the test-time adaptation (TTA) (Sun et al., 2020) setup. The segmentation
quality improves with model adaptation to test images. Detailed setups and results are provided
in Appx. B. 3) Additional methodological details and experiments are described in Appx. D and
Appx. E. Lastly, more experimental results are presented in Appx. F. 4) We summarize the backbone
models used in each experiment in Table 10 and Appx. E.

4.1 HIERARCHICAL SEGMENTATION

We demonstrate the superiority of CAST for hierarchical segmentation on the ImageNet (Deng et al.,
2009), PartimageNet (He et al., 2022), and DensePose (Alp Giiler et al., 2018) datasets.
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Figure 6: Part-to-whole recognition (visualization). Hierarchical segmentation and corresponding
part-to-whole recognition results of ViT, SAM, and CAST on PartlmageNet. Our CAST effectively
captures semantic parts, such as head, body and fin of fish, and associates them with their respective
regions. In contrast, ViT does not generate fine segmentations that align with object boundaries
accurately. SAM does not detect the fish and its part at all. Our CAST can not only generate
high-quality fine-grained segments, but also form a part-to-whole hierarchy of the object.

Object recognition

Part recognition

Table 1: Part-to-whole recognition (evaluation). mIoU and boundary F-score for ViT, SAM, and
CAST on PartlmageNet, using category, object, and part-level annotations. CAST outperforms
the baselines in most cases, except for SAM, which excels in the boundary F-score for part labels.
Note that SAM is effective at drawing clear boundaries but struggles with segmenting semantic
regions, as indicated by its F-score and mloU, respectively. In contrast, ViT roughly captures the
semantic regions but falls short in identifying the exact boundaries. CAST performs well in both
tasks. Furthermore, it is worth mentioning that SAM requires multiple inferences to parse a scene,
resulting in much higher GFLOPS costs compared to the other models.

‘ ‘ | | < Finer / Coarser —

Part Object Category
Model Training data | Supervised | GFLOPS | mloU F-score | mloU F-score | mloU F-score
ViT-B IN-1K - 17.8 11.74 4.64 | 25.34 1092 | 36.68 13.28
SAM-B SA-1B v 488.2 10.15 7.25 18.03  20.71 3136 32.01
CAST-B IN-1K - 129 13.20 6.52 | 29.66 2232 | 50.75  34.38

ImageNet. We compare the hierarchical segmentations generated by CAST and ViT. Both models
are self-supervisedly trained on ImageNet. Fig. 5 displays that CAST captures a better semantic
hierarchy of segments than ViT, automatically discovering the part-to-whole structure.

PartImageNet. To validate whether hierarchical segmentation captures part-to-whole structure, we
employ PartImageNet, which contains 2 categories (Animals vs. Things), 11 objects (e.g., Biped),
and 40 parts (e.g., Biped Head) annotations from a subset of ImageNet. We use an open-vocabulary
segment classifier, OVSeg (Liang et al., 2023), to predict the class of each segment. The classifier is
applied to two granularities (8 and 16 segments), referred to as coarse and fine. We use the coarse
segments for category and object, and the fine segments for part recognition.

We compare CAST with ViT and SAM. Here, we enforce semantic consistency over the hierarchy,
where fine segments inherit the part class of their corresponding coarse segments. CAST and ViT
utilize the hierarchy obtained from the model, as fine segments cluster to construct coarse segments
in the upper layers. However, SAM only provides diverse granularities of segments in a flat manner,
lacking hierarchical relationships. Thus, instead of iterating over the tree structure, SAM assigns
labels by sequentially moving segments from the largest to smallest ones. Consequently, SAM
exhibits worse part-to-whole recognition performance than CAST. The detailed procedure for each
model is explained in Appendix D.2. Additionally, note that SAM is supervisedly trained on SA-1B,
while CAST and ViT are self-supervisedly trained on IN-1K, utilizing 1000 times more images, even
with ground truth segment annotations. Such an explicit hierarchy cannot be achieved through such
enormous supervision, whereas CAST can learn in a self-supervised manner.
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Figure 7: Semantic segmentation (visualization). Semantic segmentation results of ViT and CAST
on ADE20K (left) and PASCAL Context (right). CAST captures the details more effectively.

Table 3: Semantic segmentation (evaluation). mloU and boundary F-score for ViT and CAST
on (a) Pascal VOC, (b) ADE20K and (c) Pascal Context. For (a), we report values before and after
fine-tuning, and for (b) and (c), values after fine-tuning. CAST consistently outperforms the baselines
in all scenarios. We also compare models using square patch or segment tokens, and using graph
pooling or not. Note that only our final CAST can generate segments without post-processing like
K-Means. The results indicate that using segment tokens and hierarchical pooling both contribute to
performance. This suggests that the improvement from CAST does not solely come from superpixels
but rather from the learned hierarchical structures that benefit scene understanding.

(a) Pascal VOC (b) ADE20K
‘ before \ after Model | mloU  F-score
i ViT-S 41.7 33.9
Model | Token  Pooling | mloU F-score | mloU F-score CASTS | 431 s
s e 5 302 1.1 o L (c) PASCAL Context
Patch v 34.5 19.8 67.2 41.9
Segment X 322 212 | 665 467 Model | mloU  F-score
CAST-S | Segment v | 384 270 | 676 481 ViT-S 483 420
CAST-S | 49.1 44.1

As shown in Fig. 6, CAST produces segments that align better with semantics and enable OV Seg
to classify more accurately. Unlike ViT, CAST captures better visual structures such as boundaries.
Unlike SAM, CAST exhibits better hierarchical consistency. SAM segments an image at different
granularities independently, and pixels belonging to the same fine segment are not guaranteed to be
in the same coarse region. Also, Table 1 shows that CAST consistently outperforms ViT and SAM
across the semantic hierarchy (+14%, +4.3%, and +1.5% for category, object, and part).

Lastly, CAST is computationally more efficient than SAM. To segment an image, SAM requires 1)
additional mask decoder to predict pixel-segment assignments in the high-dimensional feature space,
and 2) multiple inferences guided by different input points. In contrast, CAST efficiently produces
segments from low-dimensional color features through a single inference.

DensePose. We report human part segmentation using Table 2: Human part segmentation.
DensePose, which contains 4 objects and 14 parts annota- Region F-score on DensePose.

tions from a subset of COCO. DensePose contains more
complex scenes and diverse instances than PartlmageNet.
We partition each image into 64, 32, and 16 regions and
measure the F-score for overlapping regions. HSG (RN50) | 17.6 248 269

CAST-S 172 228 273
We compare CAST with HSG (Ke et al., 2022), the state-
of-the-art unsupervised hierarchical segmenter. Both models are self-supervisedly trained on COCO.
Table 2 shows that CAST achieves comparable performance to HSG, which is specifically designed
for segmentation. In contrast, CAST performs segmentation and recognition concurrently.

# region
Model 64 32 16
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Table 4: Classification. Linear probing accuracy
of MoCo-trained models on ImageNet. CAST
outperforms ViT and Swin with a similar model
size while reducing GFLOPS by 30%.

Table 5: Attention. mloU of ImageNet-trained
models on VOC, measuring similarity between
attention and true segmentation on VOC. Visual
examples: ViT (left) vs. CAST (right). CAST

offers more object-centric attention.

Model | GFLOPS | IN-100 | IN-1K

ViT-S 47 781 | 67.9 Model | mloU
Swin-T 45 783 | 63.0 VAT-S 458
CAST-S | 34 799 | 68.1 CAST-S | 48.0

4.2 SEMANTIC SEGMENTATION

We demonstrate the superiority of CAST for semantic segmentation on the Pascal VOC (Everingham
etal., 2010), ADE20K (Zhou et al., 2019), and Pascal Context (Mottaghi et al., 2014) datasets. Pascal
VOC. We compare CAST and ViT, both models self-supervisedly trained on COCO. We test the
segmentation of the models both before (unsupervised) and after (supervised) fine-tuning. We follow
the setup of SegSort (Hwang et al., 2019) on segment retrieval for unsupervised evaluation, and
fine-tune the model alongside a pixel-wise softmax classifier for supervised evaluation.

As shown in Table 3 (a), CAST significantly improves performance in all scenarios, both in terms of
region (mloU) and boundary (F-score) metrics. For instance, CAST outperforms ViT by +7.5% for
mloU and +10.9% for F-score before fine-tuning. We also compare models that use either segment
tokens or graph pooling, while CAST uses both, showing that its improvement does not solely rely
on superpixels but also on the hierarchical structure. Intuitively, superpixels enhance segmentation
by providing better boundaries, while hierarchical pooling enables the model to grasp the structure of
entire objects; thus, both are essential. Additionally, note that CAST is the only model capable of
predicting segments as is, unlike others that require post-processing like K-Means.

ADE20K and Pascal Context. We use CAST and ViT supervisely trained on ImageNet, and fine-
tune them with Segmenter (Strudel et al., 2021) on each dataset. As shown in Table 3 (b) and (c),
CAST consistently improves the region and boundary metrics for segmentation.

4.3 CLASSIFICATION AND OBJECT-CENTRIC ATTENTION

Classification. CAST performs concurrent hierarchical segmentation and image recognition. We
compare the classification accuracy on ImageNet, among CAST-S, ViT-S, and Swin-T (Liu et al.,
2021). All models are self-supervisedly trained on ImageNet and evaluated using linear probing.
Table 4 shows that CAST is on par with those architectures designed for recognition, lacking the
ability of segmentation. Additionally, CAST reduces GFLOPS through hierarchical pooling.

Object-centric attention. CAST excels in capturing objectness through self-supervised learning
compared to ViT. We compare models self-supervisedly trained on ImageNet and evaluate them on
Pascal VOC. We follow Joulin et al. (2010) to generate figure-ground segmentation from multi-head
attention and measure mloU between true segmentations. As shown in Table 5, the attention maps
from CAST is more object-centric than ViT, improving mloU by +2.2%.

5 CONCLUSION

We introduce a novel learning framework that integrates the segmentation and recognition process,
where segmentation serves as the foundation for recognition, learned by image recognition objectives.
The proposed method, CAST, exhibits several advantages over previous methods such as SAM, HSG,
and ViT, including hierarchical segmentation, semantic segmentation, and concurrent recognition.
We believe our framework opens new avenues for future research, with the aim of creating true vision
transformer, departing from the text-inspired designs of previous ViT models.

Limitation. CAST relies on off-the-shelf superpixel algorithms and employs a fixed set of segmenta-
tion granularities without adapting to different downstream tasks or images. It limits the performance
on complex scenes such as Cityscapes. See Appx. A.3 for further discussions.
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A ABLATION STUDIES AND ANALYSES

A.1 ABLATION STUDY ON DESIGN CHOICES

Table 6 presents ablation studies on design choices in our framework. (a) We explore various token
pooling methods, with our GraphPool module excelling. Notably, FINCH (Sarfraz et al., 2019) lags
in performance, showcasing the challenge of adaptive pooling. (b) We examine different centroid
initialization methods, with Farthest Point Sampling (FPS) significantly outperforming others. FPS
not only samples informative tokens but also enhances discriminative token selection, preserving
fine-grained visual information. (c) We investigate optimal segment granularities, fixed for both
training and inference, to achieve a balance between model efficiency and task performance. (d) We
showcase that our model can adapt to varying segment granularities during inference.

Table 6: Ablation study. We compare the design choices for (a) token pooling, (b) cluster centroid
initialization, (c) token granularities applied to both training and testing, and (d) token granularities
of a trained model varied during testing. We report the linear probing accuracy of MoCo-trained
CAST-S on IN-100. t indicates that the methods have been re-implemented.

(a) Pooling | Acc.  (c) Token granularity (Train=Test) | GFLOPS | Acc.
Graph Pooling 799 196,32,16,8 3.0 78.8
Random Sampling 55.8 196, 64, 32,16 34 79.9
K-Means 739 196,128, 64, 32 43 79.9
K-Medoids 723 324,64,32,16 4.6 79.8
FINCH' (Sarfraz et al., 2019) 63.3 324,128,064, 32 54 80.4
Token Pooling (Marin et al., 2021) | 75.8
CcTMf (Zeng et al., 2022) 72.2 - -
ToMe' (Bolya et al., 2023) 731  (d) Token granularity (Train#Test) | GFLOPS | Acc.
Train: 196, 64, 32, 16 | 34 | 799
(b) Centroids initialization ‘ Acc. Test: 196,32, 16, 8 30 792
Farthest Point Sampling 79.9  Test: 196, 128, 64, 32 4.3 79.5
Random Sampling 71.2  Test: 324,64, 32,16 4.6 78.8
PoWER-BERT (Goyal et al., 2020) | 71.6  Test: 324,128, 64, 32 54 79.3
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A.2 ABLATION STUDY ON SUPERPIXEL METHODS

We test the robustness of CAST using superpixels generated by different algorithms. In particular,
we compare SEEDS (Bergh et al., 2012) against SLIC (Achanta et al., 2012) on classification and
semantic segmentation. We train CAST with self-supervised learning on IN-1K and COCO for
classification and segmentation. As shown in Table 7, we report the linear probing accuracy on
ImageNet-1K and mloU before (left) and after (right) fine-tuning on VOC. Our method is robust to
different choices of superpixel algorithms, while, SEEDS achieves better performance than SLIC.

Table 7: SEEDS outperforms SLIC on classification and semantic segmentation. We report top-1
accuracy and mloU for classification on IN-1K and segmentation before / after fine-tuning on VOC.
Our CAST achieves better performance using superpixels generated by SEEDS.

| Classification | Segmentation

SEEDS 68.1 38.4/67.6
SLIC 65.6 37.7/65.7

Figure 8 illustrates the superpixels obtained using SEEDS and SLIC. SEEDS superpixels exhibit
superior alignment with object boundaries, particularly for small objects, compared to SLIC. This
improvement stems from SEEDS being a boundary refinement algorithm, iteratively updating super-
pixels to better capture edges. In contrast, SLIC relies on K-Means clustering based on colors and
connected-component constraints, which may be less effective in capturing the boundaries. Conse-
quently, we can conclude that SEEDS superpixels, with their superior shape information, produce
more compelling hierarchical segmentation for CAST.
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Figure 8: From left to right, we show the superpixels (white contours) generated by SEEDS and SLIC
algorithm, overlaid on the the original images along with the ground-truth semantic segmentation
(colored regions). Superpixels generated by SEEDS are more precisely aligned with object boundaries,
especially for small objects, than those generated by SLIC. Learning to generate superpixels along
with feature learning would enable more precise superpixel partitioning and improve segmentation.
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A.3 LIMITATIONS OF SUPERPIXELS AND FAILURE CASES

Our method underforms ViT baselines on Cityscapes dataset. The results show the limitation of
using off-the-shelf superpixel algorithms. ViT-S achieves 74.6%, whereas, CAST-S and CAST-SD
achieve 72.1% and 74.2% on the benchmark. As shown in Fig. 9, we observe that existing superpixel
methods cannot pick out thin structures such as light poles and steel pipes from the scene. One
possible reason is that such methods are only developed and tested on object-centric dataset (BSDS).
Replacing these superpixel algorithms with learnable approaches could help to address such an issue.
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Figure 9: From left to right, we show the image and corresponding superpixels (white contours). Street
scenes have many thin structures such as light poles and steel pipes, which superpixel algorithms
often fail to pick out. Learning to generate superpixels could help solving such issues.

A.4 ABLATION STUDY ON INFERENCE LATENCY

The computational cost of superpixel generation and graph pooling can be reduced by the decreased
number of tokens required for computing self-attention. This advantage becomes more pronounced
when using larger models, where self-attention blocks dominate the entire cost.

To validate this, we analyze the latency of model inference and superpixel generation. Our system
comprises a 32GB Nvidia Titan V GPU card and two Intel(R) Xeon(R) CPU E5-2630 v4 processors,
totaling 20 CPU cores. We utilize the PyTorch machine learning framework with 24 workers, a batch
size of 64, and an image resolution set to 224x224.

In our system, CAST-B achieves a lower average inference latency of 217 ms compared to ViT-B with
273 ms. SEEDS takes 73 ms to generate superpixels from the batch of images. However, we remark
that the current SEEDS implementation is not fully optimized. Employing GPU implementation or
parallelizing the process with more CPU cores can alleviate the bottleneck in superpixel generation.
Furthermore, the cost of superpixel generation becomes less significant with larger models, which are
commonly used in practice.

In addition, we demonstrate that the cost of self-attention and graph pooling decreases as the number
of tokens is reduced. Table 8 presents the computational cost of our graph pooling across layers,
showing a significant reduction in cost as the number of tokens per layer decreases.

Table 8: FPS in our graph pool module requires additional computation. We report the inference time
(ms) of each module with 384 channel dimensions and 256 batch sizes on IN-100. Optimizing the
token sampling technique to increase model efficiency is our future work.

#. of Tokens | Encoder Blocks | GraphPool (FPS)

196 86.43 63.02 (37.64)
64 25.4 18.2 (9.7)
32 12.9 9.6 (3.0)
16 5 6.1(1.5)
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B EXTENSION TO TEST-TIME ADAPTATION

CAST only considers the top-down pathway during training, guided by the recognition objectives.
This knowledge is encoded in the model and reflects the bottom-up pathway during inference. While
this enables the model to learn the general top-down elements, the segmentations will not change
based on what the top layers predict at inference time.

To extend CAST by incorporating the top-down pathway during inference, we employ test-time
adaptation (TTA) (Sun et al., 2020), specifically TENT (Wang et al., 2021a), with the classifier trained
on top of the CAST backbones. We apply TENT to each sample to adapt the model and maximize its
prediction confidence. As a result, CAST refines its object segments to align with its initial belief: If
this image depicts the predicted class, which parts contribute to this prediction?

B.1 IMPLEMENTATION DETAILS

We use the CAST model pretrained on ImageNet with the MoCo objective as our base model. We
trained a dog vs. non-dog classifier on PartlmageNet training data and evaluate it on the validation
split. The classifier is defined as the average of normalized embeddings of training data that belong
to the class. In other words, we define a class vector as the center of training data for each class. To
infer the class, we compute the cosine similarity between the test embedding and class vectors and
apply a temperature of 0.07 to the softmax classifier, using these cosine similarities as logits.

For each sample, we calculate the prediction entropy loss and update the model using a single
SGD with Ir=1.0. We only update the normalization layers while keeping other parameters frozen,
following the practice of TTA. Note that no label or batch information is used in this process, and the
model is updated solely based on the inference of a single instance.

We evaluate the evolution of segmentation before and after TTA. To this end, we compute the object
segmentation mask by assigning a label to each segment. We define this segment label as the majority
of the pixel labels, using the ground-truth segmentation masks. We chose this strategy for simplicity,
but one can also predict the segment labels using OVSeg, as we discussed previously.

B.2 EXPERIMENTAL RESULTS

Figure 10 showcases the visual examples that TTA improves the segmentation of CAST by better
capturing object shapes and less focusing on unnecessary details. The improvement is more substantial
for hard samples that the CAST originally fails. To check this, we measure the mloU of CAST before
and after TTA on the hard samples that the mIoU of the original CAST is low.
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GT mask Before TTA After TTA

A
Figure 10: Visual examples of learned clusters (left) and predicted segmentation for dogs (right) using
CAST models before and after applying test-time-adaptation (TTA). TTA improves the segmentation

of CAST by capturing object shapes better (e.g., not missing legs in rows 1-3) while reducing attention
to unnecessary details (e.g., window frames in row 3).

Table 9: We report the mIoU of CAST segmentations both before and after applying TTA. We
assess the performance on hard samples where the original CAST fails, based on the mIoU threshold
specified in the table. TTA gives a significant improvement in these challenging cases.

mloU from the original CAST
<70% <80% - <90%

# of samples 8 22 125
Before TTA 56.9 69.5 83.5
After TTA 71.2 76.6 84.9

22



Published as a conference paper at ICLR 2024

C ADDITIONAL RELATED WORK

Superpixels. Superpixels are sets of locally connected pixels that encapsulate coherent structures,
such as colors (Ren & Malik, 2003). They have found applications in various densely labeling
tasks, including part parsing (Mori et al., 2004), saliency detection (Ren et al., 2013), and image
segmentation (Gould et al., 2008; Fulkerson et al., 2009; Sharma et al., 2014; Gadde et al., 2016;
Wei et al., 2018). More recently, Zhang et al. (2022) addressed semantic segmentation by replacing
patches with superpixel tokens in ViT architectures. Our model takes a step further by constructing a
segment hierarchy and simultaneously performing both segmentation and classification.

Image segmentation and clustering. Image segmentation partitions an image into coherent regions.
Classic methods consist of two steps: extracting local features and clustering based on criteria like
mode-finding (Comaniciu & Meer, 2002; Banerjee et al., 2005) or graph partitioning (Felzenszwalb
& Huttenlocher, 2004; Shi & Malik, 2000; Malik et al., 2001; Yu & Shi, 2003a; 2004). They often
output hierarchical segmentation for human perception comparison (Arbelaez et al., 2010). To prevent
object boundary ambiguities, common approaches rely on contour detection (Hwang & Liu, 2015;
Xie & Tu, 2015), iteratively removing contours for multi-scale segmentations (Arbelaez et al., 2010).
In contrast, our work operates directly on segments, without contour proxies.

Self-supervised segmentation and representation learning. Recent works can be categorized into
three camps: 1) Leveraging self-supervised image recognition, models are transferred to segmentation
by increasing location sensitivity (Wu et al., 2018; He et al., 2020; Chen et al., 2020; Wang et al.,
2021c¢), implementing contrastive loss across views (Wang et al., 2021b), or applying stronger aug-
mentation and constrained cropping (Selvaraju et al., 2021; Mo et al., 2021). 2) Learning a pixel-wise
cluster predictor maximizes mutual information between cluster predictions on augmented views of
the same instance at corresponding pixels (Ji et al., 2019; Ouali et al., 2020). 3) Learning a pixel-level
feature encoder maximizes discrimination between pixels based on contour-induced segments (Hwang
et al., 2019), pre-computed region hierarchies (Zhang & Maire, 2020), or feature-induced hierarchical
groupings (Ke et al., 2022), deriving segmentation from pixel feature similarities. Our work unifies
the first and third approaches, training CAST with a self-supervised image recognition framework
while naturally producing unsupervised hierarchical segmentation.
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D ADDITIONAL METHOD DETAILS

D.1 ALGORITHM

We present the pseudo code of the Graph Pooling module and our CAST framework.

Algorithm 1: GraphPool

Algorithm 2: Overall framework

Input: Feature Z and number of clusters NV
Qutput: Coarse feature Y and assignments P
Centroid indices C' - FPS(Z, N)

Refined feature U < MSA(Z) + Z
Normalized feature

Input: Input image I, CNN features Xcnn, class
token Xcass, position encoding Eipos, # of
segments IV; at level [

Output: Feature a6 or ficg

Input segmentation Sy < Superpixel(I, No)

U < U — mean(U) + bias
Centroid feature V <+ {U]c]|c € C}

uv’
P+ softmax(ﬂm)
Project feature Z <+ MLP(Z)

Average pooled feature Z "«pP'Z7 /PT1 else
New centroid feature Y <+ {Z]c]|c € C'}

Updated centroid feature ¥ < Y + Z '

Input tokens X < {\%I Y icq Xeml[i]|a € So}
for(=0...Ldo
if [ = O then
Initial segment features
ZO — [Xclass§ Xs] + [07 Epos}

Coarsened segment features and
clustering assignments
Zy, P, < GraphPool(Z;_1, N;)
Coarsened segmentation
Sl «— S;_1 X P

FPS: Farthest Point Sampling.
MSA: Multi-headed Self-Attention.
MLP: MultiLayer Perceptron

FC: Fully Connected Layer.

@: Concatenation operator.

end
Z; < ViT_Encoders(Z;)

end

Class token fepuss < Z1[0]

Multi-level segment tokens fie; < FC(®(Zo[1 :
No],...,Unpool(ZL[1: Nz])))

To obtain multi-level segment tokens, we unpool coarse tokens to the corresponding fine segments,
concatenate the unpooled features with the fine tokens. The segment tokens Z; are scattered to the
affiliated fine segments:

Z"'Na] = Z[¢], ¢ = argmax . Pi[a, d. 4)

D.2 OPEN-VOCABULARY SEGMENTATION

We use the open-vocabulary segmentation method OVSeg (Liang et al., 2023) to derive part-to-whole
predictions from provided segments. OVSeg employs the CLIP (Radford et al., 2021) classifier on a
masked image containing only the segment of interest, with other areas masked in gray. An additional
background class is introduced alongside the given foreground labels. For instance, PartimageNet (He
et al., 2022) consists of 2 categories (Animals vs. Things), 11 objects (e.g., Biped), and 40 parts
(e.g., Biped Head), necessitating 3-way, 12-way, and 41-way classification, respectively. We predict
category and object from the coarse segments and parts from fine segments. We use the ViT-B-16
model with pretrained weights released by OpenAl and do not fine-tune it with masked images.

CAST and ViT segments inherently have a hierarchy, so we restrict the part recognition vocabulary
based on the object class of the parent segment. In contrast, SAM segments lack this hierarchy,
necessitating a workaround to constrain their parent class. The specific procedures for each case are
explained below. We applied GaussianBlur with kernel size 7 x7 to smooth the segmentations.

CAST (and ViT). CAST progressively clusters segments as the layers advance, resulting in multiple
levels of segments. In this context, we utilize the highest level (level 4) with 8 segments for object
recognition and its child (level 3) with 16 segments for part recognition. We employ the same strategy
for ViT, where the segments are generated using K-means clustering over embeddings at the same
level, as discussed in the main text.

SAM. Segment Anything (SAM) (Kirillov et al., 2023) provides segments at different levels but
does not consider their hierarchy. Specifically, SAM generates 64 segments with varying levels to
parse the original image when no conditions are given. Here, we begin by sorting the segments in
descending order of area, implying that the former ones tend to represent objects, while the latter
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ones tend to represent parts. We start with an empty semantic mask and iteratively fill the mask by
processing the sorted segments to obtain the semantic segmentation.

While following the same procedure, an important distinction arises between object and part recogni-
tion. In object recognition, we skip updating the pixel if it is already filled since the earlier object
segment has assigned it. Conversely, for part recognition, we override the pixel with the new part
segment, enabling OV Seg to consider the fine-grained segments generated by SAM. We tested various
approaches, and this strategy yielded the best results.

D.3 COMPARISON WITH HIERARCHICAL SEGMENT GROUPING

Hierarchical Segment Grouping (HSG) (Ke et al., 2022) is an unsupervised hierarchical semantic
segmentation framework that induces grouping hierarchy based on pixel feature similarity. Our CAST
is similar to HSG in the sense of inferring hierarchical groupings in terms of merging segments
progressively. Both methods predict soft assigned probabilities to map a fine-grained segment to
a coarse-grained region at the next level. Multi-scale image segmentation is induced by chaining
segment assignments across all levels.

However, our CAST differs from HSG in several aspects. 1) HSG is designed specifically for
unsupervised semantic segmentation. In stark contrast, our CAST is a general backbone architecture
for different downstream tasks, e.g. classification, image segmentation, and detection. In addition, our
model can be trained both supervisedly and unsupervisedly. 2) Our hierarchical image segmentation
is directly involved in multi-scale feature extraction. From the early stage of our model, every
token features correspond to an image segment at different scales. In contrast, HSG builds atop
CNN backbones, segmentations are only inferred at the final stage of the model. 3) Our CAST
demonstrates superior model efficiency by involving hierarchical segmentation and image recognition
jointly. Segmentation is induced directly from the model architecture. HSG requires additional
transformer modules to infer image segmentation.

D.4 GENERATING SEGMENTS FROM VIT

We generate segments from ViT by applying K-Means clustering to the final output tokens. We
bilinearly upscale the feature map and then apply K-Means to the pixel-level features to align the
segments with the input image resolution. Similar to CAST, we cross-reference clustering assignments
across different levels to achieve hierarchical image segmentation. To maintain a consistent cluster
hierarchy, we iteratively run K-Means, reducing the number of clusters by grouping the clusters from
the previous iteration into coarser clusters.

D.5 TOKEN POOLING METHODS

We re-implemented previous token pooling methods, including FINCH (Sarfraz et al., 2019), Token
Pooling (Marin et al., 2021), CTM (Zeng et al., 2022), and ToMe (Bolya et al., 2023), for comparison
with our proposed graph pooling module. We employ segment tokens for all methods, only modifying
the token pooling layers. For FINCH and Token Pooling, we implemented their clustering algorithms.
For TCFormer, we adapted Clustering-based Token Merge (CTM) module from the official imple-
mentation®, removing the convolutional layer to apply it to our superpixel tokens. For ToMe, we used
the released codebase’ and reduced the tokens per layer to 16 to match the latency of other methods.

*nttps://github.com/zengwang430521/TCFormer
Shttps://github.com/facebookresearch/ToMe
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E ADDITIONAL EXPERIMENTAL DETAILS

E.1 SUMMARY OF MODELS USED IN EXPERIMENTS

We pre-train our CAST model self-supervisedly and supervisedly on ImageNet and COCO dataset.
Our experiments use different model architectures and pre-training objectives. For clarification, we
summarize the backbone models used in each experiment in Table 10.

Table 10: Pre-trained backbone models used in each experiment.

Experiment | Pre-training objective | Model

Hierarchical segmentation: ImageNet (Fig. 5) self-supervised: IN-1K | CAST-S
Hierarchical segmentation: PartlmageNet (Fig. 6 and Table 1) | self-supervised: IN-1K | CAST-B
Hierarchical segmentation: DensePose (Table 2) self-supervised: COCO | CAST-S
Semantic segmentation: VOC (Table 3 a) self-supervised: COCO | CAST-S
Semantic segmentation: ADE20K (Table 3 b) supervised: IN-1K CAST-S
Semantic segmentation: Pascal Context (Table 3 c) supervised: IN-1K CAST-S
Classification: ImageNet (Table 4) self-supervised: IN CAST-S
Object-centric attention: VOC (Table 5) self-supervised: IN CAST-S
Test-time adaptation: PartImageNet (Figure 10 and Table 9) self-supervised: IN-1K | CAST-B

E.2 DATASETS

Classification Datasets. ImageNet (Deng et al., 2009) is a generic image classification dataset,
annotated with 1, 000 object categories (IN-1K). The training and validation set includes 1.28M and
50K images, respectively. We follow Tian et al. (2020) to subsample 100 object categories to create
IN-100. The subset consists of 127K and 5K images for training and testing.

Segmentation Datasets. 1) Pascal VOC 2012 (Everingham et al., 2010) is an object-centric semantic
segmentation dataset that contains 20 object categories and a background class. We use the augmented
training set (Hariharan et al., 2011) with 10, 582 images and the validation set with 1,449 images.
2) MSCOCO (Lin et al., 2014) is a generic scene dataset with complex contexts and include more
objects in each image (7.3 vs. 2.3) than VOC. Following Van Gansbeke et al. (2021), we train on
118, 287 images of train2017 split and test on the VOC validation set. 3) ADE20K Zhou et al. (2019)
is a complex scene dataset, annotated with 150 object categories. The dataset includes 20, 210 and
2,000 images for training and validation. 4) Pascal Context is also a scene dataset with 4,996 and
5,104 images for training and validation, labelled with 59 object categories and a background class.

E.3 IMAGE RESOLUTION AND NUMBER OF TOKENS

We closely follow (Chen et al., 2021; Touvron et al., 2021; Van Gansbeke et al., 2021; Caron et al.,
2021) to set up image resolution for classification and segmentation. For ViT baselines, on ImageNet,
we set crop_size to 224, resulting in 196 input patch tokens. On VOC, we use 512 x 512 input
images with corresponding 1024 patch tokens for semantic segmentation. We follow the same setup
as (Strudel et al., 2021) for experiments on ADE20K and Pascal Context. On ADE20K, we use a
512 x 512 sliding window and set the stride to 512. On Pascal Context, we use 480 x 480 sliding
window and set the stride to 320. For our CAST, we adopt the same image resolution settings and
adjust the granularity of superpixels to match the number of input tokens as ViT baselines.

E.4 HYPER-PARAMETERS FOR TRAINING

We list the hyper-parameters for training using MoCo and DeiT framework in Table 11 and Table 12.
We mostly follow the default hyper-parameters used in each framework. We set the same batch_size
and total_epochs as our CAST and ViT baselines. All the experiments are conducted with either
eight TitanX (12 GB) or two A100 (45 GB) Nvidia graphic cards.
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Table 11: Hyper-parameters for training our CAST, ViT, and Swin on IN-100, IN-1K, and COCO
dataset. Due to computating limitations, we adapt batch_size and mathrmtotal_epoch in our
experiments. Otherwise, we follow mostly the same set up as MoCo (Chen et al., 2021).

Parameter |  IN-100 IN-1K COoCO
batch_size 256 256 256
crop_size 224 224 224
learning_rate 1.5e74 1.5¢74 1.5¢7*
weight_decay 0.1 0.1 0.1
momentum 0.9 0.9 0.9
total_epochs 200 100 400
warmup_epochs 20 10 40
optimizer Adam Adam Adam
learning_rate_policy Cosine decay  Cosine decay  Cosine decay
MOCO : temperature 0.2 0.2 0.2
MOCO : output_dimension 256 256 256
MOCO : momentum_coefficients 0.99 0.99 0.99
MOCO : MLP hidden dimension 4096 4096 4096
ViT: # Tokens [196]x11

CAST-S/B: # Tokens [196] %3, [64] x3, [32] x3, [16] x2

Table 12: Hyper-parameters for training our CAST and ViT on IN-1K dataset. We follow mostly the
same set up as DeiT (Touvron et al., 2021).

Parameter | IN-1K

batch_size 1024

crop_size 224
learning_rate 5e4
weight_decay 0.05
momentum 0.9
total_epochs 300
warmup_epochs 5
warmup_learning_rate 1le=6

optimizer Adam
learning_rate_policy Cosine decay
augmentation RandAug(9, 0.5) (Cubuk et al., 2020)
label_smoothing (Szegedy et al., 2016) 0.1

mixup (Zhang et al., 2017) 0.8

cutmix (Yun et al., 2019) 1.0

ViT: # Tokens [196]x11

CAST-S: # Tokens [196] «3, [64] x3, [32] x3, [16] x2
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E.5 INFERENCE AND EVALUATION ON IMAGENET AND VOC

For image classification on ImageNet (Fig. 11), we apply the linear probing procedure for evaluation.
For semantic segmentation on VOC (Fig. 12), we use the segment retrieval and transfer learning
procedure to evaluate model performance.

Image classification: linear probing. For unsupervised classification, we follow MoCo-v3 (Chen
et al., 2021) to evaluate image-wise discrimination model performance using a linear probing protocol.
We freeze the trained model weights and replace the 3-layer MLP head with a randomly initialized
linear projection layer as classifier. We train the linear classifier with ground-truth labels and report
the top-1 accuracy. Following Chen et al. (2021), we train the linear classifier with 90 epochs on
ImageNet dataset. We set momentum to 0.9 and weight_decay to 0 for all experiments. On IN-1K,
we set batch_size to 1024, learning_rate to 30; on IN-100, we set batch_size to 256, learning_rate
to 0.8. SGD is used as the optimizer.

Semantic segmentation: segment retrieval. We follow Hwang et al. (2019); Van Gansbeke et al.
(2021); Ke et al. (2022) to evaluate semantic segmentation using segment retrieval. We partition
an image into several segments and conduct nearest neighbor search to predict the label for each
segment. We assign the majority labels from the 20 retrieved segments.

For ViT baselines, we apply the MLP head on each token to generate unit-length output features
and upsample the feature maps to the original resolution of the input image. Followed by spherical
K-Means clustering algorithm, we partition the image into 40 segments using the output features.

Our CAST does not require additional upsampling and K-Means clustering. For segmentation, our
model follows Hypercolumn design (Hariharan et al., 2015) to unpool and fuse multi-level segment
tokens. Our model generates the same number of output tokens as the superpixels. We gather pixel
features from output tokens based on the superpixel index. Without the need for spherical K-Means
clustering, our CAST predicts an image segmentation using the graph pooling modules. We compute
normalized segment features according to such image segmentation.

Semantic segmentation: transfer learning. We follow Van Gansbeke et al. (2021) to evaluate model
performance using transfer learning protocol. All models are unsupervisedly trained on MSCOCO,
and supervisedly fine-tuned on Pascal VOC. We replace the 3-layer MLP head with 2-layer 1 x 1
convolutional layers. For training ViT baselines, we upscale patch tokens back to the input image
resolution using bilinear interpolation. For training our CAST, we scatter segment tokens to per-pixel
features using superpixel indices. We use per-pixel ground-truth labels for training both methods.
We set the training steps to 30K, learning_rate to 0.003, weight_decay to 0.0001, batch_size to 16,
crop_size to 512. Following Chen et al. (2016), we adopt poly learning rate policy by multiplying
iter

0.9 - ; .
o iter - We adopt the SGD optimizer. We use only a single-scale image

base learning rate by 1 —
for inference.
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Figure 11: Detailed model architecture for classification. Our CAST aggregates segment tokens by
average pooling convolutional features within each superpixel, contextualize segment tokens with
transoformer encoder blocks, and coarsen them into fewer region tokens with Graph Pooling module.
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(b) our CAST during inference for nearest segment retrievals

Figure 12: Detailed model architecture for semantic segmentation. Our CAST aggregates segment
tokens by average pooling convolutional features within each superpixel, contextualize segment

tokens with transoformer encoder blocks, and coarsen them into fewer

region tokens with Graph

Pooling module. (a) Our CAST-S during training. (b) Our CAST-S during inference for segment
retrievals. We unpool coarsened segment tokens based on the grouping index w.r.t input superpix-
els. We concatenate () unpooled segment tokens across multiple scales and fuse them using a
fully_connected layer, followed by the 3-layer MLP head. For transfer learning, we replace the
3-layer MLP head with 2-layer 1 x 1 convolutional layers atop the fused tokens. We also remove the
final average pooling layer. For segment retrievals, we learn an additional Graph Pooling module to
predict coarse segmentations and average pool tokens as outputs for nearest-neighbor retrievals.
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F ADDITIONAL EXPERIMENTAL RESULTS

F.1 VISUAL RESULTS ON HIERARCHICAL SEGMENTATION

We present additional visualizations of hierarchical segmentations induced by ViT, K-Medoids, and
our CAST (Fig. 13). CAST captures image boundaries and semantics more precisely.

VIT  K-Medoids CAST ViT CAST
S5 ) - (o £ 2 4 l’ ' &
" 2% (57

“f Tt |

\ A
.“P bt ,!

l s I — ‘n'}‘ l‘ J ,
T 7 Y
SUISTCH ~ 4
Bl
NN
R At
DN
PAOISS T

Image K-Medoids

&)
\«:\.\\)ﬂ

7
A e

T

w«@;.

Seres og

B MY

%‘ﬁi&* Y (~

e N A A
|

e W

LA S

ESEN S
] ('-?.-* (s 7
1, YR e
3 4 ’, Vel i
WA TH N V™

Figure 13: Our CAST generates higher-quality hierarchical image segmentation. From left to right,
we show the input image and hierarchical segmentations generated by ViT, K-Medoids clustering,
and our CAST. We also show corresponding superpixels (white contours) generated from input
images. Our CAST naturally generates hierarchical segmentations without any post-processing. Our
segmentations align with image boundaries and capture semantics more precisely.
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F.2 VISUAL RESULTS ON PART-TO-WHOLE RECOGNITION

We present additional visualizations for part-to-whole recognition, comparing ViT, SAM, and our
CAST (Fig. 14). CAST provides consistent and semantically aligned hierarchical segmentation.
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Figure 14: Additional visual results on part-to-whole recognition. Our model captures the more
consistent and semantically aligned part and whole segmentations than ViT and SAM.
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F.3 VISUAL RESULTS ON SEMANTIC SEGMENTATION

We present more visualization results of before and after fine-tuned semantic segmentation on VOC
(Fig. 15). Compared to ViT baselines, our model produces more accurate segmentations. Remarkably,
our results align with object contours precisely without the need of additional CRF post-processing.

Image ViT CAST
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Figure 15: Our model induce much more precise segmentation than patch tokens. Segmentations are
predicted based on segment-wise nearest neighbor retrievals (row 1 images) and fine-tuned models
(row 2 images). Using segment, not patch, tokens improves our predicted segmentations by a large
margin. Notably, our method explicitly produces segmentations without the need of additional
K-Means clustering for segment retrievals.
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F.4 VISUAL RESULTS ON FIGURE-GROUND SEGMENTATION

We present more visual results of figure-ground segmentations generated from multi-head atten-
tion maps on VOC. Our CAST attends to foreground semantics more precisely than ViT, and the
segmentations preserve object boundaries more accurately. See Fig. 16.

CAST (top) vs. ViT (bottom)

Figure 16: Our CAST (top row) attends to foreground semantics more precisely than ViT (bottom
row) and DINO (Caron et al., 2021) on VOC. We adopt the same procedure as DINO to generate
foreground segmentation masks from latent multi-head attention maps. All models are trained on
IN-1K dataset from scratch. Our CAST and ViT are trained based on MoCo-v3 (Chen et al., 2021).
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F.5 VISUAL RESULTS ON MULTI-HEAD ATTENTION MAPS

We visualize the multi-head attention maps of the [CLASS] token to all the other segment tokens
in our vision transformer. As the [CLASS] token is optimized for image-wise discrimination,
such attention maps indicate the most informative groupings of segments that will induce the most
discriminative image-wise representations. We visualize the same attention maps used to generate
the figure-ground segmentation, which are the ones in the 9" transformer encoder block. The layer
takes 32 coarsened segment tokens as inputs, resulting in 12 heads of 32 x 32 attention maps. We
follow the same procedure as DINO (Caron et al., 2021) to display the binarized attention maps. The
threshold is adjusted to keep 60% of the mass. See Caron et al. (2021) for more details.

As shown in Fig. 17, our attention maps reveal parts-of-the-whole information of the image. We
observe that the same object parts are together attended in the same attention head, e.g. face vs. ears
vs. nose of the dog. It indicates that image-wise recognition requires parts-of-the-whole information.
Additionally, our model carries segment, not patch, tokens through the layers, resulting in attention
maps better aligned with object boundaries.

svaun
rav:

Figure 17: Our multi-head attention maps reveal parts-of-the-whole information of the image on
IN-100. From left to right: input images and corresponding 12 heads of attention maps of the
[CLASS] token to all the other segments. We follow DINO (Caron et al., 2021) to binarize attention
maps. We show that the same object parts are together attended in the same head, e.g. face vs. ears
vs. nose of the dog. Our model takes segment tokens, resulting in attention maps better aligned with
object boundaries.
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