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Abstract

Reinforcement learning (RL) has become a trending paradigm for training large
language models (LLMs), particularly for reasoning tasks. Effective RL for LLMs
requires massive parallelization and poses an urgent need for efficient training
systems. Most existing large-scale RL systems for LLMs are synchronous by
alternating generation and training in a batch setting, where the rollouts in each
training batch are generated by the same (or latest) model. This stabilizes RL
training but suffers from severe system-level inefficiency. Generation must wait
until the longest output in the batch is completed before model update, resulting
in GPU underutilization. We present AReaL, a fully asynchronous RL system
that completely decouples generation from training. Rollout workers in AReaL
continuously generate new outputs without waiting, while training workers update
the model whenever a batch of data is collected. AReaL also incorporates a
collection of system-level optimizations, leading to substantially higher GPU
utilization. To stabilize RL training, AReaL balances the workload of rollout and
training workers to control data staleness, and adopts a staleness-enhanced PPO
variant to better handle outdated training samples. Extensive experiments on math
and code reasoning benchmarks show that AReaL achieves up to 2.77× training
speedup compared to synchronous systems with the same number of GPUs and
matched or even improved final performance. The code of AREAL is available at
https://github.com/inclusionAI/AReaL/.

1 Introduction

Reinforcement learning (RL) has emerged as a new scaling paradigm for enhancing the capabilities of
large language models (LLMs) by enabling thinking abilities [52]. Given a prompt, RL allows an LLM
to generate thinking tokens before outputting a final answer, enabling test-time scaling [29, 47]. These
thinking LLMs are named Large Reasoning Models (LRMs) and have been shown to have particularly
strong capabilities on challenging reasoning problems, such as math [9, 5, 20], coding [3, 14, 15],
logic puzzles [22, 34], and agentic tasks [23, 57].

Effective RL training often requires massive parallelization to derive a large batch of rollouts for
sufficient exploration, which is the key to obtaining optimal model performance. For example,
popular RL algorithms, such as PPO [42] and GRPO [43], often require an effective training batch
of thousands of outputs [60, 61, 53]. Moreover, an LRM can generate tens of thousands of thinking
tokens for each input prompt [6], further posing an urgent need for an efficient training system to run
RL training on a large scale.
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However, developing an efficient large-scale RL system is challenging. An RL system needs to
frequently switch between LLM generation and training, which can introduce significant system
overhead without careful optimizations. For LRMs, the output length of the training model varies
significantly for different prompts throughout the RL process, which results in an ever-changing
workload for both generation and training. This characteristic often triggers idle time in high-
performance hardware, leading to a waste of computation. Furthermore, classical large-scale RL
algorithms like PPO or GRPO typically require on-policy training data, i.e., samples generated by the
latest model, to ensure the best model performance, which poses additional system challenges.

Consequently, most existing large-scale RL systems are designed in a fully synchronous manner [27,
11, 45, 44] by strictly alternating between LLM generation and training, which ensures that the LLM
is always trained on the latest outputs for the best practical performance. In such a synchronous
design, the generation step must wait until the finish of the longest output within a batch. Due to the
varying output lengths for LRMs, a synchronous RL system suffers from severe training inefficiency.
Very recently, there have also been attempts to explore parallel generation and training [30, 24, 49].
These works use outputs generated from a previous model version to update the current model. For
the best performance, the model version used for rollout generation is limited to only one or two steps
older. However, all these systems still follow a batched generation setting, where all the samples
within a training batch are from the same model version. Accordingly, the issue of system inefficiency
during the generation phase still remains unaddressed.

To fundamentally resolve the issues in system design, we develop AREAL, a fully Asynchronous RL
training system for LRMs that completely decouples generation from training without hurting the
final performance. AREAL runs LLM generation in a streaming manner, where each rollout worker
continuously generates new outputs without waiting, leading to high GPU utilization. Meanwhile,
the trainer workers in AREAL run parallel model updates whenever a training batch is obtained
from the rollout workers. Once the model is updated, we synchronize the model weights in each
rollout worker. In such an asynchronous design, each training batch of AREAL may contain samples
generated by different model versions. Therefore, AREAL incorporates a modified objective of the
PPO algorithm, which can leverage samples generated from much older model versions without
any performance drop. AREAL also conducts a data filtering process to ensure the staleness of
each training sample is well controlled. In addition, AREAL also introduces several system-level
optimizations, including interruptible rollout workers, dynamic batching for variable-length outputs,
and parallel reward service, which further improve the overall training throughput.

We evaluate AREAL on challenging mathematical reasoning and code generation tasks using models
up to 32B parameters. Compared to state-of-the-art synchronous systems, AREAL achieves up
to 2.57× higher training throughput and linear scaling efficiency up to 512 GPUs. Crucially, this
acceleration even comes with improved solution accuracy on these tasks, illustrating that AREAL
delivers significant efficiency gains without sacrificing (and indeed enhancing) model performance.

sectionRelated Work

RL for LLMs Reinforcement learning (RL) has emerged as the predominant paradigm for enhancing
the reasoning capabilities of Large Language Models (LLMs) [31, 32]. Existing RL approaches
typically focus on tasks with well-defined reward functions, including mathematical reasoning [9],
coding [14, 15], scientific problem solving [39, 36], and tool use [57]. During training, models
learn to reason by progressively extending the length of chain-of-thought trajectories [52, 6]. Recent
open-source initiatives have demonstrated significant success in improving model capabilities through
smaller distilled models [24, 25]. Our work builds upon this research direction, distinguishing itself
from preference-based RLHF [33] and zero-shot reasoning approaches [60, 61, 12] that attempt to
acquire reasoning skills from pre-trained models without task-specific fine-tuning.

Asynchronous RL The decoupled asynchronous RL architecture [21, 8, 26], combined with cor-
responding algorithmic innovations [7, 16], has achieved remarkable success in game applica-
tions [2, 51]. Although similar asynchronous approaches have been explored for LLM training, they
typically focus on short-context settings [30, 1, 40] (e.g., RLHF) or one/two-step generation-training
overlap [24, 48]. Our work extends these studies and provides a more flexible trade-off between
staleness and training speed, as we will show in Section 4. In contrast to concurrent work [64] that
maximizes system-level efficiency, we adopt an algorithm-system co-design approach that provides
both an expressive system and a practical algorithm implementation. Our interruptible generation
technique is conceptually similar to partial rollout [17] in synchronous RL systems. Instead of
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setting a fixed length budget, AREAL dynamically interrupts generation while maintaining consistent
training batch sizes through buffering, thus preserving the stability of PPO. Compared with prior
methods [40, 30], our algorithmic innovation in the asynchronous setting can endure higher data
staleness and remains compatible with interruptible generation.

LLM Training and Inference Our work focuses on dense transformer models [50]. The RL
training primarily consists of generation (inference) and training phases. Generation involves auto-
regressive decoding, which requires efficient KV cache management [63, 18] and optimized decod-
ing kernels [58]. Training requires careful orchestration of data, tensor, and pipeline parallelism
strategies [38, 46, 62]. While conventional synchronous systems execute generation and training
sequentially on the same hardware resources, they require different optimal parallelization strategies.
Recent work has proposed context switching [19, 17] or weight resharding [45, 27] techniques to
address this mismatch. AREAL advances beyond synchronous RL systems by decoupling generation
and training, completely eliminating resharding overhead from the critical training path.

2 Background

2.1 Preliminaries about RL Training

RL Formulation and PPO We formulate our problem within the Markov Decision Process (MDP)
framework [37], defined by the tuple ⟨S,A, r, P, γ,H⟩. Here, S represents the state space, A the
action space, P the transition model, r : S × A → R the reward function, γ the discount factor,
and H the horizon. The LRM implements a parameterized policy πθ : S → A where each action
at ∈ A corresponds to a text token from the vocabulary. The state st ∈ S consists of a question
s1 = q followed by previously generated response tokens (a1, .., at−1), with deterministic transitions
st+1 = concat(st, at). Given a question distribution D, we optimize the objective:

J(θ) = Eq∼D,at∼πθ(·|q,a<t)

[
H∑
t=1

γt−1r(st, at)

]
. (1)

Following common practice [6, 25], we use a rule-based reward function that only provides non-zero
feedback on the final action, indicating answer correctness, and set γ = 1. We optimize this objective
using Proximal Policy Optimization (PPO) [42]:

JPPO(θ) = Eq∼D,at∼πold(·|q,a<t)

[
H∑
t=1

min
(
ut(θ)Â(st, at), clip (ut(θ), 1− ϵ, 1 + ϵ) Â(st, at)

)]
,

(2)
where ut(θ) = πθ(at|st)

πold(at|st) denotes the importance ratio and Â(st, at) represents the estimated
advantage [41]. Following standard practices in RL [42, 33], we divide the global batch into
minibatches for sequential parameter updates.2

Distributed Systems for LRM Training Our work focuses on enhancing reasoning capabilities
for LRMs after Supervised Fine-Tuning (SFT), distinct from approaches that incentivize reasoning in
pre-trained base models [6]. LRMs after SFT produce long reasoning sequences (e.g., 32K tokens)
and usually require large global batch sizes (e.g., 128 prompts with 16 responses each) for stable
RL training [6, 25, 24, 60, 61]. In synchronous RL systems, two phases are iteratively executed:
generation (rollout) and training. The generation phase uses the latest model parameters to produce
multiple reasoning traces for each query in the training batch. The training phase then updates the
model parameters based on the generated trajectories. These phases execute iteratively on the same
GPUs.

2.2 Motivation for Asynchronous RL System

We identify two essential limitations in synchronous RL systems:

Inference devices are underutilized. As shown in Figure 1 (left), generation must wait for the
longest sequence to complete before training can begin. This leads to non-uniform decoding length
across GPUs, which underutilizes GPU compute resources.

2This differs from gradient accumulation, which performs a single update across minibatches.
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Figure 1: Execution timeline of a synchronous (left) and a one-step overlap (right) RL system showing
underutilized inference devices.
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Figure 2: The AREAL architecture featuring asynchronous generation and training components.

Scalability is poor in synchronous RL systems. Synchronous systems distribute generation across
all devices, reducing the per-GPU decoding batch size. This pushes the decoding process into a
memory-IO-bound regime [4, 28] where additional devices fail to improve throughput.

3 System Architecture

The limitations identified in Section 2.2 motivate our design of a system that fully decouples genera-
tion and training across separate GPU clusters. This system should be hardware-efficient, scalable,
and equipped with the flexibility for a customized RL workflow. We implement these principles in
AREAL, an asynchronous RL system specifically designed for efficient large-scale LRM training.

3.1 System Overview

Figure 2 presents the architecture and data flow of AREAL. The system comprises 4 core components:

Interruptible Rollout Worker handles two types of requests: (1) The generate request generates
responses given prompts. (2) The update_weights request interrupts all ongoing generations and
loads parameters of new versions. Upon the interruption, the rollout workers discard KV caches
computed by old weights, and re-compute them using the new weights. Afterwards, the rollout
workers continue to decode the unfinished sequences until the next interruption or termination. We
emphasize that such interruptions and in-flight weight updates would result in trajectories composed
of segments produced by different model versions. This introduces a novel algorithmic challenge,
which will be addressed in Section 4.

Figure 3: Illustration of generation management in AREAL. Vertical lines show the ready time for
the next step training. Blue crosses show the interrupted requests when new parameters arrive.
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Reward Service evaluates the accuracy of the responses generated by the model. For example, in the
coding task, this service extracts the code and executes unit tests to verify its accuracy.

Trainer Workers continuously sample from the replay buffer, accumulating data until reaching the
configured training batch size. They then perform PPO updates and store the resulting parameters in
distributed storage. To ensure data freshness, data from the replay buffer is used only once.

Rollout Controller serves as a critical bridge between the rollout workers, reward service, and the
model workers. During the training process, it reads data from the dataset and invokes the rollout
worker’s generate request. The received response is then sent to the reward service to obtain the
reward. The trajectory, along with the reward, is stored in the replay buffer, waiting to be trained by
the model worker. After the model worker updates the parameters, the controller calls the rollout
worker’s update_weight. We illustrate the generation and training management in Figure 3. This
asynchronous pipeline ensures continuous full utilization of both generation and training resources.

3.2 Algorithmic Challenges

While the asynchronous system design offers significant acceleration through improved device
utilization, it introduces several technical challenges that require algorithmic considerations.

Data Staleness Due to the asynchronous nature of AREAL, each training batch contains data from
multiple prior policy versions. Prior works on asynchronous RL training systems have demonstrated
that such staleness can degrade learning performance in both RLHF [30] and game environments [2].
Data staleness leads to a distribution gap between the training data and the latest model. In asyn-
chronous RL training for LRMs, this issue could be even more severe for long trajectories due to
extended decoding time.

Inconsistent Policy Versions As discussed in Section 3.1, the generated trajectories may involve
segments produced by different policy versions. This inconsistency fundamentally violates the
formulation of standard PPO in Eq. 2 that assumes all actions are generated by a single policy πold.

In the following section, we detail our technical innovations for overcoming these challenges while
preserving the efficiency advantages of an asynchronous system.

4 Addressing the Algorithmic Challenges in AREAL

4.1 Staleness-Aware Training

To avoid the performance drop due to training on data with extremely high staleness, we introduce a
hyperparameter η representing the maximum permitted staleness in each training batch for staleness-
aware training. In particular, when η = 0, our system degenerates to synchronous RL with all
training samples generated by the current policy. We implement the staleness control in our system
by dynamically controlling the throughput of the generation requests sent to the generation servers.
Given the current policy version i, the total number of generated trajectories Nr, and the training
batch size B for each training step, we enforce the following formula whenever submitting new
generation requests:

⌊(Nr − 1)/B⌋ ≤ i+ η. (3)

We also prioritize older trajectories from the data buffer to form a training batch. In our system
implementation, the rollout controller tracks both the generated samples Nr and policy version i from
the parameter server. It rejects new generation requests that may violate the staleness constraint.

Note that this rate-limiting protocol is a simple yet effective design choice in practice. However, when
η is too small, the generation throughput can be slowed down when some extremely long trajectories
are being generated. Therefore, we empirically suggest adopting a large staleness-control parameter
η for the best system throughput. This system-wide practice also motivates us to apply an enhanced
algorithm that can make effective use of more stale data for RL training.

4.2 Decoupled PPO Objective

We apply a decoupled PPO objective [10] that disentangles the behavior policy and the proximal
policy. The behavior policy πbehav represents the policy used for sampling trajectories and the
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proximal policy πprox is a proximal policy serving as a recent target to regularize the update of πθ.
By applying importance sampling on the sampled trajectories, we derive a decoupled PPO objective
suitable for asynchronous RL training:

J(θ) = Eq∼D,at∼πbehav


H∑
t=1

min(
πθ

πbehav

Importance Ratio

Ât,

Importance Ratio︷ ︸︸ ︷
πprox

πbehav
clip(

πθ

πprox

Trust Region Center

, 1− ϵ, 1 + ϵ)Ât)


(4)

= Eq∼D,at∼πbehav

[
H∑
t=1

πprox

πbehav
min

(
uprox
t (θ)Ât, clip (u

prox
t (θ), 1− ϵ, 1 + ϵ) Ât)

)]
, (5)

where uprox
t (θ) = πθ(at|st)

πprox(at|st) is the importance ratio with respect to the proximal policy. We omit
the state-action terms for conciseness.

The main difference between the asynchronous PPO objective in Equation 5 and the standard one in
Equation 2 lies in the proximal policy πprox for regularizing the model update. In asynchronous PPO
training, using the behavior policy as the proximal policy will pull the latest policy πθ towards the
old-version and low-quality policies, thus slowing down model improvements. By employing a recent
policy as the proximal policy, model updates happen within the trust region around the high-quality
proximal policy πprox, thus stabilizing training.

The decoupled PPO objective in Equation 5 provides a natural benefit: it relaxes the requirement that
all data within one training batch should be generated with a single policy. This property is crucial
for maintaining algorithmic correctness when combining interruptible generation with policy updates.
We claim that the inconsistent policy versions across a trajectory maintain equivalence to a single
behavior policy πbehav. (See Section D for the proof.)

Proposition 1. For any sequence (q, a1, . . . , aH) generated by policies (πθ, . . . , πθ+k) where πθ+i

produces tokens (ati , . . . , ati+1), where 1 = t0 < · · · < tk+1 = H , there exists a behavior policy
πbehav such that the interrupted generation is equivalent to sampling entirely from πbehav.

Practical Remark While Hilton et al. [10] maintains an exponential moving average of parameters
for πprox, this approach is prohibitively expensive for LRMs. Consequently, we simply use the
parameters before each model update step as πprox. Equation 5 is implemented by recomputing token
probabilities upon the arrival of the global batch in each training step.

5 Implementation

We implement AREAL using Python and PyTorch [35] built upon the ReaLHF [27] framework. Our
system combines SGLang [63] v0.4.6 for generation serving with Megatron-Core [46] v0.11.0 as
the training backend, managed by SLURM [59] for resource scheduling. To maximize throughput
for both generation and training phases, we implement several key system-level optimizations that
address critical bottlenecks in the pipeline.

AREAL decouples GPU computation from CPU operations, including rule-based reward computation
(such as string matching for math problems or unit test execution for code) and TCP-based data
transfer. By executing these operations in separate threads and pipelining the workflow, we overlap
reward computation and data transfer with subsequent generation requests. We use asyncio coroutines
to concurrently run multiple requests in the rollout worker to avoid mutual blocking waits.

To handle training with variable-length sequences, we employ a padding-free sequence packing
strategy coupled with a dynamic allocation algorithm. The algorithm balances token distribution
across micro-batches under fixed memory constraints (see Algorithm 1). This approach maximizes
GPU memory utilization while minimizing the number of required forward-backward passes.
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6 Experiments

Our evaluation comprises three components: (1) comprehensive comparisons against state-of-the-
art open-source frameworks across model sizes, (2) strong-scaling analysis with varying compute
resources, and (3) ablation studies validating our design choices.

6.1 Experiment Setup

We evaluate AREAL on challenging math and coding tasks. We employ the distilled Qwen2 model
series [54, 55] from DeepSeek-R1 [6] as base models (i.e., R1-Distilled-Qwen), spanning from 1.5B
to 32B parameters. For each task-model combination, we train for a fixed number of PPO updates
and evaluate the final checkpoint. Our evaluation of mathematical tasks follows the Qwen evaluation
protocol [56, 13], while coding models are assessed on LiveCodeBench (8/1/24-2/1/25) [14] using
the official protocol. Unless otherwise specified, we set the maximum staleness η = 4 for coding
and η = 8 for math, and adopt the training configurations used in Section 6.2, with additional
hyperparameters detailed in Appendix B.

We conduct experiments on an H800 GPU cluster comprising 64 nodes, each equipped with 8 GPUs.
The cluster features NVLink for intra-node connectivity and RoCE with 3.2Tbps bandwidth for
inter-node communication. To ensure rapid convergence, we allocate a minimum of 16 nodes as a
baseline pod configuration for complete experiments. We scale the number of nodes proportionally
with model size, ultimately utilizing 48 nodes for training our largest 32B parameter model. This
scaling strategy enables us to run experiments of varying sizes in parallel while maintaining efficient
resource utilization.

For AREAL, we maintain a fixed ratio between inference and training devices, allocating three-
quarters of the devices for inference. This configuration was selected over an equal 50-50 partition
based on our early experiments, where the 75-25 partition demonstrated higher training throughput.
Although we adopt this ratio as a heuristic configuration, we emphasize that the optimal partition may
vary across different settings and could potentially benefit from dynamic adjustment during training,
as discussed in Section 7.

6.2 End-to-End Comparison

We establish two state-of-the-art baselines using synchronous RL systems: DeepScaleR [25] for
mathematical reasoning with a 1.5B model, and DeepCoder [24] for code generation with a 14B
model, both trained using verl [45]. For larger 7B and 32B models where comparable baselines are
unavailable, we performed controlled experiments by training from scratch using a synchronous
variant of AREAL. After training, we evaluate on the challenging AIME24 benchmark for math
models and the LiveCodeBench [14] benchmark for coding models. Evaluation results on additional
benchmarks are presented in Appendix C.

Our main results are shown in Table 1. Since the code for obtaining previous SOTA models can be
out-of-date, we measure the throughput and estimate the training hours using the latest verl code for
a fair comparison. AREAL consistently matches or exceeds baseline performance while achieving
significant speedups without performance degradation. In particular, the end-to-end training time can
be reduced by 2.77× compared with synchronous systems.

6.3 Scalability

We compare the scalability of AREAL with verl [45], the state-of-the-art synchronous RL system,
across different model sizes and context lengths. We select the minimum number of GPUs when verl
does not encounter the OOM issue for 7B models and 32k context length, then we proportionally
adjust the number of GPUs according to the model size. We measure the effective throughput for
training, defined as the rate of consuming generated tokens during PPO updates, after proper warmup
steps. Figure 4 presents the results for context lengths of 16k and 32k. Here, context length refers to
the sum of prompt length and generated length, with the maximum prompt length capped at 1k.

Across all settings, AREAL demonstrates an approximate linear scaling trend with increased device
count, while the synchronous system typically fails to scale effectively. AREAL’s throughput
surpasses the baseline in most settings, and could achieve at most 2.5× speedup. We note that for
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Table 1: End-to-End Performance Comparison. We evaluate on the AIME24 benchmark for math and
LiveCodeBench (8/1/24-2/1/25) for coding. We limit the maximum generation length to 32K tokens
and sample 32 responses per question, reporting the average pass@1 accuracy. * represents the best
known reproducible results obtained via RL, as cited from DeepScaler [25] and DeepCoder [24]
respectively. AReaL achieves comparable performance with 2× fewer training hours.

Model AIME24 ↑ # Nodes PPO Steps Training Hours ↓
1.5B basemodel 29.3 - - -

w/ VeRL 43.1* 16 250 33.6
w/ Sync.AReaL 42.0 16 250 41.0
w/ AReaL (ours) 42.2 16 250 14.8

7B basemodel 54.3 - - -
w/ VeRL - 24 250 52.1

w/ Sync.AReaL 63.0 24 250 57.7
w/ AReaL (ours) 63.1 24 250 25.4

Model LiveCodeBench ↑ # Nodes PPO Steps Training Hours ↓
14B basemodel 53.4 - - -

w/ VeRL 57.9* 32 80 44.4
w/ Sync.AReaL 56.7 32 80 48.8
w/ AReaL (ours) 58.1 32 80 21.9
32B basemodel 57.4 - - -

w/ VeRL - 48 60 46.4
w/ Sync.AReaL 61.2 48 60 51.1
w/ AReaL (ours) 61.0 48 60 31.1

smaller context lengths, the advantage of AREAL can be smaller because the generation throughput
cannot match the pace of training throughput. Although many sequences are generated, they are
not effectively consumed by the training process. Additionally, AREAL is more robust with longer
generation lengths due to asynchronous and interruptible generation. The generation of long responses
can be fully hidden in the critical path, so extending generation length does not drastically affect the
effective training throughput of AREAL.

6.4 Algorithm Ablations

We conduct ablation studies to validate our algorithmic innovations in Section 4 by training a 1.5B
LRM on math tasks. We follow the basic experiment setting of DeepScaleR and then gradually
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Figure 5: Ablation studies of the decoupled PPO objective and staleness control with a 1.5B model
on math reasoning tasks. Both algorithmic choices are essential. With a moderate staleness value
and the decoupled objective, training progress can be accelerated by over 2× while maintaining final
evaluation performance.

Table 2: Evaluation scores when varying data staleness, comparing performance with and without the
decoupled objective. Numbers within ±1 of the oracle score are underlined.

Max.Stale. AIME24 AIME25 AMC23 MATH 500

W/o With W/o With W/o With W/o With

0 (Oracle) 42.0 32.9 84.4 89.2
1 41.8 42.1 30.7 31.9 83.3 85.2 89.9 89.8
2 40.0 41.8 32.1 32.5 82.3 84.3 89.6 89.6
4 23.3 42.2 23.1 32.0 58.5 85.1 66.9 89.5
8 35.7 41.0 27.8 31.1 81.2 82.9 87.8 89.2

16 35.8 38.7 26.2 32.5 78.4 83.2 87.4 89.1
∞ 34.0 36.9 26.9 29.9 79.4 81.0 87.1 88.1

increase the η value for ablation purposes. Specifically, we vary the maximum allowed staleness
η and compare configurations with and without the decoupled PPO objective. Figures 5a and 5b
show the learning curves after 250 training steps. Table 2 presents the corresponding final evaluation
performances across multiple mathematical reasoning benchmarks. We follow the common practice
of PPO and perform multiple mini-batch updates within each training step. We emphasize that η
constrains the training batch staleness regarding training steps.

Figure 5a demonstrates that naive PPO fails to match the performance of the synchronous RL
oracle (i.e., the performance when η = 0). Even slight staleness can significantly degrade final
performance due to the improper clipping center and policy changes during interruptible generation.
Furthermore, increasing data staleness consistently degrades learning performance, aligning with
observations from prior work in other domains [2, 30]. However, as shown by comparing Figure 5b
and Figure 5a, the decoupled PPO objective substantially improves training stability when handling
stale data, consistent with findings from [10] in game domains. In addition, we observe that even
with the decoupled objective, unbounded staleness (maximum staleness→∞) still results in inferior
performance compared to the zero-staleness oracle. When properly constrained, moderate staleness
(e.g., η ≤ 8) has minimal impact on final performance while significantly accelerating training
through the asynchronous pipeline, as demonstrated in Figure 5c and Table 2. These results validate
our approach of combining controlled staleness with the decoupled PPO objective for efficient
asynchronous RL training.

6.5 System Ablations

Dynamic Microbatch Allocation We investigate the effectiveness of dynamic batching by compar-
ing PPO training throughput against a standard micro-batching strategy. The standard micro-batching
strategy can result in multiple long sequences being assigned to the same micro-batch, thus usually
requiring a sufficiently large number of micro-batches to prevent out-of-memory errors. In our
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Figure 6: Ablation studies on system optimizations.

experimental setup, we configured 32 micro-batches for the standard setting and established a token
budget of 32,768 per micro-batch for the dynamic batching approach. As demonstrated in Figure 6a,
dynamic batching yields an average of 30% throughput improvements across various model sizes.

Interruptible Generation We ablate interruptible generation and present the resulting generation
throughput in Figure 6b. Without interruptible generation, the controller must wait for the longest
response. In particular, interruptible generation leads to a 12% and 17% throughput increase for 1.5B
and 7B models respectively on 4 nodes, which validates our architectural design choice.

7 Conclusion

This paper introduces AREAL, a fully asynchronous system designed for efficient large-scale re-
inforcement learning (RL) training. The AREAL architecture provides both the flexibility and
expressiveness required for implementing asynchronous algorithms. Building upon this foundation,
we contribute several algorithmic innovations, including staleness-aware training and a decoupled
PPO objective, which enable efficient and stable PPO training in asynchronous environments. Our
experimental results demonstrate AREAL’s superior hardware efficiency, sample efficiency, and
scalability compared to existing synchronous RL systems. This work provides a starting point for
reliably scaling RL training. We hope that it can enable future advances in large-scale AI systems
that push the boundaries of machine intelligence further.
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Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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the paper has limitations, but those are not discussed in the paper.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All assumptions have been illustrated in Proposition 1 and Section 2
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if
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4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have discussed the model, dataset, and hyper-parameters we use in Ap-
pendix B and Section 6.
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• The answer NA means that the paper does not include experiments.
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have included code in the supplementary material. Datasets and models
we used are all open-sourced.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Appendix B
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We did not include error bars for large-scale end-to-end experiments because
they are expensive to run. We present results within a single trial under the same fixed
random seed across different settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In Appendix B and Section 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: N/A
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: This paper aims to optimize a training system, which has a limited social
impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper uses datasets and models used by prior works.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original sources are all properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Reproducibility

The code of AREAL is available at https://github.com/inclusionAI/AReaL/. Datasets and
base models in our experiments are all taken from the open-source community (see Appendix B). We
used a fixed random seed of 1 across all experiments.

B Implementation Details

B.1 PPO Details

We disable the critic model and the reference model in PPO. The advantage estimation parameter λ
in GAE and the RL discount factor γ are fixed at 1. The reward is 5 at the final token if the answer
is correct and -5 otherwise. We additionally adopt advantage normalization across the global batch
to stabilize the training. Other learning related hyperparameters and configurations can be found in
Table 3.

Table 3: Training configurations and hyperparameters.
Training Configuration
Batch size (number of prompts) 512
Random seed 1

PPO Parameters
PPO Minibatches 4
Clipping ϵ 0.2
Advantage normalization True
Discount factor γ 1.0
GAE λ 1.0

Optimizer Parameters
Optimizer Adam
Learning rate 2.0× 10−5

Weight decay 0.05
β1 0.9
β2 0.95
Adam ϵ 1× 10−5

Gradient norm clipping 1.0
Learning rate scheduler constant
Warmup steps proportion 0.001

Precision Parameters
Parameter dtype fp16
KV cache dtype fp16
Gradient dtype fp32
Optimizer state dtype fp32

Generation Parameters
Answers per prompt 16
Temperature 1.0
Top-p 1.0
Top-k -1
Max prompt length 1024
Min generation length 0
Max generation length 27648
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B.2 Dataset Details

For the math task, we used the open-source data from DeepScaleR [25], For code training, we used
the dataset released by DeepCoder [24]. All compared methods use the same dataset.

B.3 Dynamic Batching

Algorithm 1 Dynamic Batching

Require: Sequence lengths S = {s1, s2, . . . , sn}, maximum micro-batch capacity C, minimum
number of micro-batches kmin

Ensure: Balanced partition of sequences into micro-batches with total length ≤ C
1: Sort S in descending order
2: batches← ∅
3: for all s ∈ S do
4: if |batches| < kmin or no existing batch can fit s then
5: Create new micro-batch containing sequence i
6: batches.append({s})
7: else
8: Find all batches that can accommodate s
9: Select the micro-batch with fewest sequences

10: end if
11: end for
12: return batches

The dynamic batching algorithm is shown in Algorithm 1.

B.4 Baselines

In our experiments, we use the lastest version (main branch of verl repository, May 7, 2025) of verl
[45] to evaluate the training throughput in Figure 4 and the training hours in Table 1. For most of
the results, we use SGLang [63] v0.4.6 as generation backend and pytorch FSDP [62] as training
backend. In a few cases where SGLang raises errors (experiments with 32B models or 64 nodes), we
use vLLM [18] v0.8.4 as a substitution.

C Additional Results

C.1 Additional Evaluation Results

We evaluate the models trained with AReaL on more math and coding benchmarks, and list the results
in Table 4 and Table 5, respectively.

Table 4: Results on math benchmarks.
Model AIME24 AIME25 AMC23 MATH 500

1.5B basemodel 29.3 24.4 71.0 84.3
w/ Sync. AReaL 42.0 32.9 84.4 89.2

w/ AReaL 42.2 32.0 85.1 89.5

7B basemodel 54.3 41.7 89.5 92.8
w/ Sync. AReaL 63.0 50.0 93.2 94.2

w/ AReaL 63.1 47.3 93.6 94.3

C.2 Generalization Across Model Architectures

We conducted additional experiments using the DeepSeek-Distilled-Llama-8B model, which is a
long-CoT model based on Llama 3.1 8B. We matched the experimental configuration with the Qwen
7B math model from Table 1, and the results are presented in Table 6.
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Table 5: Results on coding benchmarks.
Model LiveCodeBench v5 Codeforces CodeContests

14B base model 53.4 1801/95.8% 32.0
Sync. AReaL 14B 56.7 1845/96.4% 37.0
AReaL 14B (ours) 58.1 1840/96.3% 35.9

32B base model 57.4 1839/96.3% 34.3
Sync. AReaL 32B 61.2 1911/96.9% 36.3
AReaL 32B (ours) 61.0 1889/96.7% 36.5

Table 6: Generalization results on DeepSeek-Distilled-Llama-8B across math benchmarks.
Model AIME24 AMC23 MATH500 AIME25

DeepSeek-Distilled-Llama-8B 50.4 84.2 89.1 23.3
AREAL Fine-Tuned η =4 58.4 92.3 92.2 42.6
AREAL Fine-Tuned η =8 57.2 91.5 91.9 41.6

The results demonstrate that AReaL generalizes effectively across different model families.

C.3 Staleness-Throughput Trade-off with Small-Scale Academic Setups

We conducted a series of experiments using the DeepSeek-Distilled-Qwen-1.5B model with 8k
context length and batch size 64×16 on 8 GPUs, testing various staleness values. The following table
shows the experimental results. We observe that our preliminary conclusions from the large-scale
setting (Table 2) generally align with findings using fewer GPUs.

Table 7: Staleness-throughput trade-off on small-scale academic setup.
Model AIME24 AIME25 AMC23 MATH500 Throughput

DeepSeek-Distilled-Qwen-1.5B 29.3 24.4 71.0 84.3 -
AREAL Fine-Tuned η =0 31.7 26.1 78.9 86.7 27.1k
AREAL Fine-Tuned η =1 32.6 26.4 76.6 86.4 47.8k
AREAL Fine-Tuned η =2 32.4 26.7 76.0 86.6 47.8k
AREAL Fine-Tuned η =4 34.1 28.1 75.5 86.9 49.0k
AREAL Fine-Tuned η =8 29.9 23.2 76.1 86.1 51.5k
AREAL Fine-Tuned η =16 32.8 25.9 78.1 86.3 52.0k

C.4 Staleness-Throughput Trade-off with Different RL Algorithms

We conducted additional experiments using the RLOO advantage bootstrapping method. We trained
1.5B models in a local 8-GPU setting with 8k context length and various staleness values. The
evaluation results in Table 8 demonstrate that RLOO exhibits slightly better tolerance to asynchronous
training compared to vanilla PPO.

Table 8: Staleness-throughput trade-off using RLOO algorithm.
Model AIME24 AIME25 AMC23 MATH500 Throughput

DeepSeek-Distilled-Qwen-1.5B 29.3 24.4 71.0 84.3 -
RLOO η =0 32.4 29.2 79.2 87.3 27.1k
RLOO η =1 32.9 26.0 76.4 87.7 47.8k
RLOO η =2 34.1 28.0 81.1 86.9 47.8k
RLOO η =4 32.9 27.9 76.0 87.0 49.0k
RLOO η =8 31.5 28.1 78.0 87.4 51.5k

RLOO η =16 32.7 27.7 78.4 87.4 52.0k
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These results highlight an important direction for future research. AREAL modifies the PPO/GRPO
algorithm because the importance sampling term naturally supports asynchronous off-policy training.
Beyond PPO-based workflows, it would be valuable to investigate the asynchronous tolerance of
REINFORCE-like and other off-policy algorithms.

D Proof of Proposition 1

Proposition 1. For any sequence (q, a1, . . . , aH) generated by policies (πθ, . . . , πθ+k) where πθ+i

produces tokens (ati , . . . , ati+1), where 1 = t0 < · · · < tk+1 = H , there exists a behavior policy
πbehav such that the interrupted generation is equivalent to sampling entirely from πbehav.

Proof. For question q, let St(q) denote states encountered at step t by the sequence of policies. Since
Sti(q) ∩ Stj (q) = ∅ for i ̸= j, we can construct:

πbehav(·|s) =
{
πθ+j(·|s) if tj ≤ t ≤ tj+1 and s ∈ St(q)
arbitrary otherwise

E Limitations and Future Work

Our work presents several limitations that suggest directions for future research. First, the ratio
between inference and training devices could be further optimized for specific training setups.
Additionally, this ratio might benefit from dynamic adjustment during training, particularly as context
lengths typically increase when fine-tuning pre-trained base models. While we focused our evaluation
on single-step mathematical and coding tasks, the AREAL architecture is not inherently limited to
these domains. We leave the exploration of multi-turn interactions and agentic scenarios to future
work.
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