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ABSTRACT
In this paper, we propose a new deep unfolding neural net-
work based on the ADMM algorithm for analysis Com-
pressed Sensing. The proposed network jointly learns a re-
dundant analysis operator for sparsification and reconstructs
the signal of interest. We compare our proposed network with
a state-of-the-art unfolded ISTA decoder, that also learns an
orthogonal sparsifier. Moreover, we consider not only image,
but also speech datasets as test examples. Computational
experiments demonstrate that our proposed network outper-
forms the state-of-the-art deep unfolding network, consis-
tently for both real-world image and speech datasets.

Index Terms— Analysis Compressed Sensing, ADMM,
deep neural network, deep unfolding.

1. INTRODUCTION

Compressed Sensing (CS) [1] is a modern technique to re-
cover signals of interest x ∈ Rn from few linear and possibly
corrupted measurements y = Ax + e ∈ Rm, m < n. Itera-
tive optimization algorithms applied on CS are by now widely
used [2], [3], [4]. Recently, approaches based on deep learn-
ing were introduced [5], [6]. It seems promising to merge
these two areas by considering what is called deep unfolding.
The latter pertains to unfolding the iterations of well-known
optimization algorithms into layers of a deep neural network
(DNN), which reconstructs the signal of interest.
Related work: Deep unfolding networks have gained much
attention in the last few years [7], [8], [9], because of some
advantages they have compared to traditional DNNs: they
are interpretable, integrate prior knowledge about the signal
structure [10], and have a relatively small number of trainable
parameters [11]. Especially in the case of CS, many unfold-
ing networks have proven to work particularly well. The au-
thors in [12], [13], [14], [15], [16] propose deep unfolding
networks that learn a decoder, which aims at reconstructing
x from y. Additionally, most of these networks jointly learn
a dictionary that sparsely represents x, along with thresholds
used by the original optimization algorithms.

Motivation: Our work is inspired by the articles [14] and
[16], which propose unfolded versions of the iterative soft
thresholding algorithm (ISTA), with learnable parameters be-
ing the sparsifying (orthogonal) basis and/or the thresholds
involved in ISTA. The authors then test their frameworks on
synthetic data and/or real-world image datasets. In a simi-
lar spirit, we derive a decoder by interpreting the iterations
of the alternating direction method of multipliers algorithm
[17] (ADMM) as a DNN and call it ADMM Deep Analysis
Decoding (ADMM-DAD) network. We differentiate our ap-
proach by learning a redundant analysis operator as a sparsi-
fier for x, i.e. we employ analysis sparsity in CS. The reason
for choosing analysis sparsity over its synthesis counterpart is
due to some advantages the former has. For example, anal-
ysis sparsity provides flexibility in modeling sparse signals,
since it leverages the redundancy of the involved analysis op-
erators. We choose to unfold ADMM into a DNN, since most
of the optimization-based CS algorithms cannot treat analysis
sparsity, while ADMM solves the generalized LASSO prob-
lem [18] which resembles analysis CS. Moreover, we test our
decoder on speech datasets, not only on image ones. To the
best of our knowledge, an unfolded CS decoder has not yet
been used on speech datasets. We compare numerically our
proposed network1 to the state-of-the-art learnable ISTA of
[16], on real-world image and speech data. In all datasets,
our proposed neural architecture outperforms the baseline, in
terms of both test and generalization error.
Key results: Our novelty is twofold: a) we introduce a new
ADMM-based deep unfolding network that solves the analy-
sis CS problem, namely ADMM-DAD net, that jointly learns
an analysis sparsifying operator b) we test ADMM-DAD net
on image and speech datasets (while state-of-the-art deep un-
folding networks are only tested on synthetic data and images
so far). Experimental results demonstrate that ADMM-DAD
outperforms the baseline ISTA-net on speech and images, in-
dicating that the redundancy of the learned analysis operator
leads to a smaller test MSE and generalization error as well.
Notation: For matrices A1, A2 ∈ RN×N , we denote by

1code available at www.github.com/vicky-k-19/ADMM-DAD



[A1;A2] ∈ R2N×N their concatenation with respect to the
first dimension, while we denote by [A1 |A2] ∈ RN×2N

their concatenation with respect to the second dimension. We
denote by ON×N a square matrix filled with zeros. We write
IN×N for the real N ×N identity matrix. For x ∈ R, τ > 0,
the soft thresholding operator Sτ : R 7→ R is defined in
closed form as Sτ (x) = sign(x)max(0, |x| − τ). For
x ∈ Rn, the soft thresholding operator acts componentwise,
i.e. (Sτ (x))i = Sτ (xi). For two functions f, g : Rn 7→ Rn,
we write their composition as f ◦ g : Rn 7→ Rn.

2. MAIN RESULTS

Optimization-based analysis CS: As we mentioned in Sec-
tion 1, the main idea of CS is to reconstruct a vector x ∈ Rn

from y = Ax + e ∈ Rm, m < n, where A is the so-called
measurement matrix and e ∈ Rm, with ∥e∥2 ≤ η, corre-
sponds to noise. To do so, we assume there exists a redundant
sparsifying transform Φ ∈ RN×n (N > n) called the analysis
operator, such that Φx is (approximately) sparse. Using anal-
ysis sparsity in CS, we wish to recover x from y. A common
approach is the analysis l1-minimization problem

min
x∈Rn

∥Φx∥1 subject to ∥Ax− y∥2 ≤ η, (1)

A well-known algorithm that solves (1) is ADMM, which
considers an equivalent generalized LASSO form of (1), i.e.,

min
x∈Rn

1

2
∥Ax− y∥22 + λ∥Φx∥1, (2)

with λ > 0 being a scalar regularization parameter. ADMM
introduces the dual variables z, u ∈ RN , so that (2) is equiv-
alent to

min
x∈Rn

1

2
∥Ax− y∥22 + λ∥z∥1 subject to Φx− z = 0. (3)

Now, for ρ > 0 (penalty parameter), k ∈ N and initial points
(x0, z0, u0) = (0, 0, 0), the optimization problem in (3) can
be solved by the iterative scheme of ADMM:

xk+1 = (ATA+ ρΦTΦ)−1(AT y + ρΦT (zk − uk)) (4)

zk+1 = Sλ/ρ(Φx
k+1 − uk) (5)

uk+1 = uk +Φxk+1 − zk+1. (6)

The iterates (4) – (6) are known [17] to converge to a solution
p⋆ of (3), i.e., ∥Axk − y∥22 + ∥zk∥1 → p⋆ and Φxk − zk → 0
as k → ∞.
Neural network formulation: Our goal is to formulate the
previous iterative scheme as a neural network. We substitute
first (4) into the update rules (5) and (6) and second (5) into
(6), yielding

uk+1 =(I −W )uk +Wzk + b

− Sλ/ρ((−I −W )uk +Wzk + b) (7)

zk+1 =Sλ/ρ((−I −W )uk +Wzk + b),

where

W =ρΦ(ATA+ ρΦTΦ)−1ΦT ∈ RN×N (8)

b = b(y) =Φ(ATA+ ρΦTΦ)−1AT y ∈ RN×1. (9)

We introduce vk = [uk; zk] ∈ R2N×1 and set Θ = (−I −
W |W ) ∈ RN×2N , Λ = (I −W |W ) ∈ RN×2N to obtain

vk+1 =

(
Λ

ON×2N

)
vk+

(
b
0

)
+

(
−Sλ/ρ(Θvk + b)
Sλ/ρ(Θvk + b)

)
. (10)

Now, we set Θ̃ = [Λ;ON×2N ] ∈ R2N×2N and I1 =
[IN×N ;ON×N ] ∈ R2N×N , I2 = [−IN×N ; IN×N ] ∈
R2N×N , so that (10) is transformed into

vk+1 = Θ̃vk + I1b+ I2Sλ/ρ(Θvk + b). (11)

Based on (11), we formulate ADMM as a neural network with
L layers/iterations, defined as

f1(y) = I1b(y) + I2Sλ/ρ(b(y)),

fk(v) = Θ̃v + I1b+ I2Sλ/ρ(Θv + b), k = 2, . . . , L.

The trainable parameters are the entries of Φ (or more gener-
ally, the parameters in a parameterization of Φ). We denote
the concatenation of L such layers (all having the same Φ) as

fL
Φ (y) = fL ◦ · · · ◦ f1(y). (12)

The final output x̂ is obtained after applying an affine map T
motivated by (4) to the final layer L, so that

x̂ =T (fL
Φ (y))

=(ATA+ ρΦTΦ)−1(AT y + ρΦT (zL − uL)),
(13)

where [uL; zL] = vL. In order to clip the output in case its
norm falls out of a reasonable range, we add an extra func-
tion σ : Rn → Rn defined as σ(x) = x if ∥x∥2 ≤ Bout

and σ(x) = Boutx/∥x∥2 otherwise, for some fixed constant
Bout > 0. We introduce the hypothesis class

HL = {σ ◦ h :Rm 7→ Rn : h(y) = T (fL
Φ (y)),

Φ ∈ RN×n, N > n}
(14)

consisting of all the functions that ADMM-DAD can im-
plement. Then, given the aforementioned class and a set S =
{(yi, xi)}si=1 of s training samples, ADMM-DAD yields a
function/decoder hS ∈ HL that aims at reconstructing x from
y = Ax. In order to measure the difference between xi and
x̂i = hS(yi), i = 1, . . . , s, we choose the training mean
squared error (train MSE)

Ltrain =
1

s

s∑
i=1

∥h(yi)− xi∥22 (15)



5 layers 25% CS ratio

Decoder
Dataset

SpeechCommands TIMIT MNIST CIFAR10

test MSE gen. error test MSE gen. error test MSE gen. error test MSE gen. error
ISTA-net 0.58 · 10−2 0.13 · 10−2 0.22 · 10−3 0.24 · 10−4 0.67 · 10−1 0.17 · 10−1 0.22 · 10−1 0.12 · 10−1

ADMM-DAD 0.25 · 10−2 0.16 · 10−3 0.79 · 10−4 0.90 · 10−5 0.23 · 10−1 0.16 · 10−3 0.15 · 10−1 0.11 · 10−3

10 layers 40% CS ratio 50% CS ratio

Decoder
Dataset

SpeechCommands TIMIT SpeechCommands TIMIT

test MSE gen. error test MSE gen. error test MSE gen. error test MSE gen. error
ISTA-net 0.46 · 10−2 0.18 · 10−2 0.20 · 10−3 0.25 · 10−4 0.45 · 10−2 0.20 · 10−2 0.20 · 10−3 0.25 · 10−4

ADMM-DAD 0.13 · 10−2 0.58 · 10−4 0.42 · 10−4 0.47 · 10−5 0.87 · 10−3 0.10 · 10−4 0.29 · 10−4 0.30 · 10−5

Table 1: Average test MSE and generalization error for 5-layer decoders (all datasets) and 10-layer decoders (speech datasets).
Bold letters indicate the best performance between the two decoders.

as loss function. The test mean squared error (test MSE) is
defined as

Ltest =
1

d

d∑
i=1

∥h(ỹi)− x̃i∥22, (16)

where D = {(ỹi, x̃i)}di=1 is a set of d test data, not used in the
training phase. We examine the generalization ability of the
network by considering the difference between the average
train MSE and the average test MSE, i.e.,

Lgen = |Ltest − Ltrain|. (17)

3. EXPERIMENTAL SETUP

Datasets and pre-processing: We train and test the pro-
posed ADMM-DAD network on two speech datasets, i.e.,
SpeechCommands [19] (85511 training and 4890 test speech
examples, sampled at 16kHz) and TIMIT [20] (phonemes
sampled at 16kHz; we take 70% of the dataset for training
and the 30% for testing) and two image datasets, i.e. MNIST
[21] (60000 training and 10000 test 28× 28 image examples)
and CIFAR10 [22] (50000 training and 10000 test 32 × 32
coloured image examples). For the CIFAR10 dataset, we
transform the images into grayscale ones. We preprocess the
raw speech data, before feeding them to both our ADMM-
DAD and ISTA-net: we downsample each .wav file from
16000 to 8000 samples and segment each downsampled .wav
into 10 segments.
Experimental settings: We choose a random Gaussian mea-
surement matrix A ∈ Rm×n and appropriately normalize
it, i.e., Ã = A/

√
m. We consider three CS ratios m/n ∈

{25%, 40%, 50%}. We add zero-mean Gaussian noise with
standard deviation std = 10−4 to the measurements, set the
redundancy ratio N/n = 5 for the trainable analysis opera-
tor Φ ∈ RN×n, perform He (normal) initialization for Φ and
choose (λ, ρ) = (10−4, 1). We also examined different val-
ues for λ, ρ, as well as treating λ, ρ as trainable parameters,
but both settings yielded identical performance. We evaluate
ADMM-DAD for 5 and 10 layers. All networks are trained

using the Adam optimizer [23] and batch size 128. For the im-
age datasets, we set the learning rate η = 10−4 and train the
5- and 10-layer ADMM-DAD for 50 and 100 epochs, respec-
tively. For the audio datasets, we set η = 10−5 and train the
5- and 10-layer ADMM-DAD for 40 and 50 epochs, respec-
tively. We compare ADMM-DAD to the ISTA-net proposed
in [16]. For ISTA-net, we set the best hyper-parameters pro-
posed by the original authors and experiment with 5 and 10
layers. All networks are implemented in PyTorch [24]. For
our experiments, we report the average test MSE and gener-
alization error as defined in (16) and (17) respectively.

4. EXPERIMENTS AND RESULTS

We compare our decoder to the baseline of the ISTA-net de-
coder, for 5 layers on all datasets with a fixed 25% CS ra-
tio, and for 10 layers and both 40% and 50% CS ratios on
the speech datasets and report the corresponding average test
MSE and generalization error in Table 1. Both the test er-
rors and the generalization errors are always lower for our
ADMM-DAD net than for ISTA-net. Overall, the results from
Table 1 indicate that the redundancy of the learned analysis
operator improves the performance of ADMM-DAD net, es-
pecially when tested on the speech datasets. Furthermore, we
extract the spectrograms of an example test raw audio file of
TIMIT reconstructed by either of the 5-layer decoders. We
use 1024 FFT points. The resulting spectrograms for 25% and
50% CS ratio are illustrated in Fig. 1. Both figures indicate
that our decoder outperforms the baseline, since the former
distinguishes many more frequencies than the latter. Natu-
rally, the quality of the reconstructed raw audio file by both
decoders increases, as the CS ratio also increases from 25% to
50%. However, ADMM-DAD reconstructs –even for the 25%
CS ratio– a clearer version of the signal compared to ISTA-
net; the latter recovers a significant part of noise, even for the
50% CS ratio. Finally, we examine the robustness of both 10-
layer decoders. We consider noisy measurements in the test
set of TIMIT, taken at 25% and 40% CS ratio, with varying
std of the additive Gaussian noise. Fig. 2 shows how the aver-



(a) Original (b) 5-layer ADMM-DAD reconstruction (c) 5-layer ISTA-net reconstruction

Fig. 1: Spectrograms of reconstructed test raw audio file from TIMIT for 25% CS ratio (top), as well as 50% CS ratio (bottom).

(a) 25% CS ratio (b) 40% CS ratio

Fig. 2: Average test MSE for increasing std levels of additive Gaussian noise. Blue: 10-layer ADMM-DAD, orange: 10-layer
ISTA-net.

age test MSE scales as the noise’s std increases. Our decoder
outperforms the baseline by an order of magnitude and is ro-
bust to increasing levels of noise. This behaviour confirms
improved robustness when learning a redundant sparsifying
dictionary instead of an orthogonal one.

5. CONCLUSION AND FUTURE DIRECTIONS

In this paper we derived ADMM-DAD, a new deep unfolding
network for solving the analysis Compressed Sensing prob-
lem, by interpreting the iterations of the ADMM algorithm
as layers of the network. Our decoder jointly reconstructs

the signal of interest and learns a redundant analysis oper-
ator, serving as sparsifier for the signal. We compared our
framework with a state-of-the-art ISTA-based unfolded net-
work on speech and image datasets. Our experiments con-
firm improved performance: the redundancy provided by the
learned analysis operator yields a lower average test MSE and
generalization error of our method compared to the ISTA-
net. Future work will include the derivation of generalization
bounds for the hypothesis class defined in (14) similar to [16].
Additionally, it would be interesting to examine the perfor-
mance of ADMM-DAD, when constraining Φ to a particular
class of operators, e.g., for Φ being a tight frame.
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