
Hallucination Mitigating for Medical Report Generation

Anonymous ACL submission

Abstract
In the realm of medical report generation001
(MRG), the integration of natural language002
processing has emerged as a vital tool to al-003
leviate the workload of radiologists. Despite004
the impressive capabilities demonstrated by005
large vision language models (LVLMs) in un-006
derstanding natural language, their suscepti-007
bility to generating plausible yet inaccurate008
claims, known as “hallucinations”, raises con-009
cerns—especially in the nuanced and critical010
field of medical. In this work, we introduce a011
framework, Knowledge-Enhanced with Fine-012
Grained Reinforced Rewards Medical Report013
Generation (KERM), to tackle the issue. Our014
approach refines the input to the LVLM by first015
utilizing MedCLIP for knowledge retrieval, in-016
corporating relevant lesion fact sentences from017
a curated knowledge corpus. We then intro-018
duce a novel purification module to ensure the019
retrieved knowledge is contextually relevant020
to the patient’s clinical context. Subsequently,021
we employ fine-grained rewards to guide these022
models in generating highly supportive and023
clinically relevant descriptions, ensuring the024
alignment of model’s outputs with desired be-025
haviors. Experimental results on IU-Xray and026
MIMIC-CXR datasets validate the effective-027
ness of our approach in mitigating hallucina-028
tions and enhancing report quality.029

1 Introduction030

Generating radiology reports from medical images031

represents a critical endeavor within the realm of032

medical imaging. The task of manually compos-033

ing such reports by radiologists is not only time-034

consuming and labor-intensive but also demands035

a high level of expertise. Consequently, there is a036

burgeoning interest in methods for automatically037

generate medical reports for an X-ray, promising038

solutions that can alleviate these challenges and039

enhance the overall efficiency of the diagnostic pro-040

cess (Chen et al., 2020; Li et al., 2023b; Yang et al.,041

2021).042

Figure 1: An example of the report generated by the
LVLM, where the terms marked in red are hallucina-
tions.

The recent advancements in large language mod- 043

els (LLMs) (Touvron et al., 2023; Ouyang et al., 044

2022) have inspired the development of large 045

vision-language models (LVLMs) (Dai et al., 2023; 046

Li et al., 2022), which aim to pair these powerful 047

LLMs with image information, building a bridge 048

between the visual and the textual, thus enabling 049

robust comprehension and reasoning across modal- 050

ities. However, when applying LVLMs to medi- 051

cal report generation, we encountered several chal- 052

lenges, particularly the phenomenon of “hallucina- 053

tions”, where the model generates false yet seem- 054

ingly plausible information. For instance, as illus- 055

trated in Figure 1, the ground truth report describes 056

a patient “with a dual-chamber pacemaker”, and 057

the report generated by the LVLM incorrectly sug- 058

gests “mild enlargement of the heart” as well as 059

some extraneous terms, which are not present in the 060

ground truth. Such hallucinations can lead to mis- 061

diagnosis and inappropriate treatment plans, with 062

potentially severe consequences for patient care. 063

Prior methods for mitigating LVLMs’ hallucina- 064

tions have focused on refining the training data and 065

adjusting the model architecture (Liu et al., 2023a; 066

Lee et al., 2023). However, these approaches have 067

not fully addressed the issue, primarily because 068

they neglect the scarcity of high-quality annotations 069

in medical training datasets. The specificity and 070

precision required for medical reports are difficult 071
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to achieve without expert knowledge, which can072

result in model generating incorrect information.073

This issue stems from the insufficient guidance074

provided by a lack of accurate and detailed annota-075

tions. Moreover, the long-tail problem is prevalent076

in medical datasets, with common conditions being077

overrepresented and rare ones underrepresented.078

This imbalance may cause the model’s outputs to079

deviate from the expected medical findings.080

To address these challenges, we propose a081

new framework, called Knowledge-Enhanced with082

Fine-Grained Reinforced Rewards Medical Report083

Generation (KERM). It efficiently and substantially084

enhances the visual grounding of LVLMs beyond085

pretrained baselines such as LLaVA (Liu et al.,086

2023b), while simultaneously preserving their ca-087

pability to generate accurate and detailed descrip-088

tions. Given a pretrained LVLM (e.g., LLaVA),089

firstly, we conduct a knowledge corpus, including090

medical literature and clinical guidelines selected091

from public datasets such as MIMIC-CXR (John-092

son et al., 2019) and CheXpert (Irvin et al., 2019),093

and enhance the model’s input by retrieving exter-094

nal knowledge sources through MedCLIP (Wang095

et al., 2022c) and introduces a purification module096

to refine the relevance of retrieved knowledge to097

the patient’s specific clinical context. We provide098

the necessary external knowledge to ground the099

LVLM’s understanding, thereby improving the ac-100

curacy and relevance of the generated reports. Sec-101

ondly, we employ fine-grained reward modeling102

by conducting a dual-level assessment to align the103

model’s output with desired behaviors and mitigate104

the occurrence of hallucinations. At the disease105

label level, we evaluate the model’s output against106

known medical labels, ensuring that the diagnoses107

mentioned are consistent with the image content.108

At the sentence description level, we utilize GPT-109

3.5 to scrutinize the coherence and plausibility of110

the generated sentences, penalizing deviations from111

the expected medical findings, even if they are not112

outright incorrect. This encourages the model to113

generate reports that are not only factually accurate114

but also aligned with the typical patterns observed115

in medical practice. Experimental results on a pub-116

lic dataset, MIMIC-CXR (Johnson et al., 2019),117

confirm the validity and effectiveness of our pro-118

posed approach.119

Overall, the main contributions of this work are:120

• We introduce a knowledge-enhanced ap-121

proach, which integrates a curated knowl-122

edge corpus sourced from public datasets. It 123

can fortifies the LVLM’s input with external 124

knowledge, ensuring that the generated medi- 125

cal reports are grounded in accurate and rele- 126

vant medical information, thereby enhancing 127

the model’s ability to produce reliable and 128

detailed descriptions. 129

• We develop fine-grained reinforced reward 130

modeling that penalizes hallucinatory con- 131

tent from the perspectives of disease-level and 132

sentence-level respectively, promoting outputs 133

that closely align with medical norms and mit- 134

igating the occurrence of hallucinations. 135

• We conduct comprehensive experiments to 136

demonstrate the effectiveness of our proposed 137

method, which outperforms existing methods 138

on both Natural Language Generation and 139

clinical efficacy metrics. 140

2 Related Work 141

2.1 Medical Report Generation 142

The domain of Medical Report Generation (MRG) 143

in medical artificial intelligence (AI) has surged 144

recently. Early research (Allaouzi et al., 2018) 145

drew inspiration from image captioning models, us- 146

ing deep Convolutional Neural Networks (CNNs) 147

and Recurrent Neural Networks (RNNs) in an 148

encoder-decoder format (Vinyals et al., 2014).Sev- 149

eral studies introduced auxiliary classification tasks 150

to predict medical abnormalities (Shin et al., 2016; 151

Wang et al., 2018) , enhancing structured guidance 152

for report generation. The attention mechanism 153

improved the integration of visual and linguistic 154

modalities in MRG systems (Jing et al., 2017; Chen 155

et al., 2020). 156

To bridge visual observations and medical do- 157

main knowledge, numerous visionand- language 158

pre-training methods have been devised to incorpo- 159

rate domain-specific knowledge (Li et al., 2020, 160

2023b).Generative language modeling evolved 161

from RNNs to transformer architectures, includ- 162

ing Large Language Models (LLMs) like LLaMA 163

(Touvron et al., 2023), improving clinical accuracy. 164

Some studies used reinforcement learning (RL) to 165

optimize clinical relevance (Liu et al., 2019; Miura 166

et al., 2020). However, reliance on models like 167

CheXbert or RadGraph for clinical entity extrac- 168

tion complicates optimization. 169
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Figure 2: Overview of KERM. We first retrieve the knowledge from our constructed Knowledge Corpus to enhance
the image representation as additional input. During the training period, we employ CheXpert to obtain disease
labels, applying penalties to hallucinatory content at both the disease and sentence levels. This reward is then
feedback to the LVLM, thereby guiding the model’s performance.

2.2 Large Vision-Language Models170

In recent years, the integration of large language171

models (LLMs) into multimodal domains has gar-172

nered considerable attention (Ouyang et al., 2022;173

Touvron et al., 2023). This surge has led to174

the development of large vision-language models175

(LVLMs) powered by LLMs (Ye et al., 2023; Dai176

et al., 2023; Li et al., 2022), enabling comprehen-177

sion of multimodal inputs and performance of di-178

verse tasks under instructions.179

LVLMs typically follow a paradigm where a180

multimodal alignment module comprehends inputs,181

followed by a LLM generating responses. For in-182

stance, mPLUG-Owl (Ye et al., 2023) pre-trains183

the encoder and alignment module and finetunes184

LLaMa (Touvron et al., 2023) using low-rank adap-185

tion. Conversely, LLaVA (Liu et al., 2023b) pre-186

trains only the alignment network and finetunes it187

alongside Vicuna (Peng et al., 2023) based on con-188

structed instructions. MiniGPT-4 (Zhu et al., 2023)189

focuses on finetuning the cross-modal alignment190

network while freezing other modules.191

Recent advancements also include the develop-192

ment of multimodal biomedical chatbots and gener-193

alist models. ELIXR, based on the BLIP-2 frame-194

work (Li et al., 2023a), trains for contrastive and195

generative tasks on X-ray image-report pairs, al-196

though its evaluation remains private due to the197

proprietary PaLM-2 model. In contrast, Med-198

PaLM (Tu et al., 2023) proposes a private, PaLM-199

based generalist model demonstrating impressive 200

performance across various medical tasks and im- 201

age types, including VQA, image classification, 202

and report generation. However, neither prioritizes 203

the generation and comprehension of X-ray reports, 204

and they appear to lack clinical accuracy, leading to 205

hallucinations, when evaluated for medical image 206

interpretation. 207

3 Method 208

In this section, we will introduce the detailed imple- 209

mentations of our proposed Knowledge-Enhanced 210

with Fine-Grained Reinforced Rewards Medical 211

Report Generation (KERM). We first introduce the 212

overview of our model, then present the proposed 213

modules, Medical Knowledge Enhancement(MKE) 214

and Reward Modeling via Fine-Grained Feed- 215

back(RM), respectively. 216

3.1 Overview 217

The overall architecture of our framework is illus- 218

trated in Figure 2. It’s based on a LVLM, composed 219

of a Medical Knowledge Enhancement branch and 220

a Reward Modeling via Fine-Grained Feedback 221

branch. Given an input medical image I , the sys- 222

tem processes it through a visual encoder to ob- 223

tain image features FI . These features, along with 224

the retrieved knowledge, are then input into the 225

LVLM to generate a descriptive medical report 226

R = {y1, y2, . . . , yn}, where yi is a token and n is 227

the length of the report. We formulate our approach 228
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as:229

Kretrieved = MKE(I, C), (1)230

R = LVLM((FI ,Kretrieved)). (2)231

where MKE(·) represents the Medical Knowledge232

Enhancement branch. Kretrieved stands for the233

knowledge retrieved by MedCLIP that is most rele-234

vant to the image, with C representing the Knowl-235

edge Corpus. The final report R is obtained by236

decoding the internal states of the LVLM, which237

are influenced by both the image features and the238

external knowledge.239

Given the ground truth report R∗ =240

{y∗1, y∗2, . . . , y∗n}, we can train the model by241

minimizing a combined loss function that includes242

cross-entropy loss for language generation and243

a reinforcement loss guided by the fine-grained244

rewards:245

LRL = RM(R,R∗) (3)246

LCE(θ) = −
n∑

i=1

log pθ(yi = y∗i |y∗1:i−1, I) (4)247

L = LCE + LRL (5)248

where RM(·) denotes the Reward Modeling via249

Fine-Grained Feedback branch, and LRL is the250

reinforcement loss based on the rewards which we251

will explain in Section 3.3.3.252

3.2 Medical Knowledge Enhancement253

To generate accurate radiology reports from medi-254

cal images, understanding the medical context and255

relationships depicted in the images is crucial. This256

requires not only visual recognition but also the257

ability to interpret the significance of visual fea-258

tures in relation to medical knowledge. Inspired259

by (Li et al., 2023c) , we first construct a medical260

knowledge corpus and then utilize a pretrained mul-261

timodal model MedCLIP (Wang et al., 2022c) to262

retrieve relevant facts for each image view, and then263

apply a purification module to refine the relevance264

of retrieved knowledge to the patient’s specific clin-265

ical context. At each step t, the input image with266

its retrieved knowledge are fed into the LVLM to267

ground the model’s understanding so as to guide268

better report generation.269

3.2.1 Knowledge Corpus Construction270

The knowledge base serves as a repository of med-271

ical facts that describe the visual content of med-272

ical images. To compile a comprehensive and di-273

verse set of medical descriptions, we parse region274

descriptions from the medical imaging datasets 275

MIMIC-CXR and CheXpert, focusing on their 276

training sets. After removing duplicates, we con- 277

struct a knowledge corpus consisting of 100k facts 278

expressed in medical language descriptions, which 279

serve as a Knowledge Corpus for our proposed 280

KERM framework. 281

3.2.2 Knowledge Retrieval 282

Our objective is to associate each medical image 283

with relevant facts that enhance the model’s un- 284

derstanding of the visual content. We employ a 285

pretrained model MedCLIP, which includes an im- 286

age encoder and a text encoder that map images and 287

text into a shared embedding space. The text en- 288

coder is used to encode all facts in the knowledge 289

corpus as search keys, while the image encoder 290

processes the related images as queries. We then 291

identify the facts with the highest cosine similarity 292

scores to the image queries. For each image, we 293

retain the top-10 facts with the highest scores as 294

the initial retrieval knowledge. 295

3.2.3 Purification Module 296

Given the high stakes in medical report generation, 297

it is imperative that the knowledge items selected 298

are not only accurate but also highly pertinent to 299

the patient’s clinical narrative, including indica- 300

tions and medical history. Therefore, we propose a 301

purification module in our to distill the most con- 302

textually relevant knowledge from the initial top-k 303

retrieval result, ensuring that the retrieved facts 304

are optimally aligned with the patient’s specific 305

clinical context. Specially, we construct a con- 306

text embedding EC that encapsulates the clinical 307

needs and historical features of the patient derived 308

from their indications and clinical history. Let 309

K = {k1, k2, . . . , kt} represent the initial top-k 310

retrieved facts, each fact ki is encoded into an em- 311

bedding Eki to facilitate the calculation of its sim- 312

ilarity to the context vector. Then we computes 313

the cosine similarity between these vectors to quan- 314

tify the relevance score si for each fact, leveraging 315

this score to re-rank the items and prioritize those 316

most contextually aligned with the patient’s clinical 317

narrative. The top-5 items, deemed most relevant 318

based on these scores, are selected to form the 319

purified knowledge set K ′, informing the report 320

generation process. 321
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User

GPT-3.5

 As a professional radiologist, you will be presented with a pair of chest 
 X-ray reports: one generated by an AI model and the other as the ground- 
 truth report. Your task is to compare the two reports and evaluate their 
 consistency in meaning and writing style. Please provide a score between 0 
 and 1, with 1 indicating perfect alignment. You only need to supply the 
 score; no explanation or additional comments are required.
 Generated Report: [generated_report]
 Ground-Truth: [ground_truth]

 Score

Figure 3: The prompt for generating sentence-level
score that scored by GPT-3.5.

3.3 Reward Modeling via Fine-Grained322

Feedback323

In our approach to enhancing the accuracy and324

coherence of medical report generation, we have325

developed a novel reinforcement learning strategy326

that incorporates dual-level reward modeling. This327

strategy is meticulously designed to mitigate of hal-328

lucinations by providing granular feedback at both329

the disease label and sentence description levels.330

3.3.1 Disease-level Reward331

We employ the CheXPert (Irvin et al., 2019) label-332

ing tool to label generated reports and the reference333

reports in 14 different medical terminologies. We334

calculate the F1 score as the disease-level reward335

score Rdis for each label to assess the alignment336

between the model’s output and the actual medical337

findings. The F1 score is a robust measure that338

balances the trade-off between precision and recall,339

ensuring that the model’s predictions are not only340

correct but also comprehensive. TP (true positives),341

FP (false positives), and FN (false negatives) are342

used to calculate this score, representing correct343

diagnoses, incorrect diagnoses, and missed diag-344

noses, respectively.345

3.3.2 Sentence-level Reward346

At the sentence level, we leverage the advanced347

language understanding capabilities of GPT-3.5 to348

assess the coherence and plausibility of the gener-349

ated sentences. We provide GPT-3.5 with sentence350

pairs, where one is from the generated report and351

the other from the reference report, along with de-352

tailed evaluation instruction as shown in Figure 3.353

GPT-3.5 scores the similarity between these pairs354

ranging from 0 to 1 , with a score closer to 1 indi-355

cating a higher degree of coherence and plausibility.356

This score, Rsen, serves as the sentence-level re-357

ward.358

3.3.3 Reinforcement Algorithm Loss 359

Since the decoded text cannot provide gradient 360

information for model training, we harness the 361

Reinforce Algorithm (Sutton et al., 1999) to de- 362

sign a loss function aimed at achieving these goals. 363

At each training step, we sample text sequences 364

from the probability distribution p, which is de- 365

rived from the softmax function applied to the 366

LVLM’s logits. The cumulative reward for each 367

sequence is a weighted blend of Rdis and Rsen, 368

with a hyperparameter α adjusting the emphasis 369

between disease label and sentence description as- 370

sessments.The loss function of reinforcement al- 371

gorithm, which incorporates these reward scores, 372

denoted as LRL: 373

Rt = (1− α)Rdis,t + αRsen,t (6) 374

375

LRL =
∑T

t=1p ·Rt · log (at | st) (7) 376

where T represents the length of the generated text, 377

at is the token sampled at step t, st is the corre- 378

sponding state, α represents hyperparameter, and 379

Rt represents the reward obtained for the current 380

text. 381

4 Experiment 382

4.1 Dataset 383

We evaluate our proposed KERM on two 384

widely-used radiology reporting benchmark, IU- 385

Xray (Demner-Fushman et al., 2015) and MIMIC- 386

CXR (Johnson et al., 2019), to verify the model’s 387

effectiveness. To ensure a fair comparison, we 388

adopt the settings in (Chen et al., 2020) for report 389

preprocessing. 390

IU-Xray is a publicly available radiological 391

dataset collected by Indiana University, with 7,470 392

frontal and lateral-view chest X-ray images and 393

3,955 reports. The reports include impression, find- 394

ings, comparison, and indication sections. Follow- 395

ing (Li et al., 2018), we excluded images without 396

reports and there are 5,910 images and 2,955 re- 397

ports left for this study. Following (Chen et al., 398

2020), we split the data into training/validation/test 399

set by 7:1:2 of the dataset, and took the impression 400

and the findings sections as the target captions to 401

be generated. 402

MIMIC-CXR is the largest radiology image 403

dataset so far, sourcing from the Beth Israel Dea- 404

coness Medical Center between 2011-2016. We fol- 405

lowed (Liu et al., 2021) to adopt an alpha version 406
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Dataset Model
NLG Metrics CE Metrics

BL-1 BL-2 BL-3 BL-4 MTR RG-L P R F1

IU-Xray

HRGR 0.438 0.298 0.208 0.151 - 0.322 - - -
CoAtt 0.455 0.288 0.205 0.154 - 0.369 - - -

PKERRG 0.450 0.301 0.213 0.158 - 0.384 - - -
CMAS-RL 0.464 0.301 0.210 0.154 - 0.362 - - -

R2Gen 0.470 0.304 0.219 0.165 0.187 0.371 - - -
CMN 0.475 0.309 0.222 0.170 0.191 0.375 - - -

PPKED 0.483 0.315 0.224 0.168 0.190 0.376 - - -
Multicriteria 0.496 0.319 0.241 0.175 - 0.377 - - -

KM 0.496 0.327 0.238 0.178 - 0.381 - - -
KERM 0.511 0.333 0.249 0.182 0.197 0.388 - - -

MIMIC-CXR

CCR 0.313 0.206 0.146 0.103 - 0.306 - - -
Multicriteria 0.351 0.223 0.157 0.118 - 0.287 - - -

R2Gen 0.353 0.218 0.145 0.103 0.142 0.277 0.333 0.273 0.276
CMN 0.353 0.218 0.148 0.106 0.142 0.278 0.334 0.275 0.278

PPKED 0.360 0.224 0.149 0.106 0.149 0.284 - - -
KM 0.363 0.228 0.156 0.115 - 0.284 0.458 0.348 0.371

KERM 0.378 0.235 0.157 0.109 0.152 0.283 0.394 0.436 0.415

Table 1: Comparisons of our model with previous studies on the IU X-Ray and MIMIC-CXR test set with respect
to natural language generation (NLG) and clinical efficacy (CE) metrics. BL-n denotes BLEU score using up to
n-grams; MTR and RG-L denote METEOR and ROUGE-L, respectively. P, R and F1 represent precision, recall and
F1-score, respectively. KERM is our proposed model. Best results are in bold.

of 473, 057 Chest X-ray images and 206, 563 re-407

ports from 63, 478 patients. Each study comprises408

multiple sections, including comparison, clinical409

history, indication, reasons for examination, im-410

pressions, and findings. We adopted the official411

split of training/validation/test set, and took the412

findings section as the target captions to be gener-413

ated.414

4.2 Baselines and Evaluation Metrics415

Baselines we compare our KERM with a wide416

range of existing state-of-the-art MRG systems417

on the benchmark, including R2Gen (Chen et al.,418

2020), HRGR (Li et al., 2018), CoAtt (Jing et al.,419

2017), PKERRG (Wang et al., 2022a), CMAS-420

RL (Jing et al., 2019), CMN (Chen et al., 2022),421

CCR (Liu et al., 2019), PPKED (Liu et al., 2021),422

KM (Yang et al., 2021) and Multicriteria (Wang423

et al., 2022b) . Since we follow the same settings,424

we directly cite the results from original papers.425

Evaluation Metrics We utilize automatic Natural426

Language Generation (NLG) evaluation metrics427

such as CIDEr (Vedantam et al., 2014), ROUGE-428

L (Lin, 2004), and BLEU (Papineni et al., 2002),429

which quantify the correlation between two text430

sequences statistically. However, these metrics,431

which are limited to n-grams of up to 4, may not432

fully capture the nuances of disease states due to 433

the prevalence of negations in medical language, 434

where negation cues and disease terms can be spa- 435

tially distant within a sentence. To address this, 436

we incorporate medical abnormality detection as 437

an additional metric. Specifically, we assess the 438

generated reports against the ground truth by com- 439

paring the CheXpert (Irvin et al., 2019) labeled 440

annotations for certain categories within the 14 441

diseases. For this comparison, we calculate the F1- 442

Score, precision, and recall for all models, ensuring 443

a comprehensive evaluation of their performance. 444

4.3 Implementation Details 445

In our experiments, we adopt the pretrained Med- 446

CLIP(Wang et al., 2022c) to retrieve facts for each 447

image. And we employ the LVLM, LLaVA-1.5- 448

7b (Liu et al., 2023b) as the backbone, and then we 449

employ LoRA-tuning (Hu et al., 2021) and deep- 450

speed zero stage 3 to conduct minimal training on 451

the model for 1 epoch. The learning rate is set as 452

2e-4 and the optimizer is AdamW (Loshchilov and 453

Hutter, 2017) with a weight decay of 0.02. During 454

the training phase, we initiate a warm-up ratio of 455

0.03, after which we apply the cosine schedule to 456

decay the learning rate. We set α to 0.4, based on 457

a hyperparameter search (see Supplemental Mate- 458

rial). All of the experiments are conducted on 8 459

6



NVIDIA GeForce RTX3090 GPUs.460

4.4 Results and Discussion461

4.4.1 Main Results462

Table 1 presents the comparison results across both463

Natural Language Generation (NLG) and clinical464

efficacy (CE) metrics on both MIMIC-CXR and IU465

X-Ray. On IU X-Ray, our method significantly out-466

performs methods in previous studies in all NLG467

metrics. Specifically, KERM achieves BL-4 score468

of 0.182, MTR score of 0.197, and RG-L score of469

0.388. This demonstrates that our model excels470

not only in generating accurate words and phrases471

but also in constructing coherent long sentences472

and maintaining logical flow between sentences.473

On MIMIC-CXR, it is observed that our method474

surpasses existing methods in most NLG metrics475

and achieves comparable performance to the state-476

of-the-art in BL-4 and MTR. This indicates a ro-477

bust capability in capturing the nuances of medical478

language and adhering to clinical standards. The479

RG-L metric may not be optimal because the order480

of lesions or sentences in the reports generated by481

our model does not strictly align with the ground-482

truth order. In the three CE metrics, our method483

significantly outperforms previous methods, which484

indicates that our model predicts much fewer false485

positive and false negative diseases, respectively.486

Although our method has a lower precision com-487

pared to the KM method, it exceeds KM in the488

more comprehensive F1-score metric. The signifi-489

cant improvements in CE metrics are a direct result490

of our approach, which enriches the model’s un-491

derstanding by retrieving factual knowledge from492

a comprehensive corpus. This is complemented493

by a fine-grained reward model that penalizes in-494

accuracies and deviations, ensuring the generation495

of contextually appropriate and clinically sound496

reports.497

Settings BL-1 BL-2 BL-3 BL-4 MTR RG-L
Base 0.445 0.295 0.210 0.162 0.320 0.372

w/MKE 0.475 0.308 0.222 0.170 0.330 0.385
w/RM 0.455 0.302 0.217 0.165 0.325 0.380
KERM 0.511 0.333 0.249 0.182 0.197 0.388

Table 2: The comparison of natural language generation
(NLG) metrics on IU X-Ray dataset. “w/(·)” means the
application of the module.

4.4.2 Ablation study498

In this section, we conduct ablation studies on IU-499

Xray and MIMIC-CXR datasets to investigate the500

contribution of each component in our proposed 501

KERM. Table 3 presents the quantitative analysis 502

of KERM on MIMIC-CXR across both NLG and 503

CE metrics. And cmeasuring descriptive accuracy 504

is reported in Table 2. Our base model is LLaVA- 505

1.5-7b.

Figure 4: Analysis of the hyperparameter α with respect
to F1 and BLEU-4 on MIMIC-CXR dataset.

506

Effect of The Components and Submodules It 507

can be observed that adding MKE(Medical Knowl- 508

edge Enhancement) and RM(Reward Modeling via 509

Fine-Grained Feedback) on both the MIMIC-CXR 510

and IU X-Ray datasets individually, in comparison 511

to the baseline model, leads to significant improve- 512

ments on all metrics. This observation indicates 513

the effectiveness of both modules. MKE exhibits 514

greater enhancement compared to RM. This might 515

stem from the fact that the knowledge, obtained 516

through retrieval, are more closely related to the 517

current image. These knowledge contain additional 518

detailed information, such as position and exis- 519

tence. Incorporating fine-grained rewards shows 520

substantial growth, with the introduction of reward 521

scores effectively mitigating the issue of halluci- 522

nations. This encourages the model to focus on 523

avoiding inaccuracies and deviations. 524

Furthermore, comparing (c) and (d) in Table 3, 525

it is observed that Rdis brings more improvement 526

than Rsen on the NLG metrics, while the opposite 527

is true on the CE metrics. We speculate the reason 528

is that disease-level reward can more effectively 529

improve the model to identify the existence of dis- 530

eases and sentence-level reward promotes outputs 531

that closely align with medical norms. Ultimately, 532

the integration of such three improvements yields 533

the best overall performance. 534

Ultimately, the integration of MKE and RM, as 535

seen in the KERM model, yields the best over- 536

all performance on both datasets. This synergis- 537

tic effect results in highly accurate and clinically 538

relevant medical reports, reflecting the model’s en- 539

hanced diagnostic capabilities and the reliability of 540
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Settings MKE Rdis Rsen BL-1 BL-2 BL-3 BL-4 MTR RG-L P R F1

Base % % % 0.337 0.203 0.132 0.098 0.131 0.273 0.296 0.163 0.153

(a) ✓ % % 0.361 0.222 0.149 0.103 0.142 0.278 0.332 0.264 0.297
(b) % ✓ ✓ 0.352 0.216 0.144 0.101 0.135 0.275 0.322 0.253 0.282

(c) ✓ % ✓ 0.370 0.231 0.154 0.112 0.145 0.285 0.359 0.280 0.315
(d) ✓ ✓ % 0.368 0.223 0.145 0.106 0.141 0.279 0.363 0.282 0.317

KERM ✓ ✓ ✓ 0.378 0.235 0.157 0.109 0.152 0.283 0.394 0.436 0.415

Table 3: Quantitative analysis of proposed method on MIMIC-CXR dataset. MKE, Rdis and Rsen represent Medical
Knowledge Enhancement, disease-level and sentence-level feedback, respectively.

Figure 5: Illustrations of reports from ground truth, ours and Base. For better visualization, different colors highlight
different medical terms. The terms marked in red are hallucinations, the terms marked in blue means descriptions
included in Ground-Truth but not mentioned in the base model.

its generated radiology reports.541

Hyperparameter Analysis We also conduct an542

ablation study on the hyperparameter α to investi-543

gate at which value can better enhance the model’s544

performence of generating accurate and consistent545

report on MIMIC-CXR dataset. As is shown in546

Figure 4, α is analyzed with values ranging from547

0 to 1 in terms of F1 and BLEU-4 scores. Over-548

all, the performance remains stable across a wide549

range of α, as the fluctuations of F1 and BLEU-4550

are within 10% and 1.2%, respectively. α = 0.4551

performs better in F1 and BLEU-4 scores, which552

is the value we used in the experiments.553

4.4.3 Case Study554

To further investigate the effectiveness of our555

method, we provide a qualitative comparison to556

the base model (LVLM) in Figure 5, where differ-557

ent colors on the texts indicate different medical558

terms(more cases can be seen in Appendix A.1). It559

is observed that our model generates descriptions560

that closely align with the ground-truth report in561

terms of content flow. Furthermore, as shown in562

Figure 5, we have found that KERM covers almost563

all of the necessary medical terms and abnormali-564

ties in the ground-truth reports, this comprehensive565

coverage is a significant improvement over the base 566

model, which often misses crucial medical details. 567

The performance of KERM proves that the reports 568

generated from our model are comprehensive and 569

accurate compared to the base model, effectively 570

alleviating hallucinations. 571

5 Conclusions and Future Work 572

In this paper, we introduce KERM, a new frame- 573

work designed to enhance the accuracy and reliabil- 574

ity of radiology report generation from medical im- 575

ages. KERM addresses the critical challenge of hal- 576

lucinations in the LVLM by retrieving fact knowl- 577

edge from a comprehensive corpus and introducing 578

a purification module to ensure contextual rele- 579

vance, which enriches the model’s understanding. 580

This approach is complemented by fine-grained re- 581

ward modeling, which penalizes both disease-level 582

inaccuracies and sentence-level deviations from the 583

expected medical findings. Our method’s effective- 584

ness is validated through extensive experiments, 585

showcasing its potential to significantly improve 586

the diagnostic process. In the future, we plan to 587

develop more comprehensive evaluation metrics to 588

better assess hallucinations in medical reports. 589
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6 Limitations590

While our KERM framework has demonstrated591

significant improvements in the accuracy and reli-592

ability of medical report generation, there are sev-593

eral limitations that warrant discussion. Firstly, the594

performance of KERM is inherently dependent on595

the quality and comprehensiveness of the knowl-596

edge corpus used for knowledge retrieval. Should597

the corpus lack certain medical facts or contain598

outdated information, it could potentially lead to599

omissions or inaccuracies in the generated reports.600

Secondly, the Purification module, although de-601

signed to enhance the contextual relevance of the re-602

trieved knowledge, may not always perfectly align603

with the specific nuances of each patient’s clinical604

narrative. This could be due to the complexity of605

medical cases and the variability in how clinical606

history is documented.607

Additionally, our framework’s reliance on fine-608

grained rewards for guiding the generation process609

assumes that the reward model accurately reflects610

all aspects of clinical relevance and accuracy. How-611

ever, the model’s ability to capture the full spectrum612

of medical knowledge and the subtleties of medi-613

cal language is subject to the training data and the614

design of the reward system.615

Moreover, while our experiments on IU-Xray616

and MIMIC-CXR datasets have shown promis-617

ing results, the external validity of our approach618

may be limited. The generalizability of KERM619

to other datasets or different medical domains re-620

quires further investigation, as the model’s perfor-621

mance could vary with changes in data distribution622

or clinical presentation.623

Lastly, the computational expense associated624

with training and deploying large vision language625

models like those used in KERM cannot be over-626

looked. The resource-intensive nature of our ap-627

proach may pose challenges for implementation in628

settings with limited computational resources.629

In future work, we aim to address these limita-630

tions by expanding the knowledge corpus, refin-631

ing the Purification module, enhancing the reward632

modeling, and conducting additional experiments633

across diverse datasets to ensure broader applica-634

bility and robustness of our framework.635

7 Ethics Considerations636

The development and application of our KERM637

framework are grounded in a commitment to ethi-638

cal standards, particularly concerning the handling639

of sensitive medical data. Our work strictly adheres 640

to the deidentification protocols and usage policies 641

associated with the IU X-Xray and MIMIC-CXR 642

dataset, ensuring that all patient information re- 643

mains confidential and is used solely for research 644

purposes. 645

A critical aspect of our ethical considerations in- 646

volves the responsible use of large language models 647

(LLMs), such as the gpt-3.5-turbo model deployed 648

on the Azure OpenAI platform. We acknowledge 649

the financial implications of utilizing cloud-based 650

services, recognizing that the cost per thousand to- 651

kens can create barriers to access and scalability, 652

potentially limiting the equitable use of advanced 653

AI in medical applications. 654

Moreover, we are vigilant about the risks as- 655

sociated with LLMs, including the potential for 656

"hallucinations"— the generation of false or mis- 657

leading information. In the context of medical 658

report generation, where accuracy is paramount, 659

we have implemented strategies to minimize these 660

risks. Our approach prompts the LLM to rephrase 661

existing medical content into coherent and stylis- 662

tically consistent prose, rather than creating new 663

medical content. This method is designed to lever- 664

age the strengths of LLMs in language generation 665

while reducing the likelihood of introducing inac- 666

curacies. 667

In conclusion, our ethical considerations are inte- 668

gral to the design and implementation of the KERM 669

framework. We remain dedicated to the responsible 670

use of AI in medicine, prioritizing accuracy, patient 671

confidentiality, and the avoidance of misinforma- 672

tion in medical report generation. 673
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Input Images Ground-Truth Base

the lungs are clear. the
cardiomediastinal silhouette is
within normal limits. no acute
osseous abnormalities. no free
intraperitoneal air identified.

the lung volumes are low. the heart
is normal in size.  the
cardiomediastinal silhouette is
normal. imaged osseous
structures are intact. 

Ours

the lungs are clear without
focal consolidation, effusion,
or edema. the
cardiomediastinal silhouette
is within normal limits. no
acute osseous abnormalities.
no free air below the right
hemidiaphragm is seen.

cardiac silhouette size is normal.
the aortic knob is calcified. the
mediastinal and hilar contours are
within normal limits. pulmonary
vasculature is not engorged. lungs
are clear without focal
consolidation. there is continued
blunting the right costophrenic
angle, likely pleural thickening,
unchanged. no pleural effusion or
pneumothorax is present. anterior
wedge compression deformity of
l<num> vertebral body is
unchanged.

the lungs are clear without focal
consolidation. no pleural effusion
or pneumothorax is seen. the
cardiac and mediastinal
silhouettes are unremarkable.

heart size is normal. the
mediastinal and hilar
contours are normal. the
pulmonary vasculature is
normal. lungs are clear. no
pleural effusion or
pneumothorax is seen. there
are no acute osseous
abnormalities.

semi upright ap and lateral views
of the chest provided. a right ij
access dialysis catheter is seen
with its tip extending to the low
svc. the heart is mildly enlarged.
patient's leftward rotation limits
evaluation. there is no focal
consolidation, effusion or
pneumothorax. vascular
calcification is noted along the
descending thoracic aorta. bony
structures are intact appear

the heart is mildly enlarged. the
mediastinal and hilar contours
appear unchanged. there is a
persistent moderate-sized pleural
effusion on the right, which is
probably similar in size, allowing
for differences in technique. a
small pleural effusion is suspected
on the left. there is no
pneumothorax. the lungs appear
clear.

ap upright and lateral views of
the chest provided. a right ij
access dialysis catheter is
again seen with its tip in the
region of the cavoatrial
junction. the heart is mildly
enlarged. the lungs are clear
without focal consolidation,
large effusion or
pneumothorax. mediastinal
contour is stable. bony
structures are intact.

Figure 6: Qualitative examples of ground truth, ours and Base. Blue font indicates consistent content with the
ground-truth while red font indicates hallucinations.
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