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ABSTRACT

It is challenging to discover and segment whole objects from unlabeled images, as
features unsupervisedly learned on images tend to focus on distinctive appearances
(e.g., the face rather than the torso), and grouping by feature similarity could reveal
only these representative parts, not the whole objects (e.g., the entire human body).
Our key insight is that, an object of distinctive parts pops out as a whole, due
not only to how similar they are to each other, but also to how different they are
from their contexts within an image or across related images. The latter could be
crucial for binding different parts into a coherent whole without preconception of
objects. We formulate our idea for unsupervised object segmentation in a spectral
graph partitioning framework, where nodes are patches and edges are grouping
cues between patches, measured by feature similarity for attraction, and by feature
dissimilarity for repulsion. We seek the graph cuts that maximize within-group
attraction and figure-ground repulsion while minimizing figure/ground attraction
and within-group repulsion. Our simple method consistently outperforms the state-
of-the-art on unsupervised object discovery, figure/ground saliency detection, and
unsupervised video object segmentation benchmarks. In particular, it excels at
discovering whole objects instead of salient parts.

1 INTRODUCTION

We consider the unsupervised learning task of discovering and segmenting whole objects from a set
of unlabeled images. Any computational model that achieves this goal is not only useful in practical
applications, where segmentation annotations are tedious and costly to obtain, but also illuminating
in understanding how infants make sense of their visual world from initial undivided sensations.

Existing works (Yang et al} 20196} 20216 202T)) accomplish this task by learning from
unlabeled videos. AMD (Liu et al.| 2021) assumes that a video contains different views of the same
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Figure 1: We propose to segment whole objects without any supervision by incorporating feature dis-
similarity (repulsion) as cues. Existing methods TokenCut [2023) and FOUND
[2023)), which rely solely on feature similarity, often segment partial objects, like the dog’s face,
while missing other components like legs or bodies. In contrast, we capture the nexus of feature
similarities and dissimilarities within and across images in a joint weighted graph. This enables the
segmentation of entire objects from their backgrounds.
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scene related by moving components, and the right region segmentation and region flow can be learned
concurrently by image reconstruction over time. However, the performance of AMD is constraint
by its piece-wise constant motion assumption within the same segment. Recent works
[2023; Melas-Kyriazi et al,[2022) show that objectness can be discovered from unlabeled images
in attention maps of self-supervised ViT such as DINO (Caron et al., 2021). Nevertheless, features
learned in such a self-supervised manner (Wu et all,[2018} (Chen et al.|[20204; [He et al.} 2020; Misra
2020) tend to focus on distinctive appearances. If we cluster patches by feature similarity
via e.g., TokenCut 2023), we can only discover parts of characteristic appearances such
as faces, but miss parts of plain appearances such as forso and legs of a whole object (Fig. [I).

We aim to discover whole instead of partial objects without any preconception of objects. Our key
insight is that, an object of distinctive parts pops out as a whole, due not only to how similar they
are to each other, but also to how different they are from their contexts within an image or across
related images. The latter could be crucial for binding different parts into a coherent whole, in a
bottom-up data-driven manner. For example, while the faces of two different dogs look similar, their
torsos and legs are only mildly similar to the faces. However, all these parts are more dissimilar to
their surrounding backgrounds. It’s this common repu/sion against the contexts they are embedded
in, in addition to attraction of varying strengths within the objects, that helps bind object parts of
heterogeneous appearances into coherent wholes.

We formulate our approach to unsupervised whole object segmentation within a spectral graph
partitioning framework. In this setup, image patches are represented as nodes, and edges are the
grouping relationships between these patches. These relationships are quantified using two measures:
attraction based on feature similarity, and repulsion based on feature dissimilarity. The goal is to find
the graph cuts that simultaneously maximize within-group attraction and between-group repulsion,
while minimizing figure-to-background attraction and within-group repulsion.

We investigate this idea not only within a single image but also across related images in a co-
segmentation setting, where contextual grouping with repulsion between similar images brings
additional power for discovering whole objects together (Fig. [T). These images should be semantically
similar yet visually distinct; if they are identical, co-segmentation lacks new information, and if they
are semantically unrelated, co-segmentation becomes ineffective.

We present a method for unsupervised object segmentation by contextual grouping with repulsion,
named CGR . With whole objectness revealed by attraction and repulsion, we further refine the
self-supervised features with an attached segmentation head over the whole object masks. Our
method consistently outperforms the state-of-the-art on unsupervised object discovery, unsuperivsed
saliency detection, and unsupervised video object segmentation benchmarks.

Contributions. 1) We propose to leverage contextual relationship from both within-image and cross-
image to group distinctive parts into coherent whole objects without any annotations. 2) We optimize
the grouping with a new framework using attraction and repulsion cues of self-supervised ViT
features. 3) We further enhance the self-supervised ViT features by re-training the backbone with an
attached segmentation head over whole object masks, thereby achieving state-of-the-art performance
on multiple unsupervised segmentation benchmarks.

2 RELATED WORK

Unsupervised Object Discovery. Unsupervised object discovery aims at localizing and segmenting
objects from a collection of unlabeled images. Most of current works utilize self-supervised features
from visual transformers (Caron et al.| 2021} [Chen et al., 20200} [Caron et all 2020). SelfMask
applies spectral clustering on multiple self-supervised features to extract object masks.
LOST (Siméoni et al.L[2021)) utilizes feature similarities to localize an object seed and expands the seed
to all similar patches. FreeSOLO 2022) presents a FreeMask predictions from feature
similarities which are ranked and filtered by a maskness score. Deep Spectral Methods
and TokenCut (Wang et al.| [2023)) build a weighted graph using feature similarities
(attraction) and conduct graph cut to separate objects from backgrounds. FOUND (Siméoni et all
first searches a background seed to localize objects and HEAP (Zhang et al.,[2024) applies
contrastive learning to learn clustered feature embeddings. PEEKABOO (Zunair & Hamzal 2024)
presents to hide part of images and localize the objects with remaining image information. However,
all these methods are limited in discovering whole objects as self-supervised features only capture
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Figure 2: We analyze feature similarities among various patches of the foreground (f) and the
background (g) within a single image. The attraction matrix (A) reveals that certain parts of fore-
ground objects exhibit weak similarities to be grouped as a complete entity. Unlike TokenCut
12023)), which employs a graph cut based solely on attraction to isolate only the most distinctive
parts of objects, such as the lampshade, we construct a joint weighted graph that incorporates both
attraction and repulsion (A& R). This enables a more comprehensive segmentation to extract whole
objects from the scene. Notably, it is the mutual repulsion ( highlighted by magenta dashed boxes)
against the background that facilitates the segmentation of the fable lamp and the right vase together.

descriptive parts of objects. In contrast, we adopt pairwise attraction and repulsion in a joint weighted
graph to localize and segment whole objects.

Unsupervised Video Segmentation. Unsupervised video segmentation methods utilize abundant
unlabeled videos as the source of free supervision (Ye et al.,[2022; [Wang et al, 2021} [Yang et al.}
20194; [Liu et all [2021)). The key ingredient is that motion across adjacent video frames provides
useful constraints as training signals, such that elements tend to be perceived as a group if they move
similarly. However, to guarantee the reliable motion information, these methods require externally
supervised motion estimation networks (Teed & Deng| 2020} [Sun et al.| 2018)), thus limiting their
scalability. Although AMD (Liu et al.} 2021) directly decomposes video sequences into regional
segmentation and motion in an end-to-end manner, the characterization of regional motion often
includes overly smoothed moving pieces and has difficulties in capturing fine details of object
boundaries. However, our method requires neither optical flow as input or network training. Yet, our
method demonstrate strong zero-shot segmentation on video data.

Segmentation as Graph Cuts. Normalized cut (Shi & Malik, [2000) presents image segmentation as
a graph partitioning problem. It finds a grouping that maximizes the similarities within the partitions.
performs decomposition of the Laplacian matrix of a graph and then obtain the
partitions by stacking the eigenvectors along the channel dimension. studies
perceptual popout using both feature similarity and local feature contrast. Objectness is popped out
by measuring attraction and repulsion in a unified weighted graph. We harness the characteristics of
joint measurement of attraction and repulsion for unsupervised whole object discovery.

3  UNSUPERVISED WHOLE OBJECTNESS BY CONTEXTUAL GROUPING

With the features from self-supervised visual transformers, we introduce the concept of attraction and
repulsion from the feature similarity matrix and construct a joint weighted graph by both attraction
and repulsion. We seek the graph cuts that maximize within-group attraction and figure-ground
repulsion. We investigate the graph cuts not only within a single image, but also across related images
in a co-segmentation setting. Contextual grouping with repulsion between similar images brings
additional power for whole object discovery.

3.1 ATTRACTION AND REPULSION

Given an image x, we first extract its features F' from self-supervised ViTs. A weighted graph is
constructed where the nodes represent image square patches and the edges between nodes are defined
as pairwise feature similarity. Let V denote the entire node set, and V;, Vs represent two disjoint

subsets: Vi UV, =V, V; NV, = (. The cosine feature similarity S is: S(i,5) = %, where
i 3J

F; and F}; denote the feature vectors of image patches i and j respectively. Intuitively, attraction

between nodes characterizes how much two nodes attract each other to the same (unknown) group,

assigning a larger weight for larger feature similarity. Similarly, repulsion measures how much
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Figure 3: We extend the idea of attraction and repulsion into a co-segmentation setting, where
the two semantically similar images are segmented jointly by the attraction and repulsion within
and across themselves. Such a set of images can be obtained by k-nearest neighbors on feature
space or finding frames sampled from the video of the same scene. The contextual grouping with
the foreground-background repulsion (indicated by magenta dashed boxes) across these two images
brings additional power for segmenting out the complete foreground objects, such as the two vases
and the table lamp in the upper image, along with the glass bottle in the lower image.

nodes repel each other into (unknown) figure/ground segregation, a larger weight for larger feature
dissimilarity. Given the similarity matrix .S, attraction and repulsion matrices A and R are defined as
Gaussian functions of S (Fig[AT]in supplementary). TokenCut 2023) utilizes attraction
from self-supervised ViTs for graph cut which can only segment out characteristic local regions, not
whole objects. An example of illustrating how TokenCut segment object parts is in Fig. 2]

Instead of using normalized cut by using only attraction, we investigate whether attraction and
repulsion can jointly contribute to popping out whole objects. More technical details of attraction and
repulsion are in the supplementary [I.T] Given attraction A and repulsion R, we follow
[200T) and conduct a binary segmentation by using a unified grouping criterion

within-group A between-group R
max§ar = : (1
total degree of A&R  total degree of A&R
According to 2001)), the joint attraction and repulsion criterion is equivalent to
T
P, Wpu
maxca
Sanlp Z piDp.’ @)

W:A—R+DR, D:DA+DR,

where p,, is a binary membership vector for V,,, D4 = diag(sum(A,dim = 1)),Dp =
diag(sum(R,dim = 1)). The real valued solution to this partition problem is finding the second
largest eigenvector z* of the eigensystem

D 'Wz =)z 3)

To illustrate our graph cut on joint weighted graph by attraction and repulsion, we show an example
in Fig. 2} From the attraction and repulsion matrix in Fig.[2] the lampshade, lamp base, and the vases
have weak similarities, thus using attraction is hard to bind them together as a whole object. It is the
common repulsion of the lamp and the right vase against the background to bind them together.

3.2 CO-SEGMENTATION WITH ATTRACTION AND REPULSION

1. Finding Reference Image Pairs. So far we consider attraction and repulsion within a single image.
It is straightforward to extend it to a co-segmentation setting, where two or more related images
need to be jointly segmented. These images should be semantically similar but visually distinct:
If they are identical, no new information is gained for co-segmentation, if they are too dissimilar,
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Figure 4: Our proposed framework for co-segmentation by attraction and repulsion. 1) We find a pair
of reference pairs from unlabeled images (that are semantically similar using K-nearest neighbors) or
videos (adjacent frames). 2) Given a reference pair, we discover the whole objects of them by the
joint attraction and repulsion within and across themselves. The self-supervised ViT backbone is
frozen at this stage. 3) With these whole object masks refined by the bilateral solver (BL), we apply
further fine-tune the features of the self-supervised ViT along with the attached segmentation head.
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co-segmentation becomes ineffective. Such a set of images could be obtained by k-nearest neighbors
in some (e.g., DINO) feature space, computing visual embeddings from CLIP, or the video frames
extracted from a video clip. Our examples of using CLIP to find reference image pairs from DUTS

dataset (Wang et all, 2017) are shown in Fig. 5]

2. Co-Segmentation with Attraction and Repulsion from Reference Images. Given a pair of
reference images x1 and x5, we first compute the self-supervised ViT features from the two images.
Then, we concatenate these ViT features to build a joint graph containing the patches of both images
as nodes, each patch node associated with its own feature vector. Our algorithm involves the following
steps: 1) Compute the similarity matrix .S; 2) Compute the attraction and repulsion matrix A, R
(according to the equations in Fig.[AT); 3) Compute the matrices D 4, Dp, W, and R; 4) Find the
2nd largest eigenvector z* by solving the eigensystem at Equation[3] We separate z* into two vectors
z] and z; to segment foreground objects in z; and x5 simultaneously. An example of segmentation
by attraction and repulsion across images is shown in Fig.[3} 5) To effectively segment objects based
on z*, we use the averaged value of z* for image partitioning and find out the part covering maximum
absolute value from z* as the foreground objects.

3. Fine-tuning Self-Supervised Features. With the eigenvectors by attraction and repulsion to pop
out whole object masks, we refine these masks with bilateral solver (Barron & Poolel [2016). Note
that the bilateral solver is only applied during our fine-tuning stage. Furthermore, we utilize these
whole object masks to fine-tune the self-supervised transformer features along with a lightweight
segmentation head (1 conv 1 x 1 layer) with the cross-entropy and the contrastive loss. The cross-
entropy loss is used to update the self-surprised features using whole object masks and the contrastive
loss loss is to minimize foreground feature distances and maximize the foreground-background
feature distances. The diagram for whole object discovery and self-supervised features fine-tuning is
shown in Fig. ]

4 EXPERIMENT

The evaluation of our methods for unsupervised whole object discovery is conducted on three tasks:
unsupervised object discovery, unsupervised saliency detection, and unsupervised video object
segmentation. The results of our method CGR-s are generated from attraction & repulsion within a
single image while the results of our method CGR-c are produced by utilizing attraction & repulsion
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Table 1: CGR-s surpasses existing methods
for unsupervised object discovery task. In
the setting of w/o. learning (no fine-tuning
required), both CGR-s and CGR-c using at-
traction & repulsion outperform the SoTA
method TokenCut (performance gap in blue)
that use only attraction for object discovery
in all three datasets. It shows that attrac-
tion & repulsion can contribute together to
localize whole objects in an unsupervised
way. With initial predictions by attraction
and repulsion, both CGR-s and CGR-c involv-
ing self-supervised feature fine-tuning outper-
form the SoTA method HEAP (performance
gap in green) in the setting of w/. learning

Table 2: CGR-s is a strong object segmenter for
unsupervised video object segmentation task. In
w/o. learning, CGR-s considers attraction and re-
pulsion within a single video frame outperforming
TokenCut (performance gap in blue) which requires
optical flow as input. Specifically, CGR-c consider-
ing attraction and repulsion across frames further im-
proves the segmentation results on video sequences.
In w/. learning setting, both CGR-s and CGR-c
involving self-supervised feature fine-tuning outper-
form MG (the performance gaps are indicated in
green). This shows that CGR is a strong zero-shot
object segmenter, utilizing attraction and repulsion
to pop out whole objects, without requiring optical
flow information as input.

(fine-tuning required).

Performance

Method Flow
Method VOC07 ~ VOCI2  COCO20K DAVIS FBMS SegTV2
w/o. Learning, S/16-ViT w/o. Learning
DINO-seg (Caron et al.|2021) 45.8 46.2 42.0 TokenCut (Wang et al.|2023) v 64.3 60.2 59.6
LOST (Simeoni et al.2021] 61.9 64.0 50.7 CGR-s X 66.4 (+2.1)  62.5 (+2.3) 61.2 (+1.6)
DSS (Melas-Kyriazi et al.|[2022} 62.7 66.4 522 CGR-c X 67.9 (+3.6) 64.1 (+3.9)  62.1 (+2.5)
TokenCut (Wang et al.|2023] 68.8 72.1 58.8 -
CGR-s 714 (426) 738 (+17) 603 (+1.5) w/. Learning
RS 2655 B0 GWE20) AMD (Liu et al.|2021] X 457 28.7 429
w/. Learning, S/8-ViT CUT (Keuper et al.||2015] v 552 572 543
SelfMask (Shin ot al 20221 723 753 627 FTS (Papazoglou & }«efran 2013) v 55.8 47.7 47.8
FOUND (Simeont et al.|[2023) 725 76.1 629 ARP (RO R}y ¢ 762 598 572
PEEKABOO {Zunair & Hamza|2024]  72.7 75.9 64.0 ELM (Lao & Sundaramoorthif2018) v 61.8 61.6 -
HEAP (Zhang et al.|[2004] 732 77.1 63.4 MG (Yang et al.|2021a} v 683 53.1 582
CGR-s 76.4 (+32) 79.8 (+2.7) 65.6 (+2.2) CGR-s X 70.2 (+1.9) 653 (+122) 63.6 (+5.4)
CGR-¢ 77.7 (+4.5) 80.8 (+3.7) 66.2 (+2.8) CGR-c X 714 (+3.1) 658 (+12.7) 64.5 (+6.3)

across reference images. We consider two experimental settings: w/o. learning does not allow
network training so we don’t apply fine-tuning (or bilateral solver) for CGR-s and CGR-c ; w/.
learning allows extra network training and we fine-tune for both CGR-s and CGR-c .

Implementation Details. We utilize the self-supervised features from DINO (Caron et al., 2021]).
We choose ViT-S/16 as the architecture for evaluation with the baselines in w/o. learning setting
and ViT-S/8 to compare with the baselines in w/. learing setting. To find semantically similar but
visually distinct images as reference images, we extract the CLS-token as the feature from DINO
and run k-nearest neighbors. It takes less than 1 hour to run k-nearest neighbors as a preprocessing
step. For videos, we use a frame interval of 10 to create reference image pairs for co-segmentation:
[(00.jpg, 10.jpg), (01.jpg, 11.jpg), (02.jpg, 12.jpg), - - - . The repulsion weight w is set to 0.2. The
segmentation head contains a single conv 1 x 1 layer. During fine-tuning, we set the batch size to 4
and have 100 training epochs. The training is run on a single A40 NVIDIA GPU.

4.1 UNSUPERVISED OBJECT DISCOVERY

Datasets & Eval Metric. This task aims to identify entire objects within an image by specifying
correct object bounding boxes. We use three widely recognized benchmarks: VOCO07 (Everingham
et al.}[2010) containing 5011 images (train: 3507, val: 752, test: 752), VOC12 (Everingham & Winn|
2012)) that includes 11540 images in total (train: 8078, val: 1731, test: 1731), and COCO20K (Vo et al.|
2020)) consisting of 19,817 images (train: 13873, val: 2972, test: 2972). Following the evaluation
protocol (Wei et al., 2019; |Cho et al.l 2015), results are reported using the correct localization
(CorLoc) metric, which measures the percentage of images where objects are correctly localized.

Baselines. In the setting of w/o. learning, we evaluate the results from CGR-s and CGR-c without self-
supervised feature fine-tuning and directly compare with current methods that do not require network
training, including DINO-seg (Caron et al.| | 2021)), DSS (Melas-Kyriazi et al.,[2022)), LOST (Siméoni
et al.,|2021), and TokenCut (Wang et al., 2023)). In the setting of w/. learning, we compare CGR-s
and CGR-c involving fine-tuning with the methods SelfMask (Shin et al.} 2022)), FOUND (Siméoni
et al., 2023), PEEKABOO (Zunair & Hamzal 2024), and HEAP (Zhang et al.| [2024) that require
network training or additional module learning.
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Table 3: CGR outperforms existing methods for unsupervised saliency detection task. In the
w/o. learning setting (no network training), CGR , utilizing both attraction and repulsion mechanisms,
outperforms the SoTA method TokenCut which relies solely on attraction, across all three datasets
(performance gap in blue). This indicates that the combined use of attraction and repulsion promotes
the segmentation of whole objects from unlabeled images. Furthermore, in the w/. learning setting
(training is required), with initial object masks by attraction and repulsion, CGR demonstrates superior
performance by employing self-training with a lightweight module, surpassing the SoTA method
HEAP (performance gap in green).

Method VAT ECSSD | DUTS-TE | DUT-OMRON

maxFg ToU Acc. | maxFg ToU Acc. | maxFg ToU Acc.
w/o. Learning
BigBiGAN (Voynov et al.|[2021} - 782 67.2 89.9 60.8 49.8 87.8 54.9 453 85.6
FUIS (Melas-Kyriazi et al.[[2021} - 71.3 91.5 - 52.8 89.3 - 50.9 88.3
LOST (Simeoni et al.{[2021) s/16 758 65.4 89.5 61.1 51.8 87.1 473 41.0 79.7
DSS (Melas-Kyriazi et al.[|2022} - - 73.3 - - 51.4 - - 56.7 -
TokenCut (Wang et al.|[2023] s/16 803 71.2 91.8 67.2 57.6 90.3 60.0 53.3 88.0
CGR-s S/16 827(+2.4) 72.8(+0.6) 93.1(+1.3) 69.5(+2.3) 60.2(+2.6) 92.8(+2.5) 62.6(+2.6) 55.3(+2.0) 90.7(+2.7)
CGR-c S/16 83.1(+2.8) 73.2(+2.0) 94.7(+2.9) 69.3(+2.1) 60.5(+2.9) 93.2(+2.9) 63.3(+3.3) 56.4(+3.1) 90.6(+2.6)
w/. Learning
SelfMask (Shin et al.|2022) s/8 - 78.1 94.4 - 62.6 923 - 582 90.1
FOUND (Siméon et al.[[2023) s/8 955 80.7 94.9 71.5 64.5 93.8 66.3 57.8 91.2
PEEKABOO (Zunair & Hamzal2024) s/8 953 79.8 94.6 86.0 64.3 93.9 80.4 57.5 91.5
HEAP (Zhang et al.|[2024) s/8  93.0 81.1 94.5 75.7 64.4 94.0 69.0 59.6 92.0
CGR-s S/8  94.1(+1.1) 83.6(+2.5) 952(+0.7) 78.0(+23) 659(+1.5) 94.6(+0.6) 70.7(+1.7) 60.8(+1.2) 93.5(+1.5)
CGR-c S/8  94.5(+1.5) 83.9(+2.8) 95.8(+1.3) 782(+2.5) 66.5(+2.1) 94.4(+04) T1.2(+22) 61.3(+1.7) 93.8(+1.8)

Results. The results are presented in Table[I] In w/o. learning setting, both CGR-s and CGR-c
outperform TokenCut using the same ViT-S/ 16 architecture. The performance gaps with TokenCut
are noted in blue in Table[I] While TokenCut adopts graph cut by using only attraction, TokenCut
could only localize discriminative parts of objects in unlabeled images. In contrast, both CGR-s and
CGR-c localize objects from unlabeled images by a weighted graph of combining attraction and
repulsion. It demonstrates that attraction and repulsion can contribute together in a joint weighted
graph to pop out whole objects for unsupervised object discovery. In w/. learning setting, by
fine-tuning the self-sueprvised features, CGR-s and CGR-c present higher scores than the current
SoTA model HEAP using the same ViT-S/8 architecture. The performance gaps with HEAP are
presented in green in Table [T} This is to show that with the initial whole object predictions by
attraction and repulsion, fine-tuning the self-supervised features enhances whole object localization
and helps achieve new state-of-the-art performance in unsupervised object discovery task.

4.2 UNSUPERVISED SALIENCY DETECTION

Datasets & Eval Metrics. We consider three datasets: ECSSD (Shi et al.,[2015)) containing 1000
images (train: 700, val: 150, test: 150), DUT-OMRON (Yang et al.| 2013)) including 5186 images
(train: 3630, val: 778, test: 778), and DUTS (Wang et al.| [2017) with 1580 images (train: 7373,
val: 1580, test: 1580). We adopt three standard metrics: mean intersection-over-union (IoU) with a
threshold set at 0.5, pixel accuracy (Acc), and the maximal Fjg score (max Fj3), where 52 is set to 0.3,
in accordance with |Wang et al.|(2023), Siméoni et al.|(2023), and |[Zhang et al.| (2024).

Baselines. In the setting of w/o. learning, we evaluate CGR-s and CGR-c without self-supervised
feature fine-tuning and directly compare it with current methods that do not require network train-
ing. These methods include BigBiGAN (Voynov et al.| 2021}, FUIS (Melas-Kyriazi et al.; [2021)),
LOST (Siméoni et al.,2021), DSS (Melas-Kyriazi et al.,|2022)), and TokenCut (Wang et al.,2023). In
the setting of w/. learning, we conduct self-supervised feature fine-tuning on CGR-s and CGR-c and
compare them with SelfMask (Shin et al.,[2022)), FOUND (Siméoni et al.,[2023)), PEEKABOO (Zu-
nair & Hamza, |2024), and HEAP (Zhang et al., 2024)) that necessitate network training or additional
module learning.

Results. Our results on unsupervised saliency detection are shown in Table[3] In the w/o. learning
setting, both CGR-s and CGR-c surpass TokenCut using the same ViT-S/16 architecture. The
performance differences with TokenCut are highlighted in blue in Table [3] TokenCut, which employs
graph cut using only attraction, can only segment discriminative parts of objects in unlabeled images.
In contrast, CGR identifies entire objects in unlabeled images by utilizing a weighted graph that
combines attraction and repulsion. This demonstrates that the combined use of attraction and
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Figure 5: Our CGR-c is compared with TokenCut (SoTA in the w/o. training setting) and FOUND
(SoTA in the w/. training setting) for unsupervised saliency detection. Both TokenCut and FOUND
segment out only discriminative parts of the object using attraction. In contrast, our method applying
attraction and repulsion within images and across reference images pops out the whole objects.

repulsion promotes not only localization but also segmentation of whole objects. In the w/. learning
setting, CGR-s that leverages self-supervised feature fine-tuning achieves higher scores than the
current state-of-the-art model HEAP using the same ViT-S/8 architecture. The performance
differences with HEAP are shown in green in Table[3] This indicates that fine-tuning self-supervised
features with initial object masks by attraction and repulsion greatly refines whole object segmentation
and builds new SoTA performance on saliency detection. The visualization results are shown in

Fig.p
4.3 UNSUPERVISED VIDEO OBJECT SEGMENTATION

Datasets & Eval Metric. We conduct experiments on three widely recognized benchmarks for video
object segmentation. These benchmarks include DAVIS (Perazzi et al} 2016) including 50 videos in
total (train: 30, val: 10, test: 10), FBMS that has 59 videos (train: 25, test: 30),
and SegTV2 containing 14 videos (train: 6, test: 7). 'We merge the annotations of
all moving objects into a single mask for both the FBMS and SegTV2 datasets following
2023}, [Yang et al., 2021c). We also test our method on CO3D dataset (Reizenstein et all, 2021). The
performance is assessed using the Jaccard index (), which quantifies the intersection over union
(IoU) between the predicted segmentation masks and the ground-truth annotations.

Baselines. CGR is evaluated against several unsupervised video object segmentation methods, many
of which rely on optical flow information during the training phase. These methods include AMD
et al 2021), CUT (Keuper et al 2015), FTS (Papazoglou & Ferrari, [2013), APR (Koh & Kim)
2017), ELM (Lao & Sundaramoorthi, |2018)), MG (Yang et al.,[2021a), and SAM2 (Ravi et al., 2024).
Notably, AMD circumvents the need for optical flow by utilizing motion networks that predict motion
information directly from unlabeled video frames. TokenCut which requires no network training still
depends on optical flow as input data. SAM?2 is supervisedly trained on large amounts of human
annotations. In contrast, CGR-c operates without requiring optical flow or any human annotations.

Results. The results on unsupervised video object segmentation is in Table 2} In the w/o learning
setting, CGR considers attraction and repulsion within a single video frame outperforming TokenCut
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Figure 6: CGR-c is compared with TokenCut and FOUND Figure 7: CGR-c is compared with
for unsupervised video segmentation on DAVIS dataset. SAM? for unsupervised video segmen-
Both TokenCut and FOUND only using attractions in a (atjon on CO3D dataset. SAM2 super-
single image fail to pop out the vehicle from the background, visedly pre-trained wrongly segments
while CGR-c using related video frames (Oth, 30th, 60th) as  the floor as the foreground while CGR-
reference pairs is capable of segmenting the whole car body ¢ with reference frames pops out the

from the background. teddybear off the background.
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Figure 8: The unsupervised saliency detection  Figure 9: The performance of CGR-c with video
performance of CGR-s on ECSSD dataset with ~ frames at different video frame intervals for un-
different values of repulsion weight w. CGR is  supervised video object segmentation. CGR-c is
the same as TokenCut when w = 0 because the  the equivalent to CGR-s when the video frame
impact of repulsion is set to zero in grouping. interval is 0.

(performance gaps are noted in blue). Moreover, CGR-c takes attraction and repulsion both within
and across adjacent frames further boosting the video segmentation results. It shows that CGR
utilizing attraction and repulsion to pop out whole objects, is a strong zero-shot object segmenter
from unlabeled video data, without requiring optical flow information as input. The visualization
of the results is shown in Fig.[6] We further compare CGR-c with SAM2 on the CO3D dataset in
Fig.[7] Without any prompts, SAM2 fails to segment out the teddybear as the foreground object. It
highlights the effectiveness of CGR-c to pop out the whole objects using attraction and repulsion
across adjacent video frames.

4.4 ABLATION

Repulsion Weight. To adjust the relative importance between attraction and repulsion, we introduce
a repulsion weight factor w, where w € [0,1]. We study the impact of different adjustments of
repulsion weight w on CGR-s for ECSSD unsupervised saliency detection in Fig.[8] The performance
of TokenCut (Wang et al.} 2023) is shown at the black vertical line (w = 0). When w is set to 0,
CGR is equal to TokenCut. The best performance for max Fg, Acc. and IoU in ECSSD dataset
2015) is achieved when w is set to 0.2. We use this value of w for all the other datasets during
implementation so w does not need to be tuned at each experiment.
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Figure 10: The eigenvectors of CGR-c using attraction and repulsion across reference images pop out
the whole body of the dogs while the eigenvectors of TokenCut utilizing attraction pop out only the
head part of the dogs.

Table 4: The performance of CGR-c using ref- Table 5: The unsupervised saliency detection
erence images paired with different techniques. results on ECSSD dataset with the attached
The results are evaluated on ECSSD dataset in  segmentation head using different architectures.
the task of unsupervised saliency detection in the ~These results are from CGR-c by fine-tuning the

w/o. training setting. self-supervised features (w/. training setting).
Technique ECSSD Arch ECSSD
maxFg  ToU Acc. maxFg IoU  Acc.
DINO (Caron et al.| 2021} 83.1 732 947 1 x Conv(l,1) 945 839 958
ResNet-30 (He et al.[2016) 834 742 956 2 x Conv(l,1) 952 844 963
CLIP (Radford etal.| 2021)  83.8 73.8 9538 3 x Conv(l,1) 923 815 927

Reference Image Discovery. Our CGR-c utilizes attraction and repulsion across two similar images.
Current methods include using K-Nearest Neighbors on the DINO’s features, on the features extracted
from ImageNet pre-trained models, or on the visual embeddings from CLIP model (Radford et al.|
2021)). We adopt DINO features in all the experiments as we want to reduce dependence on additional
models. We conduct ablation study on searching similar image pairs as reference images using DINO
features, ResNet-50 (pretrained on ImageNet) features, and CLIP model in Table El

Reference Image Discovery for Videos. CGR-c takes two frames from a video sequence as a pair
of reference images. These two frames are possibly located at different timestamp in a video clip.
We study the impact of different video frame intervals on unsupervised video object segmentation in
Fig.[0] The video frame intervals between 8 to 18 yield better results according to our ablation. For
all our experiments on unsupervised video object segmentation, we set up the frame interval with 10.
When the video frame interval is set to 0, CGR-c is equivalent to CGR-s as the two reference images
are the same — no new information brought up.

Segmentation Head. We further study fine-tuning along with the attached segmentation head under
different architectures. Note that FOUDN utilize Conv(1,1) as the segmentation head. Experimental
results of different architectures for the segmentation head are shown in Table[5] The performance
increases when applying 2x Conv(1,1) but drops by using 3xConv(1,1).

Eigenvectors. As shown in Fig.[I0] the eigenvectors of CGR-c using attraction and repulsion across
reference images pop out the whole body of the dogs while the eigenvectors of TokenCut utilizing
attraction pop out only the head of the dogs.

5 CONCLUSION

In this paper, we introduced a novel approach to unsupervised object discovery and segmentation
using a spectral graph partitioning framework that harnesses both attraction and repulsion cues. Our
method effectively segments whole objects by optimizing within-group attractions and minimizing
distractions from the background. It significantly outperforms existing methods across benchmarks
for unsupervised object discovery, figure/ground saliency detection, and video object segmentation.
The simplicity and robustness of our approach make it a promising tool for advancing autonomous
and robust visual perception in various applications, suggesting a significant step forward in the field
of computer vision.
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