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Abstract
Recent advances in large language models001
(LLMs) show the potential of using LLMs as002
evaluators for assessing the quality of text gen-003
erations from LLMs. However, applying LLM004
evaluators naively to compare different systems005
can lead to unreliable results due to inaccuracy006
and intrinsic bias of LLM evaluators. In order007
to mitigate this problem, we propose two cali-008
bration methods, Bayesian Win-Rate Sampling009
(BWRS) and Bayesian Dawid-Skene, both of010
which leverage Bayesian inference to more ac-011
curately infer the true win rate of generative012
language models. We empirically validate our013
methods on seven datasets covering story gener-014
ation, summarization, and instruction following015
tasks. We show that both our methods are ef-016
fective in improving the accuracy of win rate017
estimation using LLMs as evaluators, offering a018
promising direction for reliable automatic text019
quality evaluation.020

1 Introduction021

Evaluating the quality of AI-generated text has022

been a longstanding and evolving challenge in NLP.023

In recent years, this challenge has become increas-024

ingly crucial due to the growing interest in the field025

of generative AI. While human judgment is still026

considered the most reliable form of assessment,027

common automatic approaches to evaluating qual-028

ity of AI-generated text include heuristic-based029

evaluation metrics (Papineni et al., 2002; Lin, 2004;030

Pillutla et al., 2021), model-based evaluation met-031

rics (Zhang et al., 2019; Fabbri et al., 2022; Zha032

et al., 2023; Chen and Eger, 2023), and recently,033

LLM-based evaluations (Kim et al., 2024a,b; Wang034

et al., 2024). Due to their low cost and high corre-035

lation with human preferences, LLM-based eval-036

uations are receiving an increasing amount of at-037

tention. Most previous studies that apply LLM038

evaluators (Chiang and Lee, 2023a,b; Dubois et al.,039

2024; Kim et al., 2024a,b; Wang et al., 2024) at-040

tempt to improve the agreement between LLM041

evaluators and human preference by training ex- 042

pert models for evaluation or improving prompting 043

strategies. However, such methods often either re- 044

quire compute-expensive finetuning, or suffer from 045

common problems of LLM evaluators such as posi- 046

tion bias (Wang et al., 2023b), self-preference, and 047

more (Koo et al., 2023). Besides, as we will dis- 048

cuss in Section 3.2, directly applying a non-perfect 049

LLM evaluator will result in a bias problem in the 050

estimation of win rate. 051

In this paper, we attempt to address these chal- 052

lenges by proposing two methods, BWRS and 053

Bayesian Dawid-Skene. Our methods leverage 054

Bayesian inference to infer the true win rate of 055

one text generator against another using evaluation 056

results of LLM evaluators and incorporating op- 057

tional prior knowledge about human preferences. 058

By employing these methodologies, we observe a 059

closer alignment between LLM-generated evalua- 060

tions and human judgment. 1 061

The contribution of this paper is threefold: 062

• We identify the bias problem in win rate esti- 063

mation with LLM evaluators. 064

• We conduct exploratory study on mitigating 065

this bias with Bayesian inference. Specifically, 066

we propose BWRS and Bayesian Dawid- 067

Skene, which are both shown effective in cali- 068

brating win rate estimation given LLM eval- 069

uation results, and optionally, some human 070

evaluation results. 071

• We publish our LLM evaluation annotations 072

to facilitate future study in LLM-based evalu- 073

ation. 074

1The code and data used in our experiments are
available at https://anonymous.4open.science/r/
bay-calibration-llm-eval-BD87/ under Apache 2.0
license.
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2 Related work075

LLM as evaluators A line of research in LLM-076

based evaluation evaluated the performance of077

LLM evaluators and proposed methods to improve078

them. Some works applied various prompting tech-079

niques to improve the accuracy of LLM evaluation,080

including chain of thought (Liu et al., 2023a), eval-081

uation with explanation (Chiang and Lee, 2023b),082

multi-LLM discussion (Chan et al., 2023; Li et al.,083

2023), and calibration with human expert (Liu et al.,084

2023b). Some other works (Wang et al., 2024; Kim085

et al., 2024a,b) trained expert models in evaluation.086

As for evaluating the general capability of LLM087

evaluators, most previous studies (Liu et al., 2023a;088

Chiang and Lee, 2023a,b; Dubois et al., 2024) used089

correlation coefficients such as Pearson’s correla-090

tion or Kendall’s tau to measure the preference of091

different LLM evaluators compared with human092

evaluators.093

On the application side, LLM evaluators are of-094

ten applied to build LLM rankings. (Dubois et al.,095

2024) proposed a simple LLM evaluation frame-096

work by looking at the win rate decided by GPT-4097

evaluators on a large number of texts generated098

by the two generators under the same generation099

prompts. Auto-Arena(Zhao et al., 2024) used LLM100

judge agents to determine the winner of each LLM101

pair. However, as we’ll discuss in Section 3.2, these102

methods can lead to biased win rate estimations,103

especially when the LLM evaluators do not align104

well enough with human preferences.105

Annotation models In the field of crowdsourced106

annotations, a line of research focuses on simultane-107

ously modeling the accuracy of individual annota-108

tors and determining the true labels of tasks. These109

works mostly target at aggregating crowdsourced110

data and improve data quality in case of non-expert111

or adversarial annotators. Dawid-Skene (Dawid112

and Skene, 1979) is the first model proposed to113

consider individual annotator error rates by using114

maximum likelihood estimation to infer true labels115

from annotators with different accuracies. Since116

then, many other models (Albert and Dodd, 2004;117

Carpenter, 2008; Whitehill et al., 2009; Kim and118

Ghahramani, 2012; Hovy et al., 2013; Passonneau119

and Carpenter, 2014; Zhang et al., 2016) were de-120

veloped to improve performance and efficiency.121

These methods were originally proposed to model122

the accuracy of human annotators, in our paper we123

instead apply them to model LLM evaluators.124

3 Methods 125

In this section, we first formalize the problem of 126

applying LLMs as evaluators. We then point out 127

the bias problem associated with directly apply- 128

ing LLM evaluator results, and then propose our 129

methods to address this problem. 130

3.1 Problem formalization 131

3.1.1 True win rate and observed win rate 132

Consider two LLMs as text generators (LLM gen- 133

erators) G0 and G1. Let Σ be the set of all possible 134

input to the generation system, and let Ω be the 135

set of all possible output given the inputs from Σ. 136

We can then define the LLMs as two functions 137

G0 : Σ → Ω and G1 : Σ → Ω. Additionally, let 138

PΣ be a probability distribution on Σ that denotes 139

the possibility of each input to appear, let σ ∼ PΣ 140

be a random input. 141

Let H : Ω×Ω → {0, 1} be the average human 142

evaluator function, which assesses the relative 143

quality of two outputs. H(y0, y1) = 0 indicates 144

that the output y0 is preferred over y1 by an aver- 145

age human expert, and H(y0, y1) = 1 indicates the 146

opposite. Let Te : Ω × Ω → {0, 1} be the LLM 147

evaluator function, which represents the prefer- 148

ence of a certain LLM evaluator e. Let P be a 149

probability measure that encapsulates the stochas- 150

tic nature of σ, G1, G2, H , and Te. 151

Given the notations above, we define the follow- 152

ing variables: 153

Definition 1 (True win rate). The true win rate p 154

is defined as: 155

p ≜ P (H(G0(σ), G1(σ)) = 0) (1) 156

Definition 2 (Observed win rate). The observed 157

win rate k of an LLM evaluator e is defined as: 158

ke ≜ P (Te(G0(σ), G1(σ)) = 0) (2) 159

Intuitively, the true win rate p is the probability 160

that G0 will generate a “truly better” output than 161

G1 when they are given the same, arbitrary input, 162

where “truly better” means being regarded as “bet- 163

ter” by a human expert on average. Similarly, the 164

observed win rate k is the probability that G0 will 165

be evaluated by an LLM evaluator as generating 166

a better output than G1 when they are given the 167

same, arbitrary input. 168

Due to the complexity of the stochasticity in p 169

and ke, it is unrealistic to derive them analytically. 170

However, given a large number of input-output 171
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pairs evaluated by human and LLM evaluators, we172

can approximate p and ke empirically. We formal-173

ize it as follows.174

Assume n is a large number. Then given n out-175

puts y(0)i (i ∈ [n]) generated by G0 and n outputs176

y
(1)
i (i ∈ [n]) generated by G1 given the same n177

inputs of interest, we let a human evaluator h and178

the LLM evaluator e of interest carry out n com-179

parison tasks, where the i-th comparison task is180

between y
(0)
i and y

(1)
i . Then the true win rate p181

and the observed win rate ke can be empirically182

approximated with183

p̂ =
1

n

n∑
i=1

[
1−Hh(y

(0)
i , y

(1)
i )

]
(3)184

k̂e =
1

n

n∑
i=1

[
1− Te(y

(0)
i , y

(1)
i )

]
(4)185

where Hh : Ω×Ω → {0, 1} is the human evaluator186

function of a specific human evaluator h. Note187

that in our experiments, in order to make sure that188

p̂ is an accurate estimator of p, we assume that189

the preference of h is representative of an average190

human evaluator.191

3.1.2 Evaluator accuracy192

We also define two variables qe0 (true positive eval-193

uation accuracy) and qe1 (true negative evalua-194

tion accuracy) associated with an LLM evaluator195

e2. Given two arbitrary outputs generated under the196

inputs where the first output is evaluated as “better”197

than the second one by an average human expert,198

qe0 is defined as the conditional probability that e199

will give the same evaluation as an average human200

expert. In other words, we have201

qe0 ≜ P (Te(G0(σ), G1(σ)) = 0 |202

H(G0(σ), G1(σ)) = 0) (5)203

where the random element σ ∈ Σ and probabil-204

ity measure P follow the same notions as in the205

definitions of p and k. Similarly, we have206

qe1 ≜ P (Te(G0(σ), G1(σ)) = 1 |207

H(G0(σ), G1(σ)) = 1) (6)208

Empirically, we can approximate qe0 and qe1 with209

2For simplicity, we will use “evaluator accuracies” when
we refer to qe0 and qe1 together.

q̂e0 =

n∑
i=1

1

[
Te(y

(0)
i , y

(1)
i ) = Hh(y

(0)
i , y

(1)
i ) = 0

]
∑n

i=1 1(Hh(y
(0)
i , y

(1)
i ) = 0)

(7) 210

where 1(·) is the indicator function. Similarly, we 211

have 212

q̂e1 =

n∑
i=1

1

[
Te(y

(0)
i , y

(1)
i ) = Hh(y

(0)
i , y

(1)
i ) = 1

]
∑n

i=1 1(Hh(y
(0)
i , y

(1)
i ) = 1)

(8) 213

3.1.3 Win rate estimation 214

As we discussed in Section 2, the true win rate p 215

can be used as a metric to compare various genera- 216

tive LLMs. Specifically, for two generative LLMs 217

G0 and G1, G0 outperforms G1 when p > 0.5. 218

Conversely, G1 outperforms G0 when p < 0.5. 219

Furthermore, the absolute value of p signifies the 220

degree of superiority of one LLM to another. Given 221

a list of LLMs Γ = [Ga, Gb, ...] of interest and a 222

certain baseline generative LLM G, we could use 223

the p values of G with respect to each element in Γ 224

to compare the LLMs in Γ. Therefore, it is a mean- 225

ingful question to derive an accurate estimation of 226

p. This is the essential goal of this paper. 227

3.2 Estimation by observed win rate 228

A simple approach employed by prior work 229

(Dubois et al., 2024) to approximate p is to directly 230

apply observed win rate ke. Here we show that 231

this approach suffers from a bias problem when the 232

evaluator accuracies are not high enough. 233

By the Law of Total Probability we have 234

ke =P (Te(G0(σ), G1(σ)) = 0) 235

=P (H(G0(σ), G1(σ)) = 0) · qe0+ 236

P (H(G0(σ), G1(σ)) = 1) · (1− qe1) 237

=pqe0 + (1− p)(1− qe1) (9) 238

Therefore, ke has the following value of bias: 239

|ke − p| =|pqe0 + (1− p)(1− qe1)− p| 240

=|pqe0 + pqe1 − 2p− qe1 + 1| (10) 241

We can see that ke = p if and only if qe0 = qe1 = 242

1, which is not the case for any non-perfect LLM 243

evaluator. In order to fix this bias problem, we 244

propose the following two methods to improve the 245

accuracy in the estimation of p. 246
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Figure 1: Illustration of our pipeline and previous work. The “calibration” part of our pipeline indicates one of
BWRS or Bayesian Dawid-Skene.

3.3 Bayesian Win Rate Sampling247

First, we propose a sampling-based algorithm,248

Bayesian Win Rate Sampling (BWRS), which is249

shown in Algorithm 1. The intuition of the BWRS250

algorithm is that, given an LLM evaluator e and a251

dataset D = {(y(0)i , y
(1)
i ), i ∈ [n]} containing out-252

puts generated by G0 and G1 given the same set of253

inputs, we first apply e to generate its annotations254

{Te(y
(0)
i , y

(1)
i ), i ∈ [n]} on D, and apply Equation255

4 to approximate ke. Next, assume we have ac-256

cess to some human annotations, either on a small257

fraction of D or on a similar dataset F , then we258

are able to approximate qe0 and qe1 using Equation259

7 and 8. Finally, we apply the following equation260

rearranged from Equation 9:261

p =
ke + qe1 − 1

qe0 + qe1 − 1
(11)262

given the assumption that qe0 + qe1 ̸= 1. 3 We263

can use the approximated values of ke, qe0, and qe1264

values to infer one sample of p, which characterizes265

the relative performance between G0 and G1.266

Note that there is still one key difference between267

the intuition above and our actual implementation268

described in Algorithm 1. In our implementation,269

3In practice, though this assumption is satisfied under most
cases, some values of evaluator accuracies might cause sam-
pling failure. Please refer to Limitations for details.

instead of estimating ke, q
e
0, q

e
1 directly using Equa- 270

tions 4, 7, 8, we use Bayesian inference and apply 271

Beta-Bernoulli models to estimate the posterior dis- 272

tributions for ke, qe0, and qe1. We then obtain N sam- 273

ples of p from these distributions using Equation 11 274

and apply Kernel Density Estimation (KDE) on all 275

the p samples to approximate the distribution of p, 276

and estimate the value of p using the mean p̂mean 277

or mode p̂mode of this distribution. The purpose 278

of applying a Bayesian setting is to incorporate 279

the uncertainty of ke, qe0, q
e
1 into consideration, and 280

also facilitate the usage of prior knnowledge on 281

evaluator accuracies, which will be discussed in 282

Section 4.3. 283

3.4 Bayesian Dawid-Skene model 284

The vanilla Dawid-Skene model (Dawid and 285

Skene, 1979) is optimized with the Expectation- 286

Maximization (EM) algorithm. Following (Paun 287

et al., 2018), we instead use a Bayesian Dawid- 288

Skene model. The pseudocode of our model is 289

shown in Model 1. The parameters in this model 290

include αp, βp, αq0 , βq0 , αq1 , andβq1 . The initial- 291

ization of these parameters will be discussed in Sec- 292

tion 4.3. We apply the evaluation results of LLM 293

evaluator e as observations tei , and use Hamiltonian 294

Monte Carlo (HMC) sampling to fit the model and 295

sample from the posterior distribution of p. Similar 296

to BWRS, we use the posterior mean (p̂mean) and 297
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Algorithm 1 Bayesian Win Rate Sampling (BWRS) algorithm

1: Input: Dataset without human annotation: D = {(y(0)
i , y

(1)
i ), i ∈ [n]}; similar dataset with human annotation (e.g.

the OOD set): F = {(z(0)i , z
(1)
i ), i ∈ [m]}; annotation by LLM evaluator e on D: De = {Te(y

(0)
i , y

(1)
i ), i ∈ [n]};

annotation by LLM evaluator e on F : Fe = {Te(z
(0)
i , z

(1)
i ), i ∈ [m]}; annotation by human evaluator h on F : Fh =

{Hh(z
(0)
i , z

(1)
i ), i ∈ [m]}

2: Output: An estimation of the true win rate p
3: ▷ Total number of data points with each human evaluation result
4: n0 = |{(z(0)i , z

(1)
i ) ∈ F |Hh(z

(0)
i , z

(1)
i ) = 0}|

5: n1 = |{(z(0)i , z
(1)
i ) ∈ F |Hh(z

(0)
i , z

(1)
i ) = 1}|

6: ▷ Number of correct judgements by e on F

7: s0 = |{(z(0)i , z
(1)
i ) ∈ F |Hh(z

(0)
i , z

(1)
i ) = Te(z

(0)
i , z

(1)
i ) = 0}|

8: s1 = |{(z(0)i , z
(1)
i ) ∈ F |Hh(z

(0)
i , z

(1)
i ) = Te(z

(0)
i , z

(1)
i ) = 1}|

9: nk = |D|
10: sk = |{(y(0)

i , y
(1)
i ) ∈ D|Te(z

(0)
i , z

(1)
i ) = 0}|

11: for i = 1, 2, ..., N do
12: ▷ Estimated evaluator accuracies
13: Draw qe0 ∼ Beta(s0 + 1, n0 − s0 + 1)
14: Draw qe1 ∼ Beta(s1 + 1, n1 − s1 + 1)
15: ▷ Observed win rate
16: Draw ke ∼ Beta(sk + 1, nk − sk + 1)

17: Derive the i-th sample pi =
ke+qe1−1

qe0+qe1−1
, append to sample list

18: end for
19: return mean (p̂mean) or mode (p̂mode) of KDE({p1, p2, ..., pN})

Model 1 Bayesian Dawid-Skene model for two-
class problems

1: ▷ Prior class prevalence
2: Draw p ∼ Beta(αp, βp)
3: for e = 1 to E do
4: ▷ Evaluator accuracies
5: Draw qe0 ∼ Beta(αq0 , βq0)
6: Draw qe1 ∼ Beta(αq1 , βq1)
7: end for
8: for i = 1 to n do
9: ▷ Ground truth labels

10: Draw hi ∼ Bernoulli(p)
11: for e = 1 to E do
12: ▷ Predicted labels
13: if hi = 1 then
14: Draw tei ∼ Bernoulli(qe1)
15: else
16: Draw tei ∼ Bernoulli(1− qe0)
17: end if
18: end for
19: end for

posterior mode (p̂mode) as two estimators of p. In298

order to improve sampling efficiency, we employ299

NUTS sampler (Hoffman and Gelman, 2011) and300

the Binary Gibbs-Metropolis sampler implemented301

in PyMC (Oriol et al., 2023). We tune and sample302

from the model with 4 chains, with 10000 tuning303

steps and 10000 sampling steps on each chain. On304

an AMD EPYC 7763 processor, comparing each305

generator pair takes around 10 minutes.306

4 Experiment Settings 307

4.1 Datasets 308

The datasets we use in the experiments are HANNA 309

(Chhun et al., 2022), OpenMEVA-MANS (Guan 310

et al., 2021), SummEval (Fabbri et al., 2021), LLM- 311

Bar (Zeng et al., 2024), MT-Bench (Zheng et al., 312

2023), and LLMEval2 (Zhang et al., 2023). All 313

of them provide machine-generated content with 314

human annotations. For MT-Bench and LLMEval2, 315

we used the smaller, curated versions prepared 316

by the authors of the LLMBar paper (Zeng et al., 317

2024). For these three curated datasets, since they 318

are only presented as a list of (input, output1, out- 319

put2, human preference) tuples without specifying 320

or fixing the output generators, we simulate two 321

generators based on these datasets by randomly at- 322

tributing 80% of the human-preferred outputs to 323

the first (simulative) generator and rest 20% to the 324

second such that the true win rate between them is 325

80%. The choice of the 80%-20% ratio is arbitrary. 326

A detailed description about each dataset can be 327

found in Appendix A. 328

4.2 Evaluator settings 329

For HANNA, OpenMEVA-MANS, and SummEval, 330

we prompt a set of LLM evaluators to compare the 331

outputs of generator models in the dataset. Specifi- 332

cally, we employ GPT-3.5-turbo-0125 (OpenAI, 333

2023) and Gemini-1.0-Pro (Team, 2024) as the 334

evaluator models for our experiments. GPT-3.5 335
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has been proved to have positive correlation with336

human annotations (Chiang and Lee, 2023a; Wang337

et al., 2023a), while Gemini-1.0-Pro’s performance338

on meta-evaluation have not yet been widely stud-339

ied in previous works. For each output pair, we340

prompted each LLM evaluator to rate two outputs341

that are based on the same input and generated by342

two different generator models. For each LLM343

evaluator, we used three prompting strategies in-344

cluding Score-only, Rate-explain, and Analyze-rate345

following (Chiang and Lee, 2023b). For LLMBar,346

MT-Bench, LLMEval2, the LLM evaluation work347

has already been carried out by the LLMBar au-348

thors and the LLM evaluation results are readily349

included in the published datasets associated with350

the LLMBar paper (Zeng et al., 2024). For these351

three datasets, we selected the best LLM evaluators352

among the many ones used for our experiments.353

More details regarding the specific LLM evalua-354

tor modes used for each dataset can be found in355

Appendix B.356

4.3 Win rate estimation357

After obtaining the evaluator comparisons data, we358

apply BWRS (Section 3.3) and Bayesian Dawid-359

Skene model (Section 3.4) to each dataset de-360

scribed above. Additionally, we calculate the ob-361

served win rate (k) using Equation 4. The error of362

estimating p with the observed win rate, i.e. |k−p|,363

acts as a baseline that shows the performance of364

LLM evaluators without any calibration.365

In order to further study the effectiveness of each366

estimation method, we also explore their perfor-367

mance given the following three different sources368

of human evaluation results. For simplicity, we369

refer to these human evaluation results as priors,370

since they act as prior knowledge of human prefer-371

ences in our methods.372

No prior4. We assume no prior knowledge of373

q, and only depend on the Dawid-Skene model to374

estimate the accuracy of each evaluator. In this case,375

we initialize the parameters of evaluator accuracies376

in Model 1 with αq0 = αq1 = 2, βq0 = βq1 = 1,377

which is a beta distribution skewed towards higher378

q0 and q1 values, because we expect our evaluators379

to generally perform better than random guessing380

such that q0 > 0.5 and q1 > 0.5.381

In-distribution prior. We assume that we have382

access to human evaluations on a subset of all out-383

4The no prior setting is not applicable for BWRS, since
BWRS requires informative priors of evaluator accuracies to
be accurate.

put pairs generated by the two generators of interest. 384

These human evaluation results (together with eval- 385

uation results of LLM evaluators) are used to obtain 386

an estimate of each LLM evaluator’s accuracies q0, 387

q1. We refer to the ratio of human-evaluated output 388

pairs over the entire dataset as prior data ratio. In 389

our experiments, we try 10 different values of prior 390

data ratio (0.1, 0.2, ..., 1.0) and compare the results. 391

Out-of-distribution (OOD) prior. We assume 392

that we have access to human evaluations on some 393

other datasets beyond comparing the two genera- 394

tors of interest. These human evaluation results are 395

also used to calculate priors for q0 and q1. In our ex- 396

periments, we use the evaluator pair in the dataset 397

that has the closest observed win rate with the com- 398

pared generators. For BWRS, these priors are used 399

as Fe and Fh in Algorithm 1. For Bayesian Dawid- 400

Skene model, for the in-distribution prior setting, 401

the priors are used as observations of ground truth 402

labels hi in Model 1. For the OOD prior setting, 403

they are instead used to derive a prior distribution 404

of the evaluator accuracies so that the model won’t 405

be affected by the distribution shift of evaluator 406

accuracies on different generator models. Specifi- 407

cally, we use a Beta-Bernoulli model similar to the 408

ones we used in BWRS. The only difference is that 409

we normalize the Beta parameters to have a mean 410

value of 1 in order to prevent over-confident priors. 411

Concretely, we initialize the distributions of qe0 and 412

qe1 in Model 1 for each evaluator e as follows: 413

n0 =|{(z(0)i , z
(1)
i ) ∈ OOD | Hh(z

(0)
i , z

(1)
i ) = 0}| 414

n1 =|{(z(0)i , z
(1)
i ) ∈ OOD | Hh(z

(0)
i , z

(1)
i ) = 1}| 415

s0 = |{(z(0)i , z
(1)
i ) ∈ OOD | 416

Hh(z
(0)
i , z

(1)
i ) = Te(z

(0)
i , z

(1)
i ) = 0}| 417

s1 = |{(z(0)i , z
(1)
i ) ∈ OOD | 418

Hh(z
(0)
i , z

(1)
i ) = Te(z

(0)
i , z

(1)
i ) = 1}| 419

qe0 ∼Beta(
s0 + 1

n0 + 2
,
n0 − s0 + 1

n0 + 2
) (12) 420

qe1 ∼Beta(
s1 + 1

n1 + 2
,
n1 − s1 + 1

n1 + 2
) (13) 421

where OOD is the OOD set (dataset F ) we use, 422

the term n0 + 2 and n1 + 2 on the denominator of 423

Equation 12 and 13 are both normalization terms 424

as described above. 425
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Evaluator model Prompt template q0 q1 |q0 − q1| Overall Accuracy

Gemini-1.0-Pro Score-only 0.782 0.526 0.256 0.649
Analyze-rate 0.802 0.428 0.374 0.607
Rate-explain 0.760 0.512 0.248 0.631

GPT-3.5 Score-only 0.700 0.653 0.047 0.676
Analyze-rate 0.657 0.677 0.020 0.667
Rate-explain 0.699 0.655 0.044 0.676

Table 1: Average evaluator accuracies across all pair-wise summary comparisons in all datasets. Best performance
on each column is marked with bold font.

Dataset Method Prior setting |p̂mean − p| |p̂mode − p|

HANNA Observed win rate (baseline) / 0.079 0.079
Bayesian Dawid-Skene No prior 0.129 0.132
Bayesian Dawid-Skene OOD prior 0.084 0.081

BWRS OOD prior 0.129 0.095

OpenMANS-MEVA Observed win rate (baseline) / 0.065 0.065
Bayesian Dawid-Skene No prior 0.065 0.065
Bayesian Dawid-Skene OOD prior 0.034 0.033

BWRS OOD prior 0.064 0.102

SummEval Observed win rate (baseline) / 0.167 0.167
Bayesian Dawid-Skene No prior 0.125 0.123
Bayesian Dawid-Skene OOD prior 0.115 0.110

BWRS OOD prior 0.112 0.112

Table 2: Results of win rate estimation with no prior on HANNA, OpenMANS-MEVA, and SummEval. All results
are averaged over ten repetitive runs over all six evaluator modes. The variance of all runs are insignificant (< 10−2).
The best estimator for each dataset is marked with bold font. Note that BWRS with OOD prior is not applicable for
instruction following datasets due to the absence of relevant data to act as the OOD set.

5 Results426

In this section, we first analyze the evaluator accu-427

racies on our datasets, and then list the results of428

our experiments, including win rate estimation with429

no prior, OOD prior, and in-distribution prior. We430

show that both our methods are able to effectively431

calibrate the estimation of win rate given good esti-432

mations of evaluator accuracies. We also show that433

even with OOD knowledge of human preference,434

our methods are still able to perform well in five of435

the six datasets we use.436

5.1 Evaluator accuracies437

The average accuracies of LLM evaluators across438

each dataset are shown in Table 1. The overall439

accuracy is defined as the proportion of all pair-440

wise comparisons where the LLM evaluation aligns441

with human evaluation. We can see that:442

• In terms of overall accuracy, there is not a443

significant difference (>5%) between the three444

prompt templates.445

• There is a significant difference between q0446

and q1 even though we applied the swap-and-447

sum strategy. This can be attributed to the448

correlation between evaluator accuracy and 449

the difference between the generators’ capa- 450

bilities. When one generator is significantly 451

better than the other one, it is easier for the 452

LLM evaluator to identify cases where the 453

better generator does better, and vice versa. 454

Also, Gemini-1.0-Pro evaluators suffer from 455

this problem more significantly than GPT-3.5 456

evaluators. This shows the necessity of mod- 457

eling q0 and q1 separately for each evaluator 458

when comparing two generators. 459

5.2 Win rate estimation results 460

The results of win rate estimation with no prior and 461

OOD prior are shown in Table 2 and 3. We see that 462

even with OOD knowledge of evaluator accuracy, 463

estimation of p is more accurate than baseline (k) 464

in all datasets except HANNA. The mode estimator 465

in Bayesian Dawid-Skene with OOD prior is the 466

overall best estimator. Also, the Bayesian Dawid- 467

Skene model with OOD prior is more accurate than 468

the model with no prior. This shows that the OOD 469

prior is able to provide some useful information 470

on the accuracy of each evaluator, which helps the 471

Bayesian model converge to a better result. 472
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Dataset Method Prior setting |p̂mean − p| |p̂mode − p|

LLMBar Observed win rate (baseline) / 0.142 0.142
Bayesian Dawid-Skene No prior 0.140 0.138

LLMEval2 Observed win rate (baseline) / 0.178 0.178
Bayesian Dawid-Skene No prior 0.157 0.156

MTBench Observed win rate (baseline) / 0.162 0.162
Bayesian Dawid-Skene No prior 0.190 0.188

Table 3: Results of win rate estimation with no prior on the three instruction following datasets. All results are
averaged over ten repetitive runs over all evaluator modes. The variance of all runs are insignificant (< 10−2). The
best estimator for each dataset is marked with bold font.

(a) Bayesian Dawid-Skene (b) BWRS

Figure 2: BWRS error with various proportions of the original data used for in-distribution prior measurement.
The results are averaged over all generator pairs over all evaluator modes. The mean and variance of all results are
calculated over ten repetitive runs. The variance of k values in the three instruction following datasets are results of
randomly assigning outputs to two simulative generators, as described in Section 4.1

The results of BWRS and Bayesian Dawid-473

Skene with in-distribution prior are shown in Figure474

2. We can observe the following:475

• As prior data ratio increases, estimation ac-476

curacy of both BWRS and Bayesian Dawid-477

Skene improves. This enhancement in estima-478

tion of p arises because having more human479

annotations for in-distribution data allows for480

a more precise assessment of evaluator accura-481

cies and consequently leads to a more accurate482

estimation of the true win rate p. This shows483

that our methods will indeed offer a more ac-484

curate estimation of the true win rate p if we485

have good estimations of q0 and q1.486

• The mode estimator shows consistently better487

performance compared with mean estimator488

and k.489

6 Conclusion490

In this paper, we identified the bias problem in491

win rate estimation using non-perfect LLM eval-492

uators, and proposed two methods, BWRS and493

Bayesian Dawid-Skene, in order to address this 494

issue. We then obtained LLM evaluation results 495

on seven datasets, and used these results to exam- 496

ine the effectiveness of our methods empirically. 497

Our results show that both BWRS and Bayesian 498

Dawid-Skene can effectively reduce the error in 499

win rate estimation, especially given good approxi- 500

mations on evaluator accuracies. We also showed 501

that even without in-distribution prior knowledge 502

of human preferences, our methods are still able 503

to effectively calibrate the estimation of win rate 504

under most cases. The effectiveness of our methods 505

manifests the possibility to calibrate the estimation 506

of win rate in a post-hoc manner after LLM eval- 507

uations are completed, and also enlightens future 508

study on applying annotation models for accurate 509

win rate estimation using LLM evaluators. 510

Limitations 511

There are some limitations of our work: 512

First, due to time and budget limit, for the story 513

generation and summarization datasets, we only ex- 514

amined our methods with GPT-3.5 and Gemini-1.0- 515
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Pro as evaluator models. It would be illuminating516

to examine how including more evaluator models517

would affect our methods’ performance.518

Second, the performance of both methods with519

OOD prior largely depends on the quality of OOD520

data. Specifically, when there is a large difference521

between evaluator accuracies on the OOD set and522

on the original dataset, our methods may produce523

highly-biased results. Therefore, in cases where524

human evaluation results on datasets with similar525

observed win-rates are absent, we would recom-526

mend against using OOD prior.527

This paper is an exploratory study on adjusting528

bias of LLM evaluators. Besides resolving the529

limitations above, the exploration in this field could530

also be extended in the following aspects:531

• Applying more complex annotator models.532

As discussed in Section 2, the Dawid-Skene533

model is the earliest annotator model pro-534

posed, and several improvements have been535

proposed since then. These improved methods536

can lead to potentially more accurate estima-537

tions of win rate.538

• Introducing more robust methods. The perfor-539

mance of our proposed methods is contingent540

upon the accuracy of LLM evaluators. Con-541

cretely, from Equation 11 we know that542

0 < p < 1 ⇔

{
1− qe1 < k < qe0, qe0 + qe1 > 1

qe0 < k < 1− qe1, qe0 + qe1 < 1

(14)

543

We can see that, in order to make sure p ∈544

[0, 1], the evaluator accuracies qe0 and qe1 must545

satisfy one of the conditions in Equation 14.546

In cases where neither condition is satisfied,547

our methods can become unstable, and is548

prone to produce p distributions with high549

bias and/or variance. We leave it for future550

research to propose methods that work well551

for LLM evaluators with low or unstable ac-552

curacies.553
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A Dataset details767

HANNA (Chhun et al., 2022) includes 1056 sto-768

ries annotated by human raters with a 5-point Likert769

scale on 6 criteria: Relevance, Coherence, Empa-770

thy, Surprise, Engagement, and Complexity. These771

1056 stories are based on 96 story prompts from772

the WritingPrompts(Fan et al., 2018) dataset. For773

each story prompt, HANNA collects 11 stories gen-774

erated by 10 different generation models and a hu-775

man, respectively. For our purpose of comparing776

automatic text generation systems, we did not use 777

the stories written by humans in our experiments. 778

OpenMEVA-MANS (Guan et al., 2021) is a 779

sub-dataset within the OpenMEVA dataset. It con- 780

tains 1000 stories generated by 5 generation models 781

based on 200 prompts from WritingPrompts(Fan 782

et al., 2018). The overall quality of each story is 783

rated by a human on a 5-point Likert scale. 784

SummEval (Fabbri et al., 2021) includes 1600 785

summaries annotated by human expert annotators 786

with a 5-point Likert scale on 4 criteria: coher- 787

ence, consistency, fluency, and relevance. These 788

1600 summaries are based on 100 source articles 789

from the CNN/DailyMail dataset (Hermann et al., 790

2015). For each source article, SummEval collects 791

16 summaries generated respectively by 16 differ- 792

ent automatic summary generation systems. Each 793

summary is scored by three human expert annota- 794

tors. 795

LLMBar (Zeng et al., 2024) consists of 419 796

instances, each containing an instruction paired 797

with two outputs: one that faithfully follows the 798

instruction and another that deviates from it but 799

may possess superficially appealing qualities. The 800

dataset is divided into two main parts: the Nat- 801

ural set, which includes instances from existing 802

human-preference datasets that have been filtered 803

and modified to ensure objective preferences, and 804

the Adversarial set, which contains outputs crafted 805

to mislead evaluators by emphasizing superficial 806

qualities. LLMBar aims to provide a more rigorous 807

and objective evaluation of LLM evaluators com- 808

pared to previous benchmarks, achieving a high 809

human agreement rate of 94% (Zeng et al., 2024). 810

MT-Bench (Zheng et al., 2023) comprises 80 811

questions and answers to these questions gener- 812

ated by six models. For each question and each 813

pair of models, an evaluation task was constructed, 814

totaling 1200 tasks. The actual dataset that we 815

used is a subset of the original MT-Bench dataset 816

curated by the authors of (Zeng et al., 2024), to con- 817

struct which they labelled a human-preferred an- 818

swer for each task using majority vote, removed all 819

the “tie” instances, and then randomly sampled 200 820

instances. We found five instances of this curated 821

subset repeated themselves once, so we further re- 822

moved these repeated ones and used the remaining 823

195 instances for our experiments. 824

LLMEval2 (Zhang et al., 2023), similar to MT- 825

Bench, is a question answering dataset where each 826

instance comprises a question and two answers to 827

that question. It consists of 2553 instances, each an- 828
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notated with human preferences. The actual dataset829

that we used is a subset of the original LLMEval2830

dataset (Zhang et al., 2023) curated by the authors831

of (Zeng et al., 2024), to construct which they re-832

moved all the “tie” instances and then randomly833

sampled 200 instances.834

B Evaluator setup details835

We prepared prompt templates into which the input836

and the two outputs would be inserted. Specifically,837

we used the following three prompting strategies838

following (Chiang and Lee, 2023b).839

The Score-only prompting strategy asks the840

LLM evaluator to only output the attribute scores841

of each summary without any further explanations.842

The Rate-explain prompting strategy asks the843

LLM evaluator to rate the two summaries first and844

then provide an explanation for its ratings.845

The Analyze-rate prompting strategy asks the846

LLM evaluator to first analyze the two provided847

summaries and then give the ratings for them.848

Additionally, it has been reported that LLM849

evaluators suffer from position bias (Wang et al.,850

2023b), meaning that their decisions are often851

falsely correlated with the order of presenting the852

compared texts. In order to address this problem,853

we employ a straightforward swap-and-sum strat-854

egy inspired by the LLMBar paper (Zeng et al.,855

2024). For each pair of outputs to be compared, we856

query the LLM evaluator twice with the original857

and swapped ordering of the outputs. We then sum858

the scores given by the LLM evaluator in the two859

queries and choose the summary with the higher860

total score as the LLM-evaluated winner. In cases861

where the total score is even for both outputs, we862

consider their quality to be equal, and randomly863

select one as the winner.864

The details of the LLM evaluator modes used by865

our experiments can be found in Tables 4 and 5. For866

the prompting templates used for the three instruc-867

tion following datasets shown in Table 5, please868

refer to the LLMBar paper (Zeng et al., 2024) for869

detailed explanations.870
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Dataset Evaluator model Prompt template

Hanna GPT-3.5 Turbo Score-only
Rate-explain
Analyze-rate

Gemini-Pro Score-only
Rate-explain
Analyze-rate

Meva GPT-3.5 Turbo Score-only
Rate-explain
Analyze-rate

Gemini-Pro Score-only
Rate-explain
Analyze-rate

SummEval GPT-3.5 Turbo Score-only
Rate-explain
Analyze-rate

Gemini-Pro Score-only
Rate-explain
Analyze-rate

Table 4: LLM evaluator modes used for the story generation and summarization datasets in our experiments.

Dataset Evaluator model Prompt template

LLMBar GPT-4 Various
Metrics

Metrics Reference
Reference

Swap
Swap CoT

Vanilla
Vanilla NoRules

PaLM2 Various
Metrics Reference

Reference
Swap

Swap CoT
Vanilla

Vanilla NoRules

LLMeval2 ChatGPT Metrics Reference
Vanilla NoRules

GPT-4 Metrics Reference
Vanilla NoRules

LLaMA2 Metrics Reference
Vanilla NoRules

PaLM2 Metrics Reference
Vanilla NoRules

MTBench ChatGPT Metrics Reference
Vanilla NoRules

GPT-4 Metrics Reference
Vanilla NoRules

LLaMA2 Metrics Reference
Vanilla NoRules

PaLM2 Metrics Reference
Vanilla NoRules

Table 5: LLM evaluator modes used for the instruction following datasets in our experiments.
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