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Abstract
High-resolution (HR) image perception remains a
key challenge in multimodal large language mod-
els (MLLMs). To drive progress beyond the lim-
its of heuristic methods, this paper advances HR
perception capabilities of MLLMs by harness-
ing cutting-edge long-context techniques such as
retrieval-augmented generation (RAG). Towards
this end, this paper presents the first study ex-
ploring the use of RAG to address HR perception
challenges. Specifically, we propose Retrieval-
Augmented Perception (RAP), a training-free
framework that retrieves and fuses relevant image
crops while preserving spatial context using the
proposed Spatial-Awareness Layout. To accom-
modate different tasks, the proposed Retrieved-
Exploration Search (RE-Search) dynamically se-
lects the optimal number of crops based on model
confidence and retrieval scores. Experimental
results on HR benchmarks demonstrate the sig-
nificant effectiveness of RAP, with LLaVA-v1.5-
13B achieving a 43% improvement on V ∗ Bench
and 19% on HR-Bench. Code is available at
https://github.com/DreamMr/RAP.

1. Introduction
Multimodal large language models (MLLMs) have achieved
remarkable progress in vision-language understanding, rea-
soning, and interaction, leveraging visual signals to process
and interpret visual information (Yin et al., 2023). Current
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Figure 1. (a) Overview of the proposed Retrieval-Augmented Per-
ception (RAP) framework, which divides the HR images into
image crops for retrieval, followed by layout reconstruction to
retain the spatial information; (b) Performance comparison of
MLLMs across various model sizes, demonstrating consistent im-
provements with our RAP on HR-Bench.

MLLMs (Liu et al., 2024a; Bai et al., 2023; Liu et al., 2024b;
Wang et al., 2023; Abdin et al., 2024) typically process im-
ages at a fixed resolution (e.g., 448×448). While this design
streamlines the computational pipeline, it introduces signifi-
cant challenges, such as shape distortion and blurring when
handling high-resolution (HR) images. These distortions
notably impair the performance of MLLMs, especially in
tasks that involve analysing real-world images with varying
resolutions, such as visual grounding and optical character
recognition that demand fine-grained visual details (Zhang
et al., 2024a; Tian et al., 2022; 2023; Wang et al., 2024).

In response to this dilemma, emerging research on enhanc-
ing the HR image perceptual capabilities of MLLMs has
gained increasing attention. Existing approaches can be
broadly categorised into three groups: (1) cropping-based
methods (Chen et al., 2024c; Liu et al., 2024b; Li et al.,
2024c), (2) HR visual encoder methods (Luo et al., 2024;
Ge et al., 2024; Lu et al., 2024), and (3) search-based meth-
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ods (Wu & Xie, 2024; Wang et al., 2025; Shen et al., 2024).
Despite notable progress, both cropping-based and HR vi-
sual encoder methods still require downsampling HR images
to mitigate excessively long visual token sequences, result-
ing in substantial loss of fine-grained details. Although
search-based methods avoid downsampling, they face sev-
eral limitations. These methods follow a top-down search
from high to low resolution; however, at the initial stage,
models struggle to accurately perceive small objects, often
resulting in erroneous search paths. Furthermore, search-
based approaches rely on hierarchical, layer-by-layer re-
trieval, preventing parallel processing and rendering them
inefficient and cumbersome for deployment.

These limitations prompt our rethinking of the fundamen-
tal challenge in HR perception. Ideally, effective HR per-
ception requires an MLLM with robust long-context capa-
bilities— for instance, processing an 8K HR image with
ViT-L/14 (Dosovitskiy et al., 2021) generates approximately
∼300K visual tokens. This raises the question of whether
the key to HR perception lies in enhancing the long-context
capacity of MLLMs, rather than relying on existing heuris-
tic approaches, particularly in light of recent encouraging
advancements in long-context techniques for general LLMs.
In particular, retrieval-augmented generation (RAG) has
proven highly effective in recent long-context LLMs, by
retrieving crucial fragments and reducing the impact of ir-
relevant information (Jin et al., 2024). Motivated by this,
this paper poses a largely overlooked question: Is it possible
to directly enhance the long-context capability of MLLMs
using RAG, as in general LLMs, to overcome the limitations
of existing HR perception methods?

However, exploring this research question presents signifi-
cant challenges, as images, unlike text, are two-dimensional
(excluding the channel dimension) and are characterised by
width and height. As a pilot study, we begin by focusing
on two key aspects: the layout of retrieved image crops
and the impact of the number of retrieved crops on perfor-
mance. This leads to the following specific challenges: 1)
How should the retrieved image crops be organised? Fur-
thermore, the number of retrieved key fragments plays a
critical role in RAG performance (Jin et al., 2024), prompt-
ing our second research question: 2) How does the number
of retrieved image crops influence the final performance?
Building on insights from these two questions, we further
pose a third research question: 3) How can RAG systems
be designed to enhance MLLM perception of HR images?

To address the 1st challenge, we conduct a series of experi-
ments using the HR-Bench (Wang et al., 2025) to investi-
gate the effects of different layout strategies. We evaluate
state-of-the-art (SOTA) MLLMs (Liu et al., 2024a;b) across
various layout configurations. Specifically, we compare
three strategies: 1) arranging the retrieved image crops in

their original order, 2) ordering them in descending order
based on retrieval scores (Jin et al., 2024), and 3) preserv-
ing the relative positional relationships among the retrieved
crops. Our empirical results suggest that maintaining the
relative positional relationships of the image crops signifi-
cantly enhances HR perception, particularly for tasks that
depend on spatial relationships.

In response to the 2nd question, this paper investigates the
impact of the number of retrieved image crops. Our findings
reveal that the optimal number of retrieved crops depends on
the task type. For single-instance perception tasks, a small
number of crops suffices for significant performance im-
provements, whereas too many crops degrade performance
due to the high image resolution. In contrast, for cross-
instance perception tasks, fewer crops result in information
loss and reduced performance, while more crops help pre-
serve essential details and minimise performance degrada-
tion. However, an excessive number of crops still harms
performance due to challenges from overly high resolution.

In tackling the 3rd question, we integrate the insights gained
from the previous investigations to design a new framework,
which we term Retrieval-Augmented Perception (RAP). As
illustrated in Figure 1(a), RAP processes high-resolution im-
ages by retrieving image crops relevant to the query through
VisRAG (Yu et al., 2024). We propose a simple yet efficient
layout method, termed as Spatial-Awareness Layout, which
preserves the original relative spatial relationships among
the image crops. To determine the optimal number of re-
trieved image crops, we introduce a novel scheme termed
as RE-Search (Retrieved-Exploration Search), which adap-
tively adjusts the number of crops based on the model’s
confidence in the sufficiency of the retrieved information.

In particular, VisRAG is first used to compute the similarity
scores between each image crop and the query. We then
retain the top K crops with the highest similarity scores,
ensuring their relative spatial relationships are preserved
through the Spatial-Awareness Layout. To determine the
optimal K, we construct a RE-Tree, where each node rep-
resents a new image synthesized by retaining different pro-
portions of the image crops. The search process within this
tree is guided by both the retrieved similarity scores and the
model’s confidence in whether the image offers sufficient
information to answer the query.

Our contribution is thereby the first investigation into using
visual RAG to enhance HR image perception in MLLMs.
This is accomplished by a novel RAP, a training-free frame-
work that comprises Spatial-Awareness Layout to preserve
the positions of image crops and RE-Search to adaptively
select the optimal number of retained crops. Experiments
demonstrate that RAP consistently delivers significant im-
provements, with an average accuracy increase of 24% on
HR image benchmarks and even general MLLM tasks.
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2. Related Work
MLLMs consist of a Visual Encoder (Dosovitskiy et al.,
2021; Radford et al., 2021) for extracting visual features
and a LLM (Touvron et al., 2023a;b) for decoding text, both
initialized from pretrained models. A multimodal Connec-
tor (e.g., MLP) links the vision and language modalities. To
align the resolution used during visual encoder pretraining
(e.g., 336 × 336 in LLaVA), images are typically resized,
which can distort and blur HR images. To address this,
existing approaches fall into three categories: 1) cropping-
based methods, 2) HR visual encoder methods, and 3)
search-based methods.

Cropping-based methods. Representative cropping-based
methods for HR MLLMs (Chen et al., 2024a; Zhang et al.,
2024b; Liu et al., 2024c), such as LLaVA-v1.6 (Liu et al.,
2024b) and LLaVA-ov (Li et al., 2024a), segment images
into multiple image crops. Each image crop is indepen-
dently encoded using ViT (Dosovitskiy et al., 2021) and
subsequently concatenated for LLM processing.

HR Visual Encoder. High-resolution image understand-
ing can be enhanced by incorporating HR visual encoders
without substantially increasing the number of visual tokens.
For instance, Vary (Wei et al., 2023) and Deepseek-VL (Lu
et al., 2024) adopt the SAM (Kirillov et al., 2023) to improve
the performance of MLLMs on HR images. MiniGemini-
HD (Li et al., 2024b), LLaVA-HR (Luo et al., 2024), and
ConvLLaVA (Ge et al., 2024) utilize ConvNeXt (Liu et al.,
2022), employing techniques such as cross-attention or
adapter to extract visual features.

Search-based Methods. Search-based methods organize
images into a tree structure to extract query-relevant regions
through a top-down approach. DC2 (Wang et al., 2025)
leverages visual memory to store objects and coordinates, re-
trieving crops to generate text and reduce detail loss. Zoom
Eye (Shen et al., 2024) employs a tree search algorithm to
directly identify and extract relevant crops from HR images.
Wu & Xie (2024) propose SEAL, a meta-architecture that
actively reasons and retrieves essential visual information.

Multimodality RAG. Multimodal RAG tasks include
matching images to text and retrieving text-image pairs
to answer questions (Chang et al., 2022; Han et al., 2017;
Xia et al., 2024a;b). Yu et al. (2024) propose Vision-based
Retrieval-augmented Generation to effectively utilize and
retain data in multimodal documents.

Existing methods enhance MLLMs’ ability to perceive HR
images, but processing extremely HR images (e.g., 8K)
remains challenging. Inspired by RAG’s success in handling
long contexts for LLMs, this paper for the first time explores
its use to improve MLLMs’ HR image perception.

3. Pilot Study
In this section, we conduct a systematic investigation into
the challenges associated with employing RAG to enhance
the perceptual capabilities of MLLMs, motivating the design
of the proposed RAP framework in Sect. 4.

3.1. Preliminary

In this section, we introduce the pipeline for applying RAG
to MLLMs for the perception of HR images. Given an
HR image, we divide it into an image crop set, denoted as
V = {v1, ..., vn}, where n is the number of image crops.
Inspired by Yu et al. (2024), the query and image crops
are independently encoded as text and images within the
VLM, yielding a sequence of hidden states. Subsequently,
the similarity scores between the query embedding and the
image crop embeddings are computed. The similarity score
s(q, V ) is calculated by the cosine similarity of the query
and image crop embeddings:

s(q, V ) = (1− q · V T

||q|| · ||V ||
) · 1

2
. (1)

Finally, the top K image crops are selected based on the
s(q, V ) to facilitate the MLLM’s perception of HR images.

In the following sections, we systematically analyze the
impact of retrieved image crop layouts and quantities on
HR-Bench, which consists of HR-Bench 8K and HR-
Bench 4K. HR-Bench 8K, with 8K-resolution images
from DIV8K (Gu et al., 2019) and the Internet, includes
Fine-grained Single-instance Perception (FSP) and Fine-
grained Cross-instance Perception (FCP) tasks. Cropping
8K images around relevant objects produces HR-Bench 4K.

3.2. Impact of the Layout of Retrieved Image Crops

This subsection investigates the relationship between the
layout of retrieved image crops and the performance of
MLLMs in the RAG system.

Experimental setting. We compare three layout strategies:
1) Sort according to the retrieval scores in descending order;
2) After selecting the top K image crops, arrange them in
the order in which the image crops appear; 3) Maintain
the relative positional relationships of the image crops. We
conduct experiments on HR-Bench using LLaVA-v1.6-7B.

Observations. As shown in Table 1, retrieving key image
crops through RAG significantly improves performance on
the FSP task but results in a noticeable performance drop
on the FCP task. Furthermore, maintaining the relative
positions between each image crop achieves a better perfor-
mance balance between the FSP and FCP tasks.

Insights. Maintaining the relative positional relationships
between retrieved image crops is essential, particularly for
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Table 1. The effect of different layout strategies. While all three
strategies improve fine-grained perception, only strategy 3) excels
in FCP tasks by preserving positions, achieving superior perfor-
mance compared to other strategies.

HR-Bench 4K HR-Bench 8K

FSP FCP Avg. FSP FCP Avg.
Baseline 49.0 46.8 47.9 37.2 44.2 40.8

+ 1) 74.8 38.3 56.5 56.8 26.8 41.8
+ 2) 72.3 38.5 55.4 61.3 25.5 43.4
+ 3) 74.0 41.5 57.8 59.5 30.0 44.8

tasks requiring spatial awareness.

3.3. Impact of the Number of Retrieved Image Crops

This subsection investigates the relationship between the
number of retrieved image crops and the performance of
MLLMs in HR image perception.

Experimental setting. We analyze the relationship between
performance (i.e., accuracy) and the number of the retrieved
image crops, using the LLaVA-v1.5 and LLaVA-v1.6.

Observations. As shown in Figure 2, we visualize the rela-
tionship between the number of retrieved image crops (i.e.,
K) and performance. As K increases, more image crops
are introduced, providing additional visual information that
enhances performance on FCP tasks. However, this also
raises the image resolution, increasing the likelihood of the
model generating incorrect answers. Conversely, smaller K
retains only essential visual information, improving perfor-
mance on FSP tasks but sacrificing significant visual details,
which causes a notable performance decline on FCP tasks.

Insights. Different types of tasks require different num-
bers of retrieved image crops K. For FSP tasks, smaller
K improves results, but larger K reduces performance by
increasing resolution. Conversely, for FCP tasks, larger K
preserves visual information and outperforms smaller K.

4. Proposed Retrieval-Augmented Perception
4.1. Method Overview

Driven by the aforementioned insights in Sect. 3, we propose
a novel framework — Retrieval-Augmented Perception
(RAP). The design principle of RAP is to retrieve key image
crops to replace the original HR image, preserving essen-
tial visual information while reducing resolution to improve
MLLM perception of HR images. To achieve this, we di-
vide the image into various crops, calculate similarity scores
(Eq. 1) with the query, and select the top K image crops to
synthesize a new image V ′. We design a Spatial-Awareness
Layout algorithm to maintain the relative positional relation-

LLaVA-v1.6-13B

FSP Task FCP Task

LLaVA-v1.5-7B LLaVA-v1.5-13B LLaVA-v1.6-7B

Figure 2. The effect of the number of retrieved image crops on
model performance. FSP and FCP represent the fine-grained
single-instance perception tasks and fine-grained cross-instance
perception tasks, respectively.

ships between the image crops. To adaptively select K, we
propose Retrieved-Exploration Search (RE-Search), which
determines K based on the model’s confidence in V ′ and
its similarity to the query. The Spatial-Awareness Layout
and RE-Search are presented in the subsequent sections.

4.2. Spatial-Awareness Layout

In Sect. 3.2, we find that maintaing the positional relation-
ship between image crops is essential. Thus, we propose
a simple and efficient method, termed Spatial-Awareness
Layout. We denote M ∈ {0, 1}R×C as a binary matrix of
size R× C, where R and C represent the number of rows
and columns of image crops V , respectively. The Mi,j = 1
indicates an image crop to be preserved and Mi,j = 0 indi-
cates the image crops to be removed. We seek to construct a
compressed matrix M ′ by removing any row or column of
M that is entirely zero. Formally, we define two index sets:

R′ = {i|∃ j s.t.Mi,j = 1}, C ′ = {j|∃ i s.t.Mi,j = 1}. (2)

The compressed matrix M ′ ∈ {0, 1}Nr×Nc , with Nr =
|R′| and Nc = |C ′|, is then constructed according to:
M ′

ĩ,j̃
= Mi,j , where i = R′ [̃i] and j = C ′[j̃]. This guaran-

tees that M ′ retains all rows and columns of M containing
at least one entry equal to 1, effectively discarding rows and
columns composed entirely of zeros. Moreover, an mapping
function Φ : {0, ..., Nr−1}×{0, ..., Nc−1} → {0, ..., R−
1} × {0, ..., C − 1} is defined as Φ(̃i, j̃) = (R′ [̃i], C ′[j̃]),
thereby enabling each coordinate (̃i, j̃) in the compressed
matrix M ′ to be mapped back to its original position (i, j)
in M . Finally, we initializes an blank image V ′ and iter-
ates over the mapping Φ, where each pair (̃i, j̃) is mapped
to (i, j). For each mapping, V [i][j] is assigned to the cor-
responding V ′ [̃i][j̃]. We use image V ′ to replace the HR
image V for the MLLM to answer the query. The implement
of Spatial-Awareness Layout is shown in Algorithm 1.
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Figure 3. Detailed illustration of our proposed RAP with a running example. We firstly divide HR image into multiple image crops and
compute the similarity score s between the query and image corps to retrieve the key image crops. We design a simple and efficient
method called Spatial-Awareness Layout to maintain the relative positional relationships of the image crops. Since the number of image
crops is highly sensitive to the task type, we propose RE-Search, which identifies the optimal K based on the model’s confidence scores
and retrieval scores.

4.3. Retrieved-Exploration Search

In Sect. 3.3, we find that different types of tasks significantly
influence the choice of K. Here, we utilize a search algo-
rithm to obtain the optimal K. For search algorithm, we
consider two primary factors: Efficiency, ensuring high effi-
ciency for optimal user experience, and Robustness, guar-
anteeing consistent results across multiple runs in image
perception tasks. Existing tree-search methods (Wang et al.,
2025) require visiting all nodes, leading to low efficiency.
With the development of O1, many recent works (Yao et al.,
2024; Zhao et al.) employ Monte Carlo Tree Search (MCTS)
to find the optimal reasoning path. However, MCTS relies
on random sampling, resulting in a lower robustness. A∗

search algorithm uses a heuristic function to intelligently
guide its exploration. This heuristic allows A∗ to priori-
tize promising paths, significantly accelerating the search
process. Furthermore, A∗ explores the nodes in the same
order and find the same optimal path, ensures high robust-
ness. However, effectively defining the state representation
and designing an appropriate heuristic function for A∗ is a
non-trivial challenge.

Building upon the strengths of A∗, we introduce Retrieved-
Exploration Search (RE-Search). In the following parts, we

will elucidate the RE-Tree, a novel structure that elegantly
represents the search states within RE-Search, and the RE-
ward function, which serves as the guiding heuristic for this
innovative approach.

RE-Tree Representation. Inspired by Wang et al. (2025);
Shen et al. (2024), we model the HR image as a tree. Unlike
existing search-based methods, we represent distinct nodes
at the same layer by preserving different K image crops.
This enables the model to perceive lower-resolution images
from the begining, mitigating the risk of the MLLM converg-
ing to suboptimal solutions. We denote P = {p1, ..., pn}
as the retention ratio. For instance, for the first child node
n1, we retain the top N ′ × p1 image crops. The N ′ repre-
sents the number of image crops for the current image. To
obtain a complete image for calculating the REward func-
tion, we employ Spatial-Awareness Layout to assemble the
individual image crops into a complete image V ′.

REward Function. A∗ search is a best-first search algo-
rithm that prioritizes nodes with the lowest combined cost,
calculated as the sum of the actual cost g(ts) from the start
node t0 to ts and the estimated cost h(ts) to the goal. In
our RE-Search, the path from t0 to ts is represented as the
progression from the original HR image to the currently
retained top-K image crops. We use the similarity score

5
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Algorithm 1 Spatial-Awareness Layout
function SpatialLayout(V,M)
R′ ← {i

∣∣ ∃ j s.t.Mi,j = 1}
C ′ = {j

∣∣ ∃ i s.t.Mi,j = 1}
Nr ← |R′|, Nc ← |C ′|
Construct a binary matrixM ′ ∈ {0, 1}Nr×Nc

for ĩ = 1→ Nr − 1 do
for j̃ = 0→ Nc − 1 do

i← R′ [̃i], j ← C ′[j̃]
M ′

ĩ,j̃
←Mi,j

end for
end for
Initialize a blank image V ′

for ĩ = 0→ Nr − 1 do
for j̃ = 0→ Nc − 1 do

i← R′ [̃i], j ← C ′[j̃]
if M ′

ĩ,j̃
= 1 then

V ′ [̃i, j̃]← V [i, j]
end if

end for
end for
return V ′

end function

between these K image crops and the query as g(ts):

g(ts) =
1

n

n∑
i=1

s(q, vi), (3)

where n represents the number of image crops, and vi rep-
resents the i-th image crops for current image V . Inspired
by Shen et al. (2024), we use the model’s confidence in
whether the current image V can answer the given query as
the cost from ts to the goal:

h(ts) = 1− Pθ(“Yes”|ph(q), V ), (4)

where Pθ represents the MLLM and ph(·) represents the
prompt (e.g., “Question: {q}. Could you answer the ques-
tion based on the available visual information? Answer Yes
or No.”) used to query the MLLM for calculating the confi-
dence that the answer is “Yes”. We utilize the model’s confi-
dence to estimate the cost from the current to the target node,
analogous to the heuristic function in the A∗ algorithm. A
lower h(·) indicates a higher likelihood of containing essen-
tial information, warranting prioritized exploration.

Since MLLM cannot accurately perceive the HR image at
the beginning, the h(ts) provided at shallow depths of the
tree is unreliable. As the tree depth increases and the image
resolution gradually decreases, the model becomes more
confident in determining whether the current image can
answer the query. Therefore, we assign a lower weight to
h(ts) at the beginning and gradually increase its weight as

the tree depth grows. Mathematically, the cost function f(t)
can be written as:

f(ts) = (1− w) · g(ts) + w · h(ts), (5)

w = (1− b) · (1− 1

d
)2 + b, (6)

where b is a bias value, set here at 0.2 and d denotes the
depth of the image tree.

4.4. Algorithmic Workflow

In this section, we introduce how to use our RAP to per-
ceive HR image. Given a HR image I , we first divide the
HR image into various image crops V , with the size of
each image crop not exceeding the predefined resolution
of the retriever’s image encoder. Subsequently, we utilize
VisRAG (Yu et al., 2024) to compute the cosine similarity
between the query and image crops. We use RE-Search to
search the optimal K image crops and using the Spatial-
Awareness Layout to synthesize the image Vf , which re-
places the original HR image V as input to the MLLM. We
denote c as the answering confidence which is calculated
by Eq. 4. When c exceeds a predefined threshold τ , the
search terminates. We set τ = 0.6 throughout the paper.
The implementation of RAP is shown in Appendix A.

5. Experiments
In this section, we evaluate our RAP on HR benchmarks
and a general MLLM benchmark. Further experimental
results, including the influence of inference computation
scale and the effect of the hyperparameter, are provided in
Appendix B. Case studies are illustrated in Figures 8∼9 in
the Appendix C.

5.1. Results on HR Benchmark

Benchmarks. We evaluate our RAP on two HR bench-
marks: V ∗ Bench and HR-Bench. V ∗ Bench, derived
from SA-1B (Kirillov et al., 2023), averages a resolution of
2246× 1582. More details about HR-Bench can be found
in Sect. 3.1.

Main Results. As shown in Table 2, compared to the base-
line MLLM, the performance of nearly all models signifi-
cantly improved with our RAP, demonstrating the model-
agnostic trait of RAP. We find that our RAP can bring signif-
icant improvements in both FSP and FCP tasks. Our RAP
brings a maximum of 21.0% and 21.7% accuracy improve-
ment on HR-Bench 4K and HR-Bench 8K respectively.
Additionally, for tasks requiring spatial reasoning capabili-
ties, RAP demonstrates significant improvements compared
to the baseline (e.g., +39.5% accuracy on V ∗ Bench using
LLaVA-v1.5-7B). The results show that our method has a
clear advantage with HR images.
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Table 2. Comparison of our RAP (upon several advanced models) with existing works on high-resolution benchmarks. The best
performance in each task is in-bold.

Method V ∗ Bench HR-Bench 4K HR-Bench 8K

Attribute Spatial Overall FSP FCP Overall FSP FCP Overall
Open-source MLLMs

LLaVA-v1.6-7B (Liu et al., 2024b) 60.9 63.2 61.8 49.0 46.8 47.9 37.3 44.3 40.8
LLaVA-v1.6-13B (Liu et al., 2024b) 60.0 64.5 61.8 49.8 41.3 45.5 38.0 38.3 38.1
LLaVA-v1.6-34B (Liu et al., 2024b) - - - 55.3 50.5 52.9 44.5 50.3 47.4
LLaVA-HR-X-13B (Luo et al., 2024) - - - 61.3 46.0 53.6 49.5 44.3 46.9
LLaVA-HR-X-7B (Luo et al., 2024) 51.3 64.5 56.5 57.8 46.3 52.0 42.0 41.3 41.6
InternVl-1.5-26B (Chen et al., 2024c) - - - 69.5 51.8 60.6 69.3 48.5 57.9
Yi-VL-34B (Young et al., 2024) - - - 46.0 42.8 44.4 39.5 38.5 39.0

Closed-source MLLMs
GPT 4o (Hurst et al., 2024) - - 66.0 70.0 48.0 59.0 62.0 49.0 55.5
QWen-VL-max (Bai et al., 2023) - - - 65.0 52.0 58.5 54.0 51.0 52.5

Baseline and RAP
LLaVA-v1.5-7B (Liu et al., 2024a) 43.5 56.6 48.7 38.5 33.8 36.1 33.0 31.3 32.1

-w/ RAP 90.4 96.1 91.1 73.8 40.5 57.1 72.3 35.3 53.8
LLaVA-v1.5-13B (Liu et al., 2024a) 41.7 55.3 47.1 45.2 41.3 43.3 37.5 38.0 37.8

-w/ RAP 89.6 90.8 89.8 74.3 46.0 60.1 76.5 42.0 59.3
LLaVA-ov-0.5B (Li et al., 2024a) 63.5 64.5 63.9 63.5 39.5 51.5 47.3 38.3 42.8

-w/ RAP 80.0 84.2 83.6 80.3 42.3 61.3 81.8 45.3 63.5

5.2. Results on General Multimodal Benchmark

Benchmark. We conduct additional evaluations of RAP us-
ing the MME-RealWorld (Zhang et al., 2024c), a manually
curated benchmark designed for partical, real-world scenar-
ios. This benchmark encompasses five primary categories
and 43 sub-class tasks. Due to space constraints, we present
results for 9 sub-tasks that exhibit notable performance vari-
ations with RAP.

Main Results. As shown in Table 3, RAP improves the
performance of LLaVA-v1.5-13B on most sub-tasks, espe-
cially on MO/Orientation (+7.3%), AD/Intention (+6.0%),
and OCR/license (+10.3%). However, we observe that tasks
involving Diagram and Table types do not exhibit significant
improvements and, in some cases, even performance degra-
dation. We find that this due to the reliance of such data
on the model’s spatial awareness and reasoning capabilities,
which are inherent limitations of current MLLMs.

5.3. Ablation Study

To better understand the role of each module in our RAP, we
conduct ablation study on HR-Bench 8K using LLaVA-v1.5-
7B. As shown in Table 4, we first use VisRAG to retrieve key
image crops, replacing the original HR images, resulting
in an average improvement of 4.5% accuracy compared to
the baseline. However, we find a significant improvement
in the FSP task, but there is a noticeable performance drop
in the FCP task. By incorporating the Spatial-Awareness

Layout, the relative positional relationships between image
crops are preserved, leading to an improvement in accuracy
on the FCP task compared to +VisRAG. Finally, we utilize
RE-Search to determine the optimal K for different samples,
resulting in significant improvements in both the FSP and
FCP tasks, with an average improvement of 21.7% accuracy
compared to the baseline.

5.4. Performance and Efficiency

Efficiency concerns regarding RAP may arise among re-
searchers. To address this, Table 5 presents a comparative
analysis of throughput and accuracy against SOTA search-
based methods (e.g., DC2 and Zoom Eye). RAP achieves
superior efficiency and performance by directly computing
the relevance between image crops and the query, elimi-
nating the need for hierarchical image partitioning, thereby
significantly accelerating the search process. More com-
parison results with search-based methods can be found in
Appendix B.5.

5.5. Alternative to Model Logit Confidence

In RE-Search, we use the logit as a measure of the model’s
confidence that the current image V can answer the given
query. However, for some closed-source models, it is not
possible to access the model’s output logits. To tackle
this issue, we explore a simple alternative approach using
generation-based confidence scores. Specifically, we design
a scoring prompt that asks the model to evaluate whether

7
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Table 3. Comparison of the RAP against the baseline MLLM on the MME-RealWorld benchmark. MO: Monitoring; AD: Autonomous
Driving. The “∆(↑)” represents the performance gains of our RAP against the baselines.

Method MO AD OCR

Property Orientation Color Intention Attention Visual license Text Address
LLaVA-v1.5-13B 31.0 14.7 21.9 16.6 27.2 36.3 46.6 46.0 39.7

-w/ RAP 38.0 22.1 27.8 22.6 31.3 42.3 56.9 52.5 45.1
∆(↑) +7.0 +7.3 +5.9 +6.0 +4.2 +6.0 +10.3 +6.5 +5.4

Table 4. Ablation study of different module in RAP. “SL” denotes
our Spatial-Awareness Layout. We first incorporate VisRAG to
retrieve K key image crops, where K = 8. Then, we add Spatial-
Awareness Layout to preserve the relative positional information
of the image crops. Finally, we incorporate RE-Search to search
the optimal K.

HR-Bench 8K
∆(↑)

FSP FCP Overall
LLaVA-v1.5-7B 33.0 31.3 32.1 -

+ VisRAG 52.3 25.0 38.6 +6.5
+ SL 50.0 27.5 38.8 +6.8
+ RE-Search 72.3 35.3 53.8 +21.7

Table 5. Evaluation of performance and inference efficiency. We
analyze the correlation between throughput (samples per minute)
and accuracy of LLaVA-v1.5-13B enhanced with our RAP, com-
paring it agains search-based methods on HR-Bench 4K.

Method Throughput↑ Accuracy↑
DC2 (Wang et al., 2025) 2.1 51.5
Zoom Eye (Shen et al., 2024) 3.3 58.0
RAP 4.2 60.1

the given image contains sufficient information to answer
the question. The constructed scoring prompt can be found
in Appendix A.4.

We conduct experiments on HR-Bench using LLaVA-ov-
0.5B. The experimental results are shown in Table 6. Al-
though the generation-based confidence score performs
worse than the logit-based confidence score, it still shows a
clear improvement over the baseline (achieved an average
improvement of 7.4%), demonstrating that generation-based
confidence scores through the model can also lead to signif-
icant performance gains.

Table 6. Comparison of the performance of different confidence
score calculation methods. “G” represents the generation-based
confidence score and “L” represents the logit-based confidence
score.

Method HR-Bench 4K HR-Bench 8K
LLaVA-ov-0.5B 51.5 42.8

w/ RAP (G) 57.0 52.1
w/ RAP (L) 61.3 63.5

Figure 4. Analyzing the distribution of logit-based and generation-
based confidence scores.

To further investigate the extent to which the generation-
based confidence score can replace the logit-based confi-
dence score, we calculate the cosine similarity between
the two scores for the same images. As shown in the Fig-
ure 4, a high cosine similarity score of 0.97 between the
two types of confidence scores, indicating a remarkable de-
gree of alignment between their distributions. Interestingly,
generation-based confidence scores tend to be consistently
higher than their logit-based counterparts. Nonetheless,
RAP utilizing generation-based confidence scores continues
to deliver substantial improvements.

5.6. Effect of Crop Size

To investigate the impact of crop size, we perform experi-
ments on HR-Bench 8K using LLaVA-ov-0.5B. As shown
in Table 7, we find that while variations in crop size result in
relatively minor differences, all configurations of our RAP
yield substantial performance gains over the baseline.

5.7. Effect of Retriever

To explore the impact of retrieval quality on RAP perfor-
mance, we conduct experiments on HR-Bench 8K using
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Table 7. Relationship between crop size and RAP performance.

Method HR-Bench 8K

FSP FCP Avg.
LLaVA-ov-0.5B 47.3 38.3 42.8

w/ RAP (224× 224) 82.0 40.8 61.4
w/ RAP (448× 448) 81.8 45.3 63.5
w/ RAP (896× 896) 76.8 43.3 60.0

LLaVA-ov-0.5B with SigLIP and VisRAG. Due to the lim-
ited text input length of SigLIP, we utilize MLLM to extract
noun phrases from the query to compute relevance with
image crops.

As shown in Table 8, we evaluate the retrieval quality of
SigLIP (Zhai et al., 2023) and VisRAG (Yu et al., 2024), find-
ing that VisRAG achieves superior retrieval performance.
Notably, our RAP significantly enhances performance even
with the relatively weaker retriever (SigLIP); for instance, it
delivers a 9.1% overall enhancement on HR-Bench 8K.

Table 8. Analyzing the relationship between RAP performance
and retriever using LLaVA-ov-0.5B with SigLIP and VisRAG. The
“Params.” refer to the total parameters of the retrievers.

Method Params. HR-Bench 8K

FSP FCP Avg.
LLaVA-ov-0.5B - 47.3 38.3 42.8

w/ RAP (SigLIP) 883M 65.0 38.8 51.9
w/ RAP (VisRAG) 3.34B 81.8 45.3 63.5

5.8. Why Does Our Method Work?

Reviewing the design principles of RAP: Retrieve image
crops related to the query to reduce the image resolution in-
put to the MLLM, thereby enabling the MLLM to perceive
images more accurately. To explore the underlying mecha-
nism of RAP, we perform experiments that help address the
following questions:

1) Is it truly necessary to retrieve image crops relevant
to the query? we compare randomly retained image crops
with query-relevant image crops using LLaVA-v1.5-7B on
HR-Bench 8K. As shown in Table 9, we randomly retained
K = 4 and half of the image crops, comparing them with K
image crops retrieved through VisRAG that are relevant to
the query. The results indicate that retaining query-relevant
image crops is necessary.

2) Can RAP accurately select an appropriate K? To an-
swer this question, we visualize the distribution of the num-
ber of retrieved image crops (K) for LLaVA-v1.5-7B w/
RAP on HR-Bench 8K. As shown in Figure 5(a), our RAP
effectively reduces the number of image crops, resulting

Table 9. Effect of retrieval on HR-Bench 8K. We compare two
methods: randomly retaining K image crops (Random) and re-
trieving K image crops. The “half” refers to retaining half of the
image crops (Retrieval).

Method HR-Bench 8K

FSP FCP Avg.
Random (K = 4) 25.0 23.8 24.4
Random (K = half) 29.0 24.5 26.8
Retrieval (K = 4) 52.3 25.0 38.6

RAP
All

FCP
FSP

(b)(a)

Figure 5. Analyzing the distribution for selecting K using our RAP.
(a) The distribution of K selected by RAP, where “All” denotes
the total number of image crops in the original image. (b) The
distribution of K corresponding to different task types.

a +21.7% accuracy improvement. Additionally, for the
FSP task, the K selected by our RAP is smaller, while for
the FCP task, it is widely distributed across the range cor-
responding to larger K (e.g., K ≥ 60). The experiment
results demonstrate that our RAP can provide accurate K,
thereby effectively reducing the image resolution.

6. Conclusion
In this paper, we propose a novel training-free framework
Retrieval-Augmented Perception (RAP) to enhance HR
image understanding in MLLMs. We empirically demon-
strated the effectiveness and universality of RAP on several
widely used MLLM benchmarks. From the results, we
mainly conclude that: (1) Retrieving image crops relevant
to the query can result in significant improvements; (2)
Maintaining the relative spatial relationships of the retrieved
image crops is essential, particularly for tasks that rely on
positional information; (3) The number of image crops that
need to be retained varies across different task types. In
our future work, we will explore more token compression
techniques to further enhance HR perception and efficiency.
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Impact Statement
Our work introduces a training-free framework, Retrieval-
Augmented Perception (RAP), which significantly improves
the ability of multimodal large language models (MLLMs)
to perceive and reason over high-resolution (HR) images.
Specifically, by combining retrieval techniques with effi-
cient spatial-awareness and adaptive search, RAP enables
MLLMs to capture finer visual details and spatial relation-
ships in images of resolutions previously unattainable with
standard approaches.
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Appendix
This appendix presents a detailed description of the proposed Retrieval-Augmented Perception (RAP), along with additional
results from comprehensive experiments, ablation studies, and case analyses. The structure of the appendix is summarized
as follows.

➤ Appendix A provides the implementation details of RAP, including preprocessing and hyperparameter settings. Specifi-
cally, we introduce the specific implementation of the Spatial-Awareness Layout in Appendix A.1. Appendix A.2 presents
the details of RE-Search, including the number of search steps and termination conditions. Appendix A.3 outlines the
algorithmic workflow of the proposed RAP. Finally, the prompt used for generation-based confidence calculation is provided
in Appendix A.4.

➤ Appendix B provides additional experimental results, including the experiment results on widely used benchmarks
(Appendix B.1), with more powerful MLLMs (Appendix B.2), the impact of inference scaling (Appendix B.3), the influence
of hyperparameters (Appendix B.4), and a comprehensive comparison with search-based methods (Appendix B.5).

➤ Appendix C provides a qualitative analysis of the proposed RAP and the current SOTA methods (Wang et al., 2025; Shen
et al., 2024). Appendix C.1 presents qualitative analysis examples on the fine-grained single-instance perception task, while
Appendix C.2 illustrates examples on the fine-grained cross-instance perception task.

➤ Appendix D presents and discusses the limitations of our RAP, providing directions for future research.

A. Additional Implement Details
Due to space constraints in the main paper, additional implementation details are provided in this section. In Appendix A.1
and Appendix A.2, we elaborate on the implementation of Spatial-Awareness Layout and Retrieved-Exploration Search,
respectively. Building upon these components, Appendix A.3 presents the complete algorithmic workflow of Retrieval-
Augmented Perception (RAP).

A.1. Implement Details of Spatial-Awareness Layout

Given an input image I , it is first partitioned into smaller image crops based on a predefined crop size, which corresponds to
the preferred resolution of the retriver. To ensure that the image size are divisible by the crop size and to prevent potential
loss of visual information, padding is applied to the original image I as necessary. Next, only non-zero image crops (referred
to as valid image crops) are retained to eliminate potential interference in the subsequent semantic similarity computation
with the query. The retriever, specifically VisRAG (Yu et al., 2024) in this implementation, is then utilized to compute the
cosine similarity between the user-provided query and each valid image crop. Based on the given K, the top K image
crops with the highest similarity scores are selected. Subsequently, the rows and columns containing the selected crops are
retained, forming a compressed matrix M ′. Finally, using M ′, the corresponding image crops in I are mapped to construct
a new transformed image I ′.

A.2. Implement Details of Retrieved-Exploration Search

In Retrieved-Exploration Search (RE-Search), a given HR image I is designated as the root node for the search process.
The semantic similarity between I and the query is computed, along with an assessment of whether the image contains
sufficient information for the MLLM to generate an appropriate response to the query. Subsequently, different proportions
of image crops are retained based on the predefined retention ratio set P . Specifically, for each node, 25%, 50%, and75% of
the image crops are preserved. The REward function is then applied to the retained image crops, and corresponding child
nodes are created. These child nodes are added to the list of candidate nodes O for further exploration. Throughout the
search process, the algorithm continuously tracks and maintains the optimal node identified thus far. The search process
terminates if the current search step exceeds the predefined maximum search steps, which is set to 200 by default, or when
the answering confidence c of the current node surpasses a specified threshold τ . We set τ = 0.6 throughout the paper.

A.3. Complete of Algorithm Workflow

With the above notations and definitions in place, we provide the complete algorithm workflow in Algorithm 2.
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Algorithm 2 Retrieval-Augmented Perception
Require: HR image I , Retriever R, Retention ratio P , Max steps maxs

import SpatialLayout from Algorithm 1
function REward(q, I, d)
V : {v1, ..., vn} ← Divide image I into image crops
g ← s(q, V )
h← 1− Pθ(ph(q), I)
w ← (1− b) · (1− 1

d )
2 + b

f ← (1− w) · g + w · h
return f

end function

function RetrievalSubNode(V )
V : {v1, ..., vn} ← Divide image I into image crops
Initialize Vs ← ∅
Initialize Ms ← ∅
for idx = 1 to |P | do
S ← s(q, V )
V ′,M ← topK(S, V, P [idx])
Vs ← Vs ∪ {V ′}
Ms ←Ms ∪ {M}

end for
return Vs,Ms

end function

f ← REward(q, I, 0)
t0 ← Node(v = I, f = f, d = 0)
Initialize O ← {t0}
toptimal ← t0
S ← 0 /*Current step */
while O is not empty and S ≤ maxs do

Extract all confidence F ← [ o.f : o ∈ O ]
idx← argmin(F )
ts ← O[idx]
Remove ts from O
S ← S + 1
if ts.f > τ then

return toptimal.v
end if
/* Retrieval*/
Vs,Ms ← RetrievalSubNode(I)
/* Exploration*/
for idx = 1 to |Vs| do
Is ← SpatialLayout(Vs[idx],Ms[idx])
fs ← REward(q, Is, ts.d)
ts+1 ← Node(v = Is, f = fs, d = ts.d + 1)
O ← O ∪ {ts+1}
if ts+1.f > toptimal.f then
toptimal ← ts+1

end if
end for

end while
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A.4. Prompt for Generation-based Confidence Scores

To improve the applicability of our RAP method to closed-source MLLMs, we investigate a straightforward alternative that
leverages generation-based confidence scores. Specifically, we employ the prompt shown in Table 10 to prompt the MLLM
to generate a confidence score conditioned on the given input image and question.

Table 10. Prompt template for generation-based confidence scores. The “[question]” is placeholder meant to be replaced with specific
question from the dataset.

Prompt Template for Generation-based Confidence Score
Question: [question]
Could you answer the question based on the available visual information? Return only a JSON object with a numerical
confidence score (0 10) of “Yes” like {“Yes”: x}.

B. More Experiment Result
B.1. More Experiment Results on Widely used Benchmarks

We conduct additional experiments on five widely used benchmarks: DocVQA (Mathew et al., 2021), ChartQA (Masry et al.,
2022), TextVQA (Singh et al., 2019), AI2D (Hiippala et al., 2021), and MMStar (Chen et al., 2024b). As shown in Table 11,
incorporating RAP led to performance of 1.8% and 2.1% on LLaVA-v1.5 7B and 13B, respectively. We also observed taht
RAP brings more notable improvements on higher-resolution images. For example, on DocVQA, which has an average
resolution of 1599× 1241, RAP improved performance by 4.7% and 2.3% for LLaVA-v1.5 7B and 13B, respectively.

Table 11. Comparison of the RAP against the baseline MLLM on five widely used benchmarks.

DocVQA ChartQA TextVQA AI2D MMStar
LLaVA-v1.5-7B 21.5 18.2 45.8 54.9 30.3

w/ RAP 26.2 18.5 46.8 55.1 33.1
LLaVA-v1.5-7B 23.7 18.5 49.0 60.2 32.8

w/ RAP 26.0 23.2 50.0 60.9 34.4

B.2. More Experiment Results with Powerful MLLMs

To further demonstrate the effectiveness and generalizability of our RAP, we conduct experiments on HR-Bench using
several advanced MLLMs, including Oryx-1.5-7B, CogVLM-LLama3-19B, Cambrian-8B and LLaVA-ov-72B. As shown
in Table 12, our RAP consistently boosts performance across all models. These results underscore the robustness of our
RAP across a wide range of model architectures, highlighting its potential as a universal enhancement for high-resolution
image perception.

Table 12. Comparison of our RAP with Advanced MLLMs on HR-Bench.

HR-Bench 4K HR-Bench 8K

FSP FCP Avg. FSP FCP Avg.
Oryx-1.5-7B (Liu et al., 2024d) 62.0 50.5 56.3 53.8 45.3 49.5

w/ RAP 80.8 52.5 66.6 77.3 45.2 61.3
CogVLM-LLama3-19B (Hong et al., 2024) 69.5 48.8 59.1 53.3 45.0 49.1

w/ RAP 82.5 48.3 65.4 76.3 43.7 60.0
Cambrian-8B (Tong et al., 2024) 45.5 45.5 45.5 30.8 45.0 37.9

w/ RAP 70.0 44.3 57.1 66.5 44.8 55.6
LLaVA-ov-72B (Li et al., 2024a) 76.8 57.5 67.1 70.5 55.3 62.9

w/ RAP 91.5 60.0 75.8 89.3 54.5 71.9
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B.3. RAP Performance and Inference Computation Scale

To analyze the performance changes with different search steps, we plot the performance of RE-Search steps. We conduct
experiments on HR-Bench 8K using LLaVA-v1.5 7B & 13B, LLaVA-ov-0.5B. To accurately analyze the relationship
between search steps and performance, we set τ = ∞ to prevent early termination due to threshold constraints during
the search process. This forces the model to perform a fixed number of steps and selects the K with the lowest cost as
the final output. As shown in Figure 6, we observe that increasing the number of search steps improves the performance,
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Figure 6. Performance vs. RE-Search steps on HR-Bench 8K. (a) Fine-grained Single-instance Perception (FSP); (b) Fine-grained
Cross-instance Perception (FCP); (c) Overall Performance.

especially on the FCP task. However, the gains are marginal for LLaVA-v1.5-7B but more pronounced for stronger
models like LLaVA-ov-0.5B and LLaVA-v1.5-13B. Our analysis reveals that the FCP task requires consideration of the
spatial relationships between image crops and their spatial combinations, making capabilities result in a more noticeable
performance improvement with increased search steps.

B.4. Effect of bias b

In the RE-Search, we use w to balance the cost g(·) and heuristic function h(·) in different depth. In Eq. 6, we use b as the
bias value to control the influence of depth on w. A smaller b indicates a greater influence of depth on w, while a larger b
reduces this influence.

(a) FSP (b) FCP (c) Average

LLaVA-ov-0.5B w/ RAP LLaVA-v1.5-13B w/ RAPLLaVA-v1.5-7B w/ RAP
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Figure 7. Impact of bias value b, illustrating how the accuracy changes when varying bias value b.

As shown in Figure 7, our RAP is not sensitive to the value of b, and it consistently outperforms the baseline across all
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configurations. Furthermore, we observe that smaller values of b lead to better results for all models. Therefore, to ensure a
fair comparison, we set b = 0.2 by default.

B.5. Compared with Other HR Processing Methods

We compare our RAP with two HR processing methods – DC2 and Zoom Eye. DC2 is a training-free framework to enhance
MLLM understanding of HR images by partitioning images, generating textual descriptions for image crops, and integrating
them for improved perception. Zoom Eye, a tree search algorithm, is designed to effectively navigate the hierarchical and
visual structures of images to extract relevant information.

As shown in Table 13, compared with the baseline, all HR processing methods bring the average performance gains. Among
all these methods, our RAP achieves the relatively better formance on most tasks. For instance, RAP achieve an accuracy of
73.8% and 72.3% on HR-Bench 4K and HR-Bench 8K, respectively, using LLaVA-v1.5-7B, representing improvements of
6.0% and 6.8% compared to Zoom Eye. These results can prove the superiority of our RAP.

Table 13. Performance comparison between RAP and other HR methods. We conduct experiments on V ∗ Bench and HR-Bench using
LLaVA-v1.5 7B and 13B. The “∆(↑)” represents the performance gains of HR methods against the baselines.

Method V ∗ Bench HR-Bench 4K HR-Bench 8K
∆(↑)

Attribute Spatial Overall FSP FCP Overall FSP FCP Overall
LLaVA-v1.5-7B 43.5 56.6 48.7 38.5 33.8 36.1 33.0 31.3 32.1 -

-w/ DC2 49.6 59.2 51.6 45.3 37.0 41.1 36.5 33.3 34.9 +2.5
-w/ Zoom Eye 83.5 82.9 83.3 67.8 38.8 53.3 65.5 36.0 50.8 +22.5
-w/ RAP 90.4 96.1 91.1 73.8 40.5 57.1 72.3 35.3 53.8 +27.0

LLaVA-v1.5-13B 41.7 55.3 47.1 45.2 41.3 43.3 37.5 38.0 37.8 -
-w/ DC2 54.8 56.6 57.3 52.0 51.0 51.5 40.0 41.0 40.5 +7.1
-w/ Zoom Eye 87.5 81.6 85.3 73.0 43.0 58.0 67.3 45.5 56.4 +23.9
-w/ RAP 89.6 90.8 89.8 74.3 46.0 60.1 76.5 42.0 59.3 +27.0

C. Case Study
C.1. Qualitative Examples of Fine-grained Single-instance Perception Task

Figure 8 illustrates two instances where incorporating different HR processing methods (DC2, Zoom Eye and our RAP) on
LLaVA-v1.5-13B. In the first example, the critical information “08-26” in the image lies exactly at the boundary of two
image crops. Zoom Eye retains only a part of it, leading to the loss of critical information. In contrast, our RAP, leaveraging
RE-Search, accrately preserves the critical information and provides a correct response. In the second example, DC2 initially
searches along an incorrect path, resulting in an erroneous final answer. In contrast, our RAP method accurately retrieves
the cup on the ground, thereby providing the correct answer.

Query: What is the number 
written on the sign visible in the 
background of the image?

Zoom Eye

Search result:

Answer: 08-28  

Our RAP
Retrieval result:

Answer: 08-26  

Query: What is the primary 
material of the cup lying on the 
ground?

𝑫𝑫𝑪𝑪𝟐𝟐

Search result:

Answer: Glass

Our RAP
Retrieval result:

Answer: Cardboard  

Figure 8. Qualitative examples of Fine-grained Single-instance Perception task. We conduct experiments on HR-Bench 4K using
LLaVA-v1.5-13B with HR processing methods.
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C.2. Qualitative Examples of Fine-grained Cross-instance Perception Task

Figure 9 presents two examples demonstrating the performance of different HR processing methods (DC2, Zoom Eye, and
our RAP) applied to LLaVA-v1.5-13B. In the first example, Zoom Eye fails to consider the spatial relationships between
image crops, leading to an incorrect search result and an erroneous response. In contrast, our RAP effectively preserves the
relative positions between image crops, enabling the generation of a correct answer. In the second example, multiple image
crops are required for accurate reasoning. However, DC2 retrieves only a single image crop based on the keyword “chair”
from the query, resulting in an incorrect answer. In contrast, our RAP accurately retains the critical image crops, thereby
producing the correct answer.

Query: Where is the small stone 
cairn located relative to the 
waterfall?

Zoom Eye

Search result:

Answer: To the left 

Our RAP

Retrieval result:

Answer: At the bottom right   

Query: What direction are the 
chairs facing in the image?

𝑫𝑫𝑪𝑪𝟐𝟐

Search result:

Answer: Facing the window 

Our RAP

Retrieval result:

Answer: Facing each other 

Figure 9. Qualitative examples of Fine-grained Cross-instance Perception task. We conduct experiments on HR-Bench 4K using
LLaVA-v1.5 13B with HR processing methods.

D. Limitation Discussion
Admittedly, the proposed RAP has limitations, despite its promising performance on HR benchmarks. In particular, the
proposed method relies on an external retriever for plausible results. In our future work, we will strive to address this
limitation by investigating the model’s internal visual perception to adaptively select key image crops.
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