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Abstract

Large Language Models (LLMs) have revo-001
lutionized various Natural Language Genera-002
tion (NLG) tasks, including Argument Sum-003
marization (ArgSum), a key subfield of Argu-004
ment Mining (AM). This paper investigates005
the integration of state-of-the-art LLMs into006
ArgSum, addressing the challenges of tradi-007
tional evaluation metrics, which do not align008
well with human judgment. We propose a novel009
prompt-based evaluation scheme, and validate010
it through a novel human benchmark dataset.011
Our work makes three key contributions: the in-012
tegration of LLMs into existing ArgSum frame-013
works, the development of a new ArgSum sys-014
tem benchmarked against prior methods, and015
the introduction of an advanced LLM-based016
evaluation scheme. We demonstrate that the017
use of LLMs substantially improves both the018
generation and evaluation of argument sum-019
maries, achieving state-of-the-art results and020
advancing the field of ArgSum.021

1 Introduction022

In recent years, Large Language Models (LLMs)023

have significantly transformed various Natural Lan-024

guage Processing (NLP) and Generation (NLG)025

tasks. Their remarkable capabilities in understand-026

ing and generating human-like text promise new027

avenues for challenging tasks such as Argument028

Summarization (ArgSum), a subfield of Argument029

Mining (AM) that focuses on distilling the essence030

of multiple arguments into concise representations031

(Petasis and Karkaletsis, 2016).032

With only a few recent exceptions (Li et al.,033

2024; Ziegenbein et al., 2024), however, ArgSum034

has up-to-date been mostly tackled with pre-LLM035

solutions, such as clustering techniques and earlier-036

generation pre-trained language models (Reimers037

et al., 2019; Ajjour et al., 2019; Misra et al., 2016;038

Wang and Ling, 2016; Schiller et al., 2021).039

Thus, there is an urgent need for systematic anal-040

ysis to understand how LLMs can be effectively041

utilized for both the generation and evaluation of 042

argument summaries. This includes integrating 043

LLMs into ArgSum frameworks to comprehensively 044

assess their performance and developing suitable 045

prompt-based evaluation schemes. 046

In this work, we aim to fill this gap by exten- 047

sively exploring how LLMs can be leveraged for 048

the ArgSum process, both for generating argument 049

summaries and for their evaluation. Our core con- 050

tributions are: (i) We integrate LLMs into exist- 051

ing ArgSum systems and evaluation schemes, (ii) 052

we introduce a new ArgSum system and bench- 053

mark existing work against it, (iii) we provide a 054

new ArgSum evaluation dataset with human evalu- 055

ation scores, and (iv) we develop a prompt-based 056

ArgSum evaluation scheme and validate it in the 057

context of existing work and our human evaluation. 058

We show that the use of LLMs substantially im- 059

proves existing work in both the process of ArgSum 060

as well as ArgSum evaluation and present several 061

state-of-the-art results. 062

2 Related Work 063

2.1 Argument Summarization 064

Automatic Text Summarization (ATS) aims to con- 065

dense key ideas from one or more documents into 066

a concise summary (Radev et al., 2002), while min- 067

imizing redundancy (Moratanch and Chitrakala, 068

2017). While abstractive summarization gener- 069

ates a summary including text units that do not 070

necessarily appear in the source text, extractive 071

summarization identifies the most important parts 072

of a document and assembles them into a summary 073

(Giarelis et al., 2023). ATS consists of several 074

sub-areas like News Summarization (Sethi et al., 075

2017), Legal Document Summarization (Anand 076

and Wagh, 2022), Scientific Paper Summarization 077

(Zhang et al., 2018), and ArgSum (Petasis and 078

Karkaletsis, 2016). Our focus is the latter. 079

Wang and Ling (2016) treat ArgSum as claim 080

generation, where a collection of argumentative 081
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sentences is summarized by generating a one-082

sentence abstractive summary that addresses the083

shared opinion of the inputs. Friedman et al.084

(2021); Bar-Haim et al. (2020) introduce Key Point085

Analysis (KPA), which aims to create an extractive086

summary of the most prominent key points con-087

tained in a potentially large collection of arguments.088

Schiller et al. (2021) present an aspect-controlled089

argument generation model that enables an abstrac-090

tive summatization of arguments. Li et al. (2023)091

extend KPA with a clustering-based, abstractive ap-092

proach. While they use all arguments as input for a093

generation model to create key points, Khosravani094

et al. (2024) introduce an extractive approach by095

selecting the most representative argument within096

each cluster, which is determined by a supervised097

scoring model.098

While there are some works on LLMs as sum-099

marization models for arguments (Li et al., 2024;100

Ziegenbein et al., 2024), this is the first systematic101

study on strategies for integrating LLMs with exist-102

ing approaches for ArgSum. Furthermore, we also103

present a systematic overview on how to integrate104

LLMs into the evaluation of ArgSum systems.105

2.2 Evaluating NLG Systems106

While automatic evaluation metrics such as BLEU107

(Papineni et al., 2002) and ROUGE (Lin, 2004)108

correlate poorly with human judgments (Novikova109

et al., 2017), pre-trained transformer-based lan-110

guage models provide a more nuanced assessment111

of the performance of NLG systems (Celikyilmaz112

et al., 2021). BERTScore (Zhang et al., 2020)113

and MoverScore (Zhao et al., 2019) are reference-114

based metrics that leverage pre-trained embed-115

dings obtained from BERT-based models. While116

BERTScore is based on the computation of cosine-117

similarities between the hypothesis and the refer-118

ence, MoverScore determines an evaluation score119

by computing the Word Mover’s Distance (Kus-120

ner et al., 2015) between both. BARTScore (Yuan121

et al., 2021) is based on the pre-trained sequence-122

to-sequence model BART and treats the evalua-123

tion task as a problem of text generation. MENLI124

(Chen and Eger, 2023) frames the evaluation task125

as a problem of Natural Language Inference (NLI),126

showing improved robustness. The most recent127

approaches to evaluation are LLM-based metrics,128

which can be leveraged in various ways: by com-129

paring embeddings in terms of their cosine similar-130

ity (Es et al., 2024), by determining the sequence131

probability of the hypothesis given the respective132

source/reference (Fu et al., 2024), by utilizing suit- 133

able prompting strategies (Kocmi and Federmann, 134

2023; Liu et al., 2023; Fernandes et al., 2023; Leiter 135

and Eger, 2024; Larionov and Eger, 2024), or by ap- 136

plying task-specific fine-tuning (Wang et al., 2024; 137

Xu et al., 2023; Zhu et al., 2023). Some works 138

show promising zero-shot results that are on-par 139

with human-judgement (Leiter et al., 2023; Chang 140

et al., 2024). 141

In this work, we leverage LLMs to evaluate 142

ArgSum systems, which is different from evalua- 143

tion of classical text generation systems, requir- 144

ing different dimensions of evaluation (e.g., re- 145

dundancy and coverage) and different mechanisms 146

(e.g., ArgSum requires to compare a gold summary 147

of m arguments to a generated summary of n ar- 148

guments). To this end, we apply an LLM-based 149

prompting approach besides incorporating classi- 150

cal NLG metrics into ArgSum adjusted evaluation 151

schemes. 152

3 Experimental Setup 153

3.1 Terminology 154

Our understanding of ArgSum is based on that of 155

KPA, where ArgSum is performed per topic and 156

stance. It is assumed that a set of arguments is 157

given and that the ArgSum systems generate a set 158

of argument summaries, as displayed in Figure 1. 159

Most previous work on ArgSum can be catego- 160

rized as either classification-based or clustering- 161

based systems. Classification-based systems first 162

generate a set of argument summaries based on all 163

available source arguments. In a second step, they 164

match each source argument to the most appropri- 165

ate summary. Clustering-based systems first group 166

all source arguments according to their similarity. 167

Then, they generate a summary of the arguments 168

for each group. In this work, we augment ArgSum 169

systems of both types with LLMs. Details of those 170

systems and how we integrate LLMs are specified 171

in §3.2 and §3.3. 172

The systems we assess use two types of tools 173

to perform ArgSum. While Quality Scorers assess 174

the quality of an argument, Match Scorers deter- 175

mine how well an argument and a summary match. 176

Both are realized by transformer-based language 177

models that take task-specific textual inputs and 178

output a respective score. The ArgSum systems 179

considered in this work utilize Quality Scorers that 180

are fine-tuned on the IBM-ArgQ-Rank-30kArgs 181

(ArgQ) dataset by Gretz et al. (2020). The cor- 182
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Figure 1: General procedure of ArgSum, where a set of K arguments on a certain debate topic and stance (example
taken from Friedman et al. (2021)) as input is transformed to a set of N argument summaries along with their
respective importance (indicated by the size of the green dots). It is expected that K >> N applies.

responding Match Scorers are fine-tuned on the183

ArgKP-2021 (ArgKP21) dataset by Friedman et al.184

(2021).185

3.2 Classification-based Systems186

We consider two classification-based ArgSum sys-187

tems, which performed best in the Key Point Gener-188

ation Track at the 2021 Key Point Analysis Shared189

Task (Friedman et al., 2021).190

BarH To determine a set of potential argument191

summaries, referred to as candidates, BarH (Bar-192

Haim et al., 2020) scores the source arguments193

with a Quality Scorer and selects those exceed-194

ing a threshold tq. Subsequently, BarH applies a195

Match Scorer to match the remaining source ar-196

guments to the best fitting candidates. After rank-197

ing the candidates according to their number of198

matches, BarH minimizes redundancy by removing199

candidates whose match score with a higher-ranked200

candidate exceeds a threshold tm. The remaining201

candidates are understood as the final argument202

summaries.203

SMatchToPr To identify argument summary204

candidates, SMatchToPr (Alshomary et al., 2021)205

uses a variant of PageRank (Page et al., 1998). To206

this end, candidates are understood as nodes in an207

undirected graph, utilizing the match scores be-208

tween each candidate pair as edge weights. Only209

nodes with edge weights above a threshold tn are210

connected. Based on the resulting graph, an impor-211

tance score is calculated for each candidate. Then,212

SMatchToPr minimizes redundancy by removing213

candidates whose match score with a higher-ranked214

candidate exceeds a threshold tm. This results in215

the final set of argument summaries.216

LLM Integration Given a set of arguments on217

a certain debate topic and stance, we apply a zero-218

shot prompting approach to instruct an LLM to219

generate either a set of candidates or argument220

summaries. The resulting candidates or argument221

summaries are then further processed as usual in 222

both BarH and SMatchToPr. 223

3.3 Clustering-based Systems 224

We consider an approach from Li et al. (2023) 225

which demonstrated comparable performance to 226

BarH and SMatchToPr. Further, we propose a new 227

ArgSum approach that utilizes a Match Scorer for 228

argument clustering. 229

USKPM For clustering arguments, USKPM (Li 230

et al., 2023) utilizes the BERTopic framework 231

(Grootendorst, 2022), which involves three steps. 232

First, contextualized sentence embeddings of the 233

arguments are created via SBERT (Reimers and 234

Gurevych, 2019). Second, UMAP (McInnes et al., 235

2018) is applied to reduce the embeddings’ dimen- 236

sionality. Third, the clustering of the reduced em- 237

beddings is performed by HDBSCAN (McInnes 238

et al., 2017). Instances included in clusters with a 239

size smaller than c are considered as unclustered. 240

Since Li et al. (2023) state that it is reasonable to 241

maximize the number of clustered arguments in 242

order to increase the representativeness of the ar- 243

gument summaries to be generated, Iterative Clus- 244

tering (IC) is proposed. IC is about incrementally 245

assigning unclustered arguments to the most simi- 246

lar cluster in terms of cosine similarity. 247

Then, USKPM uses the instruction-tuned FLAN- 248

T5 (Chung et al., 2022) to summarize the argument 249

clusters, where the model input is formatted as 250

follows: “summarize: {Stance} {Topic} {List of 251

Arguments in Cluster}”. 252

MCArgSum Our own approach, MCArgSum 253

(Match Clustering based ArgSum), combines the 254

use of a Match Scorer for argument clustering with 255

an LLM-based cluster summarization. It is inspired 256

by the redundancy reduction among candidates 257

within BarH, where a Match Scorer is utilized to 258

identify candidates addressing the same key point. 259

We demonstrate that a Match Scorer can also be 260
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effectively used to group arguments addressing the261

same main statement. While the key idea of using262

a Match Scorer to group arguments is proposed263

by Khosravani et al. (2024), our ArgSum system264

additional provides an abstractive summarization265

of argument clusters by incorporating an LLM.266

Our ArgSum system utilizes Agglomerative Hi-267

erarchical Clustering (Day and Edelsbrunner, 1984)268

with the average linkage criterion in reference to269

Reimers et al. (2019) and a Match Scorer as pair-270

wise similarity metric. To this end, we use the271

SBERT (Reimers and Gurevych, 2019) model “all-272

mpnet-base-v2”, fine-tuned on ArgKP21. While273

the threshold m determines the minimum match274

score required between two clusters to be merged,275

inctances included in clusters with a size smaller276

than c are considered as unclustered.277

To generate cluster summaries, our model uses278

LLM prompting in a zero-shot setting. We integrate279

a prompting strategy that summarizes all argument280

clusters simultaneously (global optimization). De-281

tails are given in the appendix. After summariza-282

tion, a post-processing step automatically extracts283

the argument summaries in the desired format.284

3.4 Evaluation285

Here, we describe the approaches used to evaluate286

ArgSum systems. These metrics are both set-based287

and reference-based, meaning a set of candidate288

summaries is compared to a set of reference sum-289

maries.290

In accordance with previous work on generating291

argument summaries, we assess the two evalua-292

tion criteria of coverage and redundancy. Cov-293

erage refers to the extent to which a set of argu-294

ment summaries captures the central talking points295

of a debate. Redundancy is concerned with the296

extent of content overlap between the individual297

argument summaries (Bar-Haim et al., 2020; Al-298

shomary et al., 2021; Friedman et al., 2021; Li299

et al., 2023; Khosravani et al., 2024).300

Soft-Score Li et al. (2023) introduce three evalu-301

ation scores: Soft-Precision (sP), Soft-Recall (sR)302

and Soft-F1 (sF1). While sP finds the most suitable303

reference summary for each candidate summary,304

sR finds the most suitable candidate summary for305

each reference summary. To compare references306

and candidates, Li et al. (2023) utilize a semantic307

similarity function. The final evaluation scores in308

terms of sP and sR are obtained by averaging the309

similarity scores of the respective best matches of310

references and candidates. Finally, the sF1 is the 311

harmonic mean of sP and sR. Formally: 312

sP =
1

n
·
∑
ai∈A

max
βj∈B

f(ai, βj) (1) 313

sR =
1

m
·
∑
βj∈B

max
ai∈A

f(ai, βj) (2) 314

where f is a function evaluating the semantic 315

similarity between two summaries; A and B are 316

the sets of candidate and reference summaries, with 317

n and m being their respective sizes. As similar- 318

ity function, Li et al. (2023) suggest the use of 319

BLEURT (Sellam et al., 2020) and BARTScore. 320

Coverage-Score (CS) The Coverage-Score (CS) 321

(Khosravani et al., 2024) assesses the coverage of 322

a set of candidate summaries, which is defined as 323

the proportion of reference summaries covered by 324

them. Each possible pair of candidates and refer- 325

ences is scored by a Match Scorer and classified 326

as matching or non-matching. The former corre- 327

sponds to the case in which the respective match 328

score is above a certain threshold. Finally, the CS 329

is derived as the proportion of references with at 330

least one matching candidate. Formally: 331

CS =
1

m

∑
βj∈B

1

∑
ai∈A

1 [match(ai, βj) > t] ≥ 1


(3) 332

where match indicates the match score of two 333

summaries; A and B are the sets of candidate and 334

reference summaries, m is the size of B and t is 335

the matching threshold. Khosravani et al. (2024) 336

suggest the use of the Match Scorer inherent in 337

BarH. A recommended threshold t is not provided. 338

LLM-based We introduce two LLM one-shot 339

prompting strategies for assessing ArgSum systems, 340

focusing on the criteria of coverage and redundancy. 341

(1) We address coverage by instructing an LLM to 342

count the number of reference summaries covered 343

by a set of candidate summaries. Dividing this 344

count of covered references by the total number 345

of references results in an LLM-based coverage 346

score. (2) To assess redundancy, we instruct an 347

LLM to count the number of unique main state- 348

ments within a set of candidate summaries. The 349

resulting uniqueness count is limited to the total 350

number of candidates and a uniqueness score is de- 351

rived by dividing the uniqueness count by the total 352
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number of candidates. Subsequently, we derive an353

LLM-based redundancy score as the complemen-354

tary uniqueness score (1− uniqueness). The final355

LLM-based coverage and redunancy scores for a356

certain set of candidate summaries is obtained by357

averaging the results of 10 evaluation runs.358

Human Evaluation To verify the reliability of359

the automatic evaluation metrics, we conduct a hu-360

man evaluation of 126 generated argument sum-361

maries obtained from the ArgSum systems de-362

scribed in §3.2 and §3.3. We characterize a suit-363

able set of argument summaries as consisting of364

succinct, non-redundant summaries that cover the365

main statements shared across the source argu-366

ments with adequate granularity. Thus, we assess367

the criteria of coverage and redundancy, as intro-368

duced above.369

The judgments are carried out by four experi-370

enced annotators with excellent knowledge within371

the field of NLP, especially argumentation. Ini-372

tially, the four annotators are introduced to the task373

of ArgSum and provided with a description of the374

evaluation task. Guidelines can be found in §C in375

the appendix. The annotators are presented with a376

set of generated argument summaries and the cor-377

responding set of reference summaries. To assess378

coverage, they are asked to count the number of379

references that are covered by the set of generated380

summaries. The respective coverage score is the381

proportion of covered references out of the total382

number of references. We then ask the annotators383

to count the number of unique main statements384

within the set of generated summaries (permitted385

count is limited to the total number of generated386

summaries). Based on this, we derive a uniqueness387

score (ranging from zero to one) as the number of388

unique main statements divided by the total num-389

ber of generated summaries. The redundancy score390

is the complementary uniqueness score.391

In order to determine the inter-rater reliability,392

we average the Pearson correlation coefficients be-393

tween each pair of the four annotators’ scores for394

both criteria. We report an average correlation of395

0.697 for coverage and 0.722 for redundancy, in-396

dicating that the annotations are reliable. Pairwise397

correlations between annotators are shown in Fig-398

ure 5 in the appendix.399

4 Results400

In this section, we present the correlation of auto-401

matic metrics with human judgements in §4.1 and402

the evaluation of ArgSum systems in §4.2. 403

Data While ArgKP21 is used to train the 404

Match Scorers utilized by BarH, SMatchToPr and 405

MCArgSum, we use its test set to generate argu- 406

ment summaries in §4.1 and §4.2. 407

This dataset consists of 27,519 pairs of argu- 408

ments and key points, each labeled with a binary 409

value that indicates whether the corresponding ar- 410

gument and key point are matching (1) or non- 411

matching (0). While the pairs of arguments and 412

key points cover 28 topics, each with supporting 413

(1) and opposing (-1) stance, the dateset includes a 414

train set of 24 topics, a development set of 4 topics 415

and a test set of 3 topics. 416

We also consider the Debate dataset (Hasan and 417

Ng, 2014) as a second independent evaluation data 418

set in §4.2. Debate includes 3,228 argumentative 419

text sequences filtered from posts on four differ- 420

ent topics in an online debate forum. The text 421

sequences are labeled with their reason within the 422

respective topic and whether they are supporting 423

(1) or opposing (-1). We consider the argumenta- 424

tive text sequences as arguments and the reasons as 425

argument summaries. In contrast to ArgKP21, the 426

dataset exclusively contains matching pairs. 427

Exemplary data points for ArgKP21 and Debate 428

are presented in Table 7 and Table 8 in the appendix, 429

respectively. The data preprocessing is described 430

in Appendix §A.3. 431

Representative LLM As representative LLM, 432

we utilize GPT-4o (gpt-4o-2024-08-06) 433

for ArgSum, as well as GPT-4o-mini 434

(gpt-4o-mini-2024-07-18) for evaluation, 435

both provided by OpenAI’s API service.1 GPT-4o 436

offers more qualitative responses for a suitable 437

generation of argument summaries, while GPT- 438

4o-mini was chosen for evaluation as it offers 439

fast response times and is a cost-effective model 440

version for the more quantity-based evaluation 441

approach. We integrated GPT-4o into the ArgSum 442

systems as described in §3.2 and §3.3. GPT-4o- 443

mini was integrated into the automatic evaluation 444

metrics as discussed in §3.4. Nevertheless, we 445

continue to use the general term “LLM” to indicate 446

that GPT-4o can be replaced with any other 447

generative LLM. 448

1https://platform.openai.com/docs/models/
gpt-4o-mini
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4.1 Reliability of automatic metrics449

To measure the quality of diverse automatic met-450

rics, we correlate them to our human assessment451

of 126 argument summaries, see §3.4, where we452

average the four human assessments per instance,453

focusing on the dimension of coverage as anno-454

tated by humans.455

We consider two ways of computing correlations.456

1) We calculate correlations across all topics and457

stances simultaneously. 2) We calculate correla-458

tions within topics and stances and average the459

results. For the latter scenario, we also report the460

standard deviations, indicating the variability of461

reliability.462

SoftScore We then run SoftScore, explained in463

§3.4, with differently proposed automatic metrics464

as similarity functions f . In our case, we use: (1)465

ROUGE 1, (2) BERTScore F1 (Zhang et al., 2020),466

(3) MoverScore (Zhao et al., 2019), (4) BARTScore467

(Yuan et al., 2021), (5) BLEURT (Sellam et al.,468

2020), (6) MENLI (Chen and Eger, 2023).469

Table 3 in the appendix shows the results. First,470

we note that sP does not intuitively correspond to471

annotation dimensions of coverage or redundancy472

in our human annotation — sP could be interpreted473

as the fraction of candidate summaries covered474

by the reference summaries, but not vice versa.475

Thus, it comes as no surprise that the correlation476

between sP and coverage is close to zero across all477

settings. The sR, which better matches the defini-478

tion of coverage, performs clearly better, even if no479

strong correlations are observed. Across topics and480

stances, MENLI performs best (0.265) followed by481

BERTScore-F1 (0.254). The scenario within top-482

ics and stances generally yields better correlation483

results for the sR. While BERTScore-F1 exhibits484

the highest correlation at 0.402, MENLI (0.372)485

also achieves a moderate positive correlation with486

the human coverage scores.487

It is notable that BLEURT and BARTScore, sug-488

gested by Li et al. (2023), achieve the poorest re-489

sults among all considered similarity functions.2490

Coverage Score For CS, we also examine the491

correlation with the averaged human coverage492

scores. For the Match Scorers inside of CS, we493

consider those of BarH, as proposed by Khosravani494

et al. (2024), as well as those of SMatchToPr and495

MCArgSum. Furthermore, we apply various values496

2We rescaled BARTScore according to Li et al. (2023) in
order to obtain positive scores in the range from zero to one.

for the threshold tM , which determines the match 497

score for which an individual reference summary 498

is understood as covered or not. The LLM-based 499

metrics for coverage and redundancy, described in 500

§3.4, are examined regarding their respective cri- 501

terion. Here, we investigate different values for 502

the temperature, a parameter controlling the cre- 503

ativity or randomness in LLM-based text generation 504

(Peeperkorn et al., 2024). 505

As depicted in Table 1, the CS with BarH’s Match 506

Scorer reaches a maximum correlation of 0.489 507

across and 0.698 within topics and stances. For 508

the scenario across topics and stances, SMatch- 509

ToPr performs even better and achieves a maximum 510

correlation of 0.541. Within topics and stances, 511

SMatchToPr reaches a maximum correlation of 512

0.6. The Match Scorer included in MCArgSum yields 513

comparatively worse results, achieving a maximum 514

correlation of 0.449 within and 0.551 across topics 515

and stances. Regarding the matching threshold tM , 516

BarH’s Match Scorer performs very stably across 517

the considered parameter range, whereas this is not 518

the case for both other variants. 519

Although the CS thus provides considerably 520

stronger correlations for the criterion of coverage 521

compared to the Soft-Score, it likely overfits the 522

structure of ArgKP21 on which our conducted hu- 523

man evaluation is based. 524

LLM-based metric The LLM-based score for cov- 525

erage achieves a maximum correlation of 0.767 526

across and 0.803 within topics and stances. Conse- 527

quently, it performs better than the Soft-Score and 528

CS in all scenarios. The LLM-based metric for re- 529

dundancy reaches a maximum correlation of 0.852 530

across and 0.824 within topics and stances, again 531

performing considerably better than the Soft-Score 532

and CS (see subsection B.1, Table 6). Thus, we 533

exclusively use LLM-based scores in the remainder. 534

4.2 System evaluation 535

In this section, we evaluate the argument separation 536

capabilities of clustering-based ArgSum systems in 537

§4.2.1 and then evaluate the best ArgSum systems 538

overall in §4.2.2. 539

4.2.1 Argument Separaration Capability 540

We first evaluate the capability of clustering-based 541

ArgSum systems (USKPM, MCArgSum and two 542

MCArgSum versions with the Match Scorers of 543

BarH and SMatchToPr) to separate arguments. To 544

determine the argument separation capability of 545

ArgSum systems, we use the ARI (Warrens and 546
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Threshold
CS (BarH) CS (SMatchToPr) CS (MCArgSum)

Across Within Across Within Across Within

0.40 0.478 0.585 ±0.254 -0.092 -0.157 ±0.037 0.206 -0.057 ±0.223

0.45 0.475 0.605 ±0.248 0.163 -0.074 ±0.187 0.300 -0.019 ±0.307

0.50 0.465 0.627 ±0.251 0.174 -0.023 ±0.196 0.300 -0.019 ±0.307

0.55 0.462 0.657 ±0.273 0.378 0.249 ±0.307 0.281 -0.002 ±0.292

0.60 0.489 0.698 ±0.222 0.469 0.338 ±0.371 0.415 0.137 ±0.390

0.65 0.464 0.676 ±0.218 0.465 0.411 ±0.256 0.449 0.256 ±0.357

0.70 0.458 0.657 ±0.233 0.457 0.404 ±0.212 0.369 0.297 ±0.295

0.75 0.466 0.658 ±0.197 0.541 0.550 ±0.182 0.379 0.347 ±0.319

0.80 0.429 0.591 ±0.154 0.511 0.600 ±0.196 0.444 0.551 ±0.193

0.85 0.414 0.556 ±0.201 0.468 0.558 ±0.085 0.364 0.421 ±0.270

0.90 0.295 0.504 ±0.249 0.238 0.261 ±0.070 0.316 0.401 ±0.129

Average
Runtime (s) 70.302 20.961 14.689

Table 1: Pearson correlation coefficient between the CS (incl. different Match Scorers) and averaged human
coverage scores for different matching thresholds on ArgKP21.

van der Hoef, 2022), which measures the agree-547

ment between two data clusterings while account-548

ing for the possibility of random clustering. The549

ARI ranges from -1 to 1, where lower values indi-550

cate poor separation, higher values indicate good551

separation, and values near zero suggest random552

clustering. Since both processed test datasets con-553

sist exclusively of arguments with exactly one554

matching summary, we treat the sets of arguments555

associated with each unique argument summary as556

reference clusters within topics and stances. The557

argument clusterings provided by the considered558

ArgSum systems substantially depend on the hyper-559

parameters used. Therefore, we conduct several560

clustering runs with different parameter settings561

and select the best runs within topics and stances562

for each ArgSum system. The parameter settings563

taken into account are listed in Table 2 in the ap-564

pendix.565

Results: Overall, MCArgSum performs roughly566

0.2-0.4 ARI points better than USKPM on567

ArgKP21 and 0.04-0.08 ARI points better on De-568

bate (except with SmatchToPr), demonstrating that569

our LLM-based clustering approach can separate570

arguments substantially better than existing non-571

LLM-based argument clustering approaches. De-572

tailed results are given in Table 4 and Table 5 as573

well as Figure 3 and Figure 4 in the appendix.574

4.2.2 Argument Summarization Capability575

Having identified the LLM-based evaluation met-576

rics as the most reliable among those considered577

for both criteria of coverage and redundancy, this578

section addresses their application in order to eval-579

uate the ArgSum systems. In our investigations, we580

make use of a weighted evaluation score assess- 581

ing both coverage and redundancy. The weighted 582

score ws for a certain set of argument summaries 583

is defined as follows: 584

ws = α · c+ (1− α) · (1− r) (4) 585

where c indicates the LLM-based coverage score 586

and r indicates the LLM-based redundancy score. 587

The weighting factor α is defined to be in the range 588

[0, 1] and can be used to bias the weighted score 589

either towards the coverage score or the redundancy 590

score. For our investigations, we set the weighting 591

factor to 2/3, as we consider coverage to be more 592

important than redundancy. We generate several 593

argument summaries using various hyperparameter 594

settings and select the best setting in terms of the 595

weighted score for each ArgSum system. Since 596

ArgSum is performed per topic and stance, the final 597

evaluation score for each ArgSum system results as 598

the average of the highest weighted scores within 599

topics and stances. 600

For simplicity, we refer to the averaged high- 601

est weighted score as the weighted score and the 602

averaged coverage and redundancy score as the 603

coverage and redundancy score, respectively. The 604

results of evaluating the ArgSum systems with re- 605

gard to their generated arguments summaries for 606

ArgKP21 are depicted in Figure 2 (Top). For both 607

classification-based systems, the integration of an 608

LLM leads to improved performance. The variant 609

of BarH without LLM integration has a slightly 610

lower score compared to the LLM-based summary 611

generation results. The variant of BarH with LLM- 612

based argument candidate generation performs best 613
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Figure 2: Top: Coverage, Redundancy, and Weighted metrics for the ArgKP21 dataset. Bottom: Coverage,
Redundancy, and Weighted metrics for the Debate dataset. SMatchToPr is abbreviated as SMtPR, +cand and +summ
are the variants with LLM candidates and summaries, respectively.

and achieves a weighted score of 0.88. Consid-614

ering SMatchToPr, the variant with LLM-based615

argument candidate generation (0.88) also outper-616

forms those with LLM-based summary generation617

(0.85) and without LLM integration (0.86). It is618

noteworthy that SMatchToPr without the integra-619

tion of an LLM achieves the highest coverage score620

(0.91) among all ArgSum systems, but also comes621

with high redundancy (0.24). With regard to the622

clustering-based ArgSum systems, MCArgSum per-623

forms best and achieves the highest weighted score624

of 0.84, outperforming USKPM (0.80).625

Considering the results for Debate, shown in626

Figure 2 (Bottom), the integration of LLM comes627

with advantages in all cases. As with ArgKP21, the628

variant integrating LLM for argument candidate629

generation generally performs best. However, the630

clustering-based MCArgSum provides even better re-631

sults: It achieves a weighted score of 0.89, mostly632

as a result of its high coverage score (0.88).633

The integration of LLMs results in considerable634

improvements for classifciation-based as well as635

clustering-based ArgSum systems. It is notable636

that LLM-based argument candiate generation in637

classification-based systems performs best for both638

datasets. The final choice of an ArgSum sys-639

tem should also depend on the runtime require-640

ments. Here, clustering-based systems are gener-641

ally faster, with MCArgSum showing the best perfor-642

mance among all LLM-based ArgSum systems for 643

both datasets. It required on average 3.779 sec- 644

onds per topic and stance for ArgKP21 and 7.375 645

seconds for Debate (cf. hardware specifications in 646

Appendix A.4). 647

5 Conclusion 648

Our proposed LLM-based ArgSum systems and met- 649

rics achieve state-of-the-art performance across the 650

two datasets considered. MCArgSum, our newly 651

proposed ArgSum system, achieves highest perfor- 652

mance on the Debate dataset and has a runtime ad- 653

vantage against all other systems considered. The 654

LLM-based ArgSum evaluation scores we propose 655

show very high correlation with human judgements 656

and thus set a very reliable evaluation framework 657

where reference summaries are available. 658

A few open questions and tasks remain: we did 659

not consider open-source LLMs like Llama 3.X or 660

Deepseek R1. While we do not expect substantial 661

improvements to GPT-4o, it might be interesting to 662

better understand the influence of the LLM on the 663

prompting strategies relevant for the ArgSum sys- 664

tems and (even more) evaluation. Furthermore, we 665

leave the application of reference-free evaluation 666

strategies to future work. 667
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Limitations668

Both model’s (GPT-4o (gpt-4o-2024-08-06),669

GPT-4o-mini (gpt-4o-mini-2024-07-18)) train-670

ing data includes information up to October 2023.671

ArgKP21, published in November 2021 (Friedman672

et al., 2021) and Debate, which dates back to 2014673

(Hasan and Ng, 2014) could have been used in674

training. However, similar limitations of potential675

data contamination are faced in many other recent676

problem settings as well; due to a lack of suitable677

ArgSum datasets, this issue is hard to avoid. We678

also point out that this work introduces a new evalu-679

ation benchmark for ArgSum systems, which could680

not have been seen by our employed LLMs.681

Ethical Considerations682

ArgSum systems could yield unreliable, factu-683

ally incorrect or even maliciously misleading sum-684

maries of the underlying source arguments. Thus,685

recipients of the summarized arguments must inter-686

pret these with care.687
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A Hyperparameters1002

A.1 Fine-tuning1003

We fine-tuned the Match Scorers and Quality Scor-1004

ers in BarH and SMatchToPr according to Bar-1005

Haim et al. (2020) and Alshomary et al. (2021),1006

respectively. It is important to note that Bar-Haim1007

et al. (2020) do not specify which of the two quality1008

scores (MACE-P and WA) in ArgQ should be used1009

for training the Quality Scorer. Additionally, it is1010

unclear whether a model with or without a pooling1011

layer was used. Since the model without pooling1012

layer and fine-tuned on MACE-P performs best in1013

preliminary investigations, we applied it in BarH.1014

The fine-tuning of FLAN-T5 in USKPM was con-1015

ducted as proposed by Li et al. (2023), though no1016

specific learning rate was provided. Based on our1017

observations, a learning rate of 4e-4 worked well1018

and was therefore used for fine-tuning the model.1019

MCArgSum As Match Scorer, MCArgSum uses1020

the SBERT model “all-mpnet-base-v2” fine-tuned1021

on ArgKP21. The fine-tuning is conducted over1022

10 epochs with a learning rate of 5e-6 and con-1023

trastive loss. The best performing model on the1024

development set was selected as final model.1025

A.2 Investigations1026

When applying BarH and SMatchToPr, we used1027

the recommended parameter values from Bar-Haim1028

et al. (2020) and Alshomary et al. (2021), respec-1029

tively. In case of USKPM and MCArgSum, we1030

set the minimum cluster size c to 3. The similarity1031

threshold for IC in USKPM was set to zero, mean-1032

ing that we forced each unclustered argument to1033

be assigned to an existing cluster. In addition, Ta-1034

ble 2 includes the varying hyperparameter settings1035

for the argument clustering inherent in USKPM1036

and MCArgSum. For USKPM, we performed the1037

clustering for each possible combination of the de-1038

picted parameter values.1039

A.3 Preprocessing1040

To conduct our investigations on the test split of1041

ArgKP21 as well as Debate, we performed two1042

pre-processing steps. First, we remov arguments1043

that do not have exactly one matching argument1044

summary. The reason for this is that we aim to pro-1045

cess only those arguments that have a well-defined1046

reference summary. This is because the consid-1047

ered automatic evaluation metrics are reference-1048

based. Including arguments without any reference1049

could result in candidate summaries that are not1050

captured by the references and thus bias the evalu- 1051

ation of ArgSum systems. Beyond that, including 1052

arguments with multiple references is not suitable 1053

for the evaluation of the argument separation ca- 1054

pability addressed in §4.2.1. Second, we exclude 1055

arguments consisting of more than one sentence, as 1056

we consider an adequate argument to consist of a 1057

single sentence. This is particularly crucial for the 1058

argumentative text sequences contained in Debate. 1059

For the test split of ArgKP21, the pre-processing 1060

reduces the number of arguments from 732 to 428, 1061

while for Debate it is reduced from 3180 to 2321. 1062

Finally, to decrease the computational effort, we 1063

select only 50% of the arguments for each unique 1064

argument summary in Debate as our final dataset. 1065

This pre-processing step results in 1165 remaining 1066

arguments for Debate, while retaining each unique 1067

argument summary. 1068

A.4 Hardware 1069

We conducted our experiments on a personal com- 1070

puter with an Apple M1 Max chip, which is de- 1071

signed as a system-on-a-chip. It includes a 10-core 1072

CPU (8 performance cores and 2 efficiency cores), 1073

a 32-core GPU, and a 16-core Neural Engine. The 1074

GPU has direct access to the entire main memory of 1075

64GB. The system runs on macOS Sonoma 14.1.2 1076

(64-bit). With the introduction of Metal support 1077

for PyTorch on macOS, utilizing the GPU for ma- 1078

chine learning tasks has become accessible. 3 This 1079

setup was used for both training and inference of 1080

PyTorch models. 1081

A.5 Modifications to ArgSum Systems 1082

We had to apply three modifications to the ArgSum 1083

systems as proposed in §4.2.2. The first concerns 1084

the candidate selection in BarH and SMatchToPr. 1085

In cases where the proportion of candidates out of 1086

all arguments is below a certain threshold pC , we 1087

fill this gap with the highest quality arguments not 1088

yet considered as candidates. In this way, we avoid 1089

cases in which no candidates are identified at all, 1090

as the Quality Scorer provides low scores across 1091

all arguments. Second, when selecting candidates 1092

in SMatchToPr, we delete arguments consisting 1093

of several sentences instead of separating them. 1094

Finally, we use the Quality Scorer included in BarH 1095

instead of TextRank for determining the order of 1096

arguments in the corresponding input list of Flan- 1097

T5 in USKPM. 1098

3https://pytorch.org/blog/
introducing-accelerated-pytorch-training-on-mac
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Parameter Value Range Steps

USKPM

Reduced embedding
dimensionality

[2, 5] 1

Number of neighboring
samples used for the

manifold approximation of
UMAP

[2, 5] 1

Minimum permitted
distance of points in the

low dimensional
representation of UMAP

[0, 0.4] 0.2

MCArgSum
Minimum match score
required between two

clusters to be merged (m)
[0.05, 0.95] 0.025

Table 2: Hyperparameter settings of clustering-based ArgSum systems considered in our investigations.

Table 2 includes the hyperparameter settings con-1099

sidered for the clustering runs in our investigations1100

described in §4.2.1. For USKPM, we performed the1101

clustering for each possible combination of the de-1102

picted parameter values. The minimum cluster size1103

was constantly set to 3 for each system. In the case1104

of USKPM, we set the similarity threshold for IC1105

to zero, meaning that we forced each unclustered1106

argument to be assigned to an existing cluster in1107

order to avoid the presence of very small argument1108

clusters.1109

B Additional Results1110

B.1 LLM-based Metric1111

We list the correlation between LLM-based cov-1112

erage and redundancy scores and the respective1113

averaged human scores for the used set of tempera-1114

tures in Table Table 6.1115

C Introduction to the Task of ArgSum1116

A debate on a certain topic can be conducted1117

using a variety of arguments for each side of the1118

debate. Although some of these arguments refer to1119

the same main statement, they can be formulated1120

very differently. While the number of possible1121

arguments seems to be almost infinite due to the1122

possibility of different formulations, the number1123

of possible main statements within a debate is1124

limited.1125

Argument summarization is about summarizing1126

a relatively large set of arguments on a certain1127

debate topic and stance by generating a small1128

set of argument summaries, each expressing one 1129

distinct main statement contained in the set of 1130

arguments. In addition, each argument is matched 1131

to the generated summary that conveys its main 1132

statement the best. Following is a simple example: 1133

1134

Topic: We should abandon the use of 1135

school uniform 1136

Stance: Opposing 1137

Set of Arguments: 1138

1. School uniforms keep everyone look- 1139

ing the same and prevent bullying 1140

2. School uniforms can help parents save 1141

money on outfit 1142

3. School uniforms help stop bullying 1143

because when people are similarly 1144

dressed, nobody is made to feel infe- 1145

rior 1146

4. It is cheaper for parents to buy school 1147

uniforms, which is helpful to parents 1148

that are struggling financially 1149

5. School uniforms are substantially more 1150

affordable 1151

Set of Summaries: 1152

1. School uniforms reduce bullying 1153

2. School uniforms save costs 1154

Argument Summary Matches: 1155

The matches are highlighted by the colored 1156

markings: 1157
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Similarity
Function

Soft-Precision Soft-Recall Soft-F1 Run-
time (s)Across Within Across Within Across Within

ROUGE 1 -0.118 -0.072
±0.194 0.164 0.315

±0.170 0.027 0.127
±0.184 0.428

BERTSc.
F1 -0.028 0.092

±0.262 0.254 0.402
±0.175 0.121 0.240

±0.242 354.2

MoverSc. -0.046 0.044
±0.227 0.156 0.310

±0.204 0.069 0.191
±0.207 55.93

BARTSc.
CNN/DM -0.146 -0.305

±0.164 0.024 -0.011
±0.283 -0.053 -0.132

±0.264 84.33

BARTSc.
Parabank -0.271 -0.221

±0.251 -0.012 0.112
±0.339 -0.132 -0.022

±0.320 41.09

BLEURT -0.209 -0.218
±0.289 0.033 0.138

±0.247 -0.091 -0.055
±0.294 487.3

MENLI -0.154 -0.039
±0.287 0.265 0.372

±0.260 0.107 0.228
±0.298 254.6

Table 3: Pearson correlation coefficient between the Soft-Score (incl. different similarity functions) and averaged
human coverage scores, along with the evaluation runtime. For the scenario within topics and stances, standard
deviations are indicated below the correlation values. The three strongest positive correlations for both scenarios
across sP, sR and sF1 are underlined in green, blue and orange.

• Arguments 1 and 3 are matched to sum-1158

mary 11159

• Arguments 2, 4 and 5 are matched to1160

summary 21161

Description of the Evaluation Task1162

This task is about determining how well a set of1163

generated argument summaries serves as a sum-1164

mary of possible arguments on a certain debate1165

topic and stance.1166

For this purpose, you are given a set of generated1167

summaries and a set of reference summaries as well1168

as the corresponding debate topic and stance. You1169

have to carry out the following two instructions1170

regarding the criteria of coverage and uniqueness:1171

1. Coverage: Count the number of reference1172

summaries that are covered by the set of1173

generated summaries.1174

2. Uniqueness: Count the number of dis-1175

tinct/unique main statements contained in1176

the set of generated summaries.1177

For both criteria increments of 0.5 are allowed.1178

In the case of coverage, this applies if a reference1179

summary is only partially covered by the set1180

of generated summaries. For the criterion of1181

redundancy, this applies if there is a distinct main1182

statement in the set of generated summaries that1183

partially overlaps with another. For the case you1184

are not sure, you can answer with -1. Following is1185

an example: 1186

1187

Topic: Routine child vaccinations 1188

should be mandatory 1189

Stance: Opposing 1190

Set of Reference Summaries: 1191

1. Mandatory vaccination contradicts ba- 1192

sic rights 1193

2. Routine child vaccinations are not nec- 1194

essary to keep children healthy 1195

3. Routine child vaccinations, or their 1196

side effects, are dangerous 1197

4. The parents and not the state should 1198

decide 1199

Set of Generated Summaries: 1200

1. Vaccinations violate free will and per- 1201

sonal choice 1202

2. Mandatory vaccines conflict with reli- 1203

gious beliefs 1204

3. Parents should have the right to decide 1205

4. Children may suffer harmful effects 1206

from vaccines 1207

5. Concerns about vaccine safety and side 1208

effects 1209

Coverage: 3 (The second reference summary is 1210

not covered.) 1211

Uniqueness: 3.5 (The first and third generated 1212

14



ArgSum System Scenario ARI Proportion
Clustered Runtime

USKPM
Excl. Noise 0.273 ±0.045 0.884 ±0.079 1.417 ±0.136

Incl. Noise 0.253 ±0.057 1.000 ±0.000 1.478 ±0.113

IC 0.268 ±0.052 1.000 ±0.000 4.377 ±4.378

MCArgSum
Excl. Noise 0.594 ±0.299 0.908 ±0.061 1.133 ±0.178

Incl. Noise 0.547 ±0.255 1.000 ±0.000 1.133 ±0.178

MCArgSum
(BarH)

Excl. Noise 0.725 ±0.182 0.858 ±0.064 53.86 ±25.19

Incl. Noise 0.640 ±0.158 1.000 ±0.000 53.86 ±25.19

MCArgSum
(SMatchToPr)

Excl. Noise 0.682 ±0.109 0.881 ±0.042 2.723 ±0.435

Incl. Noise 0.639 ±0.113 1.000 ±0.000 2.723 ±0.435

Table 4: Argument separation capability of clustering-based ArgSum systems for ArgKP21. While ARI refers to the
highest ARI from several examined parameter settings, the proportion of clustered arguments and the clustering
runtime refer to this highest ARI. The scenarios are detailed in §4.2.1. All depicted values are averaged across
topics and stances. Standard deviations are indicated behind each value.

ArgSum System Scenario ARI Proportion
Clustered Runtime

USKPM
Excl. Noise 0.298 ±0.054 0.797±0.051 2.090 ±0.518

Incl. Noise 0.232 ±0.049 1.000 ±0.000 2.044 ±0.507

IC 0.262 ±0.054 1.000 ±0.000 15.38 ±9.633

MCArgSum
Excl. Noise 0.369 ±0.135 0.878 ±0.095 1.931 ±0.690

Incl. Noise 0.315 ±0.123 1.000 ±0.000 1.931 ±0.690

MCArgSum
(BarH)

Excl. Noise 0.411 ±0.085 0.789 ±0.079 201.9 ±166.7

Incl. Noise 0.311 ±0.099 1.000 ±0.000 201.9 ±166.7

MCArgSum
(SMatchToPr)

Excl. Noise 0.305 ±0.071 0.783 ±0.068 6.109 ±2.323

Incl. Noise 0.245 ±0.045 1.000 ±0.000 6.109 ±2.323

Table 5: Argument separation capability of clustering-based ArgSum systems for Debate. While ARI refers to the
highest ARI from several examined parameter settings, the proportion of clustered arguments and the clustering
runtime refer to this highest ARI. All depicted values are averaged across topics and stances. Standard deviations
are indicated behind each value.

summaries address two different distinct main1213

statements. The fourth and fifth generated sum-1214

maries refer to the same distinct main statement.1215

The second generated summary partially overlaps1216

with the first one.)1217

1218
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Figure 3: Highest ARI of clustering-based ArgSum systems from several examined parameter settings for ArgKP21.
All depicted values are averaged across topics and stances. Standard deviations are indicated below the ARI values.

Temper-
ature

LLM-based Coverage Score LLM-based Redundancy Score

Across Within Runtime (s) Across Within Runtime (s)

0.20 0.736 0.756
± 0.100 495.1 0.798 0.697

± 0.226 1305.3

0.30 0.725 0.747
± 0.133 467.7 0.789 0.752

± 0.096 1651.1

0.40 0.746 0.771
± 0.112 529.3 0.817 0.758

± 0.122 1515.4

0.50 0.742 0.757
± 0.127 512.0 0.812 0.724

± 0.210 1446.3

0.60 0.741 0.762
± 0.122 629.7 0.837 0.795

± 0.088 1359.9

0.70 0.755 0.789
± 0.103 644.3 0.830 0.782

± 0.112 1425.6

0.80 0.729 0.755
± 0.108 612.4 0.828 0.762

± 0.111 1431.1

0.90 0.754 0.782
± 0.131 676.4 0.843 0.784

± 0.109 1651.0

1.00 0.767 0.803
± 0.115 845.5 0.852 0.824

± 0.055 1649.1

Table 6: Pearson correlation coefficient between the LLM-based coverage and redundancy scores and the respective
averaged human scores for different temperatures, along with the evaluation runtime, on ArgKP21. For the scenario
within topics and stances, standard deviations are indicated below the correlation values. The strongest positive
correlations for both scenarios within each LLM-based score are highlighted in bold.
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Figure 4: Highest ARI of clustering-based ArgSum systems from several examined parameter settings for Debate.
All depicted values are averaged across topics and stances. Standard deviations are indicated below the ARI values.

Topic We should abandon the use of school uniform

Stance -1
Argument school uniforms cut down on bulling and keep everyone the same.

Key Point School uniform reduces bullying

Label 1
Set dev

Table 7: Exemplary data point of ArgKP21.
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Figure 5: Pairwise Pearson correlation coefficient of the human judgments by the four annotators (A1-A4) for
the criteria of coverage and redundancy. The averaged value across the unique annotator pairs is indicated in the
parentheses.

Topic obama

Stance -1

Argument Where are those outspoken democrats who voted for him because they were told, no
promised, that he would END THE WAR?

Argument
Summary Wars are still on

Table 8: Exemplary data point of Debate.
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