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Abstract

Large Language Models (LLMs) have revo-
lutionized various Natural Language Genera-
tion (NLG) tasks, including Argument Sum-
marization (ArgSum), a key subfield of Argu-
ment Mining (AM). This paper investigates
the integration of state-of-the-art LLMs into
ArgSum, addressing the challenges of tradi-
tional evaluation metrics, which do not align
well with human judgment. We propose a novel
prompt-based evaluation scheme, and validate
it through a novel human benchmark dataset.
Our work makes three key contributions: the in-
tegration of LLMs into existing ArgSum frame-
works, the development of a new ArgSum sys-
tem benchmarked against prior methods, and
the introduction of an advanced LLM-based
evaluation scheme. We demonstrate that the
use of LLMs substantially improves both the
generation and evaluation of argument sum-
maries, achieving state-of-the-art results and
advancing the field of ArgSum.

1 Introduction

In recent years, Large Language Models (LLMs)
have significantly transformed various Natural Lan-
guage Processing (NLP) and Generation (NLG)
tasks. Their remarkable capabilities in understand-
ing and generating human-like text promise new
avenues for challenging tasks such as Argument
Summarization (ArgSum), a subfield of Argument
Mining (AM) that focuses on distilling the essence
of multiple arguments into concise representations
(Petasis and Karkaletsis, 2016).

With only a few recent exceptions (Li et al.,
2024; Ziegenbein et al., 2024), however, ArgSum
has up-to-date been mostly tackled with pre-LLM
solutions, such as clustering techniques and earlier-
generation pre-trained language models (Reimers
et al., 2019; Ajjour et al., 2019; Misra et al., 2016;
Wang and Ling, 2016; Schiller et al., 2021).

Thus, there is an urgent need for systematic anal-
ysis to understand how LLMs can be effectively

utilized for both the generation and evaluation of
argument summaries. This includes integrating
LLMs into ArgSum frameworks to comprehensively
assess their performance and developing suitable
prompt-based evaluation schemes.

In this work, we aim to fill this gap by exten-
sively exploring how LLMs can be leveraged for
the ArgSum process, both for generating argument
summaries and for their evaluation. Our core con-
tributions are: (i) We integrate LLMs into exist-
ing ArgSum systems and evaluation schemes, (ii)
we introduce a new ArgSum system and bench-
mark existing work against it, (iii) we provide a
new ArgSum evaluation dataset with human evalu-
ation scores, and (iv) we develop a prompt-based
ArgSum evaluation scheme and validate it in the
context of existing work and our human evaluation.

We show that the use of LLMs substantially im-
proves existing work in both the process of ArgSum
as well as ArgSum evaluation and present several
state-of-the-art results.

2 Related Work

2.1 Argument Summarization

Automatic Text Summarization (ATS) aims to con-
dense key ideas from one or more documents into
a concise summary (Radev et al., 2002), while min-
imizing redundancy (Moratanch and Chitrakala,
2017). While abstractive summarization gener-
ates a summary including text units that do not
necessarily appear in the source text, extractive
summarization identifies the most important parts
of a document and assembles them into a summary
(Giarelis et al., 2023). ATS consists of several
sub-areas like News Summarization (Sethi et al.,
2017), Legal Document Summarization (Anand
and Wagh, 2022), Scientific Paper Summarization
(Zhang et al., 2018), and ArgSum (Petasis and
Karkaletsis, 2016). Our focus is the latter.

Wang and Ling (2016) treat ArgSum as claim
generation, where a collection of argumentative



sentences is summarized by generating a one-
sentence abstractive summary that addresses the
shared opinion of the inputs. Friedman et al.
(2021); Bar-Haim et al. (2020) introduce Key Point
Analysis (KPA), which aims to create an extractive
summary of the most prominent key points con-
tained in a potentially large collection of arguments.
Schiller et al. (2021) present an aspect-controlled
argument generation model that enables an abstrac-
tive summatization of arguments. Li et al. (2023)
extend KPA with a clustering-based, abstractive ap-
proach. While they use all arguments as input for a
generation model to create key points, Khosravani
et al. (2024) introduce an extractive approach by
selecting the most representative argument within
each cluster, which is determined by a supervised
scoring model.

While there are some works on LLMs as sum-
marization models for arguments (Li et al., 2024;
Ziegenbein et al., 2024), this is the first systematic
study on strategies for integrating LLMs with exist-
ing approaches for ArgSum. Furthermore, we also
present a systematic overview on how to integrate
LLMs into the evaluation of ArgSum systems.

2.2 Evaluating NLG Systems

While automatic evaluation metrics such as BLEU
(Papineni et al., 2002) and ROUGE (Lin, 2004)
correlate poorly with human judgments (Novikova
et al., 2017), pre-trained transformer-based lan-
guage models provide a more nuanced assessment
of the performance of NLG systems (Celikyilmaz
et al., 2021). BERTScore (Zhang et al., 2020)
and MoverScore (Zhao et al., 2019) are reference-
based metrics that leverage pre-trained embed-
dings obtained from BERT-based models. While
BERTScore is based on the computation of cosine-
similarities between the hypothesis and the refer-
ence, MoverScore determines an evaluation score
by computing the Word Mover’s Distance (Kus-
ner et al., 2015) between both. BARTScore (Yuan
et al., 2021) is based on the pre-trained sequence-
to-sequence model BART and treats the evalua-
tion task as a problem of text generation. MENLI
(Chen and Eger, 2023) frames the evaluation task
as a problem of Natural Language Inference (NLI),
showing improved robustness. The most recent
approaches to evaluation are LLM-based metrics,
which can be leveraged in various ways: by com-
paring embeddings in terms of their cosine similar-
ity (Es et al., 2024), by determining the sequence
probability of the hypothesis given the respective

source/reference (Fu et al., 2024), by utilizing suit-
able prompting strategies (Kocmi and Federmann,
2023; Liu et al., 2023; Fernandes et al., 2023; Leiter
and Eger, 2024; Larionov and Eger, 2024), or by ap-
plying task-specific fine-tuning (Wang et al., 2024;
Xu et al., 2023; Zhu et al., 2023). Some works
show promising zero-shot results that are on-par
with human-judgement (Leiter et al., 2023; Chang
et al., 2024).

In this work, we leverage LLMs to evaluate
ArgSum systems, which is different from evalua-
tion of classical text generation systems, requir-
ing different dimensions of evaluation (e.g., re-
dundancy and coverage) and different mechanisms
(e.g., ArgSum requires to compare a gold summary
of m arguments to a generated summary of n ar-
guments). To this end, we apply an LLM-based
prompting approach besides incorporating classi-
cal NLG metrics into ArgSum adjusted evaluation
schemes.

3 Experimental Setup

3.1 Terminology

Our understanding of ArgSum is based on that of
KPA, where ArgSum is performed per topic and
stance. It is assumed that a set of arguments is
given and that the ArgSum systems generate a set
of argument summaries, as displayed in Figure 1.

Most previous work on ArgSum can be catego-
rized as either classification-based or clustering-
based systems. Classification-based systems first
generate a set of argument summaries based on all
available source arguments. In a second step, they
match each source argument to the most appropri-
ate summary. Clustering-based systems first group
all source arguments according to their similarity.
Then, they generate a summary of the arguments
for each group. In this work, we augment ArgSum
systems of both types with LLMs. Details of those
systems and how we integrate LLMs are specified
in §3.2 and §3.3.

The systems we assess use two types of tools
to perform ArgSum. While Quality Scorers assess
the quality of an argument, Match Scorers deter-
mine how well an argument and a summary match.
Both are realized by transformer-based language
models that take task-specific textual inputs and
output a respective score. The ArgSum systems
considered in this work utilize Quality Scorers that
are fine-tuned on the IBM-ArgQ-Rank-30kArgs
(ArgQ) dataset by Gretz et al. (2020). The cor-
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Figure 1: General procedure of ArgSum, where a set of K arguments on a certain debate topic and stance (example
taken from Friedman et al. (2021)) as input is transformed to a set of N argument summaries along with their
respective importance (indicated by the size of the green dots). It is expected that K >> N applies.

responding Match Scorers are fine-tuned on the
ArgKP-2021 (ArgKP21) dataset by Friedman et al.
(2021).

3.2 Classification-based Systems

We consider two classification-based ArgSum sys-
tems, which performed best in the Key Point Gener-
ation Track at the 2021 Key Point Analysis Shared
Task (Friedman et al., 2021).

BarH To determine a set of potential argument
summaries, referred to as candidates, BarH (Bar-
Haim et al., 2020) scores the source arguments
with a Quality Scorer and selects those exceed-
ing a threshold ¢,. Subsequently, BarH applies a
Match Scorer to match the remaining source ar-
guments to the best fitting candidates. After rank-
ing the candidates according to their number of
matches, BarH minimizes redundancy by removing
candidates whose match score with a higher-ranked
candidate exceeds a threshold ¢,,. The remaining
candidates are understood as the final argument
summaries.

SMatchToPr To identify argument summary
candidates, SMatchToPr (Alshomary et al., 2021)
uses a variant of PageRank (Page et al., 1998). To
this end, candidates are understood as nodes in an
undirected graph, utilizing the match scores be-
tween each candidate pair as edge weights. Only
nodes with edge weights above a threshold ¢,, are
connected. Based on the resulting graph, an impor-
tance score is calculated for each candidate. Then,
SMatchToPr minimizes redundancy by removing
candidates whose match score with a higher-ranked
candidate exceeds a threshold ¢,,. This results in
the final set of argument summaries.

LLM Integration Given a set of arguments on
a certain debate topic and stance, we apply a zero-
shot prompting approach to instruct an LLM to
generate either a set of candidates or argument
summaries. The resulting candidates or argument

summaries are then further processed as usual in
both BarH and SMatchToPr.

3.3 Clustering-based Systems

We consider an approach from Li et al. (2023)
which demonstrated comparable performance to
BarH and SMatchToPr. Further, we propose a new
ArgSum approach that utilizes a Match Scorer for
argument clustering.

USKPM For clustering arguments, USKPM (Li
et al., 2023) utilizes the BERTopic framework
(Grootendorst, 2022), which involves three steps.
First, contextualized sentence embeddings of the
arguments are created via SBERT (Reimers and
Gurevych, 2019). Second, UMAP (Mclnnes et al.,
2018) is applied to reduce the embeddings’ dimen-
sionality. Third, the clustering of the reduced em-
beddings is performed by HDBSCAN (Mclnnes
et al., 2017). Instances included in clusters with a
size smaller than c are considered as unclustered.
Since Li et al. (2023) state that it is reasonable to
maximize the number of clustered arguments in
order to increase the representativeness of the ar-
gument summaries to be generated, lterative Clus-
tering (IC) is proposed. IC is about incrementally
assigning unclustered arguments to the most simi-
lar cluster in terms of cosine similarity.

Then, USKPM uses the instruction-tuned FLAN-
T5 (Chung et al., 2022) to summarize the argument
clusters, where the model input is formatted as
follows: “summarize: {Stance} {Topic} {List of
Arguments in Cluster}”.

MCArgSum Our own approach, MCArgSum
(Match Clustering based ArgSum), combines the
use of a Match Scorer for argument clustering with
an LLM-based cluster summarization. It is inspired
by the redundancy reduction among candidates
within BarH, where a Match Scorer is utilized to
identify candidates addressing the same key point.
We demonstrate that a Match Scorer can also be



effectively used to group arguments addressing the
same main statement. While the key idea of using
a Match Scorer to group arguments is proposed
by Khosravani et al. (2024), our ArgSum system
additional provides an abstractive summarization
of argument clusters by incorporating an LLM.

Our ArgSum system utilizes Agglomerative Hi-
erarchical Clustering (Day and Edelsbrunner, 1984)
with the average linkage criterion in reference to
Reimers et al. (2019) and a Match Scorer as pair-
wise similarity metric. To this end, we use the
SBERT (Reimers and Gurevych, 2019) model “all-
mpnet-base-v2”, fine-tuned on ArgKP21. While
the threshold m determines the minimum match
score required between two clusters to be merged,
inctances included in clusters with a size smaller
than c are considered as unclustered.

To generate cluster summaries, our model uses
LLM prompting in a zero-shot setting. We integrate
a prompting strategy that summarizes all argument
clusters simultaneously (global optimization). De-
tails are given in the appendix. After summariza-
tion, a post-processing step automatically extracts
the argument summaries in the desired format.

3.4 Evaluation

Here, we describe the approaches used to evaluate
ArgSum systems. These metrics are both set-based
and reference-based, meaning a set of candidate
summaries is compared to a set of reference sum-
maries.

In accordance with previous work on generating
argument summaries, we assess the two evalua-
tion criteria of coverage and redundancy. Cov-
erage refers to the extent to which a set of argu-
ment summaries captures the central talking points
of a debate. Redundancy is concerned with the
extent of content overlap between the individual
argument summaries (Bar-Haim et al., 2020; Al-
shomary et al., 2021; Friedman et al., 2021; Li
et al., 2023; Khosravani et al., 2024).

Soft-Score Li et al. (2023) introduce three evalu-
ation scores: Soft-Precision (sP), Soft-Recall (sR)
and Soft-F1 (sF1). While sP finds the most suitable
reference summary for each candidate summary,
sR finds the most suitable candidate summary for
each reference summary. To compare references
and candidates, Li et al. (2023) utilize a semantic
similarity function. The final evaluation scores in
terms of sP and sR are obtained by averaging the
similarity scores of the respective best matches of

references and candidates. Finally, the sF1 is the
harmonic mean of sP and sR. Formally:

1
sP = o a% njlg)é f(ai, Bj) (D

1
SR = m~ﬂzjgg}g§f(ai,5j) 2

where f is a function evaluating the semantic
similarity between two summaries; A and B are
the sets of candidate and reference summaries, with
n and m being their respective sizes. As similar-
ity function, Li et al. (2023) suggest the use of
BLEURT (Sellam et al., 2020) and BARTScore.

Coverage-Score (CS) The Coverage-Score (CS)
(Khosravani et al., 2024) assesses the coverage of
a set of candidate summaries, which is defined as
the proportion of reference summaries covered by
them. Each possible pair of candidates and refer-
ences is scored by a Match Scorer and classified
as matching or non-matching. The former corre-
sponds to the case in which the respective match
score is above a certain threshold. Finally, the CS
is derived as the proportion of references with at
least one matching candidate. Formally:

CS=— S| Y mateh(as, B) > 1] > 1

ﬁjEB CqueA
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where match indicates the match score of two
summaries; A and B are the sets of candidate and
reference summaries, m is the size of B and ¢ is
the matching threshold. Khosravani et al. (2024)
suggest the use of the Match Scorer inherent in
BarH. A recommended threshold ¢ is not provided.

LLM-based We introduce two LLM one-shot
prompting strategies for assessing ArgSum systems,
focusing on the criteria of coverage and redundancy.
(1) We address coverage by instructing an LLM to
count the number of reference summaries covered
by a set of candidate summaries. Dividing this
count of covered references by the total number
of references results in an LLM-based coverage
score. (2) To assess redundancy, we instruct an
LLM to count the number of unique main state-
ments within a set of candidate summaries. The
resulting uniqueness count is limited to the total
number of candidates and a uniqueness score is de-
rived by dividing the uniqueness count by the total



number of candidates. Subsequently, we derive an
LLM-based redundancy score as the complemen-
tary uniqueness score (1 — uniqueness). The final
LLM-based coverage and redunancy scores for a
certain set of candidate summaries is obtained by
averaging the results of 10 evaluation runs.

Human Evaluation To verify the reliability of
the automatic evaluation metrics, we conduct a hu-
man evaluation of 126 generated argument sum-
maries obtained from the ArgSum systems de-
scribed in §3.2 and §3.3. We characterize a suit-
able set of argument summaries as consisting of
succinct, non-redundant summaries that cover the
main statements shared across the source argu-
ments with adequate granularity. Thus, we assess
the criteria of coverage and redundancy, as intro-
duced above.

The judgments are carried out by four experi-
enced annotators with excellent knowledge within
the field of NLP, especially argumentation. Ini-
tially, the four annotators are introduced to the task
of ArgSum and provided with a description of the
evaluation task. Guidelines can be found in §C in
the appendix. The annotators are presented with a
set of generated argument summaries and the cor-
responding set of reference summaries. To assess
coverage, they are asked to count the number of
references that are covered by the set of generated
summaries. The respective coverage score is the
proportion of covered references out of the total
number of references. We then ask the annotators
to count the number of unique main statements
within the set of generated summaries (permitted
count is limited to the total number of generated
summaries). Based on this, we derive a uniqueness
score (ranging from zero to one) as the number of
unique main statements divided by the total num-
ber of generated summaries. The redundancy score
is the complementary uniqueness score.

In order to determine the inter-rater reliability,
we average the Pearson correlation coefficients be-
tween each pair of the four annotators’ scores for
both criteria. We report an average correlation of
0.697 for coverage and 0.722 for redundancy, in-
dicating that the annotations are reliable. Pairwise
correlations between annotators are shown in Fig-
ure 5 in the appendix.

4 Results

In this section, we present the correlation of auto-
matic metrics with human judgements in §4.1 and

the evaluation of ArgSum systems in §4.2.

Data While ArgKP21 is used to train the
Match Scorers utilized by BarH, SMatchToPr and
MCArgSum, we use its test set to generate argu-
ment summaries in §4.1 and §4.2.

This dataset consists of 27,519 pairs of argu-
ments and key points, each labeled with a binary
value that indicates whether the corresponding ar-
gument and key point are matching (1) or non-
matching (0). While the pairs of arguments and
key points cover 28 topics, each with supporting
(1) and opposing (-1) stance, the dateset includes a
train set of 24 topics, a development set of 4 topics
and a test set of 3 topics.

We also consider the Debate dataset (Hasan and
Ng, 2014) as a second independent evaluation data
set in §4.2. Debate includes 3,228 argumentative
text sequences filtered from posts on four differ-
ent topics in an online debate forum. The text
sequences are labeled with their reason within the
respective topic and whether they are supporting
(1) or opposing (-1). We consider the argumenta-
tive text sequences as arguments and the reasons as
argument summaries. In contrast to ArgKP21, the
dataset exclusively contains matching pairs.

Exemplary data points for ArgKP21 and Debate
are presented in Table 7 and Table 8 in the appendix,
respectively. The data preprocessing is described
in Appendix §A.3.

Representative LLM  As representative LLM,

we utilize GPT-40 (gpt-40-2024-08-06)
for ArgSum, as well as GPT-40-mini
(gpt-40-mini-2024-07-18) for evaluation,

both provided by OpenAI’s API service.! GPT-40
offers more qualitative responses for a suitable
generation of argument summaries, while GPT-
4o0-mini was chosen for evaluation as it offers
fast response times and is a cost-effective model
version for the more quantity-based evaluation
approach. We integrated GPT-40 into the ArgSum
systems as described in §3.2 and §3.3. GPT-4o-
mini was integrated into the automatic evaluation
metrics as discussed in §3.4. Nevertheless, we
continue to use the general term “LLM” to indicate
that GPT-40 can be replaced with any other
generative LLM.

1https://platform.openai.com/docs/models/
gpt-4o0-mini
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4.1 Reliability of automatic metrics

To measure the quality of diverse automatic met-
rics, we correlate them to our human assessment
of 126 argument summaries, see §3.4, where we
average the four human assessments per instance,
focusing on the dimension of coverage as anno-
tated by humans.

We consider two ways of computing correlations.
1) We calculate correlations across all topics and
stances simultaneously. 2) We calculate correla-
tions within topics and stances and average the
results. For the latter scenario, we also report the
standard deviations, indicating the variability of
reliability.

SoftScore We then run SoftScore, explained in
§3.4, with differently proposed automatic metrics
as similarity functions f. In our case, we use: (1)
ROUGE 1, (2) BERTScore F1 (Zhang et al., 2020),
(3) MoverScore (Zhao et al., 2019), (4) BARTScore
(Yuan et al., 2021), (5) BLEURT (Sellam et al.,
2020), (6) MENLI (Chen and Eger, 2023).

Table 3 in the appendix shows the results. First,
we note that sP does not intuitively correspond to
annotation dimensions of coverage or redundancy
in our human annotation — sP could be interpreted
as the fraction of candidate summaries covered
by the reference summaries, but not vice versa.
Thus, it comes as no surprise that the correlation
between sP and coverage is close to zero across all
settings. The sR, which better matches the defini-
tion of coverage, performs clearly better, even if no
strong correlations are observed. Across topics and
stances, MENLI performs best (0.265) followed by
BERTScore-F1 (0.254). The scenario within top-
ics and stances generally yields better correlation
results for the sR. While BERTScore-F1 exhibits
the highest correlation at 0.402, MENLI (0.372)
also achieves a moderate positive correlation with
the human coverage scores.

It is notable that BLEURT and BARTScore, sug-
gested by Li et al. (2023), achieve the poorest re-
sults among all considered similarity functions.?

Coverage Score For CS, we also examine the
correlation with the averaged human coverage
scores. For the Match Scorers inside of CS, we
consider those of BarH, as proposed by Khosravani
et al. (2024), as well as those of SMatchToPr and
MCArgSum. Furthermore, we apply various values

*We rescaled BARTScore according to Li et al. (2023) in
order to obtain positive scores in the range from zero to one.

for the threshold t;,, which determines the match
score for which an individual reference summary
is understood as covered or not. The LLM-based
metrics for coverage and redundancy, described in
§3.4, are examined regarding their respective cri-
terion. Here, we investigate different values for
the temperature, a parameter controlling the cre-
ativity or randomness in LLM-based text generation
(Peeperkorn et al., 2024).

As depicted in Table 1, the CS with BarH’s Match
Scorer reaches a maximum correlation of 0.489
across and 0.698 within topics and stances. For
the scenario across topics and stances, SMatch-
ToPr performs even better and achieves a maximum
correlation of 0.541. Within topics and stances,
SMatchToPr reaches a maximum correlation of
0.6. The Match Scorer included in MCArgSum yields
comparatively worse results, achieving a maximum
correlation of 0.449 within and 0.551 across topics
and stances. Regarding the matching threshold ¢,
BarH’s Match Scorer performs very stably across
the considered parameter range, whereas this is not
the case for both other variants.

Although the CS thus provides considerably
stronger correlations for the criterion of coverage
compared to the Soft-Score, it likely overfits the
structure of ArgkP21 on which our conducted hu-
man evaluation is based.

LLM-based metric The LLM-based score for cov-
erage achieves a maximum correlation of 0.767
across and 0.803 within topics and stances. Conse-
quently, it performs better than the Soft-Score and
CS in all scenarios. The LLM-based metric for re-
dundancy reaches a maximum correlation of 0.852
across and 0.824 within topics and stances, again
performing considerably better than the Soft-Score
and CS (see subsection B.1, Table 6). Thus, we
exclusively use LLM-based scores in the remainder.

4.2 System evaluation

In this section, we evaluate the argument separation
capabilities of clustering-based ArgSum systems in
§4.2.1 and then evaluate the best ArgSum systems
overall in §4.2.2.

4.2.1 Argument Separaration Capability

We first evaluate the capability of clustering-based
ArgSum systems (USKPM, MCArgSum and two
MCArgSum versions with the Match Scorers of
BarH and SMatchToPr) to separate arguments. To
determine the argument separation capability of
ArgSum systems, we use the ARI (Warrens and



CS (BarH) CS (SMatchToPr) CS (MCArgSum)
Threshold
Across Within Across Within Across Within
0.40 0.478 0.585 £0.254 -0.092 -0.157 £0.037 0.206 -0.057 +0.223
0.45 0.475 0.605 +0.248 0.163 -0.074 £0.187 0.300 -0.019 +0.307
0.50 0.465 0.627 £0.251 0.174 -0.023 +0.196 0.300 -0.019 +0.307
0.55 0.462 0.657 £0.273 0.378 0.249 £0.307 0.281 -0.002 +0.292
0.60 0.489 0.698 +0.222 0.469 0.338 £0.371 0.415 0.137 £0.390
0.65 0.464 0.676 +£0.218 0.465 0.411 £0.256 0.449 0.256 +0.357
0.70 0.458 0.657 £0.233 0.457 0.404 £0.212 0.369 0.297 £0.295
0.75 0.466 0.658 £0.197 0.541 0.550 £0.182 0.379 0.347 £0.319
0.80 0.429 0.591 £0.154 0.511 0.600 +0.196 0.444 0.551 +0.193
0.85 0.414 0.556 £0.201 0.468 0.558 £0.085 0.364 0.421 £0.270
0.90 0.295 0.504 +0.249 0.238 0.261 £0.070 0.316 0.401 £0.129
Rl?r:,t?fsgis) 70302 20,961 14.689

Table 1: Pearson correlation coefficient between the CS (incl. different Match Scorers) and averaged human

coverage scores for different matching thresholds on ArgkP21.

van der Hoef, 2022), which measures the agree-
ment between two data clusterings while account-
ing for the possibility of random clustering. The
ARI ranges from -1 to 1, where lower values indi-
cate poor separation, higher values indicate good
separation, and values near zero suggest random
clustering. Since both processed test datasets con-
sist exclusively of arguments with exactly one
matching summary, we treat the sets of arguments
associated with each unique argument summary as
reference clusters within topics and stances. The
argument clusterings provided by the considered
ArgSum systems substantially depend on the hyper-
parameters used. Therefore, we conduct several
clustering runs with different parameter settings
and select the best runs within topics and stances
for each ArgSum system. The parameter settings
taken into account are listed in Table 2 in the ap-
pendix.

Results: Overall, MCArgSum performs roughly
0.2-0.4 ARI points better than USKPM on
ArgKP21 and 0.04-0.08 ARI points better on De-
bate (except with SmatchToPr), demonstrating that
our LLM-based clustering approach can separate
arguments substantially better than existing non-
LLM-based argument clustering approaches. De-
tailed results are given in Table 4 and Table 5 as
well as Figure 3 and Figure 4 in the appendix.

4.2.2 Argument Summarization Capability

Having identified the LLM-based evaluation met-
rics as the most reliable among those considered
for both criteria of coverage and redundancy, this
section addresses their application in order to eval-
uate the ArgSum systems. In our investigations, we

make use of a weighted evaluation score assess-
ing both coverage and redundancy. The weighted
score ws for a certain set of argument summaries
is defined as follows:

ws=a-c+(l—a)-(1—-1) 4

where c indicates the LLM-based coverage score
and r indicates the LLLM-based redundancy score.
The weighting factor « is defined to be in the range
[0, 1] and can be used to bias the weighted score
either towards the coverage score or the redundancy
score. For our investigations, we set the weighting
factor to 2/3, as we consider coverage to be more
important than redundancy. We generate several
argument summaries using various hyperparameter
settings and select the best setting in terms of the
weighted score for each ArgSum system. Since
ArgSum is performed per topic and stance, the final
evaluation score for each ArgSum system results as
the average of the highest weighted scores within
topics and stances.

For simplicity, we refer to the averaged high-
est weighted score as the weighted score and the
averaged coverage and redundancy score as the
coverage and redundancy score, respectively. The
results of evaluating the ArgSum systems with re-
gard to their generated arguments summaries for
ArgKP21 are depicted in Figure 2 (Top). For both
classification-based systems, the integration of an
LLM leads to improved performance. The variant
of BarH without LLM integration has a slightly
lower score compared to the LLM-based summary
generation results. The variant of BarH with LLM-
based argument candidate generation performs best
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Figure 2: Top: Coverage, Redundancy, and Weighted metrics for the ArgKP21 dataset. Bottom: Coverage,
Redundancy, and Weighted metrics for the Debate dataset. SMatchToPr is abbreviated as SMtPR, +cand and +summ
are the variants with LLM candidates and summaries, respectively.

and achieves a weighted score of 0.88. Consid-
ering SMatchToPr, the variant with LLM-based
argument candidate generation (0.88) also outper-
forms those with LLM-based summary generation
(0.85) and without LLM integration (0.86). It is
noteworthy that SMatchToPr without the integra-
tion of an LLM achieves the highest coverage score
(0.91) among all ArgSum systems, but also comes
with high redundancy (0.24). With regard to the
clustering-based ArgSum systems, MCArgSum per-
forms best and achieves the highest weighted score
of 0.84, outperforming USKPM (0.80).

Considering the results for Debate, shown in
Figure 2 (Bottom), the integration of LLM comes
with advantages in all cases. As with ArgkP21, the
variant integrating LLM for argument candidate
generation generally performs best. However, the
clustering-based MCArgSum provides even better re-
sults: It achieves a weighted score of 0.89, mostly
as a result of its high coverage score (0.88).

The integration of LLMs results in considerable
improvements for classifciation-based as well as
clustering-based ArgSum systems. It is notable
that LLM-based argument candiate generation in
classification-based systems performs best for both
datasets. The final choice of an ArgSum sys-
tem should also depend on the runtime require-
ments. Here, clustering-based systems are gener-
ally faster, with MCArgSum showing the best perfor-

mance among all LLM-based ArgSum systems for
both datasets. It required on average 3.779 sec-
onds per topic and stance for ArgkP21 and 7.375
seconds for Debate (cf. hardware specifications in
Appendix A.4).

5 Conclusion

Our proposed LLM-based ArgSum systems and met-
rics achieve state-of-the-art performance across the
two datasets considered. MCArgSum, our newly
proposed ArgSum system, achieves highest perfor-
mance on the Debate dataset and has a runtime ad-
vantage against all other systems considered. The
LLM-based ArgSum evaluation scores we propose
show very high correlation with human judgements
and thus set a very reliable evaluation framework
where reference summaries are available.

A few open questions and tasks remain: we did
not consider open-source LL.Ms like Llama 3.X or
Deepseek R1. While we do not expect substantial
improvements to GPT-4o, it might be interesting to
better understand the influence of the LLM on the
prompting strategies relevant for the ArgSum sys-
tems and (even more) evaluation. Furthermore, we
leave the application of reference-free evaluation
strategies to future work.



Limitations

Both model’s (GPT-40 (gpt-40-2024-08-06),
GPT-40-mini (gpt-40-mini-2024-07-18)) train-
ing data includes information up to October 2023.
ArgKP21, published in November 2021 (Friedman
et al., 2021) and Debate, which dates back to 2014
(Hasan and Ng, 2014) could have been used in
training. However, similar limitations of potential
data contamination are faced in many other recent
problem settings as well; due to a lack of suitable
ArgSum datasets, this issue is hard to avoid. We
also point out that this work introduces a new evalu-
ation benchmark for ArgSum systems, which could
not have been seen by our employed LLMs.

Ethical Considerations

ArgSum systems could yield unreliable, factu-
ally incorrect or even maliciously misleading sum-
maries of the underlying source arguments. Thus,
recipients of the summarized arguments must inter-
pret these with care.
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A Hyperparameters

A.1 Fine-tuning

We fine-tuned the Match Scorers and Quality Scor-
ers in BarH and SMatchToPr according to Bar-
Haim et al. (2020) and Alshomary et al. (2021),
respectively. It is important to note that Bar-Haim
et al. (2020) do not specify which of the two quality
scores (MACE-P and WA) in ArgQ should be used
for training the Quality Scorer. Additionally, it is
unclear whether a model with or without a pooling
layer was used. Since the model without pooling
layer and fine-tuned on MACE-P performs best in
preliminary investigations, we applied it in BarH.
The fine-tuning of FLAN-TS in USKPM was con-
ducted as proposed by Li et al. (2023), though no
specific learning rate was provided. Based on our
observations, a learning rate of 4e-4 worked well
and was therefore used for fine-tuning the model.

MCArgSum As Match Scorer, MCArgSum uses
the SBERT model “all-mpnet-base-v2” fine-tuned
on ArgKP21. The fine-tuning is conducted over
10 epochs with a learning rate of 5e-6 and con-
trastive loss. The best performing model on the
development set was selected as final model.

A.2 Investigations

When applying BarH and SMatchToPr, we used
the recommended parameter values from Bar-Haim
et al. (2020) and Alshomary et al. (2021), respec-
tively. In case of USKPM and MCArgSum, we
set the minimum cluster size c to 3. The similarity
threshold for IC in USKPM was set to zero, mean-
ing that we forced each unclustered argument to
be assigned to an existing cluster. In addition, Ta-
ble 2 includes the varying hyperparameter settings
for the argument clustering inherent in USKPM
and MCArgSum. For USKPM, we performed the
clustering for each possible combination of the de-
picted parameter values.

A.3 Preprocessing

To conduct our investigations on the test split of
ArgKP21 as well as Debate, we performed two
pre-processing steps. First, we remov arguments
that do not have exactly one matching argument
summary. The reason for this is that we aim to pro-
cess only those arguments that have a well-defined
reference summary. This is because the consid-
ered automatic evaluation metrics are reference-
based. Including arguments without any reference
could result in candidate summaries that are not
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captured by the references and thus bias the evalu-
ation of ArgSum systems. Beyond that, including
arguments with multiple references is not suitable
for the evaluation of the argument separation ca-
pability addressed in §4.2.1. Second, we exclude
arguments consisting of more than one sentence, as
we consider an adequate argument to consist of a
single sentence. This is particularly crucial for the
argumentative text sequences contained in Debate.
For the test split of ArgKP21, the pre-processing
reduces the number of arguments from 732 to 428,
while for Debate it is reduced from 3180 to 2321.
Finally, to decrease the computational effort, we
select only 50% of the arguments for each unique
argument summary in Debate as our final dataset.
This pre-processing step results in 1165 remaining
arguments for Debate, while retaining each unique
argument summary.

A.4 Hardware

We conducted our experiments on a personal com-
puter with an Apple M1 Max chip, which is de-
signed as a system-on-a-chip. It includes a 10-core
CPU (8 performance cores and 2 efficiency cores),
a 32-core GPU, and a 16-core Neural Engine. The
GPU has direct access to the entire main memory of
64GB. The system runs on macOS Sonoma 14.1.2
(64-bit). With the introduction of Metal support
for PyTorch on macOS, utilizing the GPU for ma-
chine learning tasks has become accessible. > This
setup was used for both training and inference of
PyTorch models.

A.5 Modifications to ArgSum Systems

We had to apply three modifications to the ArgSum
systems as proposed in §4.2.2. The first concerns
the candidate selection in BarH and SMatchToPr.
In cases where the proportion of candidates out of
all arguments is below a certain threshold pc, we
fill this gap with the highest quality arguments not
yet considered as candidates. In this way, we avoid
cases in which no candidates are identified at all,
as the Quality Scorer provides low scores across
all arguments. Second, when selecting candidates
in SMatchToPr, we delete arguments consisting
of several sentences instead of separating them.
Finally, we use the Quality Scorer included in BarH
instead of TextRank for determining the order of
arguments in the corresponding input list of Flan-
TS in USKPM.

3https://pytorch.org/blog/
introducing-accelerated-pytorch-training-on-mac


https://pytorch.org/blog/introducing-accelerated-pytorch-training-on-mac
https://pytorch.org/blog/introducing-accelerated-pytorch-training-on-mac

Parameter

Value Range Steps

Reduced embedding
dimensionality

Number of neighboring
samples used for the
manifold approximation of

USKPM UMAP

Minimum permitted
distance of points in the
low dimensional
representation of UMAP

[0,0.4] 0.2

Minimum match score
required between two
clusters to be merged (m)

MCArgSum

[0.05,0.95] 0.025

Table 2: Hyperparameter settings of clustering-based ArgSum systems considered in our investigations.

Table 2 includes the hyperparameter settings con-
sidered for the clustering runs in our investigations
described in §4.2.1. For USKPM, we performed the
clustering for each possible combination of the de-
picted parameter values. The minimum cluster size
was constantly set to 3 for each system. In the case
of USKPM, we set the similarity threshold for IC
to zero, meaning that we forced each unclustered
argument to be assigned to an existing cluster in
order to avoid the presence of very small argument
clusters.

B Additional Results
B.1 LLM-based Metric

We list the correlation between LLM-based cov-
erage and redundancy scores and the respective
averaged human scores for the used set of tempera-
tures in Table Table 6.

C Introduction to the Task of ArgSum

A debate on a certain topic can be conducted
using a variety of arguments for each side of the
debate. Although some of these arguments refer to
the same main statement, they can be formulated
very differently. While the number of possible
arguments seems to be almost infinite due to the
possibility of different formulations, the number
of possible main statements within a debate is
limited.

Argument summarization is about summarizing
a relatively large set of arguments on a certain
debate topic and stance by generating a small

set of argument summaries, each expressing one
distinct main statement contained in the set of
arguments. In addition, each argument is matched
to the generated summary that conveys its main
statement the best. Following is a simple example:

Topic: We should abandon the use of
school uniform
Stance:  Opposing
Set of Arguments:
1. School uniforms keep everyone look-
ing the same and prevent bullying

2. School uniforms can help parents save
money on outfit

3. School uniforms help stop bullying
because when people are similarly
dressed, nobody is made to feel infe-
rior

4. Tt is cheaper for parents to buy school
uniforms, which is helpful to parents
that are struggling financially

5. School uniforms are substantially more
affordable

Set of Summaries:
1. School uniforms reduce bullying
2. School uniforms save costs

Argument Summary Matches:

The matches are highlighted by the colored
markings:
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Similarity Soft-Precision Soft-Recall Soft-F1 Run-
Function Across Within Across Within Across Within time (s)
ROUGE 1 0.118 o 0.164 3 0.027 T 0.428
MoverSc. -0.046 :l(:)00337 0.156 :8032184 0.069 :8012957 55.93
s | owe | | om | A0 | | 02| s
Pk || 0771 | Zoasi | 002 | gog || 012 | gk, || 4109
BLEURT -0.209 :_S()221889 0.033 £01§§7 -0.091 f0025954 487.3
MENLI -0.154 :_IE)0023897 0.265 :|:%?27620 0.107 :I(:)02§§8 254.6

Table 3: Pearson correlation coefficient between the Soft-Score (incl. different similarity functions) and averaged
human coverage scores, along with the evaluation runtime. For the scenario within topics and stances, standard
deviations are indicated below the correlation values. The three strongest positive correlations for both scenarios
across sP, sR and sF1 are underlined in green, blue and orange.

e Arguments 1 and 3 are matched to sum-
mary 1

* Arguments 2, 4 and 5 are matched to
summary 2

Description of the Evaluation Task

This task is about determining how well a set of
generated argument summaries serves as a sum-
mary of possible arguments on a certain debate
topic and stance.

For this purpose, you are given a set of generated
summaries and a set of reference summaries as well
as the corresponding debate topic and stance. You
have to carry out the following two instructions
regarding the criteria of coverage and uniqueness:

1. Coverage: Count the number of reference
summaries that are covered by the set of
generated summaries.

2. Uniqueness: Count the number of dis-
tinct/unique main statements contained in
the set of generated summaries.

For both criteria increments of 0.5 are allowed.
In the case of coverage, this applies if a reference
summary is only partially covered by the set
of generated summaries. For the criterion of
redundancy, this applies if there is a distinct main
statement in the set of generated summaries that
partially overlaps with another. For the case you
are not sure, you can answer with -1. Following is
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an example:

Topic: Routine child vaccinations

should be mandatory
Stance:  Opposing
Set of Reference Summaries:

1. Mandatory vaccination contradicts ba-

sic rights

Routine child vaccinations are not nec-
essary to keep children healthy

. Routine child vaccinations, or their
side effects, are dangerous

The parents and not the state should
decide

Set of Generated Summaries:

1. Vaccinations violate free will and per-

sonal choice

. Mandatory vaccines conflict with reli-
gious beliefs

. Parents should have the right to decide

4. Children may suffer harmful effects
from vaccines

. Concerns about vaccine safety and side
effects

Coverage: 3 (The second reference summary is

not covered.)

Uniqueness: 3.5 (The first and third generated



ArgSum System | Scenario ARI PCr;:Fs(:::'le(gl Runtime
Excl. Noise 0.273 +0.045 0.884 +0.079 1.417 £0.136
USKPM Incl. Noise 0.253 +0.057 1.000 £0.000 1.478 £0.113
IC 0.268 +0.052 1.000 +0.000 4.377 +£4.378
MCArgSum Excl. Noise 0.594 +0.299 0.908 +0.061 1.133 +0.178
Incl. Noise 0.547 +0.255 1.000 +0.000 1.133 +0.178
MCArgSum | Excl. Noise 0.725 +0.182 0.858 +0.064 53.86 +25.19
(BarH) Incl. Noise 0.640 £0.158 1.000 +0.000 53.86 +£25.19
MCArgSum | Excl. Noise 0.682 £0.109 0.881 £0.042 2.723 +£0.435
(SMatchToPr) Incl. Noise 0.639 +£0.113 1.000 £0.000 2.723 +£0.435

Table 4: Argument separation capability of clustering-based ArgSum systems for ArgKP21. While ARI refers to the
highest ARI from several examined parameter settings, the proportion of clustered arguments and the clustering
runtime refer to this highest ARI. The scenarios are detailed in §4.2.1. All depicted values are averaged across
topics and stances. Standard deviations are indicated behind each value.

ArgSum System | Scenario ARI Pcrflf;(:::le(;n Runtime
Excl. Noise 0.298 +0.054 0.79740.051 2.090 +0.518
USKPM Incl. Noise 0.232 4+0.049 1.000 +0.000 2.044 +0.507
IC 0.262 £0.054 1.000 £0.000 15.38 +9.633
MCArgSum Excl. Noise 0.369 40.135 0.878 40.095 1.931 40.690
Incl. Noise 0.315 +0.123 1.000 +0.000 1.931 +0.690
MCArgSum | Excl. Noise 0.411 40.085 0.789 +0.079 201.9 +166.7
(BarH) Incl. Noise 0.311 4:0.099 1.000 £0.000 201.9 +166.7
MCArgSum | Excl. Noise 0.305 4-0.071 0.783 £0.068 6.109 +£2.323
(SMatchToPr) Incl. Noise 0.245 +0.045 1.000 +0.000 6.109 +2.323

Table 5: Argument separation capability of clustering-based ArgSum systems for Debate. While ARI refers to the
highest ARI from several examined parameter settings, the proportion of clustered arguments and the clustering
runtime refer to this highest ARI. All depicted values are averaged across topics and stances. Standard deviations
are indicated behind each value.

summaries address two different distinct main
statements. The fourth and fifth generated sum-
maries refer to the same distinct main statement.
The second generated summary partially overlaps
with the first one.)
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Figure 3: Highest ARI of clustering-based ArgSum systems from several examined parameter settings for ArgKP21.
All depicted values are averaged across topics and stances. Standard deviations are indicated below the ARI values.

Temper- LLM-based Coverage Score LLM-based Redundancy Score
ature Across Within Runtime (s) Across Within Runtime (s)
0.20 0.736 St 495.1 0.798 Ry 1305.3
0.30 0.725 B 467.7 0.789 R 1651.1
0.40 0.746 o 529.3 0.817 27 B 1515.4
0.50 0.742 io'(z . 512.0 0.812 io'(z %‘1‘0 1446.3
0.60 0.741 Qe 629.7 0.837 e 1359.9
0.70 0.755 208 644.3 0.830 s 1425.6
0.80 0.729 2 ?gg 612.4 0.828 27 “ 1431.1
0.90 0.754 io'07_ %1 676.4 0.843 iog %9 1651.0
1.00 0.767 Bl 845.5 0.852 Royed 1649.1

Table 6: Pearson correlation coefficient between the LLM-based coverage and redundancy scores and the respective
averaged human scores for different temperatures, along with the evaluation runtime, on ArgkP21. For the scenario
within topics and stances, standard deviations are indicated below the correlation values. The strongest positive
correlations for both scenarios within each LLM-based score are highlighted in bold.
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Figure 4: Highest ARI of clustering-based ArgSum systems from several examined parameter settings for Debate.
All depicted values are averaged across topics and stances. Standard deviations are indicated below the ARI values.

Topic We should abandon the use of school uniform

Stance -1

Argument | school uniforms cut down on bulling and keep everyone the same.
Key Point | School uniform reduces bullying

Label 1

Set dev

Table 7: Exemplary data point of ArgKP21.
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Coverage (0.697) Redundancy (0.722)

Al Al

Ad Ad

Al A2 A3 A4 Al A2 A3 A4

Figure 5: Pairwise Pearson correlation coefficient of the human judgments by the four annotators (A1-A4) for

the criteria of coverage and redundancy. The averaged value across the unique annotator pairs is indicated in the
parentheses.

Topic obama

Stance -1

Aroument Where are those outspoken democrats who voted for him because they were told, no
g promised, that he would END THE WAR?

Argument Wars are still on

Summary

Table 8: Exemplary data point of Debate.
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