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Abstract

The policy gradient theorem (Sutton et al., 2000) prescribes the usage of the on-
policy state distribution to approximate the gradient. Most algorithms based on
this theorem, in practice, break this assumption introducing a distribution shift
that can cause the convergence to poor solutions. In this paper, we propose a new
approach of reconstructing the policy gradient from the start state without requiring
a particular sampling strategy. The policy gradient calculation in this form can be
simplified in terms of a gradient critic, which can be recursively estimated due to a
new Bellman equation of gradients. By using temporal-difference updates of the
gradient critic from an off-policy data stream, we develop the first estimator that
side-steps the distribution shift issue in a model-free way. We prove that, under
certain realizability conditions, our estimator is unbiased regardless of the sampling
strategy. We empirically show that our technique achieves a superior bias-variance
trade-off and performance in presence of off-policy samples. The extended version
of this work can be found in Tosatto et al. (2022) and the implementation of the
experiment at https://github.com/SamuelePolimi/temporal-difference-gradient.

1 Introduction

Policy gradient methods provide an elegant approach to learn a parameterized policy in reinforcement
learning Deisenroth et al. (2013). The policy gradient theorem (Sutton et al., 2000) provides a
form for the gradient of the policy objective that can be sampled in a model-free way. This early
work laid the foundation for practical methods, but as yet there is much more work to be done to
provide effective approximations for the gradient. This is specially important in the off-policy setting,
where we need the gradient under the current policy (the target policy) but the agent’s experience is
generated under a different policy (the behavior policy). Addressing this gap is critical for building
sample-efficient methods that permit re-use of the agent’s experience either from past policies as
replay (Mnih et al., 2015; Lillicrap et al., 2016), offline datasets (Levine et al., 2020), or human
demonstrations. The difficulty of constructing policy gradient approximators arises from the need to
sample states from the discounted state-distribution that is induced by the target policy. Although
such sampling can be achieved in an on-policy manner, this approach is rarely used in practice, as it
requires samples to be used only once, causing high variance and sample inefficiency. Instead, most
methods reuse data, introducing some bias but compensating it with better sample efficiency.

An alternative approach consists in correcting the state distribution. The most straightforward choice
is to use importance sampling to reweight states, as if they had been sampled proportionally to the
target policy (Shelton, 2001; Peshkin & Shelton, 2002). These methods are usually unbiased but
affected by prohibitively large variance (Owen, 2013). Many recent papers aim to lower the variance
of pure importance sampling correction. Liu et al. (2018) and Liu et al. (2019) introduce the concept
of state-wise importance sampling. Imani et al. (2018) proposes to combine semi-gradient with an
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emphatic weighting. Notably, they come across the gradient Bellman equation in their derivation.
AlgaeDICE (Nachum et al., 2019) incorporates a correction of the off-policy distribution by relying
on the dual problem of a modified objective that incorporates an f -divergence regularization. But as
yet more work is needed to make state-reweighting a practical choice.

The most common choice has been to simply omit any correction to the state distribution such as
is done in OffPAC (Degris et al., 2012), DDPG (Lillicrap et al., 2016), A3C (Mnih et al., 2016),
TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018). These methods are referred to as
semi-gradient methods since the shift in the distribution can be seen as a result of the omission of a
term in the gradient computation (Imani et al., 2018). Though most state-of-the-art policy gradient
algorithms use this semi-gradient approach, there are well known counterexamples showing that
the bias can result in poor solutions (Nota & Thomas, 2020; Thomas, 2014; Imani et al., 2018; Liu
et al., 2019). These counterexamples are not pathological and indicate issues that can arise under
reasonable state aliasing. Fujimoto et al. (2019) suggests that the effectiveness of aforementioned
approaches can be hindered when the distribution shift is more pronounced.

In this work, we side-step the issue of the state weighting by pursuing an alternative form for the
policy gradient. We propose learning a parametric representation of the cumulative discounted
sequence of gradients generated from the target policy, which we call the gradient critic. The gradient
critic can be learned from off-policy data using classic temporal-difference (TD) approaches. We will
see that the gradient critic satisfies a Bellman equation (which we call gradient Bellman equation),
allowing us to leverage the rich body of literature of value function estimators, including the ones for
off-policy setting. The gradient critic can be queried on the starting states, allowing us to predict the
policy gradient without constraining ourselves to the need of a particular state distribution (i.e., the
target-policy state-distribution). We show that the gradient estimate is unbiased when the gradient
function is realizable. To our knowledge, our method is the first to allow unbiased and model-free
estimation of the policy gradient without using a state distribution reweighting4.

2 The Issue of State-Reweighting

We consider a Markov decision processM = (S,A, r, p, γ, µ0), where S represents a finite set of
states, A a finite set of actions5, r : S ×A → R a reward signal, p(s′|s, a) a probability density of
transitioning to state s′ after the application of action a in state s, γ is the discount factor, and µ0

is the distribution of the starting state. The parameterized policy πθ, with parameters θ ∈ Rnp , is a
stochastic mapping, with density πθ(a|s) over actions. We assume πθ to be differentiable w.r.t. θ.
We denote with St, At, Rt the random variables representing the state, action, and reward at time
t. We denote a sequence of state, action, and reward with τπ, when they are on-policy and with τβ
otherwise.

The objective is to maximize the expected discounted return from the start states

J(θ) = (1−γ)E
τπ

[ ∞∑
t=0

γtRt

]
=(1−γ) E

S0∼µ0
A0∼πθ

[Qπ(S0, A0)] , (1)

where the action-values Qπ(S,A) are the expected return under the policy from a given state and
action, defined recursively as for all s ∈ S and a ∈ A

Qπ(s, a)=r(s, a)+γ
∑
s′,a′

Qπ(s′, a′)p(s′|s,a)πθ(a′|s′). (2)

Policy Gradient Theorem. One of the most important results in reinforcement learning is the policy
gradient theorem (PGT), which allows us to estimate the policy gradient via samples:

∇θJ(θ) = E
S∼µπγ ,A∼πθ

[Qπθ (S,A)∇θ log πθ(A|S)] . (3)

Note that this gradient has states sampled from the discounted state districution, i.e., S ∼ µπγ ,
which is defined as follows. The state-distribution µπt (s) =pπ(St= s) indicates the density or the

4At the time of our submission, Ni et al. (2022) indipendently released on Arxiv a similar idea corroborating
our findings.

5We provide a continuous state-action formulation in appendix.
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probability of the state s being observed at time t when following π. The discounted state distribution
is µπγ (s) = (1− γ)

∑∞
t=0 γ

tµπt (s).

Semi-Gradient. Most algorithms do not sample from the discounted state distribution µπγ , as they do
not perform proper discounting Nota & Thomas (2019) and they reuse past experience collected in
the replay buffer. The semi-gradient estimate can be seen as

∇SGθ J(θ)= E
S∼µβ ,A∼β

[
πθ(A|S)
β(A|S) Q

πθ (S,A)∇θ log πθ(A|S)
]
, (4)

where β is a behavior policy, and µβ its induced state-distribution. Notice that the importance
sampling in Equation (4) only corrects the mistach in the action distribution but not the off-policy
state distribution µβ . Examples of semi-gradient approaches are OffPAC (Degris et al., 2012), DDPG
(Silver et al., 2014) and SAC (Haarnoja et al., 2018; Heess et al., 2015).

To avoid the semi-gradient problem, most approaches propose to perform a state-reweighting. The
simplest version, proposed by Shelton (2001) and Peshkin & Shelton (2002), consists of multiplying
all the importance sampling corrections along the trajectory, causing high variance. Recent work
Imani et al. (2018); Liu et al. (2018, 2019) aims to lower the variance, but still relies on forms of
importance sampling corrections. A proper and practical way of state-reweighting remains to be one
of the critical issues for effective policy gradient estimation.

3 Policy Gradient Using a Gradient Critic

In this section, we pursue another path to estimating the policy gradient, by introducing the notion of
a gradient critic. This gradient critic is the discounted accumulation of gradients, and as we show
later, can be estimated using standard temporal-difference methods. This approach avoids the need
to reweighting state distribution or incorporate high-variance importance sampling ratios, without
incurring the high bias of semi-gradient approaches.

To obtain our alternative gradient estimator, we use a different formulation of the policy gradient

∇θJ(θ) ∝ Eτπ

[ ∞∑
t=0

γtgt

]
, (5)

where g(S,A) = Qπ(S,A)∇θ log πθ(A|S), gt = g(St, At)
6. Equation (5) is equivalent to a

trajectory-based version of Equation (3), with a constant factor 1− γ omitted. This form, however,
highlights that the policy gradient can be seen as the discounted cumulation of gradients induced by
on-policy trajectories.

We now connect (5) with what we call the gradient critic Γπ(s, a)
.
= ∇θQπ(s, a). Let us to to

naively compute the gradient of the return J in (1) using the chain rule,

∇θJ(θ)∝
∑
s,a

µ0(s)
(
πθ(a|s)∇θQπθ(s,a)+Qπθ(s,a)∇θπθ(a|s)

)
=
∑
s,a

µ0(s)πθ(a|s)[g(s, a)+Γπ(s, a)] = E
S∼µ0,A∼πθ

[
g(S,A)+Γπ(S,A)

]
. (6)

Equation (6) highlights that the gradient critic can recover the policy gradient just by computing
an expectation over the starting-state distribution µ0. In other words, given an estimated gradient
critic Γ̂π, an estimated value critic Q̂π, and a start state s0, the policy can be updated by using
aπ0 ∼ πθ(·|s0) and

θ ← θ + η
(
ĝ(s0, a

π
0 ) + Γ̂π(s0, a

π
0 )
)
, (7)

where ĝ(s0, a
π
0 ) = Q̂π(s0, a

π
0 )∇θ log πθ(a

π
0 |s0). This policy gradient estimator is naturally model-

free and off-policy, does not require state distribution reweighting, and has less variance than the
classic policy gradient, as it involves overall less stochasticity.

6As discussed in Appendix B, the likelihood-ratio gradient (LR) in g can, in principle, be replaced with
reparametrization gradient (RP) (similar to SAC Haarnoja et al. (2018)), compositions of LR and RP Lan et al.
(2022), or others Carvalho et al. (2021).
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There is, of course, a big caveat: we require an estimate of this gradient critic. Poor estimates
may introduce significant bias, overriding the benefits of this variance reduction. Even worse, we
compound two approximations: an approximate value critic Q̂π and gradient critic Γ̂π . Remarkably,
we find that we can actually obtain an unbiased gradient estimate, under linear function approximation
with realizability, using a (batch) TD approach for learning both the value critic and gradient critic.
We prove this later, in Theorem 2, after introducing the gradient critic estimation approaches. This
theorem is particularly surprising because semi-gradient approaches remain biased, even with the
knowledge of a perfect critic (Imani et al., 2018; Liu et al., 2019).

Aside the independent work of Ni et al. (2022), to the best of our knowledge, this is the first
unbiased policy gradient approach estimator, with function approximation, that does not rely on
state distribution reweighting. Notably, Tosatto et al. (2020, 2021) derived a similar approach to
Equation (7) based on nonparametric statistics. Their method, however, do not scale with samples
and requires infinitesimal bandwidth of the kernels to ensure unbiasedness.

In practice, of course, we may not have realizability and we need to understand when this approach
will succeed and when it will fail. In the remainder of this paper, we investigate the properties of
this approach, particularly focusing on different estimation approaches for the gradient critic and
assessing those approaches empirically.

4 Estimating the Gradient Critic

In this section, we discuss the gradient Bellman equation and how we can use it to estimate the
gradient critic Γπ. Notice that Γπ(s, a) = ∇θQπ(s, a) represents the differentiation of the state-
action value with respect to the policy’s parameters, is different from reparameterization gradient,
and cannot, in general, be found in closed form or via automatic differentiation. Instead, we leverage
the gradient Bellman equation and explain how to use the a TD algorithm to estimate this gradient
critic. The basic idea is that the gradient estimator can be used with Equation (7) to update the policy
gradient. In Section 6, we outline an n-step estimator that is robust to the bias of the gradient critic.

4.1 The Gradient Bellman Equation

At this point, the estimation of Γπ remains an open question. Interestingly, Γπ can be defined
recursively in terms of a Bellman equation. Consider that Γπ(s, a) = ∇θQπ(s, a), and by taking the
derivative of the Bellman equation (2) we obtain

∇θQπ(s, a) =γ
∑
s′,a′

(
Qπ(s′, a′)∇θ log πθ(a

′|s′) +∇θQπ(s′, a′)
)
πθ(a

′|s′)p(s′|s, a).

By substituting back ∇θQπ with Γπ and the summation with an expectation, we obtain the gradient
Bellman equation,

Γπ(s,a)=γE[gt+1+Γπ(St+1, At+1)|St=s,At=a]. (8)

The gradient Bellman equation is a vector equation, but each element acts independently, i.e., for the
i-th element gi of g, we have that Γπi (s, a)=

∑
s′,a′(gi(s

′, a′)+γΓπi (s′, a′)π(a′|s′))p(s′|s,a) which
is a Bellman equation for a scalar Γπi (s, a). The gradient Bellman equation mantains all the classic
properties of the classic Bellman equation.

Bellman equations are well studied, giving us broad literature about approximation techniques and
theoretical results. For example, Γπ(s, a) can be estimated using bootstrapping approaches, like
temporal-difference learning. One key subtlety is that the term gi(s, a) involves Qπ , which also needs
to be estimated. Fortunately, actor-critic methods already estimate this term.

4.2 An Online Estimator using TDRC

The full algorithm involves 1) estimating a value critic, 2) using the value critic to estimate the
gradient critic, and 3) using both the value and the gradient critics to estimate the policy gradient
update. In this section, we explain an algorithm based on TD with regularized correction Ghiassian
et al. (2020), and detailed in Algorithm 1 (Appendix D).

4



We can use TD to estimate both the standard action-value critic, as well as the gradient critic. We now
have two temporal-difference errors: δt for the value critic, and the vector δgt for the gradient critic,
which is the size of the number of policy parameters. Let ωt be the parameters for the value critic Q̂t
and Gt the parameters for the gradient critic Γ̂. The updates for the value critic, with step-size αt,
are the standard TD updates:

δt = Rt+1 + γQ̂t(St+1, At+1)− Q̂t(St, At), ωt+1 = ωt + αtδt∇ωtQ̂t(St, At). (9)

Similarly, we can get vector-valued TD updates for the gradient critic as follows:

gt = Q̂t(St, A
π
t )∇θ log πθ(A

π
t |St), δgt = gt+1 + γΓ̂(St+1, At+1)− Γ̂(St, At),

Gt+1 = Gt + αtδ
g
t∇GtΓ̂(St, At). (10)

Simple TD techniques (Sutton, 1988) are sample efficient but are not guaranteed to converge with
off-policy data (Baird, 1995). Gradient TD methods (Sutton et al., 2008) and TD with gradient
corrections (TDC) (Sutton et al., 2009) are guaranteed to converge under general conditions, however
are often less sample efficient than TD (Ghiassian et al., 2020). A recent approach called TDRC
(temporal-difference with regularized correction, Ghiassian et al. (2020) proposes to mix regular TD
with TDC, allowing convergence with off-policy samples without losing sample efficiency.

Once the gradient critic has been estimated, it can be used to update the policy parameters as in
Equation (7). Algorithm 1 details a pseudocode of TDRC with policy improvement (Appendix D).

5 Unbiased Estimation Under Realizability

In this section we analyze the properties of the gradient critic, obtained with TD under linear function
approximation. In particular, we show that the gradient critic given by the TD fixed-point solution in
the realizable setting—the case where the features are sufficient to represent the value critic—gives
an unbiased estimate of the policy gradient.

The TD fixed-point solution of the projected Bellman equation induced by (8) is as follows:

Γ̂πTDQ(s, a) = φᵀ(s, a)GTDQ, GTDQ = A−1π BQ, Aπ = Eζ [φ(S,A) (φᵀ(S,A)− γφᵀ(S′, A′))] ,

BQ = γEζ [φ(S,A)Qπ(S′, A′)∇θ log πθ(A
′|S′)] . (11)

We first consider approximation error of the gradient critic assuming access to the true value Qπ .
Lemma 1 (Gradient Critic with Perfect Value Critic). Let us consider finite state and action sets,
and an irreducible Markov chain induced jointly by the transition function p and the policy πθ
having steady distribution µ. Let ζ be a process where S ∼ µβ , A ∼ β(·|S), S′ ∼ p(S′|S,A) and
A′ ∼ πθ(·|S′). If p(S,A) = µβ(S)β(A|S) satisfies the inequality introduced by Kolter (2011), then

‖Γ̂πTDQ(s, a)−∇θQπ(s, a)‖ζ ≤
1 + κγ

1− γ
min
G
‖φᵀ(s, a)G−∇θQπ(s, a)‖ζ , (12)

with κ=maxs,a h(s, a)/mins,a h(s, a) where h(s, a) =
√
µ(s)πθ(a|s)/

√
µβ(s)β(a|s)).

Next we consider the more realistic setting where we estimate the value critic. Again, because we use
TD methods, we will use the TD-fixed point solution Q̂πTD(s, a) = ϕᵀ(s, a)ωTD. Namely, we have
ωTD = C−1π b with

Cπ = Eζ [ϕ(S,A) (ϕᵀ(S,A)− γϕᵀ(S′, A′))] , b = Eζ [ϕ(S,A)r(S,A)], and

Γ̂πTD(s, a)=φᵀ(s, a)GTD, with GTD=A−1π B, (13)

where B = γEζ [φ(S,A)Q̂πTD(S′, A′)∇θ log πθ(A
′|S′)] and Aπ is as in (11).

The approximation error of the gradient critic when using the TD fixed-point solution for approximat-
ing both the critic can be bounded.
Theorem 1 (Error Analysis). Consider the assumption in Lemma 1 and Proposition 1 (Appendix
A.3). The TD fixed-point solution Γ̂πTD of the gradient function defined in Equation 13 satisfies

‖Γ̂πTD(s, a)−∇θQπ(s, a)‖ζ ≤
1 + γκ

1− γ
min
G
‖φᵀ(s, a)G−∇θQπ(s, a)‖ζ +
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γnpbκ
(1 + γκ)2

(1− γ)2
min
ω
‖ϕᵀ(s, a)ω −Qπ(s, a)‖ζ ,

with b = |maxa,s,i ∂/∂θi log π(a|s)|, np the number of the policy’s parameters and κ as in Lemma 1.

The proof of Theorem 1 relies on the results in (Kolter, 2011) and on Lemma 2 (Appendix A.4).

Remark: Theorem 1 shows that the approximation error of the TD fixed-point solution of the gradient
critics is bounded by the projection error of both critics: if the feature spaces of both the value and
the gradient critic are good enough, both the projection errors goes to zero, ensuring an unbiased
gradient estimate.

5.1 Shared Features

The gradient critic is inherently more complex than the value critic, since it predicts a high-
dimensional quantity. It seems resonable that the feature space should also be larger (w.r.t. the
value critic’s one) to compensate this complexity. Surprisingly, in this linear setting, when the feature
space of the value critic allows an unbiased value estimate, then it can be also reused by the gradient
critic to obtain an unbiased gradient estimate.

Consider sharing the features between value and gradient critic, i.e., φ = ϕ. Notice that, in this case,
Q̂πTD(s, a) = φᵀ(s, a)ωTD, and ωTD = A−1π b where b = Eζ [φ(S,A)r(S,A)].

In this case, it is possible to show that the TD fixed-point solution of the gradient critic is the gradient
of TD fixed-point solution of the value critic.

Lemma 2. When φ = ϕ, the gradient approximation Γ̂πTD(s, a) and the TD fixed-point critic
Q̂πTD(s, a) satisfies Γ̂πTD(s, a) = ∇θQ̂πTD(s, a)∀s ∈ S,∀a ∈ A.

Proof in Appendix A.1. This identity shows that the gradient predicted by the gradient critic is
consistent with the gradient of the value critic. Usually, policy gradient algorithms do not guarantee
this consistency. In fact, after the policy update, the policy might improve, but this improvement
might be not representable by the critic, causing instability. This issue is well known in value iteration
(Lu et al., 2018). When features are shared, the converged gradient critic predicts the gradient of the
approximated value critic w.r.t. the policy parameters, guaranteeing its improvement.

The benefit of sharing features is emphasized in Theorem 2, where the realizability of the value critic
implies the realizability of the gradient critic.

Theorem 2 (Perfect Features). Let Φ ≡ {φ(s, a)|∀s ∈ S ∧ a ∈ A} and Φ′ ≡ {φ(s, a) −
γ
∑
s′,a′ φ(s′, a′)πθ(a

′|s)p(s′|s, a)|∀s ∈ S ∧ a ∈ A} be nf -dimensional vector spaces (they both
admit at least one basis of dimension df ). Let µβ be such that Aπ is invertible. If we assume that for
any policy parameter θ exists a vector parameter ωπ such that

φᵀ(s, a)ωπ = Qπ(s, a) ∀s ∈ S ∧ a ∈ A, then Γ̂πTD(s, a) = ∇θQπ(s, a) ∀s ∈ S ∧ a ∈ A.

Proof in Appendix A.5. This theorem further empasizes that the gradient critic can be unbiased. In
particular, even though the gradient critic predicts a higher-dimensional vector compared to the value
critic, it can still achieve a good approximation with the features used by the classic value critic.

6 Controlling the Bias and Variance

The proposed estimator fully relies on the gradient critic. We can instead reduce this reliance, by
incorporating sampled gradient components and then bootstrapping.

Notice that Equations 5 and 6 represent two extremes: the first is a full Monte-Carlo rollout, while
the second uses full bootstrapping. By applying recursively the definition of the gradient critic, we
can rewrite the policy gradient as a n-step estimator:

∇θJ(θ) ∝E
τπ

[ n∑
t=0

γtgt + γnΓπ(Sn, A
π
n)

]
.
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The advantage of this approach is that we can either immediately bootstrap off of our estimate of
the gradient (n = 0), or we can wait one step to bootstrap, or we can wait n steps. This perspective
highlights even more the role of Γπ(s, a) as a critic function.

We can also express the n-step estimator under off-policy sampling using the standard strategy of
path-wise importance sampling corrections Shelton (2001). Under behavior policy β, it yields

∇θJ(θ) ∝E
τβ

[ n∑
t=0

γtρtgt + γnρnΓπ(Sn, A
π
n)

]
,

where ρ0 = 1, ρt =
∏t−1
i=0 π(Ai|Si)/β(Ai|Si), τβ are off-policy trajectories, gt = g(St, A

π
t ) and

Aπn ∼ πθ(·|Sn) are on-policy actions. These actions are sampled on-policy after n steps and used to
reduce the gradient’s variance.

The utility of the n-step form for the PG is twofold: (a) it allows us to trade off bias and variance in
our PG estimator, and (b) it allows us to mitigate the role of the state reweighting and the associated
variance issues. Using n = 1 means that we rely heavily on our gradient critic, which might be
biased. However, we avoid the variance of sequences of sampled gt, which we have for larger n.
This effect is pronounced in the off-policy setting, where for n > 1, we correct the whole trajectory
distribution. As n gets larger, we approach the classic PG estimator, with state reweighting given by
the products of importance sampling ratios and γ. Therefore, the n-step estimator allows us to reduce
the variance due both to sampled gt and state reweighting. In the extreme, at n = 0, we do not need
to use any reweighting, because Γπ(s, a) allows us to query the gradient from any state and action.

Once we have this n-step estimator, it is straightforward to extend it to eligibility traces (Ap-
pendix A.2),

∇θJ(θ) ∝ E
τβ

[ ∞∑
t=0

λtγtρt
(
gt + (1− λ)Γπ(St, A

π
t )
)]
,

with trace parameter λ ∈ [0, 1]. With λ = 0, we obtain the n = 0 estimator, where we immediately
bootstrap off of Γπ. As λ → 1, we recover the classic PGT. This trace gradient is actually an
exponential average, with weighting λ, of all n-step estimators, and so provides a smoother trade-off
between bias and variance.

Finally, we can further reduce variance, at the cost of bias, by considering the PG without any state
reweighting. Namely, we can instead blend between the semi-gradient and our approach, rather than
the corrected gradient and our approach,

∇θJ(θ) ≈E
τβ

[ ∞∑
t=0

λtγt
(
gt + (1− λ)Γπ(St, A

π
t )
)]
. (14)

As λ → 1, we recover the semi-gradient, because we are effectively sampling S ∼ µβγ . The bias-
variance trade-off in this estimator is more subtle. For larger λ, we are more robust to bias in the
gradient critic, but also suffer more from bias due to the omission of the importance sampling ratios.
Therefore, when the gradient critic is quite accurate, a lower λ might result in less bias. We showed
in Theorem 2 that in some cases, the gradient critic can be unbiased, even when estimated under
off-policy samples. This result highlights that this generalized estimator can provide improvements
on the classic gradient estimation, allowing us to avoid reweighting and potentially reducing the bias
significantly. Algorithm 1 (Appendix D) depicts a policy improvement scheme unifying the gradient
critic estimate presented in Section 4.2 with this extension to eligibility traces.

7 Empirical Analysis

We want to show that 1) the semi-gradient is generally biased, whereas the gradient critic is unbiased
provided realizability, 2) this unbiasedness helps the convergence to better solutions, and 3) even
when applied to a subset of the actor parameters, the gradient critic helps to attain higher performance.
We test four different algorithms: a classic semi-gradient algorithm, OffPAC (Degris et al., 2012),
an actor critic algorithm with full importance sampling correction ACE(1) (Graves et al., 2021), a
simple and new policy gradient scheme called LSTDΓ that uses the least-squares temporal-difference
solution for the gradient critic computed from offline data using Equations 11, and TDRCΓ as
described in Algorithm 1 (Appendix D).
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Figure 1: (a) Imani’s MDP (Imani et al., 2018). (b) Bias and variance of gradient evaluation with
LSTDΓ in Imani’s MDP. Lower λ achieves lower bias and variance, showing that the gradient
critic helps delivering a better estimate. (c, d) the scatter plots show single estimates of LSTDΓ and
green lines the ground truth. While low λ helps the estimate of ∂/∂θ2 it does not improve ∂/∂θ1,
suggesting that the gradient critic used on a convenient subset of parameters could still be beneficial.

0 0.5 1

0.05

0.1

0.15

λ

J
(
θ
)

(a) LSTDΓ
Imani’s MDPs:

2,000 4,000

λ=1

λ=0.75

OffPAC

Gradient Updates

λ=0

λ=0.25

λ=0.5

ACE(1)

(b) TDRCΓ

0 1 2

1.7

1.8

1.9

·1
0
−

2

Gradient Updates (104)

J
(
θ
)

OffPAC

ACE(1)

(c) TDRCΓ
Random MDPs:

0 1 2

Gradient Updates (·104)

λ=0

λ=0.25

λ=0.5

λ=0.75

λ=1

(d) TDRCΓ-LastLayer

Figure 2: Imani’s MPD: (a) final performance of LSTDΓ and (b) learning curve of TDRCΓ. Random
MPDs: (c) learning curve of classic TDRCΓ compared with OffPAC and ACE(1) (d) learning curves
of TDRCΓ with the gradient critic applied only to the last layer of the actor. We notice that lower
values of λ improves the performance in both the tasks. Using the critic only on the last layer does
not degrade the performance sensibly. Shaded areas show the standard error.

Imani’s MDP (Figure 1a) is designed to show the fallacy of semi-gradient methods under off-policy
distribution. In their work, Imani et al. assumed a perfect critic but aliased states for the actor.
In agreement with their setup, we use a behavior policy that samples with probability 0.25 action
A0 and 0.75 action A1. The critic’s features have sufficient information for all state-action pairs
φ(s, a) = one-hot-encode(s, a). The optimization policy is initialized with probabilities 0.9 and
0.1 for actions A0 and A1 respectively7.
Randomly Generated MDPs. The MDP mentioned above is designed appositely to show the flaws
of semi-gradient algorithms, and it assumes fully informative critic features. We want to test the
gradient function in a more generic setting. To this end, we randomly generate 2500 MDPs with
30 states and 2 actions. We use this task to study the effect of the application of the gradient critic
restricted to a subset of the parameters.

7.1 Analysis on Imani’s MDP

The goal of this set of experiments is to analyze the effect of the gradient critic estimator on Imani’s
MDP. We focus on the estimation bias, variance and performance for different value of λ.
Bias-Variance Analysis. We generate datasets of 500 samples using the behavioral policy. The target
policy’s parameters are initialized to match the condition described earlier. We estimate the gradient
using LSTDΓ with λ ∈ {0, 0.05, 0.1, . . . , 1}. For each value of λ, we compute 1000 estimates of
the bias and the variance accompanied with confidence intervals at 95%. Figure 1b shows that both
the bias and the variance of the estimator increase as λ increases. This means that the gradient critic,

7Differently from their setup, we measure the performance by using the return in Section 2, instead of their
proposed off-policy objective. Furthermore, our returns are discounted by 1− γ.
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which is most used at λ→ 0, helps in delivering high quality estimation of the gradient. Notably, the
bias of semi-gradient affects only a subset of gradient vector (Figure 1c and d), suggesting that the
gradient critic could be tailored to learn only a subset of the gradient (Appendix D.4).
Performance of LSTDΓ. The previous analysis supports the unbiasedness discussed in (Section 5).
However, this does not automatically imply an increase in performance. To provide an analysis on
the performance, we generated datasets of 500 samples, and we trained the policy for 1000 steps
using the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.01. We repeat the process
20 times for each value of λ. Figure 2a depicts the final performance of the algorithm for the different
values of λ. Observe that high values of λ, like 1 or 0.9, lead to a poor solution, while lower values
of λ reach high performance. This enhancement suggests that the contribution of the gradient critic is
beneficial. Interestingly, even a weak mixing of the gradient critic helps the performance dramatically.
Performance of TDRCΓ. The online estimator of the gradient function TDRCΓ requires a separate
validation as it is more subject to noise in the data. We used a similar settings as for LSTDΓ, except
that samples are streamed, Adam’s learning rate is set to 0.001, and the optimization takes 5000 steps.
We used β = 1 as regularization factor and constant learning rate for both critic and gradient critic
α = 0.1. Figure 2b shows that the algorithm behaves similarly to LSTDΓ, enforcing the idea that
the gradient critic also helps when its approximation is more pronouced. The effect of the delayed
gradient estimation does not impact negatively the performance (more details in Appendix D.6).

7.2 Analysis on Randomly Generated MDPs

Previous analyses show us a clear use-case where the gradient critic helps to solve the issue of
semi-gradient approaches. Despite the convergence issue discussed by Imani et al. (2018) and
Fujimoto et al. (2019), semi-gradients are widely used since they perform reasonably well when the
distribution shift is not too marked. Hence, we test TDRCΓ on 2500 randomly generated MDPs. We
try to replicate realistic conditions and show that our method works well across different models.
Our MDPs have 30 states and 2 actions. The structure of each MDP is generated randomly using a
low-entropy distribution that ensures the sparsity of both mean reward and transitions. This sparsity
ensures a diversification in the different MDPs, sometimes creating cycles and absorbing states. We
also add a Gaussian noise to the reward to make the setting more challenging. The discount factor is
0.95, while the episode length is 50 steps.

In this set of experiments, we do not provide a direct source of state aliasing. Instead, we codify each
state with its numerical, 1-dimensional value. The actor, a neural network with one hidden layer of
5 neurons, receives complete information about the state. However, its under-parametrization (26
parameters in an MDP of 30 states and 2 actions per state) can cause a similar and more realistic
aliasing effect (details in Appendix D.7).

We test OffPAC, ACE(1), TDRCΓ. TDRCΓ-LastLayer refers to the uses of the gradient critic only to
update the last layer of the actor, while the remaining weights are updated with TDRCΓ with λ=1.
Figure 2c, shows that TDRCΓ outperforms both OffPAC and ACE(1) in this setting. Furthermore,
lower values of λ still obtain higher returns, showing that the gradient critic effectively improves
the performance also in this scenario. Notice that there is no substantial performance degradation
between TDRCΓ and TDRCΓ-LastLayer (Figure 2d), suggesting that applying the gradient critic
only to the last layer of the actor is still beneficial (see Appendix C for discussion).

8 Conclusion and Future Work

Most policy gradient algorithms use off-policy samples without correcting the state distribution,
causing a biased that deteriorates the algorithm’s performance. Instead of resorting to importance
sampling, we proposed to learn the policy gradient using a gradient critic. Like the classic value critic,
our gradient critic is expressible with a Bellman equation, hence learnable via temporal-difference
under off-policy distribution. The ability of the gradient critic to predict gradient accumulations
overcomes the need for sample reweighting. The gradient critic can provide an unbiased policy
gradient estimator using arbitrary experience without resorting to importance sampling. Further, we
introduced an approach based on eligibility traces that smoothly combines it with classic semi-gradient
estimation. We showed empirically that our approach mitigates the high bias of semi-gradients,
boosting its performance. Future work will focus on the extension of the gradient critic to deep
reinforcement learning, using our technique to predict a subset of the policy gradient.
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Algorithm 1 TDRCΓ

1: Input: Set of features φ, policy πθ, learning rates αt and η, TDRC regularization factor β,
eligibility trace λ, initial parameters ω0 and G0

2: ν0 = 1, s0 ∼ µ0

3: for t = 0 to T − 1: do
4: Apply at ∼ β(·|st) on the environment
5: Observe state st and reward rt+1

6: Draw actions aπt ∼ πθ(·|st), aπt+1 ∼ πθ(·|st+1)

7: Q̂t=φ
ᵀ(st, a

π
t )ωt, Γ̂t=φ

ᵀ(st, a
π
t )Gt

8: θ←θ+ηνt

(
Qt∇θlogπθ(a

π
t |st)+(1−λ)Γ̂t

)
9: Compute ωt+1, and Gt+1 using TDRC (see Appendix D.2)

10: If s′t is a terminal state: νt+1 = 1, st+1 ∼ µ0 else νt+1 = λγνt, st+1 = st.
11: end for

Algorithm 2 Policy Gradient with LSTDΓ

1: Input: Policy πθ, set of features φ, learning rate η, and dataset D of off-policy transitions
(si, ai, ri, s

′
i).

2: b̂ = 1/N
∑
i φ(si, ai)ri

3: while not converged do
4: For each s′i sample a′i ∼ πθ(·|s′i)
5: Â = 1/N

∑
i φ(si, ai) (φ(si, ai)− γφ(s′i, a

′
i))

ᵀ

6: Q̂(s, a) = φᵀ(s, a)ω̂TD; ω̂TD = Â−1b̂;
7: B̂ = 1/N

∑
i φ(si, ai)Q̂(s′i, a

′
i)∇θ log πθ(a

′
i|s′i)

8: Γ̂(s, a) = φᵀ(s, a)ĜTD; ĜTD = Â−1B̂
9: Sample s0 ∼ µ0 (from dataset), aπ0 ∼ πθ(·|s0)

10: g = Q̂(s0, a
π
0 )∇θ log πθ(a

π
0 |s0)

11: θ ← θ + η(g + Γ̂(s0, a
π
0 ))

12: end while

A Supplement to the Theoretical Analysis

This appendix is structured as follows: we prove Lemma 2 in Appendix A.1, we give a detail on
the eligibility trace derivation in Appendix A.2.1, we introduce a generalized temporal-difference in
Appendix A.3, which will be useful to precisely determine Bellman equations and their least-squares
solution. We prove Lemma 1 and Theorem 1 in Appendix A.4. We prove Theorem 2 in Appendix A.5.

A.1 Consistency of the Gradient Critic

In this section, we provide the proof of Lemma 2:

Proof. Consider ∇θQ̂πTD(s, a) = φᵀ(s, a)∇θωTD and

∇θωTD = −A−1π (∇θAπ) A−1π b

= −A−1π (∇θAπ)ωTD = γA−1π Eζ [φ(S,A)φᵀ(S′, A′)ωTD∇θ log πθ(A
′|S′)]

= γA−1π Eζ
[
φ(S,A)Q̂πTD(S′, A′)∇θ log πθ(A

′|S′)
]

= A−1π B = GTD,

implying∇θQ̂πTD(s, a) = φᵀ(s, a)GTD = Γ̂πTD(s, a).

A.2 Gradient Function and Eligibility Traces

In this section, we detail all the passages to show the n-step view of the Γ-function, and the eligibility-
trace view. It is interesting to see the parallel between the n-step view and eligibility traces in critic
estimation Sutton & Barto (2018).
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A.2.1 n-Step View of the Policy Gradient and Gradient Function

To start, let us remind that Γπ(s, a) = ∇θQπ(s, a) by definition. We report here the gradient Bellman
equation introduced in (8), and that can be seen as the application on both sides of (2),

Γπ(s, a) =γ
∑
s′∈S

∑
a′∈A

(Qπ(s′, a′)∇θ log πθ(a
′|s′) + Γπ(s′, a′))π(a′|s′)p(s′|s, a).

The LHS of the gradient Bellman equation can be expanded, by using the recursive definition of
Γ(s, a),

Γπ(s, a) =γ
∑
s′∈S

∑
a′∈A

π(a′|s′)p(s′|s, a)
(
Qπ(s′, a′)∇θ log πθ(a

′|s′)

+ γ
∑
s′′∈S

∑
a′′∈A

(
Qπ(s′′, a′′)∇θ log πθ(a

′′|s′′) + γΓπ(s′′, a′′)
)
π(a′′|s′′)p(s′′|s′, a′)

)
.

Taking in consideration that
∑
s′′∈S

∑
a′′∈A π(a′′|s′′)p(s′′|s′, a′) = 1, we can reformulate the

gradient Bellman equation as

Γπ(s, a) =
∑

s′,a′,s′′,a′′

(
γQπ(s′, a′)∇θ log πθ(a

′|s′) + γ2Qπ(s′′, a′′)∇θ log πθ(a
′′|s′′)

+ γ2Γπ(s′′, a′′)
)
π(a′′|s′′)p(s′′|s′, a′)π(a′|s′)p(s′|s, a),

which is equivalent to

Γπ(s, a) =Eπθ
[
γQπ(S1, A1)∇θ log πθ(A1|S1) (15)

+ γ2Qπ(S2, A2)∇θ log πθ(A2|S2) + γ2Γπ(S2, A2)
∣∣∣S0 = s,A0 = a

]
,

This process can be repeated a finite number of time n, to find out that

Γπ(s, a) =Eπθ

[
n∑
t=1

γtQπ(St, At)∇θ log πθ(At|St) + γnΓπ(Sn, An)
∣∣∣S0 = s,A0 = a

]
. (16)

Equation ?? united with Equation 16 yields

∇θJ(θ) = (1− γ)E
τπ

[ n−1∑
t=0

γtQπ(St, At)∇θ log πθ(At|St) + γn−1Γπ(Sn−1, An−1)

]
, (17)

which is equivalent to the last passage in the derivation 6.

A.2.2 Eligibility-Trace View of Policy Gradient

Consider 0 ≤ λ < 1. We know that
∑∞
n λn = 1/(1− γ), hence (1− λ)

∑∞
n=0 λ

n = 1. Consider
not an enumerable set of expressions {xn}∞i which are all mathematically equivalent to a value x,
i.e., x0 = x1 = x2 = · · · = x. We can say that (1− γ)

∑∞
n=0 λ

nxn = x. Let

yt := Eτπ [Qπ(St, At)∇θ log πθ(At|St)] and zt := Eτπ [Γ(St, At)].

In consideration of Equation 17, we can say that

∇θJ(θ) = (1− γ)(1− λ)

∞∑
n=0

λn
n∑
t=0

γtyt + γnzt.

The equation above can be rewritten by “unrolling” the innermost summation

∇θJ(θ) = (1− γ)(1− λ)

(
y0 + z0

+λy0 + λγy1 + λγz1
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+λ2y0 + λ2γy1 + λ2γ2y2 + λ2γ2z2

+λ3y0 + λ3γy1 + λ3γ2y2 + λ3γ3y3 + λ3γ3z3

+λ4y0 + λ4γy1 + λ4γ2y2 + λ4γ3y3 + λ4γ4y4 + λ4γ4z4 + . . .

)
The equation has been graphically arranged to highlight its structure. In particular, we can see
the right hand side as a summation of yn terms that can be collected together column-wise, plus a
summation of zn,

∇θJ(θ) =(1− γ)

(
(1− λ)

∞∑
n=0

λny0 + (1− λ)

∞∑
n=1

λnγy1 + (1− λ)

∞∑
n=2

λnγ2y2 + · · ·+ (1− λ)

∞∑
n=0

λnγnzn

)

=(1− γ)

(
(1− λ)

∞∑
n=0

λny0 + (1− λ)λ

∞∑
n=0

λnγy1 + (1− λ)λ2
∞∑
n=0

λnγ2y2 + · · ·+ (1− λ)

∞∑
n=0

λnγnzn

)

=(1− γ)

(
(y0 + λγy1 + λ2γ2y2 + . . . )(1− λ)

∞∑
n=0

λn + (1− λ)

∞∑
n=0

λnγnzn

)

=(1− γ)

(
(y0 + λγy1 + λ2γ2y2 + . . . ) + (1− λ)

∞∑
n=0

λnγnzn

)

=(1− γ)

∞∑
n=0

λnγnyn + (1− λ)λnγnzn

=(1− γ)

∞∑
n=0

λnγn (yn + (1− λ)zn)

Looking back at the definitions of yn and zn, we can state

∇θJ(θ) =(1− γ)E
τπ

[ ∞∑
n=0

λnγn
(
Qπ(Sn, An)∇θ log πθ(An|Sn) + (1− λ)Γπ(Sn, An)

)]
.

A.3 Generalized Least-Squares Temporal-Difference

This section provides a generalization of least-square temporal-difference. We introduce a setting
that abstract the concepts of state and action (which will be seen as a conglomerate variable x), and
that unifies a finite set of “Bellman” equations that share same dynamics but different “rewards” in a
compact vectorial notation. Eventually, we report the error analysis conduced by Kolter (2011) using
our vectorial notation.
Proposition 1 (Generalized Least Squares). Let us consider finite set {x1, x2, . . . , xn} ≡ X . Let
us consider an irreducible Markov chain induced by the transition function g(x′|x) with steady
distribution µ. Let us consider K stochastic mappings ck : X → Ω(R) where Ω(R) denotes the set
of all probability distributions over R. Let us assume that ck(x) = E[c(x)] exists and it is finite for
all x ∈ X and k ∈ {1, . . . ,K}. Consider γ ∈ [0, 1). Consider the Bellman-like equations

fk(x) = c(x) + γ
∑
x′∈X

fk(x′)g(x′|x),

where each fk : X → R exists and is unique. The equations above can be rewritten as

f(x) = c(x) + γ
∑
x′∈X

f(x′)g(x′|x), (18)

where f : X → RK exists and is unique. Consider a function f̂t(x) = φᵀ(x)Ht where φ : X → Rnf
is a feature vector and H ∈ Rnf×K . Furtermore, consider a matrix Φ where each row i is φᵀ(xi)
and assume that all the columns of Φ are linearly independend. Consider a process that starts with a
desired parameter H0, and that updates

Ht+1 =arg min
H
‖φᵀ(x)H−c(x)−γ

∑
x′∈X

f̂t(x
′)g(x′|x)‖d, (19)

15



where ‖x‖d = Ed[〈x,x〉]. It is possible to verify that the process described in (19) is equivalent to

ht+1,i=arg min
h
‖φᵀ(x)h−ci(x)−γ

∑
x′∈X

f̂t,i(x
′)g(x′|x)‖d (20)

with Ht+1 = [ht+1,1,ht+1,2, . . . ,ht+1,k]. As reported by Lagoudakis & Parr (2003), the fixed point
of (20) is

h∗i = E
x∼d,

x′∼g(x)

[
φ(x)(φ(x)−γφ(x′))

ᵀ]−1Ex∼d [φ(x)ci(x)]

, which can be compactly rewritten in vectorial notation

H∗= E
x∼d,

x′∼g(x)

[
φ(x)(φ(x)−γφ(x′))

ᵀ]−1Ex∼d [φ(x)cᵀ(x)] . (21)

Thanks to the work of Kolter (2011), we are able to bound the “scalar” fixed point solution, i.e.,

‖φᵀ(x)h∗ − fi(x)‖d ≤
1 + κγ

1− γ
min

h
‖φᵀ(x)h− fi(x)‖d.

where κ = maxi
√
d(xi)/µ(xi)/mini

√
d(xi)/µ(xi) and d satisties the inequality in Kolter (2011).

Knowing that ‖x‖d = Ed[〈x,x〉] =
∑
i Ed[x2i ], we can see that∑

i

‖φᵀ(x)h∗i − fi(x)‖d ≤
∑
i

1 + κγ

1− γ
min

h
‖φᵀ(x)h− fi(x)‖d

=⇒ ‖φᵀ(x)H∗ − f(x)‖d ≤
1 + κγ

1− γ
min
H
‖φᵀ(x)H− f(x)‖d. (22)

A.4 Least Squares Solution for the Gradient Function

Proof of Lemma 1. Let us analize Equation 8 for a single parameter θk and for finite state-action
space,

Γπk (s, a) = γ
∑
s′

∑
a′

(
Qπ(s′, a′)

∂

∂θk
log πθ(a

′|s′) + Γπk (s′, a′)
)
π(a′|s′)p(s′|s, a) (23)

Let us set x = (s, a) and g(x′|x) = π(a′|s′)p(s′|s, a), e(x) = Q(s, a)∂/∂θkπθ(a|s), and c(x) =∑
i ei(x

′)g(x′|x), and, by posing f(x) = Γπi (s, a), we realize that

Γπk (s, a) = γ
∑
s′

∑
a′

(
Qπ(s′, a′)

∂

∂θk
log πθ(a

′|s′) + Γπk (s′, a′)
)
π(a′|s′)p(s′|s, a)

=⇒ f(x) = c(x) + γf(xi)p(xi|x). (24)

Notice that in Lemma 1, we consider the stationary distribution µπ w.r.t. the transition p(s′|s, a).
we notice that µπ(s)π(a|s) is the stationary distribution w.r.t. thetransition g(x′|x). Taking in
consideration Equation 21, we can prove that Γ̂πTDQ is a fixed point of the approximated gradient
Bellman equation. Furthermore, it is possible to prove, thank to Kolter (2011), that∥∥∥∥ΓπTDQ,k(s, a)− ∂

∂θk
Qπ(s, a)

∥∥∥∥
ζ

≤ 1− γκ
1− γ

min
g

∥∥∥∥φᵀ(s, a)g − ∂

∂θk
Qπ(s, a)

∥∥∥∥
ζ

,

and, therefore,∥∥ΓπTDQ(s, a)−∇θQπ(s, a)
∥∥
ζ
≤ 1− γκ

1− γ
min
G
‖φᵀ(s, a)G−∇θQπ(s, a)‖ζ . (25)

where κ = maxs,a h(s, a)/mins,a h(s, a), h(s, a) =
√
µ(s)πθ(a|s)/

√
µβ(s)β(a|s)) and

µπ(s)πθ(a|s) must comply the matrix inequality defined in Kolter (2011).
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Proof of Theorem 1. Let us consider an arbitrary order of state and action pairs, and a feature matrix

Φ =


φᵀ(s1, a1)
φᵀ(s1, a2)

...
φᵀ(sn, am)

 ,Φ =


ϕᵀ(s1, a1)
ϕᵀ(s1, a2)

...
ϕᵀ(sn, am)


where n is the number of states and m is the number of actions. Φ ∈ Rnm×nf . Consider an arbitrary
parameter vector ω. Φω returns a vector of values for each state-action pairs. We denote the TD
solution of the Q-function with q̂ = ΦωTD. Pairwise, we denote a matrix representing the matrix
function with ν̂ = ΦGTD. The true Q-function and Γ-function are, in vector notation,

qπ =


Qπ(s1, a1)
Qπ(s1, a2)

...
Qπ(sn, am)

 , νπ =


Γπ(s1, a1)
Γπ(s1, a2)

...
Γπ(sn, am)

 .
Similarly to Lagoudakis & Parr (2003), we introduce the transition matrix P and the policy Π

Π = In ⊗ πᵀ where π = [πθ(a1|s1), πθ(a2|s1), . . . , πθ(am|sn)]ᵀ

and

P =


P1

P2

...
Pn

 where Pi =


p(si|s1, a1) p(si|s2, a1) . . . p(si|sn, a1)
p(si|s1, a2) p(si|s2, a2) . . . p(si|sn, a2)

...
p(si|s1, am) p(si|s2, am) . . . p(si|sn, am)

 (26)

Let D a diagonal matrix where at each entry we have µβ(xi)β(aj |xi) where the indexes follow the
enumeration introduced above. Let us introduce the norm ‖M‖D of a matrix M,

‖M‖D =

√∑
i

Di,i〈Mi,Mi〉

The least squares solution of the gradient inder the norm ‖ · ‖D is the unique solution of

ν̂ = Ψ (γΠP(∇θ logπ)� q̂ + γΠPν̂) (27)

where

∇θ logπ =


∇ᵀ
θ log πθ(a1|s1)
∇ᵀ
θ log πθ(a2|s1)

...
∇ᵀ
θ log πθ(am|sn)

 ,
(A � b)i = Aibi is a row-wise product and ΨD = Φ(ΦᵀDΦ)−1ΦᵀD is a non-expansion under
the norm ‖ · ‖D as shown by Tsitsiklis & Van Roy (1997). Remember, that Ψ is a least-square
projection under the norm ‖ · ‖D, and, therefore, ‖ΨM −M‖D = minH ‖ΦH −M‖. The true
gradient function is the fixed point of the gradient Bellman equation,

νπ = γΠP(∇θ logπ)� qπ + γΠPν. (28)

We want now to bound ‖ν̂ − νπ‖D.

‖ν̂ − νπ‖D = ‖ν̂ −Ψνπ + Ψνπ − νπ‖D
≤ ‖ν̂ −Ψνπ‖D + ‖Ψνπ − νπ‖D
= ‖Ψν̂ −Ψνπ‖D + ‖Ψνπ − νπ‖D
= ‖Ψ (γΠP(∇θ logπ)� q̂ + γPΠν̂)−Ψ (γΠP(∇θ logπ)� q̂ + γPΠνπ) ‖D

+ ‖Ψνπ − νπ‖D
≤ γ ‖ΨPΠ(ν̂ − νπ)‖D︸ ︷︷ ︸

A

+γ ‖ΨΠP(∇θ logπ)� (q̂− qπ)‖D︸ ︷︷ ︸
B

+‖Ψνπ − νπ‖D
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Table 1: Description of symbols used in proof of Theorem 1.

Symbol Dimension Meaning
n - Number of states
m - Number of actions
np - Number of policy parameters
np - Number of features
γ - Discount factor
b - |maxa,s,i ∂/∂θi log π(a|s)|
κ - Defined in Lemma 1
D nm× nm Diagonal matrix containing off-policy probabilities µβ(si)β(aj |si)
q nm× 1 Vector of Q-values
q̂ nm× 1 TD-solution of q
Φ nm× nf Matrix of features
Ψ nm× nm Orthogonal projection onto ‖ · ‖D
P n× nm Transition matrix
π nm× 1 Vector represention of the policy
Π nm× n Matrix representation of the olicy
∇θ logπ nm× np Matrix of gradients of logπ
ν nm× np Matrix representing the true Γ per state-action pairs
ν̂ nm× np TD-solution of Γ per state-action pairs

Upperbound of term A. Since D satisfies, by assumption, the inequality in (Kolter, 2011), then
‖ΨΠPΦω‖|D ≤ ‖φω‖D,

‖ΨPΠ(ν̂ − νπ)‖D = ‖ΨΠP(ΦGTD − νπ)‖D ≤ ‖ΨΠP(ΦGTD −Ψνπ)‖D + ‖ΨΠP(Ψνπ − νπ)‖D
(29)

knowing that exists some G such that Ψνπ = ΦG, we have that

‖ΨΠP(ΦGTD −Ψνπ)‖D + ‖ΨΠP(Ψνπ − νπ)‖D
=‖ΨΠPΦ(GTD −G)‖D + ‖ΨΠP(Ψνπ − νπ)‖D
≤‖ΦGTD −ΦG‖D + ‖ΨΠP(Ψνπ − νπ)‖D

furthermore, thanks to the convexity of the spanning set, we have that

‖ΦGTD −ΦG‖D ≤ ‖ν̂ − νπ‖D.

Furthermore,

‖ΨΠP(Ψνπ − νπ)‖D ≤ ‖ΠP‖D‖Ψνπ − νπ‖D,

which yields

‖ΨΠP(ν̂ − νπ)‖D ≤ ‖ν̂ − νπ‖D + ‖ΠP‖D‖Ψνπ − νπ‖D (30)

Upperbound of term B. The upperbound of the term B follows a very similar structure to term A,
with the addition that we need to deal with the weighting ∇θ logπ. Recalling the non-expansion
from Kolter (2011) and the definition of the row-wise product � given earlier,

‖ΨΠP(∇θ logπ)� (q̂− qπ)‖D ≤‖ΠP‖D‖(∇θ logπ)� (q̂− qπ)‖D
≤np‖∇θ logπ‖∞‖ΠP‖D‖(q̂− qπ)‖D,

where nd is the number of parameters of the policy. The quantity ‖q̂− qπ‖D has been bounded in
Lemma 1,

‖ΨΠP(∇θ logπ)� (q̂− qπ)‖D ≤‖∇θ logπ‖∞‖ΠP‖D
1 + γκ

1− γ
min
ω
‖Φω − qπ‖.

we notice that the term b introduced in Theorem 1 is actually ‖∇θ logπ‖∞, hence,

‖ΨΠP(∇θ logπ)� (q̂− qπ)‖D ≤b‖ΠP‖D
1 + γκ

1− γ
min
ω
‖Φω − qπ‖.
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Collecting both upperbound of terms A and B.

‖ν̂ − νπ‖D ≤γ‖ν̂ − νπ‖D + γ ‖ΨΠP(∇θ logπ)� (q̂− qπ)‖D︸ ︷︷ ︸
B

+(1 + γ‖ΠP‖D)‖Ψνπ − νπ‖D

Notice that the term ‖ΠP‖D can be bounded by κ, as illustrated in Kolter (2011), and therefore

‖ν̂ − νπ‖D ≤γ‖ν̂ − νπ‖D + γ ‖ΨΠP(∇θ logπ)� (q̂− qπ)‖D︸ ︷︷ ︸
B

+(1 + γκ)‖Ψνπ − νπ‖D.

Projection errors like ‖Ψqπ − qπ‖D and ‖Ψνπ − νπ‖D can be bounded by

‖Ψqπ − qπ‖D ≤ min
ω
‖Φω − qπ‖D and ‖Ψνπ − νπ‖D ≤ min

G
‖ΦG− νπ‖D.

Hence,

(1− γ)‖ν̂ − νπ‖D ≤γ ‖ΨΠP(∇θ logπ)� (q̂− qπ)‖D︸ ︷︷ ︸
B

+(1 + γκ) min
G
‖ΦG− νπ‖D.

≤γnpbκ
1 + γκ

1− γ
min
ω
‖Φω − qπ‖+ (1 + γκ) min

G
‖ΦG− νπ‖D.

which yields

‖ν̂ − νπ‖D ≤γnpbκ
1 + γκ

(1− γ)2
min
ω
‖Φω − qπ‖+

(1 + γκ)

1− γ
min
G
‖ΦG− νπ‖D.

A.5 Unbiased Gradient with Perfect Features

Proof of Theorem 2. We start the proof by showing that

φᵀ(s, a)ωTD = Qπ(s, a)

Notice that by assumption, there must be a vector ω such that

ξᵀ(s, a)ω = r(s, a). (31)

where

ξ(s, a) = φ(s, a)− γ
∑
s∈S

∑
a∈A

φ(s′, a′)πθ(a
′|s′)p(s′|s, a) da′ ds′ (32)

Since Φ′ is a nf -dimensional vector space, there is one and only one ω satisfating the relation
above. Given the fact that (31) is a linear equation, we can take a set of linearly independent features
ξ to solve it. Since Φ′ admits a nf -dimensional basis, there exist {(si, si)}

nf
i=1 such that we can

construct a set of nd linearly independent vectors ei = ξ(si, ai). Let us construct a basis matrix
E = [e1, e2, . . . , enf ]. The unique solution of (31) is determined by

ω∗ = E−ᵀr, (33)

where r = [r(s1, a1), r(s2, a2), . . . , r(snf , anf )]ᵀ. The TD solution satisfies

Eζ [φ(S,A) (φᵀ(S,A)− γφᵀ(S′, A′))]ωTD = Eζ [φ(S,A)r(S,A)]

=⇒ Eζ [φ(S,A)ξᵀ(S,A)]ωTD = Eζ [φ(S,A)r(S,A)] , (34)

where ζ is a process generating S ∼ µβ , A ∼ β(·|S), S′ ∼ p(·|S,A) and A′ ∼ πθ(·|S′). Notice
that, thanks to the property of vector spaces, there are two functions f : S × A → Rnf and
h : S ×A → Rnf such that

ξ(s, a) = Ef(s, a),φ(s, a) = Bh(s, a) ∀s ∈ S ∧ a ∈ A,

where B is a basis function for the set Φ (defined in Theorem 2). We can rewrite (34) as

Eζ [Bh(S,A)fᵀ(S,A)Eᵀ]ωTD = Eζ [Bh(S,A)r(S,A)]
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looging back to Equation 31, we notice that r(S,A) = fᵀ(S,A)Eᵀω = fᵀ(S,A)EᵀE−ᵀr, and,
therefore,

Eζ [Bh(S,A)fᵀ(S,A)Eᵀ]ωTD = Eζ
[
Bh(S,A)fᵀ(S,A)EᵀE−1r

]
=⇒ ωTD = E−ᵀr.

Therefore, looking back at Equation 33

φᵀ(s, a)ωTD = φᵀ(s, a)ω∗ = Qπ(s, a) ∀s ∈ S ∧ a ∈ A.

This result is valid for any policy π, and state-action pairs. This implies that

∇θφᵀ(s, a)ωTD = ∇θQπ(s, a) ∀s ∈ S ∧ a ∈ A,

which, thanks to Lemma 2, implies that

Γ(s, a) = ∇θQπ(s, a) ∀s ∈ S ∧ a ∈ A.
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Figure 3: We run two algorithms: a classic actor-critic architecture and our gradient actor-critic
architecture. On this task, both the algorithms exhibit similar performace, showing, nevertheless that
our gradient actor-critic successfully solves the task.

B Extension to the Continuous State-Action Space

Consider a Markov decision process formed by the tuple (S,A, r, p, γ, µ0) where S and A represent
the set of states and actions, r : S×A → [−Rmax, Rmax] is a bounded reward function, p : S×A →
M(S) is a transition probability, γ ∈ [0, 1) the discount factor and µ0 ∈ M(S) a distribution of
starting states. We assume that the policy πθ : S →M(A) is differentiable w.r.t. its parameters θ.
We denoted withM(X) the set of probability measures over a σ-algebra on a set X .

Informal Extension of the Proofs to Continuous State-Action Space. The proofs in Ap-
pendix A.2.1, A.5 remain valid in the continuous case, since they only require substituting summations
with integrals. The proofs in Appendix A.3 A.4 can also be arranged in the continuous state-action
spaces by rewriting the norm operator ‖B‖d =

√
di〈bi,bi〉 as

√
Eb∼d(b) [〈b,b〉] with b ∈ B where

d is a probability measure over a σ-algebra on B.

B.1 Reparametrization Gradient

The gradient Bellman equation can be framed also in terms of reparametrization gradient. Suppose
that we have a function f(s, ε) with ε ∼ p such that

A = fθ(s, ε)
d
= A ∼ πθ(·|s). (35)

We can rewrite the classic Bellman eqution as

Qπ(s, a) = r(s, a) + Es′,ε [Qπ(s′, fθ(s
′, ε))] ,

and taking the gradients on both the sides yields

∇θQπ(s, a) = γEs′,ε
[
∇a′Qπ(s′, a′)

∣∣
a′=fθ(s′,ε)

∇θfθ(s′, ε) +∇θQπ(s′, a′)
∣∣
a′=fθ(s′,ε)

]
=⇒ Γπ(s, a) = γEs′,ε [gREP (s′, a′) + Γ(s′, a′)] , (36)

where the immediate reparametrization gradient is

gREP (s′, a′) = ∇a′Qπ(s′, a′)
∣∣
a′=fθ(s′,ε)

∇θfθ(s′, ε). (37)

B.2 An Experiment with Continuous Action Space

We demonstrate the applicability of the Gradient Actor-Critic method on a simple control task with
continuous state-action spaces. Our goal is two-fold, first to show that a simple heuristic allows for
the use of neural network function approximation without an excessive computational cost, and the
second to show that the proposed methodology can successfully solve a continuous control task. We
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perform this demonstration using the continuous action Cartpole environment with a scalar action
u ∈ [−1, 1] which applies a lateral force on the cart for a one second period. We cut off the episode
after a maximum of 500 steps, then reinitialize the cart with a random velocity and the pole with a
random pole angle and angular velocity.

To estimate the action-value function for the critic, we use a two hidden-layer neural network with
tanh activations and 64 units per layer. We feed the observable state and action into the neural
network and have two heads attached to the penultimate layer, one head for the standard critic and
another for the gradient critic. The policy is likewise parameterized by a two hidden-layer neural
network with tanh activations and 64 units per layer. We swept the hyperparameters for both the
Gradient Actor-Critic and Actor-Critic baseline, selecting the maximizing hyperparameter setting
using 30 random seeds. The swept hyperparameters are reported in the table below. We then reran
each algorithm for 100 random seeds for the maximizing hyperparameter setting in order to minimize
maximization bias.

In Figure 3 we show that both the Gradient Actor-Critic and Actor-Critic methods are able to
successfully learn a near-optimal policy on this task, with the optimal return being 500. Although the
Cartpole task is too simplistic to induce differences between these algorithms, it does highlight that
the Gradient Actor-Critic method can easily solve a continuous control problem using neural network
function approximation. Both methods incurred near-identical computational cost on this problem
setting, taking on average three minutes per run using a modern desktop processor.

Hyperparameters for continuous control experiment:

Optimizer ADAM(β1 = 0.9, β2 = 0.999)
Target network moving average {0.99, 0.9}
Learning rate for the critic {0.1, 0.01, 0.001, 0.0001}
Learning rate for the actor {0.1, 0.01, 0.001, 0.0001}
Eligibility Trace {0.9, 0.75, 0.5, 0.1}
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C Extension to Deep Reinforcement Learning

The primary goal of this paper is to introduce the theoretical foundations of gradient critic algorithms.
To this end, we focused on linear function approximation; however, the concepts presented in can
be extended to function approximation with deep neural networks. The primary challenge is that
the gradient critic estimates a vector of size d—the number of parameters in the neural network—
resulting in a very large output. To overcome this issue, we propose that the gradient critic can learn
only a subset of the gradient, while still achieving a favorable bias-variance trade-off.

In fact, past literature—in addition to our own experiments—suggests that some gradients are more
susceptible than others to distribution shift. Imani et al. (2018) show that the distribution shift
becomes detrimental when united with state aliasing. When analyzing the estimation bias of the
semi-gradient approach on their toy MDP (Figure 2a), we find that the gradient update was biased
mainly for the parameters responsible for selecting the action corresponding to the aliased states
(Section 1c, d, details in Appendix D.4). In MDPs, the state is usually fully informative but as
information flows from the bottom to the top layers of the neural network, the learned features may
introduce state aliasing in higher-level of abstraction. We argue that learning the gradient of the last
layer of the actor network will potentially trade off the complexity of learning of a high-dimensional
gradient, with the benefit introduced by our approach.
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Algorithm 3 LSTDΓ

1: Input: Set of features φ, dataset D of transitions (si, ai, ri, s
′
i, ti) where ri are the rewards, s′i

the next states and ti is the time-step, policy πθ, learning rate η
2: b̂ = 1/N

∑
i φ(si, ai)ri

3: while not converged do
4: Fore each s′i sample a′i ∼ πθ(·|s′i)
5: Â = 1/N

∑
i φ(si, ai) ((si, ai)− γφ(s′i, a

′
i))

ᵀ

6: Q̂(s, a) = φᵀ(s, a)ω̂TD; ω̂TD = Â−1b̂;
7: B̂ = 1/N

∑
i φ(si, ai)Q̂(s′i, a

′
i)∇θ log πθ(a

′
i|s′i)

8: Γ̂(s, a) = φᵀ(s, a)ĜTD; ĜTD = Â−1B̂
9: Sample si from dataset and ai ∼ πθ(·|si)

10: gi = Q̂(si, ai)∇θ log πθ(ai|si)
11: θ ← θ + ηλtiγti(gi + Γ̂(si, ai))
12: end while

Algorithm 4 LSTDΓ with Automatic Differentiation
1: Input: Set of features φ, dataset D of transitions (si, ai, ri, s

′
i) where ri are the rewards and s′i

the next states, policy πθ, learning rate η
2: b̂ = 1/N

∑
i φ(si, ai)ri

3: while not converged do
4: Fore each s′i sample a′i ∼ πθ(·|s′i)
5: Â = 1/N

∑
i φ(si, ai) ((si, ai)− γφ(s′i, a

′
i))

ᵀ

6: Q̂(s, a) = φᵀ(s, a)ω̂TD; ω̂TD = Â−1b̂;
7: Sample st from dataset and ai ∼ πθ(·|si)
8: gi = Q̂(si, ai)∇θ log πθ(ai|si)
9: θ ← θ + ηλtiγti∇θQ̂(si, ai)

10: end while

D Supplement to the Empirical Analysis

This section introduces some notes on the practical implementation of the algorithms, environments,
and hyperparameters and settings used in the experiments. We finally present some complementary
results to the one presented in the main paper.

D.1 LSTDΓ

Algorithm 2 illustrates “pure” LSTDΓ (λ = 0). This section discusses how to incorporate the
eligibility traces in practice and how to write a simple ’pytorch’ spinnet to compute the gradient.

Eligibility Trace. To implement eligibility traces, we need a dataset where for each transition s a r
s′, we have also accompanied with t, a variable indicating the number of steps that occurred since the
beginning of the current episode. Hence, we first fit the matrix Aπ, and we compute the parameter
matrix G and then, we compute the gradient as in Equation 14. A schematic representation of LSTDΓ
can be found in Algorithm 3.

Using Automatic Differentiation. One can actually avoid to compute G. When we look bach to
Lemma 2, we see that GTD = ∇θωTD. Automatic differentiation via pytorch is actually able to
derive that step automatically. Therefore, instead of computing G explicitly in the code, one can
simply compute ωTD and let the automatic differentiation tto find∇θωTD, as in Algorithm 4.

D.2 TDRCΓ.

This algorithm, described in Algorithm 1, uses TDRC to estimate both critic and gradient critic. To
do so, we simply replace the semi-gradient TD update rule with the following TDRC update

δt = Rt + γQ̂πt (St+1, At+1)− Q̂πt (St, At)
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χt+1 = χt + αtφt (δt − φᵀ
tχt)− αtβχt

ωt = ωt + αtφδt − αγφ′tφ
ᵀ
tχt, (38)

where χt are a secondary set of weights to perform gradient correction and β is the TDRC regulariza-
tion factor.

Similarly, we can estimate the gradient critic with a vector form of TDRC,

εt = γQ̂πt (St+1, At+1)∇θ log πθ(At+1|St+1)

+ γΓ̂πt (St+1, At+1)− Γ̂πt (St, At)

Ht+1 = Ht + αtφ (εᵀt − φ
ᵀ
tHt)− αtβHt

Gt+1 = Gt + αtφε
ᵀ
t − αγφ′φᵀHt, (39)

where Γ̂πt (S,A) = φᵀ(S,A)Gt and Q̂ is an estimate of the critic. Ht have the same role as χt in
(38). The samples St, At, St+1, At+1 are sampled i.i.d. according to ζ.

Because the critic and gradient critic estimations have no circular dependencies, we can easily prove
convergence of the gradient critic to Γ̂πTD by simply allowing TRDC to first converge to Q̂πTD and
subsequently iterating (39) using Q̂πTD, converging therefore to Γ̂πTD. However, such an approach is
not practical. To obtain faster convergence, we propose to interleave both the updates in (38), (39),
and of the target polcy. We call this algorithm TDRCΓ (Algorithm 1).

To have as few hyperparameters as possible, we set the same learning rate for both the critic and the
gradient critic. Across all the experiments, we use β = 1. To be precise, in Imani’s MDP, one could
avoid using a full-gradient TD technique (like TDC, GTC, ...) since the critic features are perfect.
However, we preferred to maintain consistency between different experiments.

D.3 Imani’s MDP.

There are a few choices that can be made to implement this MDP. We opted to implement this MDP
as a four-state MDP where the terminal state is absorbing. We did this because our current code
computes the policy gradient in closed form without knowing terminal states. This modification is
not an issue. Making T an absorbing state changes the discounted stationary distribution, leaving the
ratio of visitation between S0, S1, and S2 unchanged, which is, after all, what matters. Furthermore,
the gradient on the absorbing state is always 0.

To allow generality, our policy, therefore, accepts the input of 4 different states, and, since the
possible actions per state are two, the tabular policy is encoded with 8 parameters. In the presence of
state-aliasing, however, when the MDP is in state S2, state S1 is fed to the policy instead. For this
reason, from the policy perspective, state S2 is never visited, causing the gradient of the parameters
that correspond to state S2 to be always zero.

These implementation choices do not change the math and the effects of the original MDP of Imani’s
et al.

The parameters that matter are θ0, θ1, θ2 and θ3, corresponding to state S0 and S1 (which is aliased
with S2).

D.4 Bias-Variance Tradeoff in Figure 1b, c, and d

Imani’s MDP has a closed-form solution of the policy gradient. We use this solution to compute the
bias of the estimators. While the experiment’s setting has been already described in the paper, here
we provide fewer details on how the bias and the variance have been estimated.

We build both variance and bias estimates for each value of λ by sampling 20 instances of the
estimators (e.g., running 20 times the algorithm to estimate the gradient). After, we compute the
squared bias and the variance per component, i.e.,

b̂ =

(
1

20

20∑
i=1

(ĝi −∇θJ(θ))

)2

; v̂ =
1

20

20∑
i=1

(ĝi − g)
2
,

25



where gi are the single estimates of the gradient, ∇θJ(θ) the true gradient, and g the empirical
average of the gradient estimate. The vectors of empirical bias b and variance v are then transformed
to scalars by taking the mean over the components, i.e.,

b̂ =
1

8

8∑
i=1

ĝi; v̂ =
1

8

8∑
i=1

v̂i.

Now, b̂ and v̂ are also estimates. Therefore, we repeat this process 50 times to compute an empirical
average of the estimates and build confidence intervals. Therefore, for each value of λ, we compute
1000 estimates of the gradient. We show the estimate both on a circular plot, which shows the ground
truth and the single estimates compactly, and we also report the single estimates of {∂/∂θi}3i=0 (since
the remaining partial derivatives are all equal to zero).
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Figure 4: On the left, a plot with all the gradient estimates. In orange color, we have low values of λ
(hence, full use of the gradient critic); in blue color, we have the semi-gradient estimator. We denote
in green the ground truth. In the plots on the left, we show the actual gradient estimates for the first
four parameters. Parameters θ2 and θ3 are critical, as they are subject to state aliasing. The gradient
critic delivers an unbiased estimate, while semi-gradient exhibits high bias.

D.5 LSTDΓ - Figure 2a

The performance of LSTDΓ on Imani’s MDP has been shown on Figures 2a. In this experiments,
we sampled a dataset of 500 using the behavioral policy, and we applied LSTDΓ for 1000 steps.
More in particular, the estimated gradient has been used with Adam (with learning rage 0.01). At
each step, the return of the target policy is computed in closed form. We inspect 20 values of λ in the
interval [0, 1], performing 10 different indipendent runs of the algorithm to appreciate confidence
intervals at 95%. Since most values of λ tend to have similar return, we defided both to show the
final performance (at the 1000th iteration), and a few learning curves. We also computed the learning
curve of pure semi-gradient and pure LSTDΛ using the gradients in closed-form. Figure 5 depicts
the learning curve obtained for a fewer values of λ.

D.6 TDRCΓ - Figure 2c

This figure has been produced by running TDRC with parameters β = 1, α = 0.1, and Adam with a
learning rate 0.001 for the actor update. Surprisingly, the curve is almost identical to the one obtained
in Figure 2b. The confidence intervals have been obtained by running 20 instances for each value of
λ. Moreover, in Figure 5, we show the performance at the last iteration step for 20 values of λ in the
range [0, 1]. Interestingly, λ behaves similarly to LSTD, as in Figure 2a.

OffPAC:
Learning rate for the critic 0.1
Learning rate for the actor 0.001
GDT Regulariztion 0.1
Eligibility Trace 0.1

ACE(η = 1):
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Figure 5: (a) Learningt curves of LSTDΓ on Imani’s MDP (b) TDRCΓ applied on Imani’s MDP and
evaluated at the last training step. The hyper-parameter λ behaves similarly to LSTDΓ in Figure 2a .

Learning rate for the critic 0.1
Learning rate for the actor 0.001
Entropic Regularization 0
GDT Regulariztion 0.1
Eligibility Trace 0.1

Note that we estimate the critic using GDT both for OffPAC and ACE.

TDRCΓ:
Learning rate for the value critic 0.1
Learning rate for the actor critic 0.1
Learning rate for the actor 0.001
TDRC Regulariztion 1.0

D.7 Experiments on Random MDPs- Figure 2c and d

To enerate the transition and the reward model, we first sample a uniform vector, and then we feed it
in a soft-max function

SoftMax(x)i =
expTxi∑
j expTxj

, (40)

where the temperature T controls the entropy of the overall distribution. With high T we tend to have
sparse reward and deterministic transition, while with low T , uniform transitions and reward model.
In our experiments, where we use 30 states and 2 action, a temperature T = 10 seems to be a good
balance to generate interesting models. As explained in the main paper, when interacting with the
MDP, the agent observes the reward with an addition of a Gaussian noise with standard deviation of
0.1.

In the following, we describe the setting used for this experiment.

OffPAC:
Learning rate for the critic (|S||A|)−1
Learning rate for the actor 10−2(|S||A|)−1
GDT Regulariztion 0.1
Eligibility Trace 0

ACE(η = 1):

Learning rate for the critic (|S||A|)−1
Learning rate for the actor 10−2(|S||A|)−1
Entropic Regularization 0
GDT Regulariztion 0.1
Eligibility Trace 0

Note that we estimate the critic using GDT both for OffPAC and ACE.

TDRCΓ:
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Learning rate for the value critic (|S||A|)−1
Learning rate for the actor critic (|S||A|)−1
Learning rate for the actor 10−2(|S||A|)−1
TDRC Regulariztion 1.0
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