
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

CSP: An Efficient Baseline for Learning on
Large-Scale Structured Data

Anonymous authors
Paper under double-blind review

Abstract

Last decade has seen the emergence of numerous methods for learning on
graphs, particularly Graph Neural Networks (GNNs). These methods, how-
ever, are often not directly applicable to more complex structures like bi-
partite graphs (equivalent to hypergraphs), which represent interactions
among two entity types (e.g., a user liking a movie). This paper proposes
Convolutional Signal Propagation (CSP), a non-parametric simple and scal-
able method that natively operates on bipartite graphs (hypergraphs) and
can be implemented with just a few lines of code. After defining CSP, we
demonstrate its relationship with well-established methods like label prop-
agation, Naive Bayes, and Hypergraph Convolutional Networks. We eval-
uate CSP against several reference methods on real-world datasets from
multiple domains, focusing on retrieval and classification tasks. Our re-
sults show that CSP offers competitive performance while maintaining low
computational complexity, making it an ideal first choice as a baseline for
hypergraph node classification and retrieval. Moreover, despite operating
on hypergraphs, CSP achieves good results in tasks typically not associated
with hypergraphs, such as natural language processing.

1 Introduction

In the modern world, an overwhelming amount of data has an internal structure, oftentimes
forming complex networks that can be represented as graphs. Efficiently mining information
from this data is crucial for a wide range of applications spanning various domains such as
social networks, biology, physics or cybersecurity. Graph Neural Networks (GNNs) have
emerged as the dominant tool for handling such data due to their ability to leverage the
graph structure for predictive and analytical tasks. However, despite their success, GNNs
come with notable challenges, including high computational complexity during training,
numerous hyperparameters that require fine-tuning, lack of straightforward interpretability,
and the necessity of dedicated computational infrastructure such as GPUs. Given these
limitations, baseline algorithms play a vital role as complementary tools to GNNs. These
baselines, often much less complex, provide an efficient way of generating preliminary results.
In many cases, these simpler methods are even sufficiently effective to be used as-is for the
problem at hand.
In this work, we present Convolutional Signal Propagation (CSP)1, a simple, scalable al-
gorithm that may serve as such a baseline. We describe the algorithm in Section 4 and
provide an overview of how it relates to established methods. While CSP is a general algo-
rithm for propagating any signals and is introduced as such, we are mostly interested in its
application to classification and retrieval (i.e., a setting similar to label propagation (Zhu &
Ghahramani, 2003)) and provide experimental evaluation in this setting in Section 5.

2 Problem Statement

Assume that we have structured data with relationships that can be translated into a hyper-
graph or a bipartite graph. These structures can represent various scenarios such as users

1See https://anonymous.4open.science/r/CSP-demo-ICLR-2025 for a demo of CSP

1

https://anonymous.4open.science/r/CSP-demo-ICLR-2025

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

v2

v1

v3

v5

v4

(a) A hypergraph.

v1

v2

v3

v4

v5

e1

e2

e3

e4

(b) A bipartite
graph.

H =


1 1 0 1
1 1 0 0
1 0 0 1
0 1 1 0
1 0 1 0


(c) An incidence matrix
of a hypergraph.

Figure 1: An example of three different represetations of a dataset with 5 entities and 4
different relationships between them.

rating movies, users accessing web domains, emails containing attachments, authors writing
papers, papers being co-cited, and tokens being contained in texts. Some data might also
come with constraints such as large volume or privacy restrictions, like those found in emails.
These structures inherently provide a relationship between entities, enabling many applica-
tions to leverage these relationships, such as movie recommendations, mining malicious web
content (like emails or domains), or text classification.
Our goal is to find a flexible method that can be applied to tasks involving structured data.
This flexibility is sought in terms of performance, numerical complexity, and adaptability.
We aim to develop a method that can efficiently handle and extract meaningful information
from these complex relationships. Whether we are looking to extract interesting entities,
which aligns with a retrieval scenario, or view the task as a simple classification problem,
the method should be versatile enough to adapt to these needs.
We can formalize this problem using either a bipartite graph or a hypergraph. By represent-
ing the data in these graph structures, we can better understand and utilize the inherent
relationships between entities. This formalization allows for the application of graph-based
algorithms, which can improve the effectiveness of tasks like classification and retrieval.
Figure 1 shows an example of such representations.

2.1 Notations and Definitions

We consider a finite set of items of interest V = {v1, . . . , vn}, referred to as nodes. A family
of subsets of V denoted by E = {e1, . . . , em} ⊆ 2V is referred to as hyperedges. The nodes
and hyperedges togerher form a hypergraph H = (V,E). The structure of the hypergraph
can also be described by an incidence matrix H ∈ {0, 1}n×m, where Hi,j = 1 if vi ∈ ej ,
and 0 otherwise. Every hypergraph can alternatively be described by a bipartite incidence
graph, also called the Levi graph (Levi, 1942). This bipartite graph Gbip = (V ∪ E,Ebip)
has as its two partitions the nodes and hyperedges of H, and its edges represent a node in
V belonging to an edge in E, formally Ebip = {(vi, ej) ∈ V × E|vi ∈ ej}.
The degree d (v) of node v is defined as the number of edges that contain the node. Similarly,
the degree δ (e) of the edge e is defined as the number of nodes it contains. We also
establish a diagonal node-degree matrix Dv ∈ Nn×n with (Dv)i,i = d (vi) and (Dv)i,j = 0
for i 6= j. Analogously, the hyperedge-degree matrix is a diagonal matrix De ∈ Nm×m with
(De)i,i = δ (ei) and (De)i,j = 0 for i 6= j.
We consider for each node in the hypergraph some kind of signal that is to be propagated
through the hyperedges. Let the signal be a d-dimensional vector xi for each node, giving
for the whole hypergraph a matrix X ∈ Rn×d. In the following parts of this paper, we will
explore several ways of defining such a signal, with an overview provided in Section 4.2.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Within this work, we are interested in two transductive tasks on hypergraphs: classification
on V and retrieval of positive nodes from V . Both tasks assume a training set of nodes
Vtrain ⊂ V where the labels of nodes are known. In case of classification, the goal is to
predict the label for all nodes in V . The retrieval task aims to sort the nodes in the testing
set V \ Vtrain such that the number of positive nodes in top K positions is maximized.

3 Related work

Mining information from structured (graph-like) data is one of the central problems in
machine learning. The most straightforward way to handle this is to translate the structure
into features and apply traditional machine learning techniques, such as logistic regression,
random forests, and naive Bayes, to these features. Naive Bayes (Ng & Jordan, 2001),
in particular, provides a bridge to a second large family of learning methods on graphs:
Bayesian methods, where the graph forms a structure for modelling random variables. A
critical problem associated with Bayesian methods is inference, which is often intractable.
The translation of structured data into features is also a non-trivial problem. While some
methods can handle sparse, high-dimensional feature vectors, the majority cannot. Several
methods are suited for finding low-dimensional representations of structured data. For
example, non-negative matrix factorization (Lee & Seung, 2000) (NMF) decomposes a large
sparse matrix into the product of two low-dimensional matrices. Other methods, such as
node2vec (Grover & Leskovec, 2016), spectral positional encodings (Dwivedi et al., 2023)
and distance encodings (Li et al., 2020; Beaini et al., 2021) offer node representations for
graphs, however, they cannot be directly applied to hypergraphs.
There are many papers on learning algorithms for graphs, such as GraphSAGE (Hamilton
et al., 2017), graph convolutional networks (Kipf & Welling, 2017), and graph attention
networks (Veličković et al., 2018). Nevertheless, their application to hypergraphs is not
straightforward. The origins of learning transductive tasks stretch back to the seminal work
by Zhou et al. (2006). More recently, Hypergraph neural networks (Feng et al., 2019),
Dynamic HGNNs (Jiang et al., 2019), and HyperGCN (Yadati et al., 2019) build upon
the convolutional learning schema introduced in Kipf & Welling (2017) while works such
as Bai et al. (2021) aim to bring both convolutional as well as attention to the context of
hypergraphs. The proposed method can also be viewed as an extension of label propagation
(Zhu & Ghahramani, 2003; Huang et al., 2020) or feature propagation (Rossi et al., 2022).
While there do exists algorithm for label propagation in hypergraphs (Henne, 2015; Lee et al.,
2024), the proposed method aims to be comparatively simpler to understand, implement
and calculate.

4 Convolutional Signal Propagation

We present Convolutional Signal Propagation (CSP), a method for signal propagation on
hypergraphs. In the following subsections, CSP is first introduced in the general setting,
followed by a comparison to established approaches and a discussion of possible variants
inspired by them. Finally, applications of CSP to different kinds of signals in hypergraph
tasks are discussed.

4.1 Method overview

The proposed algorithm propagates a node signal X (see Section 4.2 for a discussion of
possible signal types) through the hypergraph H. The basic version of CSP consists in a
simple averaging of X across the hyperedges and nodes of the graph. This averaging can
be repeated to obtain smoother final representations, resulting in a multi-step CSP process
generating a sequence of representations X(l), where X(0) = X. Appendix A.1 gives an
example of how CSP is applied to a simple dataset.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

In each step, the representation X(l) of the nodes is first propagated to the hyperedges to
obtain their representations

r
(l)
j =

1

δ (ej)

∑
i

vi∈ej

x
(l)
i (1)

that is the average of the representation of the individual nodes contained in the hyperedge.
In the second step, this hyperedge representation is propagated again into nodes:

x
(l+1)
k =

1

d (vk)

∑
j

vk∈ej

r
(l)
j . (2)

The steps 1 and 2 constitute the proposed Convolutional Signal Propagation algorithm,
which can be summarily written as

x
(l+1)
k =

1

d (vk)

∑
j

vk∈ej

1

δ (ej)

∑
i

vi∈ej

x
(l)
i . (3)

Using notation established in Section 2.1, Equation 3 can be rewritten into the matrix form

X(l+1) = D−1
v HD−1

e HTX(l). (4)

Equation 4 describes a basic variant of the proposed algorithm. In Section 4.6, various
modifications of CSP are discussed. While Equation 4 shows an efficient way of mathemati-
cally expressing the CSP algorithm, the algorithm itself is also efficient when it comes to its
implementation and computational complexity. See Appendix A.2 for an overview of ways
of implementing CSP. The asymptotic computational complexity of CSP may be observed
from Equation 3 as

O (d (ΣV +ΣE)) (5)

where d is the signal dimensionality, ΣV is the sum of node degrees and ΣE is the sum of
hyperedge degrees. Of note is also the fact that Equation 4 preserves the sparsity of H.

4.2 Application of CSP to different signals in hypergraphs

The construction of Convolutional Signal Propagation in Section 4.1 was a general one,
assuming a signal matrix X ∈ Rn×d. In practice, one can use CSP to propagate various
kinds of “signals” in the hypergraph. Namely, the matrix X may represent actual node
features as provided in the underlying graph dataset. This setting leads to a method similar
to feature propagation (Rossi et al., 2022) or hypergraph convolution (Feng et al., 2019).
Such an approach is elaborated further in Section 4.3. Alternatively, an approach based on
label propagation by Zhu & Ghahramani (2003) may be obtained by taking as X a version
of the label matrix Y masked by the training set, a setting described in Section 4.4 and 4.5
and evaluated in Section 5.

4.3 Comparison with Hypergraph Convolution

A single layer of the Hyper-Conv hypergraph neural network by Bai et al. (2021) is defined
as

X(l+1) = σ(D−1
v HWD−1

e HTX(l)Θ), (6)

where W and Θ are weight matrices that need to be optimized.
Comparing Equations 4 and 6, it can be seen that CSP is a simplified special case of
Hyper-Conv with the matrices W and Θ realized as non-learnable identity matrices. As
the proposed method runs only the “forward pass” of Hyper-Conv, we do not use the non-
linearity σ in the basic variant of CSP.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

4.4 Comparison with Label Propagation

The label propagation algorithm as introduced in Zhu & Ghahramani (2003) is expressed
for an ordinary graph (with edges connecting exactly 2 nodes) as

Y (l+1) = αD−1
v AY (l) + (1− α)Y (l), (7)

where Dv denotes the diagonal matrix of degrees of a graph and A stands for its adjacency
matrix.
To compare Label propagation with CSP, let us first express the value of HD−1

e HT as(
HD−1

e HT
)
i,j

=
∑
k

1

δ (ek)
Hi,kHj,k, (8)

which represents for each pair of nodes the number of hyperedges connecting them, normal-
ized by their degrees. Specifically, for an ordinary graph, this becomes

HD−1
e HT =

1

2
(A+Dv) . (9)

With this simplification for ordinary graphs, Equation 4 becomes

X(l+1) =
1

2
D−1

v AX(l) +
1

2
X(l). (10)

which is equivalent to Equation 7 with X = Y (or a masked version thereof) and α = 1
2 . CSP

is in this instance therefore a generalization of label propagation with this particular value
of α to hypergraphs (for generalization with arbitrary values of α, see Section 4.6). There
is, however, another compelling reason to use CSP over Label propagation as presented
in Equation 7. The matrix multiplication HD−1

e HT does not preserve the sparsity of
H, which is typical for large datasets. Therefore the proposed implementation can be
significantly more efficient than Equation 7, despite them being mathematically equivalent.

4.5 Comparison with the Naive Bayes classifier

The Naive Bayes classifier is a well-known classification method that calculates the posterior
probability p(y|ξ) of a label y given a feature vector ξ. Using Bayes’ rule, this is expressed
as p(y|ξ) = p(ξ|y)p(y)/p(ξ) with the “naive” assumption that the conditional probability
p(ξ|y) can be factorized as p(ξ|y) =

∏
i p(ξi|y). Here, p(ξi|y) is estimated from the training

set for all feature-label pairs.
In the case of binomial Naive Bayes, the maximum likelihood estimation of the model pa-
rameter p(ξi|y = 1) is given by the ratio of the number of positive examples containing
feature ξi to the total number of examples in the training set that include ξi. When con-
sidering nodes as examples and features as hyperedges, the estimated binomial parameter
of a given feature corresponds to the hyperedge score defined in Equation 1. While Naive
Bayes inference is based on probabilistic reasoning, where predictions are the product of the
model parameters assuming feature independence, CSP employs a filtering (convolutional)
approach. Applying Bayes’ rule translates Naive Bayes into a posterior prediction reflecting
the prior distribution, which is not captured by CSP. Therefore, Naive Bayes is expected to
perform better in classification tasks. On the other hand, accounting for priors becomes a
disadvantage in a retrieval setup, as target examples typically have low prior probabilities.

4.6 Convolutional Signal Propagation Extensions

The comparison with the methods presented in Sections 4.3, 4.4 and 4.5 naturally suggests
several alternative variants and generalizations of the basic CSP scheme. All of them can
be implemented in a straightforward way by modifying Equation 4, without requiring full
matrix multiplication.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

4.6.1 Alternative normalizations of the adjacency matrix

In graph neural networks, the adjacency matrix A is normalized by multiplying it with
the inverse of the node degree matrix Dv. While the DeepWalk algorithm (Perozzi et al.,
2014) corresponds to the row-wise normalization D−1

v A, newer methods also consider the
column-wise normalization AD−1

v and most predominantly the symmetric normalization
D

−1/2
v AD

−1/2
v introduced in Kipf & Welling (2017). Because the matrix HD−1

e HT plays
in CSP a role similar to the adjacency matrix A in GCN (see Equation 8), we can also
consider the alternative column-wise normalized version of CSP:

X(l+1) = HD−1
e HTD−1

v X(l) (11)
and the symmetrically normalized version

X(l+1) = D−1/2
v HD−1

e HTD−1/2
v X(l). (12)

4.6.2 Generalization of label propagation with general values of α

Section 4.4 shows that CSP is generalization of label propagation with α = 1
2 to hypergraphs.

This parameter α in label propagation controls how much the score of a node is influenced
by its neighbors. To provide such a configurability for CSP, a similar parameter α′ may be
introduced:

X(l+1) = α′D−1
v HD−1

e HTX(l) + (1− α′)X(l). (13)
This version is a full generalization of label propagation as described in Equation 7 to
hypergraphs. Note that the parameter α′ has different semantics and boundary values from
α in label propagation.

4.6.3 CSP in inductive settings

Within the definition of CSP in Equation 3, we assume that the algorithm operates on a
fixed hypergraph H, which corresponds to a transductive setup. This means the algorithm
requires the entire hypergraph to be processed at once.
By decomposing CSP into its stages, we can adapt it for the inductive scenario. The score
calculated according to Equation 1 can be treated as a trained model, similar to the way
a Naive Bayes model is trained (see Section 4.5). The second stage (Equation 2) can then
be applied to the testing data, where the node of interest does not need to have been part
of the training process, thus allowing for induction. Another advantage is that the second
stage of CSP (Equation 2) is performed independently for each node.
The inductive extension also offers several options. First, while Equation 2 naturally handles
nodes that did not appear in the original hypergraph H, incorporating new hyperedges
is less straightforward. These new hyperedges can either be ignored, or their scores can
be additionally evaluated using Equation 1 and incorporated alongside the trained model.
When considering multiple layers, another degree of flexibility emerges, as model training
and prediction can be applied at arbitrary layer.

5 Applications and experimental evaluation

The goal of our experiments is twofold. We first aim to demonstrate the versatility of CSP
by applying it to problems from multiple domains, and second, we would like to compare
the performance and execution time of CSP with several well established baseline methods
as well as with a simple Hypergraph Neural Network (HGCN). Our aim is to validate
the comparable performance of the proposed method while highlighting its low execution
time. While we discuss the various extensions of the proposed method in Section 4.6, their
comprehensive evaluation is left for future work.

5.1 Datasets

CSP operates on hypergraphs, and we exemplify several problems from various domains that
can be represented as hypergraphs suitable for CSP application. The considered datasets

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 1: Overview of datasets with their basic characteristics. ΣE is the sum of hyperedge
degrees or equivalently the number of non-zero elements in the incidence matrix H. Isolated
nodes are nodes that are not connected by any hyperedge. Percentage of isolated nodes is
their fraction related to the overall number of nodes.

Dataset CiteSeer Cora-CA Cora-CC DBLP PubMed Corona movie-RA movie-TA
Node paper paper paper paper paper text movie movie
Node label topic topic topic topic topic sentiment category category
Hyperedge citation author citation author citation token user tag
Nodes 3312 2708 2708 41302 19717 44955 62423 62423
Isolated nodes 1854 320 1274 0 15877 0 3376 17172
Hyperedges 1079 1072 1579 22363 7963 998 162541 14592
ΣE 3453 4585 4786 99561 34629 3455918 25000095 1093360
Average d (v) 2.37 1.92 3.34 2.41 9.02 76.88 423.39 24.16
Average δ (e) 3.20 4.28 3.03 4.45 4.35 3463 153.8 74.9
Classes 6 7 7 6 3 5 20 20

are summarized in Table 1, including basic statistics and details on how they are translated
into hypergraphs. These datasets may be grouped into three families.
The first family consists of citation networks such as PubMed, Cora, and DBLP. Their
hypergraph variants, as introduced in Chien et al. (2021), are based on hyperedges defined
by sets of papers either sharing the same author or being cited in the same paper. Each
publication is labeled based on its topic.
The second family includes datasets represented by one-hot features. Specifically, we con-
sider the Coronavirus tweets dataset (Corona) (Miglani, 2020), which contains Twitter posts
about COVID-19. The tweets are tokenized, with each tweet being represented as a node
labeled by its sentiment. Hyperedges are formed by collections of tweets sharing the same
token. We apply the Sentencepiece tokenization algorithm (Kudo & Richardson, 2018) on
the entire corpus with a target of 1000 tokens2. Note that we can control the graph size
(i.e., the number of hyperedges) through the tokenization parameter.
Finally, we consider the MovieLens 25M dataset (Harper & Konstan, 2015), which contains
25 million user ratings for movies and one million tagged movies. Hyperedges are formed
by collections of movies either rated by the same user or sharing the same tag. The nodes
represent individual movies, labeled by their genres (with multiple labels allowed per node).
Due to the interpolative nature of CSP, each multiclass dataset is transformed into a series
of binary datasets, where one class is treated as the positive class, and all other classes are
treated as negative. The results are averaged over all the resulting binary datasets. Only
structural information available in the hypergraph is considered; no additional information
such as node or hyperedge features are included.

5.2 Tasks

We address two primary tasks in our experiments: transductive node classification and
retrieval.

5.2.1 Classification Task

In the classification setting, the aim of the model is to predict binary labels on the testing
set. We use leave-one-out cross-validation with 10 folds, where nodes are randomly assigned
to folds. One fold is hidden for testing, and the method is trained on the remaining nine
folds. For each dataset, we generate test predictions for each node (when it is in the testing
set). For each class, we calculate the ROC-AUC and average these scores. This average is
reported as the classification score for each method on the given dataset.

2The number of hyperedges in Table 1 differs due to reserved tokens not used in the corpus.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

5.2.2 Retrieval Task

In the retrieval setting, the aim of the model is to rank the nodes in the test set to maximize
precision in the top positions. In this case, one fold is used for training and the other 9
are used as the testing dataset. The training set consists of all nodes in the graph, with
the positive nodes in the training fold labeled as positive and all other nodes labeled as
unknown. For models that require negative training examples, we randomly sample a set
of the same size as the testing set and consider these labels as negative. Although this
introduces some label noise, we assume that the negative class is dominant, making the
noise acceptable. The model then ranks the nodes from the testing folds, and we evaluate
precision at the top 100 positions (P@100). This evaluation is performed for each fold and
class, and the average P@100 over folds and classes is reported as the retrieval score for each
method on the given dataset.

5.3 Evaluated Methods

The goal of this work is to show the comparative performance of CSP and its computational
efficiency. To this end, the basic variant of CSP is compared to the following methods.
In future, we would like to also compare the proposed modifications of CSP mentioned in
Section 4.6 and multiple choices of feature representation for reference methods on top of
NMF.

• The proposed CSP method: Evaluated with 1, 2, and 3 layers, where we consider
binary training labels as X0. After application of a given number of CSP layers (see
Equation 4), i.e., the yielded (score) vector X l, l ∈ {1, 2, 3} is used for both retrieval
(top-100 scored test nodes) and for binary classification (with a given threshold on
score).

• Multinomial Naive Bayes: Operates on one-hot feature vectors derived from
hyperedges.

• Random Forest, Logistic Regression, and HGCN: These methods operate
on feature vectors obtained from non-negative matrix factorization (NMF) of the
incidence matrix (Lee & Seung, 2000)3 H, with 10 iterations and a dimension of
60. To configure the methods themselves, Random Forest, Logistic Regression,
and Naive Bayes are used with their default settings. For HGCN, a single layer
implementing Equation (6) was used, with an output layer of dimension 2 and
sigmoid non-linearity. We use logistic loss and train all datasets for 15,000 epochs
using the Adam optimizer with default settings.

• Random Baseline: Included for comparison.

The results of these methods are evaluated and compared based on their performance on
the classification and retrieval tasks across the datasets.

5.4 Classification Results

Table 2 lists the ROC-AUC for all methods on all datasets. Due to the numerical intensity
of HGCN, only 5 folds were evaluated, and for the Movies dataset, only 4 out of 20 classes
were considered. Prediction on isolated nodes was nearly random as only structural informa-
tion was used, likely contributing to the relatively weak performance of all methods on the
PubMed dataset. Since CSP handles only binary labels, reference methods were translated
to a one-vs-other scenario, even though they can handle multi-class classification directly.
Feature extraction using Non-negative Matrix Factorization (NMF) was not fine-tuned for
each dataset, potentially impacting the performance of NMF-based baselines. Naive Bayes
emerged as the strongest baseline, as it does not require any feature preprocessing and works
directly with the one-hot encoded incidence matrix. CSP was evaluated in three variants

3As an alternative to the NMF, we evaluated also representation generated by Laplacian posi-
tional encoding (Dwivedi et al., 2023). As the results were worse compared to NMF, we decided to
not include them in the results.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 2: The ROC-AUC for the classification task, averaged over all classes and all folds.
The best method for each dataset is denoted by bold text, with methods within 0.05 under-
lined.

Method CiteSeer Cora-CA Cora-CC DBLP PubMed Corona movie-RA movie-TA
CSP 1-layer 0.646 0.882 0.716 0.968 0.537 0.704 0.789 0.717
CSP 2-layer 0.630 0.872 0.686 0.972 0.518 0.618 0.700 0.697
CSP 3-layer 0.613 0.862 0.655 0.972 0.516 0.580 0.640 0.673
Naive Bayes 0.686 0.913 0.775 0.974 0.633 0.704 0.753 0.557
HGCN-NMF 0.659 0.832 0.786 0.775 0.624 0.622 0.794 0.724
LR-NMF 0.604 0.794 0.703 0.705 0.556 0.647 0.754 0.675
RF-NMF 0.667 0.897 0.772 0.905 0.623 0.617 0.797 0.691
Random 0.499 0.505 0.489 0.501 0.502 0.503 0.499 0.487

Table 3: The P@100 for the retrieval task, averaged over all classes and all folds. The best
method for each dataset is denoted by bold text, with methods within 0.05 underlined.

Method CiteSeer Cora-CA Cora-CC DBLP PubMed Corona movie-RA movie-TA
CSP 1-layer 0.494 0.703 0.530 0.869 0.798 0.530 0.334 0.156
CSP 2-layer 0.558 0.718 0.681 0.865 0.826 0.440 0.336 0.186
CSP 3-layer 0.568 0.721 0.707 0.869 0.850 0.332 0.238 0.186
Naive Bayes 0.471 0.686 0.491 0.951 0.860 0.446 0.216 0.153
HGCN-NMF 0.482 0.671 0.607 0.794 0.871 0.392 0.257 0.148
LR-NMF 0.329 0.603 0.372 0.602 0.735 0.397 0.580 0.356
RF-NMF 0.303 0.474 0.482 0.843 0.794 0.381 0.470 0.131
Random 0.153 0.132 0.129 0.155 0.308 0.180 0.040 0.055

based on the number of layers, with the best choice varying by dataset. On the largest
datasets (Corona and Movies), the best variant of CSP achieved performance comparable
to the strongest competing baseline. Overall, CSP demonstrated comparable results with
reference baselines. In larger datasets, where parameter tuning of baselines is more chal-
lenging, CSP proved to be one of the best-performing methods. Overall, CSP with fewer
layers fared comparatively better than a version with multiple layers. We attribute this at
first glance counter-intuitive result to the fact that the training set is fairly dense in the
graph, which ensures sufficient information for all nodes even with fewer layers, while at
the same time multiple layers may contribute to oversmoothing of the signal. These results
confirm the suitability of CSP as a first-choice baseline method for classification tasks.

5.5 Retrieval Results

Table 3 lists the P@100 for all methods on all datasets. The evaluation of HGCN and the
Movies dataset in the retrieval task is restricted similarly to the classification task. Isolated
nodes no longer cause a performance drop as long as there are sufficient number of non-
isolated nodes in each class. Naive Bayes’ performance is not as superior in this scenario
as in classification task since the training set contains only positive nodes, preventing it
from leveraging prior distribution knowledge about the target class. CSP, which does not
use prior knowledge about the target class distribution, works very well on small datasets
with lower average degree of the nodes and edges. In case of datasets with higher average
degree of nodes (Movies), CSP does not extract the structural information as well as NMF
and therefore the methods utilizing the features from NMF (mainly logistic regression) work
much better except HGCN, which suffers from over-smoothing. In summary, CSP achieves
superior performance for 4 of 8 datasets on retrieval task and is significantly worse on only
the Movies dataset, showing its suitability as a baseline in the retrieval setting.

5.6 Complexity Evaluation

The wall-clock execution time for individual methods is presented in Table 4. We evaluated
the methods using standard implementations that would be widely used by practitioners.
In particular, we used the Scikit-Learn (Pedregosa et al., 2011) implementation with de-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 4: The execution time of a single retrieval task in microseconds, averaged over all
classes and all folds. The non-negative matrix factorization was excluded from the execution
time.

Method CiteSeer Cora-CA Cora-CC DBLP PubMed Corona movie-RA movie-TA
CSP 1-layer 1.35 1.23 1.24 3.51 4.01 22.83 170.63 12.07
CSP 2-layer 2.41 2.25 2.24 7.46 7.35 47.39 349.67 25.88
CSP 3-layer 3.31 3.09 3.08 9.65 9.1 70.98 506.1 35.75
Naive Bayes 2.59 2.73 2.54 11.16 5.35 89.3 1 051.53 35.61
HGCN-NMF 23 714 23 690 23 709 29 123 23 879 112 314 620 717 70 778
LR-NMF 44.45 51.59 49.54 64.96 44.69 56 61.82 74.07
RF-NMF 140.76 143.85 134.52 1 148.83 323.6 1 608.58 697.85 716.68

fault settings for logistic regression, Naive Bayes and random forest. A Polars variant of
Equation 4 (see Appendix A.2) was applied for the proposed CSP method. All these meth-
ods were executed on a GPU (Amazon EC2 G4 instance). The HGCN was executed using
PyTorch-geometric (Fey & Lenssen, 2019). Comparing the execution times, HGCN is the
most numerically complex method. Although methods to improve training efficiency are
available, they were not considered in this work. Logistic regression and random forest
exhibit relatively short execution times in Corona and Movies datasets, largely because
the most challenging part—extraction of structural information—is handled by nonnega-
tive matrix factorization, which is not included in the reported times. The proposed CSP
excels particularly in graphs with a low average degree of nodes, similar to Naive Bayes
and is roughly four orders of magnitude faster compared to the state-of-the-art HGCN.
The measured execution time of CSP aligns with its expected asymptotic complexity (see
Equation 5) and appears to be linear with the number of CSP layers, as anticipated.
In summary, HGCN is by far the most numerically intensive method and shows potential
in some examples; however, there is still a significant amount of fine-tuning needed to
achieve superior performance across datasets. NMF-based methods work exceptionally well
on the Movies dataset for the retrieval task, though further tuning is required to properly
extract structural information. Compared to Naive Bayes, CSP is the simpler method
and is parameter-free. In some problems, CSP outperformed Naive Bayes and vice versa.
Thus, both of these methods should be considered when establishing baselines for tasks on
structural data.

6 Conclusion

This paper presents a signal propagation algorithm termed Convolutional Signal Propaga-
tion (CSP). We formally describe the CSP algorithm and demonstrate its simplicity and
efficiency of implementation. This formal description allows us to show clear relationships
between CSP and well-known algorithms such as Naive Bayes, label propagation, and hy-
pergraph convolutional networks. These relationships suggest various algorithmic variants,
which we left for detailed future exploration.
We discuss the application of CSP to different types of signals. Our primary focus is prop-
agating binary labels, which is used for classification and retrieval tasks, positioning CSP
as a hypergraph variant of traditional label propagation. Additionally, propagating node
features instead of labels as signals leads to feature propagation. This dual functionality
showcases the versatility of CSP in handling various tasks on hypergraphs.
The application of CSP to several real-world datasets from multiple domains demonstrates
how these problems can be effectively expressed using hypergraphs. Evaluating CSP in
these scenarios shows its competitive performance in both node classification and retrieval
tasks, compared to a range of reference methods. Furthermore, we assess the computational
complexity of these methods by examining their execution times, highlighting the simplicity
and efficiency of CSP. This combination of competitive performance, low computational
complexity, parameter-free nature, and flexibility in implementation makes CSP an ideal
choice as a baseline for learning on structured data.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

References
Song Bai, Feihu Zhang, and Philip H. S. Torr. Hypergraph convolution and hypergraph

attention. Pattern Recognition, 110:107637, February 2021. ISSN 0031-3203. doi: 10.
1016/j.patcog.2020.107637. URL https://www.sciencedirect.com/science/article/
pii/S0031320320304404.

Dominique Beaini, Saro Passaro, Vincent Létourneau, Will Hamilton, Gabriele Corso,
and Pietro Lió. Directional Graph Networks. In Proceedings of the 38th Interna-
tional Conference on Machine Learning, pp. 748–758. PMLR, July 2021. URL https:
//proceedings.mlr.press/v139/beaini21a.html. ISSN: 2640-3498.

Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. You are AllSet: A Multiset
Function Framework for Hypergraph Neural Networks. In 10th International Conference
on Learning Representations (ICLR 2022), October 2021. URL https://openreview.
net/forum?id=hpBTIv2uy_E.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua
Bengio, and Xavier Bresson. Benchmarking Graph Neural Networks. Journal of Machine
Learning Research, 24(43):1–48, 2023. ISSN 1533-7928. URL http://jmlr.org/papers/
v24/22-0567.html.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph Neu-
ral Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):
3558–3565, July 2019. ISSN 2374-3468. doi: 10.1609/aaai.v33i01.33013558. URL
https://ojs.aaai.org/index.php/AAAI/article/view/4235. Number: 01.

Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning with PyTorch
Geometric, April 2019. arXiv: 1903.02428.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 855–864, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in neural information processing systems, pp. 1024–1034, 2017.

F. Maxwell Harper and Joseph A. Konstan. The MovieLens Datasets: History and Context.
ACM Transactions on Interactive Intelligent Systems, 5(4):19:1–19:19, December 2015.
ISSN 2160-6455. doi: 10.1145/2827872. URL https://doi.org/10.1145/2827872.

Vitali Henne. Label propagation for hypergraph partitioning. PhD Thesis, Karlsruher Institut
für Technologie (KIT), 2015.

Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R. Benson. Combining
Label Propagation and Simple Models Out-performs Graph Neural Networks, November
2020. arXiv:2010.13993.

Jianwen Jiang, Yuxuan Wei, Yifan Feng, Jingxuan Cao, and Yue Gao. Dynamic Hypergraph
Neural Networks. In Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI-19, pp. 2635–2641. International Joint Conferences on
Artificial Intelligence Organization, July 2019. doi: 10.24963/ijcai.2019/366. URL https:
//doi.org/10.24963/ijcai.2019/366.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. In 5th International Conference on Learning Representations, {ICLR} 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings, Toulon, France, April
2017. OpenReview.net. URL https://openreview.net/forum?id=SJU4ayYgl.

Taku Kudo and John Richardson. SentencePiece: A simple and language independent
subword tokenizer and detokenizer for Neural Text Processing. In Eduardo Blanco and
Wei Lu (eds.), Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 66–71, Brussels, Belgium, Novem-
ber 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-2012. URL
https://aclanthology.org/D18-2012.

11

https://www.sciencedirect.com/science/article/pii/S0031320320304404
https://www.sciencedirect.com/science/article/pii/S0031320320304404
https://proceedings.mlr.press/v139/beaini21a.html
https://proceedings.mlr.press/v139/beaini21a.html
https://openreview.net/forum?id=hpBTIv2uy_E
https://openreview.net/forum?id=hpBTIv2uy_E
http://jmlr.org/papers/v24/22-0567.html
http://jmlr.org/papers/v24/22-0567.html
https://ojs.aaai.org/index.php/AAAI/article/view/4235
https://doi.org/10.1145/2827872
https://doi.org/10.24963/ijcai.2019/366
https://doi.org/10.24963/ijcai.2019/366
https://openreview.net/forum?id=SJU4ayYgl
https://aclanthology.org/D18-2012

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Daniel Lee and H. Sebastian Seung. Algorithms for Non-negative Matrix Factor-
ization. In Advances in Neural Information Processing Systems, volume 13. MIT
Press, 2000. URL https://proceedings.neurips.cc/paper_files/paper/2000/hash/
f9d1152547c0bde01830b7e8bd60024c-Abstract.html.

Geon Lee, Soo Yong Lee, and Kijung Shin. VilLain: Self-Supervised Learning on Homoge-
neous Hypergraphs without Features via Virtual Label Propagation. In Proceedings of the
ACM Web Conference 2024, WWW ’24, pp. 594–605, New York, NY, USA, May 2024. As-
sociation for Computing Machinery. ISBN 9798400701719. doi: 10.1145/3589334.3645454.
URL https://dl.acm.org/doi/10.1145/3589334.3645454.

Friedrich Wilhelm Levi. Finite geometrical systems. University of Calcutta, Calcutta, 1942.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance Encoding: De-
sign Provably More Powerful Neural Networks for Graph Representation Learning. In
Advances in Neural Information Processing Systems, volume 33, pp. 4465–4478. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
2f73168bf3656f697507752ec592c437-Abstract.html.

Wes McKinney. Data Structures for Statistical Computing in Python. In Stéfan van der
Walt and Jarrod Millman (eds.), Proceedings of the 9th Python in Science Conference,
pp. 56 – 61, 2010. doi: 10.25080/Majora-92bf1922-00a.

Aman Miglani. Coronavirus tweets NLP - Text Classification, 2020. URL https://www.
kaggle.com/datasets/datatattle/covid-19-nlp-text-classification.

Andrew Ng and Michael Jordan. On Discriminative vs. Generative Classifiers: A comparison
of logistic regression and naive Bayes. In Advances in Neural Information Processing
Systems, volume 14. MIT Press, 2001. URL https://proceedings.neurips.cc/paper/
2001/hash/7b7a53e239400a13bd6be6c91c4f6c4e-Abstract.html.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake
Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot,
and Édouard Duchesnay. Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research, 12(85):2825–2830, 2011. ISSN 1533-7928. URL http://jmlr.org/
papers/v12/pedregosa11a.html.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 701–710, 2014.

Emanuele Rossi, Henry Kenlay, Maria I. Gorinova, Benjamin Paul Chamberlain, Xiaowen
Dong, and Michael M. Bronstein. On the Unreasonable Effectiveness of Feature Prop-
agation in Learning on Graphs With Missing Node Features. In Proceedings of the
First Learning on Graphs Conference, pp. 11:1–11:16. PMLR, December 2022. URL
https://proceedings.mlr.press/v198/rossi22a.html. ISSN: 2640-3498.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph Attention Networks. International Conference on Learning Rep-
resentations, 2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Ritchie Vink, Stijn de Gooijer, Alexander Beedie, Marco Edward Gorelli, Weijie Guo, Orson
Peters, nameexhaustion, J. van Zundert, Gert Hulselmans, Gijs Burghoorn, Cory Grin-
stead, Marshall, chielP, Lawrence Mitchell, Itamar Turner-Trauring, Matteo Santamaria,
Daniël Heres, Josh Magarick, Henry Harbeck, ibENPC, deanm0000, Karl Genockey,
Moritz Wilksch, Jorge Leitao, Mick van Gelderen, Petros Barbagiannis, Ion Koutsouris,
Oliver Borchert, and Robin. pola-rs/polars: Python Polars 1.8.2, September 2024. URL
https://zenodo.org/records/13835598.

12

https://proceedings.neurips.cc/paper_files/paper/2000/hash/f9d1152547c0bde01830b7e8bd60024c-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2000/hash/f9d1152547c0bde01830b7e8bd60024c-Abstract.html
https://dl.acm.org/doi/10.1145/3589334.3645454
https://proceedings.neurips.cc/paper/2020/hash/2f73168bf3656f697507752ec592c437-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/2f73168bf3656f697507752ec592c437-Abstract.html
https://www.kaggle.com/datasets/datatattle/covid-19-nlp-text-classification
https://www.kaggle.com/datasets/datatattle/covid-19-nlp-text-classification
https://proceedings.neurips.cc/paper/2001/hash/7b7a53e239400a13bd6be6c91c4f6c4e-Abstract.html
https://proceedings.neurips.cc/paper/2001/hash/7b7a53e239400a13bd6be6c91c4f6c4e-Abstract.html
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://proceedings.mlr.press/v198/rossi22a.html
https://openreview.net/forum?id=rJXMpikCZ
https://zenodo.org/records/13835598

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

v2

v1

v3

v5

v4

v1

v2

v3

v4

v5

e1

e2

e3

e4

H =


1 1 0 1
1 1 0 0
1 0 0 1
0 1 1 0
1 0 1 0



Figure 2: The node of interest v3 highlighted in all three possible representations of the
sample dataset.

Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and
Partha Talukdar. HyperGCN: A New Method For Training Graph Convolutional Net-
works on Hypergraphs. In Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/
hash/1efa39bcaec6f3900149160693694536-Abstract.html.

Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning with hypergraphs:
Clustering, classification, and embedding. Advances in neural information process-
ing systems, 19, 2006. URL https://proceedings.neurips.cc/paper/2006/hash/
dff8e9c2ac33381546d96deea9922999-Abstract.html.

Xiaojin Zhu and Zoubin Ghahramani. Learning from Labeled and Unlabeled Data with
Label Propagation. July 2003.

A Appendix

A.1 An example of CSP computation

In this appendix, we give an example of how CSP is applied to the dataset from Figure 1.
The dataset consists of 5 nodes (entities of interest) and 4 hyperedges (i.e., relationships
between the entitites). While the description of CSP in Section 4.1 describes the algorithm
as starting with some signal X(l) in the nodes and propagates it through the hypergraph
to obtain the updated signal X(l+1), in this section, let us study the algorithm in reverse –
i.e., how CSP calculates the updated score for a particular node.
Let us consider the node v3, which is highlighted in Figure 2. In order to calculate its score
x
(l+1)
3 , an obvious choice is to aggregate the scores of its incident edges e1 and e4. We

consider the arithmetic mean as a form of such aggregation, giving us the relationship

x
(l+1)
3 =

r
(l)
1 + r

(l)
1

2
=

1

deg (v3)
∑
j

v3∈ej

r
(l)
j (14)

where r
(l)
j is a score assigned to the edge ej . This aggregation of edges scores into a node

score is highlighted in Figure 3.
Naturally, the question of obtaining such edge scores arises. To this end, a similar approach
may be applied, calculating the edge scores as simple arithmetic means of the previous

13

https://proceedings.neurips.cc/paper/2019/hash/1efa39bcaec6f3900149160693694536-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1efa39bcaec6f3900149160693694536-Abstract.html
https://proceedings.neurips.cc/paper/2006/hash/dff8e9c2ac33381546d96deea9922999-Abstract.html
https://proceedings.neurips.cc/paper/2006/hash/dff8e9c2ac33381546d96deea9922999-Abstract.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

v2

v1

v3

v5

v4

v1

v2

v3

v4

v5

e1

e2

e3

e4

H =


1 1 0 1
1 1 0 0
1 0 0 1
0 1 1 0
1 0 1 0

H =

 1 0 0 1



Figure 3: The node of interest v3 and its incident edges. In CSP, the score of v3 is obtained
by averaging the scores of e1 and e4

v2

v1

v3

v5

v4

v1

v2

v3

v4

v5

e1

e2

e3

e4

H =


1 1 0 1
1 1 0 0
1 0 0 1
0 1 1 0
1 0 1 0

H =


1 1
1 0
1 1
0 0
1 0



Figure 4: The edges e1 and e4 and their constituent nodes. In CSP, the score of e1 is
obtained by averaging the scores of v1, v2, v3 and v5, while the score of e4 is obtained by
averaging the scores of v1 and v3.

scores of nodes contained in each edge. In our particular dataset, this approach yields the
following relationships

r
(l)
1 =

x
(l)
1 + x

(l)
2 + x

(l)
3 + x

(l)
5

4
=

1

δ (e1)

∑
i

vi∈e1

x
(l)
i (15)

r
(l)
4 =

x
(l)
1 + x

(l)
3

2
=

1

δ (e4)

∑
i

vi∈e4

x
(l)
i . (16)

This aggregation of node scores into edge scores is highlighted in Figure 4. Together with
the previously described step of aggregating these edge scores into new node scores, the
basic mechanism of CSP as outlined in Equation 3 is formed.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A.2 On Efficient Implementation of Convolutional Signal Propagation

While Equation 4 shows an efficient way of mathematically expressing CSP, the algorithm
itself is also efficient when it comes to its implementation and computational complexity.
Algorithm 1 shows an implementation of CSP in a single SQL query, Algorithm 2 shows a
simple implementation in Python using the Pandas (McKinney, 2010) library. Notably, the
SQL implementation can also be applied using the Polars library (Vink et al., 2024), which
was used for the experiments in Section 5.
These implementations essentially materialize Equations 1 and 2. The hypergraph H is
represented as a table or DataFrame with columns nodeId and edgeId, where each row
represents a given node belonging to a given hyperedge. The input table or DataFrame
for CSP also contains a nodeProperty (signal) column, which is propagated through the
method. The updated nodeProperty can then be used for either subsequent CSP layers or
for the final prediction.

Algorithm 1 An SQL implementation of a single CSP layer (3). Stage 1 and Stage 2 can
be repeated multiple times before final aggregation when considering multiple layers.

1 WITH stage1 AS (
2 SELECT nodeId, edgeId, AVG(nodeProperty) OVER (PARTITION BY edgeId) AS

edgeProperty
3 FROM table
4),
5 stage2 AS (
6 SELECT nodeId, edgeId, AVG(edgeProperty) OVER (PARTITION BY nodeId) AS

nodeProperty
7 FROM stage1
8)
9 select nodeId, AVG(nodeProperty) as final_prediction from stage2

10 group by nodeId

Algorithm 2 A Pandas implementation of CSP (3). The CSP_layer function may be
applied to the DataFrame repeatedly before extracting the final prediction.

1 import pandas as pd
2 def CSP_layer(df: pd.DataFrame) -> pd.DataFrame:
3 df['edgeProperty'] = df.groupby('edgeId')['nodeProperty'].transform('mean')
4 df['nodeProperty'] = df.groupby('nodeId')['edgeProperty'].transform('mean')
5 return df
6
7 CSP_layer(df).groupby('nodeId').agg(final_prediction=('nodeProperty', 'mean'))

15

	Introduction
	Problem Statement
	Notations and Definitions

	Related work
	Convolutional Signal Propagation
	Method overview
	Application of CSP to different signals in hypergraphs
	Comparison with Hypergraph Convolution
	Comparison with Label Propagation
	Comparison with the Naive Bayes classifier
	Convolutional Signal Propagation Extensions
	Alternative normalizations of the adjacency matrix
	Generalization of label propagation with general values of
	CSP in inductive settings

	Applications and experimental evaluation
	Datasets
	Tasks
	Classification Task
	Retrieval Task

	Evaluated Methods
	Classification Results
	Retrieval Results
	Complexity Evaluation

	Conclusion
	Appendix
	An example of CSP computation
	On Efficient Implementation of Convolutional Signal Propagation

