Published as a conference paper at ICLR 2025

DEQUIFY YOUR FORCE FIELD: MORE EFFICIENT SIMU-
LATIONS USING DEEP EQUILIBRIUM MODELS

Andreas Burger*, Luca Thiede*, Alan Aspuru-Guzik & Nandita Vijaykumar
University of Toronto, Canada

Vector Institute, Toronto, Canada

{andreas.burger, luca.thiede}@mail .utoronto.ca

ABSTRACT

Machine learning force fields show great promise in enabling more accurate molec-
ular dynamics simulations compared to manually derived ones. Much of the
progress in recent years was driven by exploiting prior knowledge about physical
systems, in particular symmetries under rotation, translation and reflections. In this
paper, we argue that there is another piece of important prior information that thus
far hasn’t been explored: Simulating a molecular system is necessarily continuous,
and successive states are therefore extremely similar. Our contribution is to show
that we can exploit this information by recasting an state-of-the-art equivariant
base model as a deep equilibrium model. This allows us to recycling intermediate
neural network features from previous time steps, enabling us to improve both
accuracy and speed by 10% — 20% on the MD17, MD22, and OC20 200k datasets,
compared to the non-DEQ base model. The training is also much more memory
efficient, allowing us to train more expressive models on larger systems.

1 INTRODUCTION

With increasingly more available compute, molecular dynamics (MD) simulations emerged as an
integral tool for studying the behaviour of molecules to develop a mechanistic understanding of a large
class of processes in drug discovery and molecular biology Lin & MacKerell (2019); Hollingsworth &
Dror (2018); Sinha et al. (2022); Durrant & McCammon (2011). The backbone of an MD simulation
is a force field, which predicts the forces acting on each of the atoms in a molecule, given the current
atom positions. These forces are then used to integrate the equations of motion numerically by
multiplying the forces with a small time step dt to obtain velocities, which in turn is used to update
the atom’s positions. Traditionally, force fields were designed by hand to capture known physical
effects such as covalent bonds, electrostatics, and van der Waals forces Weiner & Kollman (1981);
Pearlman et al. (1995). These hand-crafted force fields are compact and fast but lack the expressivity
to capture more complex quantum mechanical many-body interactions. Alternatively, force fields can
be calculated from highly accurate but costly quantum mechanical calculations, so-called ab-initio
molecular dynamics (AIMD). Therefore, a new approach has gained traction over recent years:
Training an expressive machine learning model on data from expensive ab-initio methods. This
results in models at near-quantum chemical accuracy at only a fraction of the cost.

Some early works on machine learning force fields used local atom environment descriptors in
combination with linear regression Thompson et al. (2015); Shapeev (2016), Gaussian processes
Bartok et al. (2010), and feed-forward neural networks Behler & Parrinello (2007). The pioneering
work SchNet Schiitt et al. (2017) used a rotation invariant graph neural network to predict energies,
forces and other properties. This was later improved by the use of equivariant neural networks that
model angular dependencies more directly, such as Cormorant Anderson et al. (2019), DimeNet
Gasteiger et al. (2020), PaiNN Schiitt et al. (2021), GemNet Gasteiger et al. (2021), SphereNet Liu
et al. (2022), and NequlP Batzner et al. (2022). Recent models have further improved the expressivity
and scalability of equivariant models. Equiformer introduces an attention mechanism Liao & Smidt
(2023), Allegro focuses on edge features with non-growing receptive fields Musaelian et al. (2023),
MACE introduces an efficient mechanism to calculate many-body interactions with high-order tensor
polynomials Batatia et al. (2022), eSCN improves the scaling of Clebsch-Gordan products involved in
equivariant convolutions Passaro & Zitnick (2023), and ViSNet Wang et al. (2022) and QuinNet Wang

Published as a conference paper at ICLR 2025

et al. (2024) derive ways to incorporate four and five body terms much more efficiently. CHGNet
Deng et al. (2023) incorporates magmoms for extra physical supervision. VisNet-LSRM Li et al.
(2023) and 4G-HDNNP Ko et al. (2021) focus on modeling long-range and non-local effects.

Much of the architectural designs were guided by the incorporation of prior information about the
systems, in particular, invariance to permutation of atom IDs, translation, rotation, and inversion
symmetries of energy and forces, as well as size extensivity and smoothness under the movement of
atoms. Our main observation is that in physically meaningful simulation, there is additional prior
information that is not yet incorporated in any model: The evolution of atom coordinates in time
needs to be continuous. In practical simulations, this is enforced by adaptively picking integration
time steps small compared to the fastest moving part of the system. This way even processes that are
seemingly abrupt on a macroscopic scale, such as shock simulations, are smooth on the atomic scale.
Violation of this principle would lead to nonphysical energy dissipation.

We aim to use this extra information about our simulation by adapting the Deep Equilibrium Model
(DEQ) framework Bai et al. (2019) to equivariant architectures. DEQs replace the typical deep stack
of layers with a lightweight shallow model and a fixed-point solver, see section 3.1. This allows us
to reuse latent features across simulation time steps by warm starting the fixed point solution from
previous time steps, see figure 1. This lets us build effectively deep models at the cost of shallow
ones. Additionally, the formulation allows for much more memory-efficient training, permitting us to
train expressive models on large systems that would otherwise not fit in memory.

Formulating energies and forces as fixed points is natural since the ab initio ground truth data used to
train ML force fields are fixed points of self-consistent field (SCF) methods themself. This raises the
hopes that our DEQ formulation induces an inductive bias leading to better generalization, and in
section 4.1 we present some preliminary evidence for that. Tricks like restarting from previous fixed
points are also used in ab-initio molecular dynamics simulations, where the density is initialized from
previous time steps, or even more advanced extrapolation Kolafa (2004) and Car-Parrinello schemes
Car & Parrinello (1985). Therefore, our formulation represents an interesting link between AIMD
and ML MD.

We implement our method by transforming the EquiformerV?2 architecture Liao & Smidt (2023); Liao
et al. (2024), which has the highest accuracy on the Open Catalyst Project leaderboard ', into a DEQ.
In principle however, the methodology is compatible with other similar force field architectures. Our
results show that, compared to the original EquiformerV2, DEQuiformer achieves: (1) significantly
improved accuracy for the OC20 200k dataset, (2) 10-20% faster inference and equally or higher
accuracy on the MD17/MD22 datasets and in MD relaxations, (3) all at reduced training memory
cost and (4) with up to 5x fewer model parameters.

We summarize our contributions as follows:

1. We identify the temporal continuity of molecular simulations as additional prior information
that has not yet been used in any ML-based architecture.

2. We design the first DEQ-based equivariant neural network and apply it to ML force fields,
which lets us exploit this temporal continuity by reusing fixed points across time steps

3. We demonstrate that our model can improve upon speed, accuracy, training memory, and
parameter efficiency compared to non-DEQ counterparts on common benchmarks as well as
real MD simulations

2 BACKGROUND

State-of-the-art ML force fields like EquiformerV2 belong to the class of equivariant graph neural
networks (GNN) Batatia et al. (2022); Musaelian et al. (2023); Liao et al. (2024); Batzner et al. (2022).
The central shared feature is the stacking of equivariant message passing layers, typically between
five Batzner et al. (2022) and twenty Liao et al. (2024). 3D rotational and translational equivariance
is achieved by building on irreducible representations and spherical harmonics, improving data
efficiency Batzner et al. (2022). Such symmetry exploiting networks have emerged as the SOTA for
molecular data Passaro & Zitnick (2023); Musaelian et al. (2023); Batatia et al. (2022); Liao et al.
(2024); Thomas et al. (2018). A Graph Neural Network (GNN) takes in a graph G and maps itto a
target space in a permutation equivariant way. If the graph is embedded in 3d space as molecules are,

"https://opencatalystproject.org/leaderboard.html

https://opencatalystproject.org/leaderboard.html

Published as a conference paper at ICLR 2025

we use O(3)—Equivariant graph neural networks, which are equivariant to translations, rotations and
optionally inversions. In these networks, node features h; of node t, are concatenations of irreducible
representations (irreps) h! € R% ¥ organized by their degree [(we omit an additional channel
dimension for simplicity). Irreps transform under rotation R as

RY R - (r1,...,mn)) = Dy(R) - ht(r1,...,mn) 1))

where 71, ...,y are the coordinates of the atoms, and D;(R) € RZHD*(H+1) j5 the Wigner-D
matrix. Intuitively, higher-degree features rotate faster with rotation of the input features. [= 0
features are rotation invariant scalars, and [= 1 are ordinary vectors. A vector r € R? can be mapped
to an [graded feature using the spherical harmonics Y;(7/||r[|) € R+,

Two irreps f'* and ¢** of different degrees interact using the Clebsch-Gordan tensor product Thomas
et al. (2018)

ls _ (Is,ms3) l
h3 (f l1712gm2) 5 Z Z 0113:::’) lzmz)f 9"212 @

mlzfll m27712

where we index the elements within the 2/ 4+ 1 dimensional tensor by m, and C((ll f :;13)) (1a,ms) 1€

the Clebsch-Gordan coefficients. Every combination of /1, l5, 3 is called a path, and every path is
weighted individually by wy, 1,1, (-). The weight itself is predicted by a neural network, conditioned
on rotation invariant features like the distance ||rs]|.

An equivariant GNN builts on top of equation 2 to define an equivariant message passing scheme:
Given a target node h; and a source node h, with a relative coordinate vector ry, an equivariant
GNN sends a message from the source to the target using

/Ui?; - U (hta hsarts) = Zwll,lg,lg(uri‘,s”) (fll(ht; S) ® 1,02 Yl2 (Tt /H""tsll)) (3)
l1,l2

where f(hy, hs) is a function of both target and source node features; in EquiformerV2, it is simply
the concatenation operation. Instead of using equation 3 directly, EquiformerV2 relies on eSCN
convolutions, which calculates basically the same expression but in a more efficient way; please refer
to Passaro & Zitnick (2023) and Liao et al. (2024) for details.

2.1 EQUIFORMERV?2

EquiformerV2 Liao et al. (2024) is a graph transformer, where each message passing layer is an
equivariant transformer block. To initialize the node features, the embedding block I/ first encodes
the input molecule, based the atom numbers z and positions r.

h§0> =U(xi) = U (2i, {rij }jen(i)) N

The L transformer layers then perform repeated attention-weighted message passing to update the
node features based on nodes in the neighborhood.

I+1 l l l
h() = f() (hﬁ), {h§), rij}je/\/'(i)) 5
After several transformer blocks update the node features, they are passed to two separate output

heads for the final force and energy predictions. The total energy of the molecule is just the sum of
the energies of the individual nodes.

B = § pscalar (h(“), F; = Dvor (h(L)7 i) 6
zi: ’ DB) ©

We provide more details on equivariant GNNs and EquiformerV?2 in section A.1.1.

3 DEQUIFORMER

Our goal is to incorporate temporal correlation as an inductive bias, to effectively reuse computation
between timesteps of the simulation. Inspired by SCF methods where the density can be initialized
from previous calulations, we do so by reusing the features of previous timesteps. It is unclear

Published as a conference paper at ICLR 2025

Repeat until convergence

&

b
Ve
t
Q —> 5 le-ed
Point
3 Force P Force
Head Head

Surppaqury

X
v
Surppaquiyy

| C te not shared | ‘Warm start from old fixed point
ompute not share shares compute between steps

t+1
O Fixed {
> Point
3 Force Force

a) EquiformerV?2 b) DEQuiformer

Suppaqury

3 o~
o
\2
Suippaquy

Figure 1: Comparison of the EquiformerV2 and DEQuiformer architectures. While the Equiformer
model considers every input state independently, the DEQuiformer exploits the temporal continuity
between input states to share compute. This works because neighbouring time steps in an MD
simulation are highly similar by design. Therefore, we drastically reduce the required compute by
reusing the fixed-point from the previous step.

however how one could use latents from previous MD steps with an architecture like EquiformerV2.
The issue is that the model would have to learn to take into account previous latents during training.
Fundamentally, there is no way for EquiformerV2 to adapt to the (dis-)similarity from the previous
timestep. This is because explicit models define a fixed computational graph to map the input to
an output. Instead, we use an implicit architecture like DEQ, that iterates until self-consistency is
reached. In this sense, DEQs (and other implicit models) have the ability to adaptively increase
compute depending on how difficult the problem is. Concretely, we "DEQuify” EquiformerV2 by
replacing the L Equiformer layers with a fixed-point solver over Lprg < L Equiformer layers, as
shown figure 1. In the following we discuss the techniques to make this work in practice.

3.1 DEEP EQUILIBRIUM NETWORKS

Implicit layer Deep Equilibrium models Bai et al. (2018; 2019) drastically reduce the model size
by replacing the deep stack of layers with just one or two layers and an iterative fixed-point solver. In
Bai et al. (2019), the authors showed that the network converges to a fixed-point in the limit of infinite
depth L. — oo. Therefore, we say that these models have “continuous layers” or ”infinite depth”

To formalize this, consider a function fy, usually a small neural network. Given some input z,
repeated passes through fy updates the features h®

h™ = fy(h*, z) @)

[l

until the features converge to a fixed-point h* = fp(h*, z). The "fixed-point” or “equilibrium point’
is then considered the output of the fixed-point layer. This replaces the intermediate features h(®) after
[layers with a fixed-point estimate of the features h®. EquiformerV2 predicts the forces and energy
via separate output heads, by acting on the node features after L layers h(). The node features are
instead replaced by the fixed-point estimate of the node features h* from the root solver, which we
pass as input to the output heads.

Input injection via embedding block The neural network layer fy has to take in the input x,
in addition to the current features h®, at every solver iteration, which is called the input injection.
Equiformer initializes the node features via an embedding block & = U (z). Using the embedding
to initialize the initial fixed-point estimate h® however would stop gradients to flow to the encoder,
since the gradient calculation is independent of the solver trajectory. Instead, we use the embedding

Published as a conference paper at ICLR 2025

block’s output as the input injection, by adding the embedding to the fixed-point estimate h® at every
solver step before passing it through the layer go. The node features are instead initialized as all zeros
h® = 0 Bai et al. (2019). To prevent the norm of the features to grow with depth, we rescale the
vector 2-norm ||-|| to be the same as before the addition.

ottt 0) = (04 2 7L ®

This setup reduces the model size from many layers to just a few. However, naively passing h through
the NN layer fp until equilibrium is slow in practice. Instead, we search for the fixed-point directly
by using a root-solving algorithm, which computes more sophisticated updates of h to reduce the
number of passes until the fixed-point is reached. We found Broyden’s method Broyden (1965) to be
instable during training, so we use Anderson acceleration Anderson (1965).

Fast inference via fixed-point reuse The SCF-like structure of DEQs allows us to incorporate the
inductive bias that consecutive time steps in a molecular dynamics simulation are highly similar. We
do so by initializing the fixed-point estimate during inference not from all zeros, but the fixed-point
of the previous time step: h) ; = h} Bai et al. (2022). With this fixed-point reuse the number of
solver steps can be significantly reduced to gain a speedup at inference time.

Memory efficient gradient Backpropagating through this solver trajectory would incur a pro-
hibitive memory cost. Fortunately, a unique feature of DEQs is that the gradient can be computed by
the Implicit Function Theorem (IFT) Bai et al. (2019):

OL _ 0L (| 0fp\ " 0fs (0" 1)
00 Oh* oh* 00

©))

Using IFT, the forward passes is performed without tracking gradients, i.e. without storing the layer
activations. Thus, the memory cost during training, becomes independent of the DEQ’s “depth”,
which starkly contrasts explicit models, where the memory complexity grows linearly with each layer.
With the Implicit Function Theorem (IFT) the gradient is computed by solving a second fixed-point
system, for which we again use a root solver Bai et al. (2019).

. Of L dL
& on* " dn-
Computing the gradient via IFT reduces the memory requirements during training, at the cost of extra
time. Recent DEQ works Cao et al. (2024); Bai et al. (2022); Geng et al. (2023) circumvent solving
equation 10 by the so-called 1-step (phantom) gradient approximation Fung et al. (2022).

OL _ OL 0fy (*,2)
90~ oh* 00
We found however, that while the 1-step gradient leads to 2-3x faster training compared to solving

the fixed-point system in equation 10, it resulted in a significant reduction in accuracy EquiformerV?2.
We thus remove the 1-step gradient and use the IFT instead.

g = (10)

(1)

Recurrent dropout Dropout is a widely used regularization that tends to hurt DEQ performance.
This is because dropout samples a new mask for each pass through the implicit layer, which hinders
finding a fixed-point Bai et al. (2019). EquiformerV2 uses two types of dropout, alpha dropout (acting
on nodes) and path dropout, also known as stochastic depth (acting on edges). For DEQuiformer we
instead use recurrent dropout, which applies the same mask at each step of the fixed-point solver,
but a different mask for each sample Bai et al. (2019); Gal & Ghahramani (2016). We found that
recurrent path dropout and no alpha dropout work best in DEQuiformer.

Training stability with fixed-point correction loss Without further regularization, DEQs may
become unstable over the course of training, noticeable by increasing number of root solver steps Bai
etal. (2022; 2021); Geng & Kolter (2023). An effective remedy is the sparse fixed-point correction
regularization loss Bai et al. (2022). Given a fixed-point solver trajectory h®,--- 'h*,--. h* we
pick some fixed-point estimates h®, s € Z and add their gradient as if they were the final fixed-point
estimate. We follow Bai et al. (2022) and uniformly pick three h® along the solver trajectory.

Published as a conference paper at ICLR 2025

Accuracy-compute tradeoff in the root solver During training, we require low fixed-point errors
to ensure that gradients can be calculated with the IFT. However, we can trade off performance and
time during inference by relaxing the error threshold for the root solver Bai et al. (2022). With the
right threshold, this significantly speeds up inference while only marginally affecting performance.
For simplicity, we adhere to the settings of Bai et al. (2022). During training we stop after the
absolute fixed-point error falls below a relative threshold |fg (h®) — h*|/||h®|| < €trqin = 1072,
During inference, we compute the first fixed-point at the same tight tolerance €5t = €¢rq4n, but then
relax the threshold for the following time steps to e/, Zreus¢ = 101, Relaxing the tolerance further
reduces the number of forward steps and thus inference time, without sacrificing accuracy.

4 EXPERIMENTS

OC20 The Open Catalyst Project (OC20) is one of the largest quantum chemistry datasets, contain-
ing 1.3 million molecular relaxations from 260 million DFT calculations. It is focused on catalyst
simulation, where each system consisting of a surface and an adsorbate that is relaxed onto the
surface. We train on the structure to energy and forces (S2EF) 200k split to evaluate the accuracy
of our approach. We then run relaxation simulations, starting from configurations in the dataset to
validate that our fixed-point reuse scheme speeds up the simulation and does not induce additional
errors. The energies and forces are in units of eV and eV/A. Time is measured as the forward pass on
an AMD MI100.

MD17 MDI17 contains one trajectory of a molecular dynamics simulations each for eight small
molecules with 9 to 21 atoms. For each molecule, there are between 100,000 to 1,000,000 data points.
Different to OC20, the data points in MD17 are from consecutive MD timesteps, which we will use
to evaluate fixed-point reuse. Following Equiformer, a random subset of 950 data points is used for
training, 50 for validation, and testing on all remaining samples. To aggregate the results over all
molecules in MD17, we use minmax normalization per molecule and average over all molecules.
We describe the procedure in section A.2. The energies and forces are in units of kcal/mol and
kcal/mol/A.

MD22 The MD22 dataset extends MD17 by seven larger molecules with 42 to 370 atoms Chmiela
et al. (2023). The size of the training set variies for each molecule. The number of samples is defined
such that their sGDML model reaches a root mean squared test error for the forces of 1 kcal/mol/A.
Chmiela et al. (2023).

Training Following previous work, we train separate models for each molecule on MD17/22 and
one big model on OC20. We use the default model settings in the EquiformerV?2 repository for OC20
as well as MD17/22. The training hyperparameters were similarly taken from EquiformerV2 for
0OC20, but slightly changed for MD17/22 to account for the smaller dataset sizes. We did not optimize
the hyperparameters for DEQuiformer. Please refer to section A.2 for details.

4.1 RESULTS

Immproved accuracy on OC20 We first demonstrate how DEQs improve peak accuracy by having
expressivity comparable to very deep models. To examine how the models scale with the number
of layers, in figure 3a, we plot the force error over the number of layers, using a maximum of 14
layers for EquiformerV?2, the maximum our GPU memory could support, and up to two layers for
our DEQuiformer. DEQuiformer reaches significantly better accuracy than EquiformerV2 while
using far fewer parameters. Interestingly EquiformerV2 seems not to benefit much from an increase
in depth after a certain point, such that a one- or two-layer DEQuiformer is outperforming even an
14-layer EquiformerV2. This gives some preliminary evidence that the formulation of force fields as
DEQs might induce a useful inductive bias, due to the connection to SCF procedures. We also train
selected models for up to three times as long (see section A.3). The results are in table 1b.

Speed-accuracy tradeoff at inference time While we get good accuracy with our models, a
vanilla DEQ would be slow. To achieve a speedup we exploit the temporal continuity by reusing
fixed-points across simulation time steps. We examine the impact of fixed-point reuse in figure 2b.

Published as a conference paper at ICLR 2025

DEQ Inference Flexibility

__ 055 E1
=< —e— E4
© —o— E8
§ 0.50 DEQ1
© DEQ2
=
L
< 0.45 R
=
§ o
o
&L 0.40

0.1 0.2 0.3

Time per batch [s]

(a) Compute-accuracy-tradeoff at inference time. DE-
Quiformer is remarkably robust to its fixed-point error
up to a threshold of about 10™*, where the error starts
to rapidly increase. As expected, higher fixed-point
tolerances lead to faster inference speed.

Solver Steps w/wo Fixed-point Reuse

100
mmm No fixed-point reuse
Fixed-point reuse

80
8

o 60
)]
©
i}
c

S 40
=
(O]
a

20

: [l

0 1 2 3 4 5 6 7 8 9
Fixed-Point Solver Steps

(b) Reusing the fixed-point significantly reduces the
number of solver steps in DEQuiformer to enable a
speedup. We plot two distributions, with and without
fixed-point reuse. Percentage denotes the number of
samples that required a given number of solver steps.

Figure 2: Reusing fixed-points and relaxing the solver threshold lead to better inference speed.

We plot the number of solver steps needed to find the fixed-point in the test set on Aspirin with and
without reusing the fixed-point from the previous time step. Since MD17 contains one continuous
MD trajectory per molecule, we can test on the whole trajectory and initialize the fixed-point of each
sample with the fixed-point of the previous sample. While DEQuiformer takes about 5-6 steps per
sample to find the fixed-point when starting from zero initialization h® = 0; this gets reduced to 3
steps if we warm-start the solver, supporting our claim that we ’share compute” between successive
time steps by leveraging the temporal continuity.

A unique feature of DEQs is that we can trade off accuracy for extra speed post-training by loosening
the fixed-point error threshold. The looser this threshold, the faster the model, since the fixed-point
solver terminates earlier. We are examining how sensitive the force error is with respect to this
fixed-point error tolerance. We calculate the validation error and time per batch for different solver
tolerances on a logarithmic scale, with the Aspirin molecule as an example. The results are plotted
in figure 2a. As expected, looser thresholds lead to faster inference time but higher force errors.
Remarkably, the model’s predictions seem robust until a threshold of about 10~1, after which the
force error shoots up. Thus, we choose a threshold of 107! as the sweetspot to further speedup
inference.

Accuracy and speed on sequential MD data We also validate the accuracy and speed of DE-
Quiformer on the molecular dynamics data across MD17, using both fixed-point reuse and relaxed
error threshold. For each molecule, we again test the inference speed on the full dataset, reusing the
fixed-point from the previous sample to initialize the solver. In figure 3b DEQuiformer improves
upon the Pareto front of various EquiformerV?2 layers. A full breakdown of the force test errors
and inference time can be found in table 2 and table 4. DEQuiformer achieves consistently faster
inference speeds at the same or better accuracy than EquiformerV2. Comparing DEQuiformer to
EquiformerV2, we measure an average inference time improvement of 19 %, at 15 % better accuracy.
In total DEQuiformer is the best model in 5/8 molecules. We also report the accuracy for the larger
molecules in the MD22 dataset. DEQuiformer reaches state of the art accuracy in 3/7 cases and
outperforms EquiformerV2 on average. The double-walled nanotube is much larger than the other
systems, causing the 8-layer EquiformerV?2 to run out of memory on our compute setup while our
DEQuiformer easily fits in memory.

Markov property of DEQs We know from physics that that the forces should only depend on
the current state, known as the Markov property. By initializing our features from a previous time
step, one might fear that this property is lost. To test if reusing fixed points breaks the Markov
property, we compare the predicted forces with and without fixed-point reuse over Aspirin and OC20
relaxation trajectories. At each timestep, we calculate the relative difference in the forces as described
in appendix A.3. This results in an average deviation of less than 1%. Since the deviation is much

Published as a conference paper at ICLR 2025

Error vs Depth Error vs Inference Time (MD17)
0.052 | e 10
- e E Model
< DEQ o DEQ1
S 0.050 =08 s E18
£ ©
= 2
© L]
I 0.048 2 0.6
= ° 8
% 0.046 204
=) 8
L]
S 0.0a4 R T S - ¥
o ()] L
i < - n
0.042 0.0
1234567 8 91011121314 0.05 0.10 0.15 0.20
Number of Layers Time per batch [s]

(a) Accuracy on OC20 200k DEQuiformer outper- (b) Speed and accuracy on MD17 DEQuiformer is
forms EquiformerV?2 despite using much fewer param- faster than Equiformer during inference at the same
eters. Even with 14 layers (maxing out our memory), or better accuracy. Colors indicate number of layers
DEQuiformer still performs much better, indicating from one to eight.

that DEQs are more data efficient for force fields.

Figure 3: Results on MD17/22 and OC20 200k: DEQuiformer is faster and more accurate than
EquiformerV2 while also using much fewer parameters.

0C20 200k [eV] [eV/A] Force Energy # Weights

CGCNN 0.075 1.111 3.6M

SchNet 0.060 0.975 7.4M

MACE 0.051 0.565 6.2M

PaiNN 0.053 0.482 13M

0C20 Relaxation FPreuse el,b;cuse Time [s] # Solver steps PaiNN Direct 0.047 0.457 14M

- DimeNet++ 0.049 0.497 3.5M
EquiformerV2 (14 layers) 12.92 £0.26 - GemNet-dT 0.041 0.443 39M
DEQ (1 layer) X X 3298 +041 29.37+7.03 LEIGNN 0.044 0.415 1™
DEQ (1 layer) v X 20.37 £0.43 18.05+2.19 EquiformerV2 (8 layers) 0.038 0.392 3M
DEQ (1 layer) v v 12.38+0.33 11.03 +£291 DEQuiformer (2 layers) 0.035 0.498 1M

(a) Speed in relaxation simulation. We ablate the im- (b) Accuracy on OC20. The force and
pact of fixed point reuse and the lower error threshold energy errors of various models on OC20
ef.Dreuse (section 3.1) on DEQuiformer and compare ittoan ~ 200k. DEQuiformer is more accurate than
EquiformerV2. Both techniques make a significant impact EquiformerV2 on forces and energy. Base-
and DEQuiformer is faster than EquiformerV2 when both are lines from Yang et al. (2024).

combined.

Table 1: DEQuiformer is (a) faster in relaxation simulations (b) more accurate on OC20.

smaller than the average prediction error, we conclude that fixed-point reuse approximately preserved
the Markov property. This is congruent with results from ab initio molecular dynamics methods,
where warm starting SCF iterations from density matrices of previous time steps do not affect the
simulation, and are are therefore common practice.

Speedup in relaxations Finally, we validate our findings in a real world test case. To test the
speedup of DEQuiformer in realistic simulation, we run relaxations based on configurations from
0OC20. Each sample includes a slab model for the surface and an adsorbate on it as an initial guess.
Starting from 100 samples of the OC20 200k data set we run 100 relaxation steps each to get the
lowest energy geometry. We compare a one-layer DEQuiformer to the biggest model we can afford,
the 14-layer EquiformerV2. We also ablate reusing previous fixed-points and relaxing the solver
threshold and summarize the results in 1a. We see that the speedup is only possible when using both
techniques, reducing the number of layer evaluations significantly, from roughly 29 to 11. We find
that DEQuiformer is faster than EquiformerV?2 in practical scenarios while being much smaller, and
more accurate on the test set.

Published as a conference paper at ICLR 2025

MD17 Force MAE [kcal/mol/A] ~ Aspirin Benzene Ethanol Malonaldehyde Naphthalene —Salicylic acid Toluene Uracil

DimeNet 0.499 0.187 0.230 0.383 0.215 0.374 0.216 0.300
PaiNN 0.371 230.000 0.230 0.319 0.083 0.209 0.102 0.140
SchNet 1.350 0.310 0.390 0.660 0.580 0.850 0.570 0.560
SphereNet 0.430 0.178 0.208 0.340 0.340 0.360 0.155 0.267
sGDML 0.680 0.060 0.330 0.410 0.110 0.280 0.140 0.240
EquiformerV2 (8 layers) 0.359 0.161 0.175 0.230 0.063 0.243 0.100 0.219
DEQuiformer (2 layers) 0.298 0.166 0.162 0.216 0.063 0.218 0.086 0.203

MD22 Force MAE [kcal/mol/A] AT-AT AT-AT-CG-CG Ac-Ala3-NHMe DHA Stachyose Buckyball Nanotube

Allegro 0.095 0.128 0.107 0.073 0.097 - -
Frank 0.099 0.115 0.088 0.065 0.088 - -
GN-OC-L 0.137 0.130 0.145 0.091 0.089 0.189 0.222
GN-OC-S 0.124 0.134 0.117 0.066 0.051 0.239 0.258
GemNetOC 0.124 0.130 0.117 0.066 0.089 - -
Kovacs 0.088 0.106 0.089 0.053 0.063 - -
MACE 0.099 0.115 0.088 0.065 0.088 0.085 0.277
PaiNN 0.238 0.370 0.230 0.136 0.233 - -
SO3krates 0.095 0.128 0.107 0.073 0.097 - -
Shoghi 0.216 0.332 0.244 0.242 0.435 - -
TorchMD-NET 0.204 0.326 0.188 0.121 0.192 - -
sGDML 0.691 0.703 0.797 0.747 0.674 - -
EquiformerV2 (8 layers) 0.060 0.039 0.051 0.043 0.092 0.088 OOM
DEQuiformer (2 layers) 0.059 0.038 0.050 0.044 0.088 0.092 0.233

Table 2: Accuracy on MD17 and MD22. Force errors by molecular system in the MD17/22 dataset.
Our DEQuiformer improves upon EquiformerV?2’s accuracy on most systems. The other baseline
numbers are from Schiitt et al. (2021); Gasteiger et al. (2020); Liu et al. (2022) (MD17) and Li et al.
(2024); Shoghi et al. (2023) (MD22).

5 CONCLUSION

In this work, we explored the integration of Deep Equilibrium models and machine learning force
fields to enhance the efficiency of molecular dynamics (MD) simulations. We "DEQuify” the state-
of-the-art model EquiformerV?2 by replacing its deep stack of layers with a more compact fixed-point
layer. This approach allows us to leverage the temporal similarity between successive MD simulation
states by reusing fixed-points, as well as the ability to trade off accuracy and speed. On the MD17 and
MD22 datasets, our DEQuiformer model achieves substantial improvements in parameter efficiency
and inference speed at similar or better accuracy compared to the original EquiformerV2. On the
much larger OC20 200k dataset, DEQuiformer reaches significantly higher accuracy compared to
the base model. This suggests a promising new research direction for machine learning force fields,
focusing on exploiting the temporal nature of MD simulations to enhance computational efficiency.
Since DEQs are in principal orthogonal to the base model, we expect that any improvements in the
base architectures or DEQs in the future should complement each other. Future work could furhter
expand on the idea of initializing features, akin to classical SCF methods like Pulay mixing, Anderson
mixing, or density extrapolation methods.

ACKNOWLEDGMENTS

This research was undertaken thanks in part to funding provided to the University of Toronto’s
Acceleration Consortium from the Canada First Research Excellence Fund CFREF-2022-00042.
Computations were performed on the Acceleration Consortium AMD Tacozoid cluster. Resources
used in preparing this research were provided, in part, by the Province of Ontario, the Government of
Canada through CIFAR, and companies sponsoring the Vector Institute.

Published as a conference paper at ICLR 2025

REFERENCES

Brandon Anderson, Truong Son Hy, and Risi Kondor. Cormorant: Covariant molecular neural networks.
Advances in neural information processing systems, 32, 2019. 1

Donald G. Anderson. Iterative procedures for nonlinear integral equations. J. ACM, 12(4):547-560, October
1965. ISSN 0004-5411. doi: 10.1145/321296.321305. URL https://doi.org/10.1145/321296.
321305.3.1,A3

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Trellis networks for sequence modeling. arXiv preprint
arXiv:1810.06682, 2018. 3.1

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep Equilibrium Models. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019. 1,3.1,3.1,3.1,3.1, 3.1, A3

Shaojie Bai, Vladlen Koltun, and Zico Kolter. Stabilizing Equilibrium Models by Jacobian Regularization. In
Proceedings of the 38th International Conference on Machine Learning, pp. 554-565. PMLR, July 2021. 3.1

Shaojie Bai, Zhengyang Geng, Yash Savani, and J. Zico Kolter. Deep Equilibrium Optical Flow Estimation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 620630, 2022.
3.1,3.1,3.1,3.1,A.1.2, A3

Albert P Bartok, Mike C Payne, Risi Kondor, and Gabor Csdnyi. Gaussian approximation potentials: The
accuracy of quantum mechanics, without the electrons. Physical review letters, 104(13):136403, 2010. 1

Ilyes Batatia, David P. Kovacs, Gregor Simm, Christoph Ortner, and Gabor Csanyi. MACE: Higher Order
Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields. Advances in Neural
Information Processing Systems, 35:11423-11436, December 2022. 1, 2

Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P. Mailoa, Mordechai Kornbluth, Nicola
Molinari, Tess E. Smidt, and Boris Kozinsky. E(3)-equivariant graph neural networks for data-efficient and
accurate interatomic potentials. Nature Communications, 13(1):2453, May 2022. ISSN 2041-1723. doi:
10.1038/s41467-022-29939-5. 1,2

Jorg Behler and Michele Parrinello. Generalized neural-network representation of high-dimensional potential-
energy surfaces. Physical review letters, 98(14):146401, 2007. 1

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? arXiv preprint
arXiv:2105.14491,2021. A.1.1

C. G. Broyden. A Class of Methods for Solving Nonlinear Simultaneous Equations. Mathematics of Computation,
19(92):577-593, 1965. ISSN 0025-5718. doi: 10.2307/2003941. 3.1

Jiezhang Cao, Yue Shi, Kai Zhang, Yulun Zhang, Radu Timofte, and Luc Van Gool. Deep equilibrium diffusion
restoration with parallel sampling. In CVPR, 2024. 3.1, A.1.2

Richard Car and Mark Parrinello. Unified approach for molecular dynamics and density-functional theory.
Physical review letters, 55(22):2471, 1985. 1

Stefan Chmiela, Valentin Vassilev-Galindo, Oliver T. Unke, Adil Kabylda, Huziel E. Sauceda, Alexandre
Tkatchenko, and Klaus-Robert Miiller. Accurate global machine learning force fields for molecules with
hundreds of atoms. Science Advances, 9(2):eadf0873, 2023. doi: 10.1126/sciadv.adf0873. URL https:
//www.science.org/doi/abs/10.1126/sciadv.adf0873. 4

Bowen Deng, Peichen Zhong, KyuJung Jun, Janosh Riebesell, Kevin Han, Christopher J. Bartel, and Gerbrand
Ceder. Chgnet as a pretrained universal neural network potential for charge-informed atomistic modelling. Na-
ture Machine Intelligence, 5(9):1031-1041, Sep 2023. ISSN 2522-5839. doi: 10.1038/s42256-023-00716-3.
URL https://doi.org/10.1038/s42256-023-00716-3. 1

Jacob D Durrant and J Andrew McCammon. Molecular dynamics simulations and drug discovery. BMC biology,
9:1-9, 2011. 1

Samy Wu Fung, Howard Heaton, Qiuwei Li, Daniel McKenzie, Stanley Osher, and Wotao Yin. Jfb: Jacobian-free
backpropagation for implicit networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 6648-6656, 2022. 3.1, A.1.2

Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in re-
current neural networks. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 29. Curran Associates,
Inc., 2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/file/
076a0c97d09cflalec3el9c7£2529f2b-Paper.pdf. 3.1

10

https://doi.org/10.1145/321296.321305
https://doi.org/10.1145/321296.321305
https://www.science.org/doi/abs/10.1126/sciadv.adf0873
https://www.science.org/doi/abs/10.1126/sciadv.adf0873
https://doi.org/10.1038/s42256-023-00716-3
https://proceedings.neurips.cc/paper_files/paper/2016/file/076a0c97d09cf1a0ec3e19c7f2529f2b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/076a0c97d09cf1a0ec3e19c7f2529f2b-Paper.pdf

Published as a conference paper at ICLR 2025

Johannes Gasteiger, Janek Grof3, and Stephan Glinnemann. Directional message passing for molecular graphs.
arXiv preprint arXiv:2003.03123, 2020. 1, 2

Johannes Gasteiger, Florian Becker, and Stephan Giinnemann. GemNet: Universal Directional Graph Neural
Networks for Molecules. In Advances in Neural Information Processing Systems, volume 34, pp. 6790-6802.
Curran Associates, Inc., 2021. 1

Zhengyang Geng and J. Zico Kolter. TorchDEQ: A Library for Deep Equilibrium Models, October 2023. 3.1,
A2,A3

Zhengyang Geng, Xin-Yu Zhang, Shaojie Bai, Yisen Wang, and Zhouchen Lin. On training implicit models.
Advances in Neural Information Processing Systems, 34:24247-24260, 2021. A.1.2

Zhengyang Geng, Ashwini Pokle, and J Zico Kolter. One-step diffusion distillation via deep equilibrium models.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. 3.1, A.1.2

Scott A Hollingsworth and Ron O Dror. Molecular dynamics simulation for all. Neuron, 99(6):1129-1143,
2018. 1

Tsz Wai Ko, Jonas A. Finkler, Stefan Goedecker, and Jorg Behler. A fourth-generation high-dimensional neural
network potential with accurate electrostatics including non-local charge transfer. Nature Communications,
12(1):398, Jan 2021. ISSN 2041-1723. doi: 10.1038/s41467-020-20427-2. URL https://doi.org/10.
1038/s41467-020-20427-2.1

Jiff Kolafa. Time-reversible always stable predictor—corrector method for molecular dynamics of polarizable
molecules. Journal of computational chemistry, 25(3):335-342, 2004. 1

Yunyang Li, Yusong Wang, Lin Huang, Han Yang, Xinran Wei, Jia Zhang, Tong Wang, Zun Wang, Bin Shao,
and Tie-Yan Liu. Long-short-range message-passing: A physics-informed framework to capture non-local
interaction for scalable molecular dynamics simulation. arXiv preprint arXiv:2304.13542, 2023. 1

Yunyang Li, Yusong Wang, Lin Huang, Han Yang, Xinran Wei, Jia Zhang, Tong Wang, Zun Wang, Bin Shao,
and Tie-Yan Liu. Long-short-range message-passing: A physics-informed framework to capture non-local
interaction for scalable molecular dynamics simulation, 2024. URL https://arxiv.org/abs/2304.
13542.2

Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs,
February 2023. 1, A.1.1, A.1.1, A2, A2

Yi-Lun Liao, Brandon Wood, Abhishek Das, and Tess Smidt. EquiformerV2: Improved Equivariant Transformer
for Scaling to Higher-Degree Representations, March 2024. 1,2,2,2.1, A.1.1, A2, A3

Fang-Yu Lin and Alexander D MacKerell. Force fields for small molecules. Biomolecular simulations: Methods
and protocols, pp. 21-54, 2019. 1

Yi Liu, Limei Wang, Meng Liu, Yuchao Lin, Xuan Zhang, Bora Oztekin, and Shuiwang Ji. Spherical message
passing for 3d molecular graphs. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=givsRXsOt9r. 1,2

Albert Musaelian, Simon Batzner, Anders Johansson, Lixin Sun, Cameron J. Owen, Mordechai Kornbluth,
and Boris Kozinsky. Learning local equivariant representations for large-scale atomistic dynamics. Nature
Communications, 14(1):579, February 2023. ISSN 2041-1723. doi: 10.1038/s41467-023-36329-y. 1, 2

Saro Passaro and C. Lawrence Zitnick. Reducing SO(3) convolutions to SO(2) for efficient equivariant GNNs.
In Proceedings of the 40th International Conference on Machine Learning, volume 202 of ICML’23, pp.
27420-27438. IMLR.org, July 2023. 1, 2,2

David A Pearlman, David A Case, James W Caldwell, Wilson S Ross, Thomas E Cheatham III, Steve DeBolt,
David Ferguson, George Seibel, and Peter Kollman. Amber, a package of computer programs for applying
molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the
structural and energetic properties of molecules. Computer Physics Communications, 91(1-3):1-41, 1995. 1

Kiristof Schiitt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre Tkatchenko,
and Klaus-Robert Miiller. Schnet: A continuous-filter convolutional neural network for modeling quantum
interactions. Advances in neural information processing systems, 30, 2017. 1

Kristof Schiitt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the prediction of tensorial
properties and molecular spectra. In International Conference on Machine Learning, pp. 9377-9388. PMLR,
2021. 1,2

11

https://doi.org/10.1038/s41467-020-20427-2
https://doi.org/10.1038/s41467-020-20427-2
https://arxiv.org/abs/2304.13542
https://arxiv.org/abs/2304.13542
https://openreview.net/forum?id=givsRXsOt9r

Published as a conference paper at ICLR 2025

Alexander V Shapeev. Moment tensor potentials: A class of systematically improvable interatomic potentials.
Multiscale Modeling & Simulation, 14(3):1153-1173, 2016. |

Nima Shoghi, Adeesh Kolluru, John R Kitchin, Zachary W Ulissi, C Lawrence Zitnick, and Brandon M Wood.
From molecules to materials: Pre-training large generalizable models for atomic property prediction. arXiv
preprint arXiv:2310.16802, 2023. 2

Siddharth Sinha, Benjamin Tam, and San Ming Wang. Applications of molecular dynamics simulation in protein
study. Membranes, 12(9):844, 2022. 1

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley. Tensor
field networks: Rotation-and translation-equivariant neural networks for 3d point clouds. arXiv preprint
arXiv:1802.08219,2018. 2,2

Aidan P Thompson, Laura P Swiler, Christian R Trott, Stephen M Foiles, and Garritt J Tucker. Spectral
neighbor analysis method for automated generation of quantum-accurate interatomic potentials. Journal of
Computational Physics, 285:316-330, 2015. 1

Yusong Wang, Shaoning Li, Xinheng He, Mingyu Li, Zun Wang, Nanning Zheng, Bin Shao, Tie-Yan Liu, and
Tong Wang. Visnet: an equivariant geometry-enhanced graph neural network with vector-scalar interactive
message passing for molecules. arXiv preprint arXiv:2210.16518, 2022. 1

Zun Wang, Guoqing Liu, Yichi Zhou, Tong Wang, and Bin Shao. Efficiently incorporating quintuple interactions
into geometric deep learning force fields. Advances in Neural Information Processing Systems, 36, 2024. 1

Paul K Weiner and Peter A Kollman. Amber: Assisted model building with energy refinement. a general program
for modeling molecules and their interactions. Journal of Computational Chemistry, 2(3):287-303, 1981. 1

Ziduo Yang, Xian Wang, Yifan Li, Qiujie Lv, Calvin Yu-Chian Chen, and Lei Shen. Lightweight equivariant

model for efficient machine learning interatomic potentials, 2024. URL https://arxiv.org/abs/
2311.02869. 1b

12

https://arxiv.org/abs/2311.02869
https://arxiv.org/abs/2311.02869

Published as a conference paper at ICLR 2025

A APPENDIX

A.1 ADDITIONAL BACKGROUND

A.1.1 EQUIFORMERV?2 ARCHITECTURE

We provide some further detail on the EquiformerV?2 architecture and its three main components:
the embedding, the transformer layers, and the output heads. A complete description with additional
details on layer norm, multi-head-attention and non-linearities can be found in the original papers
Liao & Smidt (2023); Liao et al. (2024).

Embedding An input sample consists of the positions and types of all the atoms in the molecule.
The embedding block maps each atom i to a higher dimensional node embedding h0 i, consisting of
atom and edge-degree embeddings. The edge-degree embeddings transform a constant one vector
with an message passing SO(2) layer, multiplied with edge distance embeddings, and aggregated
by summing. Edge distance embeddings are the relative distances between the nodes, encoded by a
learnable radial function on top of a Gaussian radial basis. This sum is rescaled by a scalar o and
added to an linear embedding of the one-hot atom number z:

U = Z v(1, 1, 7r45) (12)
seN(4)
h0i = U4(G); = linear(one-hot(z;)) + u; (13)

N (t) means the neighbourhood of atom 7, defined by the set of atoms that are within a user-specified
cutoff radius from the atom 3.

EquiformerBlock We write EquiformerBlock(G) to refer to a stack of L Equiformer layers. Each
layer consists of equivariant graph attention, layer norm and feed-forward networks. The equivariant
graph attention updates the node features h using equivariant messages (equation 3). However, instead
of just summing up the messages directly to update a target node, Equiformer weights each message
with an attention weight to get the final message which is then summed over all source nodes:

Mts = Qts * VUts (14)

hi = hy +linear | Y my, (15)
sEN(t)
The attention weights are calculated using MLP attention Liao & Smidt (2023); Brody et al. (2021)
operating only on the rotation invariant L = 0 features:

2s = k| LeakyReLU(f(hY, h0)) (16)
0 = exp (zts) a7
Doken(r) P (2ek)

with a learnable weight vector k.

Output Heads The output heads take all the node features and process them depending on the type
of target. For the energy, the [= 0 features of each node are transformed by an MLP and summed
together for the final prediction. For the forces, an additional layer of equivariant graph attention is
used, and the [= 1 features of each atom are directly treated as the prediction for the force.

A.1.2 INEXACT GRADIENTS IN DEQ

The computational bottleneck in equation 9 is to compute the inverse. Previous work has therefore
explored approximating it via its Neumann series, sometimes called the phantom gradient Fung et al.
(2022); Geng et al. (2021). Often, keeping only the first term (the identity) is good enough, which
leads to the so-called 1-step gradient
OL _ OL 0fs (b*,2)
00 ~ oh* 00

(13)

13

Published as a conference paper at ICLR 2025

The 1-step gradient can be implemented by simply passing the fixed-point through the implicit layer
one additional time, this time with tracked gradients using autograd. Many recent works have used
the 1-step gradient with great success Cao et al. (2024); Bai et al. (2022); Geng et al. (2023). We
found however that while the 1-step gradient leads to 2-3x faster training compared to solving the
fixed-point system in equation 10, it resulted in a significant reduction in accuracy, which is why we
do not use the 1-step gradient in this paper.

A.2 METHOD

Aggregated metric over MD17/MD22 We use minmax normalization to rescale the errors of the
different models on each molecule to [0, 1], where the models are DEQuiformer and EquiformerVv2
with various number of layers M € {DEQ1, DEQ2, E1, E4, E8} . To get summary statistics per
model, we then take the mean (Avg) over all normalized molecules.

MAET" — minys (MAET™)

NormMAE7! = (19)
M max g (MAEK}OI) — mins (MAEK}"I)
1
Avg,, = N Z NormMAE7! (20)

mol

Hyperparameters for MD17/MD22 To facilitate a fair and straightforward comparison, we follow
the hyperparameters set out by EquiformerV1 Liao & Smidt (2023) and EquiformerV2 Liao et al.
(2024). Since EquiformerV2 did not evaluate on MD17/MD?22, we refer to the EquiformerV1 Liao &
Smidt (2023) codebase for training settings, which also provided the training loop for MD17/MD22
of our implementation. To be economical with our GPU resources in terms of training and inference
speed, we used a smaller maximum feature degree of | = 3 (from previously | = 6), which was also
used in EquiformerV1. We observed that benefits from higher / are neglectable on small datasets like
MD17, as Liao et al. (2024) also noted for the similarly sized QM9 dataset. We kept all parameters
of the optimizer identical to EquiformerV1.

Hyperparameters for OC20 S2EF 200k EquiformerV2 provides hyperparameters for OC20 2M,
which we take as a proxy for the OC20 200k split we train on. The only changes made to the
EquiformerV2 model are (1) a reduction in the number of layers down from 12 and (2) limiting the
maximum spherical harmonics degree to | = 3, since the 200k split is ten times smaller than the
2M split, and because it significantly increases the computational cost. EquiformerV2 made minor
changes to the optimizer parameters compared to V1. A full breakdown of hyperparameters is in
table 3.

Implementation We use the model of EquiformerV2 from commit fa32143, which depends on open
catalyst commit 5a7738f. The open catalyst repository (now called FairChem) has since undergone
significant changes. For MD17/MD22 we modify the training loop from the code of EquiformerV1
Liao & Smidt (2023) from commit b7e7a0d. The DEQ solver is adapted from the TorchDEQ library
Geng & Kolter (2023).

For MD17/MD22 each model is trained on a single AMD MI100 GPU with 32GB GPU RAM for
1000 epochs, which takes 12 to 72 hours. For OC20 200k training takes about 40 to 120 hours for six
epochs.

A.3 ADDITIONAL RESULTS

Training dynamics Our first question is whether or not DEQuiformer converges to a fixed-point.
Since no prior work has combined DEQs with a rotation equivariant architecture, this is not at all
obvious. To answer this question, we look at the relative fixed-point error on the Aspirin molecule as
a function of the fixed-point solver steps at different steps in training; see figure 4a. We see that the
fixed-point error decreases with the number of solver steps, as expected. The fixed-point iteration
is stable over the training, even slightly improving, resulting in slightly faster convergence later in
training.

Additionally, we look at the loss curves of aspirin as an example, figure 4b and figure 4c. We see
that the training stability of DEQuiformer is similar to that of EquiformerV2. The same holds for

14

https://github.com/atomicarchitects/equiformer_v2/tree/fa32143fd43f609bfafb2513c1b8ca957553da5d
https://github.com/FAIR-Chem/fairchem/tree/5a7738f9aa80b1a9a7e0ca15e33938b4d2557edd
https://github.com/atomicarchitects/equiformer/tree/b7e7a0df7df69bde35f593772093ecce3f6824a6

Published as a conference paper at ICLR 2025

Hyperparameters MD17/MD22 0OC20 S2EF 200k
Optimizer AdamW

Learning rate scheduling Cosine with linear warmup

‘Warmup epochs 10 0.1
Initial learning rate 1x1076 4x107°
Maximum learning rate 5x 1074 2x 1074
Minimum learning rate 1x10°¢ 2 x 1076
Number of epochs 1000 6

Batch size 4

Force loss metric L2 MAE L2 MAE
Energy loss metric L2 MAE L1 MAE
Force loss weight A 80 100
Energy loss weight Ag 1 2

Weight decay 5x 1073 1073
Gradient norm clipping 1000 100
Dropout rate (alpha dropout) 0.1 EquiformerV2 / 0 DEQ

Stochastic depth (path dropout) 0.05

Cutoff radius (A) 5.0 12
Maximum number of neighbors 500 20
Number of radial bases 128

Maximum degree l,,qx 3

Maximum order M, 4, 2

Grid resolution of point samples R 14

Hidden dimension in feed forward networks d t,, 128

Dimension of hidden scalar features in radial functions degge 128

Embedding dimension (spherical channels) deped 128

fL(JL> dimension d(ltthL'id(ien 64

Number of attention heads h 8

fi(;)) dimension dattn_alpha 64

Value dimension dgttn_vaiue 16

DEQ root solver Anderson

Maximum number of forward steps (stopping criterion) 40

Absolute error tolerance (stopping criterion) training €;,qin, 10—4

Absolute error tolerance (stopping criterion) inference €¢s; 107t

Fixed-point correction loss terms 3

Table 3: Hyperparameters for EquiformerV2 and DEQuiformer. Training hyperparameters for
MD17/MD?22 are taken from the EquiformerV1 codebase. Model parameters are reduced to roughly
a quarter to match the smaller MD17/MD22 benchmark. For OC20 training and model settings are
taken from the EquiformerV2 repository.

Fixed-point error (rel)
=
B3

Fixed-Point Trace over Training

Training step

o
®

Training Loss

Test Loss

E1l

0 < —E <
20000 2 \ — E8 2 08
40000 = 0.6 DEQ1L =
—— 60000 S \ DEQ2 © 0.7
—— 80000 = e =
—— 100000 w04 Q. W 0.6
= ~C =
&»‘”'
So2 _ gos
O (<}
& &
0.0 0.4
2 4 6 8 10 0.2 0.4 0.6 0.8 1.0 12 0.2 0.4 0.6 0.8 1.0 12
Fixed-point solver step Training Step x10° Training Step x10°
(a) DEQuiformer converges stably (b) DEQuiformer trains faster, (c) Lower train error translates to

to a fixed-point over training.

achieving lower train error.

lower test error in DEQuiformer.

Figure 4: DEQuiformer enjoys stable training dynamics, reaching lower train and test error.

0C20 200k; see figure 5a in the supplementary material. We can also see that our DEQuiformer has
both better training and better test errors, indicating that the improvements are not just due to reduced
overfitting from a lower parameter count.

Training run on OC20 In figure 4 of the main text we depicted that DEQuiformer achieves lower
train and test error than EquiformerV2 throughout training on Aspirin. For completion we also plot
the training run for OC20 200k in figure 5. Note that the choppy behavior of the training curve is due
to resets of averaging statistics after each epoch.

15

Published as a conference paper at ICLR 2025

Training Loss Test Loss
. 0.075 E1 _
T - o 5 0070
S 0.070 Ny — EB S ;065
S 0.065 ‘ 0 £
S \ DEQ2 S 0.060
=~ =~
w 000 W 0,055
g 0.055 g
) o 0.050
£ 0.050 P o
2 —— £ 0.045
0.045
0.25 050 0.75 1.00 125 1.50 0.25 050 0.75 1.00 125 1.50
Training Step x10° Training Step x10°
(a) DEQuiformer trains faster, achieving lower train (b) Lower train error translates to lower test error.

error. We plot the error averaged over the current
epoch. The step-like jumps are due to resetting the
average at the start of a new epoch.

Figure 5: DEQuiformer enjoys stable training dynamics, reaching lower train and test error than
EquiformerV2 on OC20 200k.

MD17 Inference Time [s] Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic acid Toluene Uracil

EquiformerV2 (8 layers) 0.218 0.230 0.245 0.224 0.200 0.218 0.243 0.220
DEQuiformer (2 layers) 0.215 0.094 0.218 0.249 0.199 0.210 0.201 0.094
EquiformerV2 (4 layers) 0.131 0.146 0.127 0.132 0.113 0.125 0.129 0.121
DEQuiformer (1 layer) 0.074 0.104 0.097 0.094 0.073 0.098 0.077 0.084

Table 4: Inference time on MD17. DEQuiformer is faster at comparable accuracy. We highlight
the lowest time per batch comparing EquiformerV2 (4 layers) to DEQuiformer (1 layer), and
EquiformerV2 (8 layers) to DEQuiformer (2 layers), since they respectively closest in the speed-
accuracy pareto front.

MD-17 timings in detail A detailed table with runtimes per molecule in MD17 is given in table 4

Fixed-point reuse approximately preserves Markovianity An important property of molecular
dynamics is that the forces only depend on the current state, known as the Markovian property. To
test if reusing fixed-points breaks Markov property, we compare the predicted forces F with and
without fixed-point reuse. At each timestep we calculate the relative difference in the forces as

F/P" _F,
AFEM™ (atom i) = " | f ' ile 1)
L(IE7, + R
N
AF?"™' (sample j) Z AF™ (1)) (22)
ato
AF., — Z (AF:;"W(')) (23)
jetest

where | - |, denotes the 12-norm over the three spatial components of a force vector on one atom 7. We
run and average over M = 1k consecutive samples of Aspirin from the MD17 dataset. The relative
force difference AF,.; is depicted in figure 6. We see a deviation in the predicted forces between
starting from zero initialization and from the previous fixed-point of, on average, 0.4%. The deviation
remains constant over time. We repeat the experiment for the 100 times 100 relaxation steps reported
in section 4.1, and measured a deviation of 0.8%. The deviation is much smaller than the average
prediction error, so we conclude that fixed-point reuse approximately preserves the Markov property.

16

Published as a conference paper at ICLR 2025

Relative force difference w/wo FP reuse

0.008

0.006

0.004

Relative force difference

0.002

0 200 400 600 800 1000
Sample index

Figure 6: Markov property. Initializing from the previous fixed-point, compared to initializing from
zero, leads to very small deviation in forces A F..; below one percent. This means, initialization from
the past fixed point has almost no effect on the accuracy of the prediction.

DEQ2
0.55 DEQ1
0.050 —e— E8
—o— E4
0.50 —— E8
E1l
—e— E4 .
g El g 0.045 o
= 045 DEQ1 =
o] N DEQ2 o]
= £ 0.040
5 0.40 —-______ 5 .

o—
®.

\. .\.
0.35 0.035 \

0.30

1.3e+06 2.3e+06 5.6e+06 9.3e+06 3 6 10
Width (# Weights per layer) Epochs

(a) Error scaling with model width on Aspirin (MD17), (b) Error scaling with more epochs on OC20 200k.
trained at 1k epochs. On the x-axis is the number of ~ All models are getting better with more epochs, but
parameters per layer. This means that the 8-layer = DEQuiformer remains the leader in accuracy over
Equiformer has approximately 8 times the parameter ~ Equiformer.

compared to the 1-layer DEQuiformer.

Figure 7: Error scaling with more epochs and model size.

Scaling compute The paper directly compares DEQuiformer against EquiformerV2, albeit with
limited compute compared to the EquiformerV2 paper Liao et al. (2024), which trained up to 135M
parameters on a larger datapslit (200k vs >100M) for >1500 GPU days.

To demonstrate that our results are robust, we scale up selected runs. In figure 7a we train Aspirin for
the same number of epochs as in the paper (1000) at increasing model sizes. The smallest datapoint
(left) is the same model size that we used in the main text for MD17/MD?22, and the largest (right)
the same as previously used for OC20. Note that at the same width DEQuiformer has much fewer
total parameters, e.g. DEQ1~4.8M compared to E§~21M for the right-most width. The accuracy
gap between DEQuiformer to EquiformerV2 remains when scaling the model size.

We report the scaling with an increase in training epochs on OC20 200k in figure 7b. We did not
scale up the model size, as EquiformerV2 would run out of memory. Instead we depict the same
model size as in paper for OC20, with the left-most data point also trained on the same number of
epochs. Again DEQuiformer increase in accuracy is robust when scaling up.

Pseudocode To clarify our algorithm, we provide pseudocode for DEQuiformer in algorithm 2 as
well as for the original DEQ Bai et al. (2019) in algorithm 1.

The original DEQ paper (algorithm 1) is based on a transformer acting on a sequence of language
tokens. x1.7 denote the input sequence and y;.7 the output sequence of tokens. fp is a (weight tied)

17

Published as a conference paper at ICLR 2025

transformer layer.

DEQuiformer (algorithm 2) acts on an cloud of atom positions and atom types. We drop the token
indices 1.7 and omit the atom indices for readability. The BackwardDEQ procedure remains the
same. The the predicted and ground truth labels y each consist of forces and the energy instead of
sequences. We made a couple of changes to the original DEQ. The original DEQ paper Bai et al.
(2019) used a linear initialization of the input injection, whereas we use EquiformerV2’s encoder. We
also added a decoder (EquiformerV?2’s force and energy prediction heads). The solver is similar, but
we use Anderson acceleration instead of Broyden’s method, where (3 is the mixing parameter, c; are
coefficients determined by minimizing the residuals, and m is the number of previous iterations used
in the mix Anderson (1965); Geng & Kolter (2023). We also add a normalization after each input
injection. The original DEQ initialized fixed-points as zeros, whereas we took inspiration from Bai
et al. (2022) and initialized with the previous fixed-point during inference. From [Bai et al. (2022)
we also take the fixed-point correction loss and the relaxed solver tolerance e. The main change we
made to EquiformerV2 was to remove alpha dropout as it hurt performance and replace path dropout
with a recurrent path dropout (not shown in the algorithm).

Algorithm 1 Deep Equilibrium Model (DEQ), Bai 2019

1: procedure DEQ(Z1.7,0,¢€)
2 Define 99(2’1:7', ~T1:'l') = fﬂ(lm' + i‘l:'l') — Z1.T7
3 Initialize 2\%) 0
4 10)
5 while H.‘Ie(zizﬁ Z1.r)|| > edo > fixed-point solver
6 A 20— aBgy (2D drr) > Broyden’s method
7 i—i+1
8 end while
9zl 2y
10: return zi.p
11: end procedure
12:
13: procedure BACKWARDDEQ(z*, Ypred, Ygt, 0, €)
14: Compute gﬁ using the loss function £(Ypred, Ygt)
15: Solve the linear system (IFT, second fixed-point solver):
ac\’
(])+ (7) ~0

16: Compute the gradient:

oL _ (06) (7,)%
00 0z* 9 12+) 06
17: return %
18: end procedure
19:
20: procedure USEDEQ(x1.7, y1.7, 0, €, @)
21: while not done do
22: 1 — Wlap > input injection
23: zt.p < DEQ(Z1.7, 0, €)
24: Ypred < 211 > no decoder
25: if inference then
26 9 + BackwardDEQ(23, 7, Ypred: Y11, 0, €)
27: Update 6 < optimizer(6, ‘Z)—ﬁ)
28: end if
29: end while
30: return 0

31: end procedure

18

Published as a conference paper at ICLR 2025

100 Solver Steps w/wo Fixed-point Reuse

mmm No fixed-point reuse
wmm Fixed-point reuse

10 ‘ ‘|
0. ‘I EEEEEEEN Il I I

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Fixed-Point Solver Steps

Percentage (% log scale)
=

-

(a) Reusing the fixed-point significantly reduces the
number of solver steps in DEQuiformer to enable a
speedup. We plot two distributions, with and without
fixed-point reuse. Percentage denotes relative number
of samples in the test set that required a given number
of solver steps.

Figure 8: Examining DEQuiformers fixed-point behaviour.

Algorithm 2 DEQuiformer
1: procedure DEQ(Z,0,¢, 2/)
2 Define go(z; %) = fo ((z + 2)% - z) > added normalization
3: Initialize 29 « 0 > if training
4: if inference then
5: Initialize (0 « 2} ; > fixed-point reuse
6: end if
7: i+ 0
8: {29} « {} > intermediate fixed-points for correction loss
9: while ||gg(2?;2)|| > e do
10: 20D (1= B)g (2D 2) + B YL, ¢;207) > Anderson acceleration
11: if training then
12: {20} append z(it1) > if i in Z, save intermediate fixed-point
13: end if
14: i—i+1
15: end while
16: 2* < 2z
17: return z*, {z()}
18: end procedure
19:
20: procedure USEDEQ(z, (Fyt, Egt), 0, ¢, @)
21: zi_1 <0 > if inference, save previous fixed-point
22: while not done do
23: 2 < Enc(z) > input injection via Equiformer encoder
24: 2%, {2} « DEQ(%,0,¢,2_;)
25: i 2" > save for fixed-point reuse
26: F < Decrp(z) > Eqiformer decoder
27: E < Decg(z) > Eqiformer decoder
28: if training then
29: % < BackwardDEQ(z*, (F, E), (F g, Eg), 0, ¢)
30: for () in {z(V} do > sparse fixed-point correction loss
31: %Jr = BackwardDEQ(z(”, (F,E), (Fgt, Egt),0,¢€)
32: end for
33: Update § < optimizer(6), 25)
34: end if
35: end while
36: return 0
37: end procedure

Distribution over solver steps figure 2b In figure 2b in the main text the distribution over solver
steps for without fixed-pint reuse (blue) seemingly does not add up to 100%. We plot the same data
again on a log scale on the y-axis in figure 8a. There is a long tail of up to 25 solver steps for no fixed
point reuse, that individually contribute less than 1%, too small to show up in the plot of the main

text.

19

	Introduction
	Background
	EquiformerV2

	DEQuiformer
	Deep Equilibrium Networks

	Experiments
	Results

	Conclusion
	Appendix
	Additional Background
	EquiformerV2 architecture
	Inexact gradients in DEQ

	Method
	Additional results

