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Abstract
This paper focuses on non-asymptotic confidence
bounds (CB) for the optimal values of stochastic
optimization (SO) problems. Existing approaches
often rely on two conditions that may be restric-
tive: The need for a global Lipschitz constant and
the assumption of light-tailed distributions. Be-
yond either of the conditions, it remains largely
unknown whether computable CBs can be con-
structed. In view of this literature gap, we provide
three key findings below: (i) Based on the conven-
tional formulation of sample average approxima-
tion (SAA), we derive non-Lipschitzian CBs for
convex SO problems under heavy tails. (ii) We
explore diametrical risk minimization (DRM)—a
recently introduced modification to SAA—and
attain non-Lipschitzian CBs for nonconvex SO
problems in light-tailed settings. (iii) We ex-
tend our analysis of DRM to handle heavy-tailed
randomness by utilizing properties in formula-
tions for training over-parameterized classifica-
tion models.

1. Introduction
Consider a stochastic optimization (SO) problem formulated
as below:

minimize
x∈X

F (x) := E[f(x, ξ)], (1)

where X ⊆ Rd is a nonempty, bounded, and closed fea-
sible region, ξ is a random vector of problem parameters
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with probability distribution P supported on Ξ ⊆ Rm. The
function f : Rd × Ξ → R is assumed to be determinis-
tic and measurable, where d denotes problem dimension-
ality. We further assume the expectation E [f(x, ξ)] =∫
Ξ
f(x, ξ) dP(ξ) to be well-defined and finite-valued for

every x ∈ X . The SO problems of the above have been
much discussed in literature (e.g. by Shapiro et al., 2021;
Ruszczyński & Shapiro, 2003; Lan, 2020; Royset & Wets,
2021) and has wide applicability including in machine learn-
ing (as per, e.g., Bartlett et al., 2006). Throughout this paper,
we let F ∗ be the infimum of F (x) over X .

Regarding such SO problems, the focus of this paper is to
construct computable non-asymptotic confidence bounds
(NCB) for the value of F ∗ when given an i.i.d. sample
ξ1, ..., ξN of ξ; namely, for a large sample size N and a
significance level α ∈ (0, 1), we are to find the values of
the two scalars, denoted by LN,α and UN,α, such that the
following relationship holds:

Prob [LN,α ≤ F ∗ ≤ UN,α] ≥ 1− α. (2)

Tight estimates of these two scalars are of usefulness. For in-
stance, according to Guigues et al. (2017), these bounds can
be utilized to qualify the accuracy of approximate solutions
so as to construct stopping criteria for stochastic algorithms.
Other potential applications include statistical decisions in
computing confidence intervals and testing statistical hy-
potheses about the optimal value as well as in designing
algorithms for multi-armed bandit problems.

Following many discussions on confidence bounds (as per,
e.g., Kaniovski et al., 1995; King & Rockafellar, 1993;
Pflug, 2003; Shai et al., 2009; Shapiro, 2003; Shapiro & Ne-
mirovski, 2005), this paper is focused on their construction
through sample average approximation (SAA) summarized
as below. Let FN (x) := N−1

∑N
j=1 f(x, ξj) and define

minimize
x∈X

FN (x), (3)

and denote its optimal cost by F ∗
N . Then, many existing

NCBs in (2) are constructed in the form of

LN,α := F ∗
N − lN,α;

UN,α := F ∗
N + uN,α,
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for some quantities lN,α and uN,α that are usually vanishing
in N , for all α. Some of our results (such as for noncon-
vex SO problems) also consider a recent variation to (3)
called the diametrical empirical risk minimization (DRM)
introduced by Norton & Royset (2023) and formulated as

F ∗
γ := inf

x∈X
sup

v:∥v∥≤γ
FN (x+ v), (4)

where γ ≥ 0 is the diametrical risk radius, and ∥ · ∥ is any
norm used to define the neighborhood.

Among the many results on confidence bounds, earlier dis-
cussions focus mostly on asymptotic settings (as per, e.g.,
Dupacová & Wets, 1988; King & Rockafellar, 1993; Mak
et al., 1999; Pflug, 1995; 1999; 2003). In contrast, of our fo-
cus in this paper is the non-asymptotic settings comparable
to the discussions by the recent works of, e.g., Guigues et al.
(2017); Oliveira & Thompson (2023).

Nonetheless, to our knowledge, almost all existing non-
asymptotic results are subject to at least one of the following
limitations:

• Existing NCB bounds (such as by Oliveira & Thomp-
son, 2023) may (sometimes drastically) deteriorate
with the growth of the Lipschitz constant of F .

• Existing benchmark NCBs (as in Guigues et al., 2017),
while being free from the Lipschitz constant of F , stip-
ulate light-tailed assumptions; namely, the pth mo-
ment of the underlying randomness should exist for all
p ≥ 1. The same work by Guigues et al. (2017) further
assumes convexity in the SO formulation.

Note that, when p = 2, counterpart NCBs have been rig-
orously constructed through the solutions generated by a
stochastic mirror descent method (as in Lan et al., 2012;
Guigues, 2017). Nonetheless, the resulting NCBs are still
Lipschitz constant-dependent. Meanwhile, the evolution of
the bounds with varying values of p have not been expli-
cated for any finite p > 2. In view of these limitations, the
main question of this research is as below:

Main Research Question: Can NCBs be constructed
through the SAA or DRM in scenarios beyond the simul-
taneous assumptions of a known global Lipschitz constant
and light-tailed underlying randomness?

To this question, this paper presents perhaps the first set of
affirmative answers summarized as below:

Main result 1: As shown in Theorem 4.1, for convex SO
problems with a differentiable expected cost function F , we
show, perhaps for the first time, that the non-Lipschitzian
NCBs can be derived in heavy-tailed settings with quantities

in (2) explicated into:

LN,α =F ∗
N − 2.74

α1/p
· 61/p · σf ·

√
p

N
; and

UN,α =F ∗
N +

2.74

α1/p
· 61/p · (σgDq + σf ) ·

√
p

N
,

(5)

where p is the highest order of existent central moments,
which are assumed equal to σpf and σpg , of the underlying
randomness and Dq is the diameter of feasible region. These
bounds exhibit the same rate with N as in the results of
Guigues et al. (2017) and is often sharper than the bounds
by Oliveira & Thompson (2023) in terms of the dependence
on dimensions d and the global Lipschitz constant.

Main result 2: Under nonconvexity and light tails, we fur-
ther derive NCBs through combining SAA and DRM and
provide the following specification of (2):

LN,α =F ∗
N − 4σψ

√
1

2N
· ln 2

α
+

4σψ
N

·
(
ln

2

α

)
; and

UN,α =F ∗
γ + 4σψ

√
1

2N
·

√
∆p,qd2/q

γ2
+ ln

2

α

+
4σψ
N

·
(
∆p,qd

2/q

γ2
+ ln

2

α

)
,

(6)

where p, q ≥ 1 are any admissible scalars satisfying 1/p+
1/q = 1, σψ is a variance-like term related to the sub-
exponential assumption on the underlying randomness, and
∆p,q ≈ O(maxx∈X ∥x∥2p) is comparable to the p-norm
diameter of X . With further interpretation (to be shown in
formal result), when the the scope of the problem is fixed
within a bounded 1-norm unit ball, ∆p,q also grows almost
linearly in q, which will lead to a O(ln d) dependence on
dimensionality in UN,α. To our knowledge, the above is
the first non-Lipschitzian NCB result for nonconvex SO
problems.

Main result 3. In Theorem 4.13, we further extend Main re-
sult 2 to heavy-tailed settings after imposing some plausible
structural assumptions that f is everywhere non-negative
and the DRM yields a zero optimal cost — as often is the
case for over-parameterized machine learning models. We
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show that

LN,α =F ∗
N − 2.74

α1/p
· 41/p · σf ·

√
p

N
; and

UN,α =

[
F ∗
γ +

8

ln 2
·
(
∆p,qd

2/q

γ2
+ ln

4

α

)
·
(
1 +

σ′
f

p− 1

)
·N− p−2

2p

]
·
(
1− 7

ln 2
·
(
∆p,qd

2/q

γ2
+ ln

4

α

)
·N− 1

2

)−1

,

(7)

where p is the highest order of existent central moment
for the underlying randomness. As mentioned in Main
result 2, ∆p,q grows almost linearly with q; namely ∆p,q ≤
C · q ·maxx∈X ∥x∥2p for some universal constant C. To our
knowledge, (7) is the first non-Liphschitzian NCB result for
nonconvex and heavy-tailed SO.

Collectively, this paper presents a new set of non-
Lipschitzian NCBs for SO problems, providing the capabil-
ity of handling heavy tails in all convex cases and important
instances of nonconvex cases.

1.1. Organizations

The rest of this paper is organized as follows: Section 2
summarizes related works. Section 3 discusses preliminaries
and assumptions. Our main theorems (Theorem 4.1 for
convex SAA-based NCBs, and Theorems 4.7 and 4.13 for
nonconvex DRM-based NCBs) are presented in Section 4.
Finally, Section 6 concludes the paper.

1.2. Notations

Denote by R the collection of all real numbers, and by
R+ that of the non-negative ones. For any vector v =

(v1, . . . , vd)
⊤ ∈ Rd, denote by ∥v∥p := (

∑d
i=1 |vi|p)1/p

the p-norm (p ≥ 1, finite). We also define the its infin-
ity norm ∥v∥∞ := max{|v1|, . . . , |vd|} Meanwhile, we
define the Lp-norm of a random vector ζ = (ζi) ∈ Rd

to be ∥ζ∥Lp := (
∑d
i=1 Eζi [|ζi|p])1/p. We let ∂F (x) and

∂xf(x, ξ) be the subdifferential of F and f( · , ξ) w.r.t. x.
Here, we use |v| to denote the absolute value of v if it is a
real number; otherwise, |V| is the cardinality of V , when it
is a set. Let Γ(·) be the Gamma function. The expectation
operator is denoted by E[ · ], with the underlying probability
distribution understood from the context.

2. Related Work
Existing results on confidence bounds can be categorized
into asymptotic and non-asymptotic ones, and most ex-
isting non-asymptotic finite sample results assume light-

tailed underlying randomness. As mentioned, asymptotic
results have been made available by Dupacová & Wets
(1988); King & Rockafellar (1993); Mak et al. (1999); Pflug
(1995; 1999; 2003); Duchi et al. (2021). However, as com-
mented by Guigues et al. (2017), asymptotic analysis of
such may be unreliable in some applications. In contrast,
non-asymptotic results — as is the focus of this paper —
can often be more informative, particularly for a practically
affordable/accessible sample size.

However, NCB results are much less visited in literature.
Among the scarcely available results, Guigues et al. (2017)
and Oliveira & Thompson (2023) provide state-of-the-art
benchmarks. In particular, for SAA in convex SO under
sub-Gaussian assumptions, Guigues et al. (2017) explicate
LN,α and UN,α of (2) into the below:

LN,α =F ∗
N − Õ

(√
ln (1/α)

N

)
; and

UN,α =F ∗
N + Õ

(√
ln (1/α)

N
+

ln (1/α)

N3/2

)
,

(8)

where Õ(·) hides all other quantities that do not depend
on “·” or problem dimensions d. Notably, these bounds
are in absence of metric entropy terms (e.g., in the form
of the logarithm of the covering number) for the feasible
region. Quantities that reflect the feasible region’s metric
entropy are common in other related non-asymptotic analy-
ses of SAA’s performance (such as by Shapiro et al., 2021).
Their presence often leads to a less desirable growth rate
with d. Another desirable feature in the results of Guigues
et al. (2017) is their independence on the Lipschitz con-
stant, which is often hard to estimate and potentially hard to
control in many applications.

Beyond light-tail assumptions, NCBs are provided by
Oliveira & Thompson (2023) and Lan et al. (2012)
through different computational schemes. More specifi-
cally, Oliveira & Thompson (2023) focus on NCBs based
on solutions to the SAA formulation and show that, when
the underlying randomness admits a finite pth moment, the
quantities in (2) could be explicated as

LN,α =F ∗
N − Õ

(
Mp

(√
ln(1/α)

N
+

γ(X )√
N

))
; and

UN,α =F ∗
N + Õ

(
Mp

(√
ln(1/α)

N
+

γ(X )√
N

))
,

(9)

for a sufficient sample size of N ≥ Õ
(
α−2/p

)
. Herein,

γ(X ) is the generic chaining functional, which quantifies
the metric entropy of X . Meanwhile, (Mp)

2p is the pth
moment for the squared Lipschitz constant of f(·, ξ). Be-
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cause γ(X ) grows at O(
√
d) with increasing problem di-

mensions, the results in (9) would become less appealing
in a higher dimensional region. Furthermore, unlike the
results by Guigues et al. (2017), the results in (9) grow
polynomially with the Lipschitz constant. Nonetheless, the
above results by Oliveira & Thompson (2023) generally
apply to both convex and nonconvex SO problems, while
the discussions by Guigues et al. (2017) are mainly limited
to scenarios under convexity.

Meanwhile, Lan et al. (2012) construct NCBs for convex SO
problems through mirror descent stochastic approximation
(MDSA), which leads

LN,α =LBN − Õ

(
M2 ·

√
1

Nα

)
; and

UN,α =F ∗
N + Õ

(√
1

Nα

)
,

where (M2)
2 is the second moment of the Lipschitz constant

of f(·, ξ) and LBN is a first-order Taylor expansion-based
computable quantity constructed using historical solutions
and sample parameters generated throughout the algorithm
iterations. Note here that a light-tailed version of NCBs
are also provided by Lan et al. (2012), yet their results are
comparably less appealing than (8) due to higher depen-
dence on the Lipschitz constant. To our knowledge, for
both convex and nonconvex SO problems, there exists no
NCB results that are simultaneously non-Lipschitzian and
applicable to heavy-tailed assumptions. Especially for the
nonconvex case, light-tailed but non-Lipschitzian NCBs are
also in lacking.

Our results in the nonconvex case are based on the DRM for-
mulation, which is a recent modification of SAA introduced
by Norton & Royset (2023); Foret et al. (2021); Kwon et al.
(2021); Zheng et al. (2020) under different names. In con-
trast to distributionally robust optimization (DRO), which
selects a robust solution from all distributions within a pre-
scribed ambiguity set, DRM aims to minimize the maximum
empirical risk within a small neighborhood of decision vari-
ables. Via the minimax structure, DRM is capable of avoid-
ing sharp minimizers that have comparatively higher sample
average cost (a.k.a., empirical risk) in the neighorbood and,
thus, should lead to better robustness and out-of-sample
performance, as by McCollum et al. (2023). The underlying
mechanism of minimizing sharpness through DRM and the
various notions of sharpness in the objective landscape are
discussed by Wen et al. (2023). Theoretical advantages of
DRM are identified by Norton & Royset (2023) and Tsai
et al. (2021). Meanwhile, experiments in using DRM to
train machine learning models (as per, e.g., Norton & Roy-
set, 2023; Zheng et al., 2020; Foret et al., 2021; Kwon et al.,
2021) in computer vision as well as other applications (e.g.,
Wen et al., 2023), have supported DRM’s strong empiri-

cal performance, particularly when noisy labels are present
in the training data. To compute the DRM formulation,
practically effective methods based on stochastic gradient
descent (SGD) have also been derived by Norton & Royset
(2023); Zheng et al. (2020); Foret et al. (2021), and Kwon
et al. (2021). Among them, sharpness-aware minimization
(SAM) methods are introduced by Foret et al. (2021) and
Kwon et al. (2021). Accelerated implementations of SAM
is studied by Du et al. (2022).

Similar but critically different methods than DRM include
adversarial training (Bai et al., 2021) which perturbs the sam-
pled parameters (namely, the values of ξj’s) and sometimes
both the sampled parameters and the decision variables, as
by Wu et al. (2020). The DRM also falls within the broader
studies of robust decisions in optimization, for which the
readers are referred to Lewis & Pang (2010); Men et al.
(2014).

3. Assumptions and Preliminaries
Let δ ≥ 0, denote that ξN1 := (ξ1, ..., ξN ) to be a ran-
dom vector with i.i.d. entries, and assume the existence
of a measurable function x̂δ : ΞN → X such that
FN

(
x̂δ(ξ

N
1 )
)

≤ infx∈X FN (x) + δ; namely, x̂δ is a δ-
suboptimal solution to the SAA formulation. (Hereafter,
we often use the shorthand notation that x̂δ := x̂δ(ξ

N
1 ).

Its existence can be inferred by the measurability results
of optimal solutions to SAA as per Shapiro et al., 2021;
Rockafellar & Wets, 1998; Krätschmer, 2023). Similarly,
x̂δ,γ := x̂δγ (ξ

N
1 ) is a δ-optimal solution to the DRM

formulation, namely, supv:∥v∥≤γ FN

(
x̂δ,γ(ξ

N
1 ) + v

)
≤

infx∈X supv:∥v∥≤γ FN (x+ v) + δ. We further denote by
X ∗ the set of minimal solutions to the SO problem (1).

Our results impose different combinations of the following
assumptions of underlying randomness.

Assumption 3.1. For a given p ≥ 2, there exist an optimal
solution x∗ ∈ X ∗ and a measurable function g∗f : Ξ → Rd
such that the following holds: (i) g∗f (ξ) ∈ ∂f(x∗, ξ) with
E[g∗f (ξ)] ∈ ∂F (x∗); and (ii) it further holds that:

∥g∗f (ξ)− g∗F ∥Lp ≤ σg, ∀ g∗F ∈ ∂F (x∗),

for some σg ∈ R+.

Assumption 3.1 stipulates the p-th central moment of
∇f(·, ξ) to be bounded only at least for an optimal solution
x∗. With the potential non-existence for (p+ 1)-th central
moment, results built on Assumption 3.1 (e.g., as in The-
orem 4.1 below) could be interpreted as under heavy tails.
This assumption is weaker than the common light-tailed
assumptions imposed everywhere on X (such as by Guigues
et al., 2017).
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Remark 3.2. The Lipschitz constant of a (population-level
formulation of) stochastic program is associated with the
norm of the gradient of the expected cost function. Assump-
tion 3.1 imposes upper bound on the central moment of
the gradient of the random cost function. One can easily
construct cases where the Lipschitz constant grows while
σg remains unchanged.

Assumption 3.3. For some p ≥ 2 and σf > 0, it holds that

∥f(x∗, ξ)− F (x∗)∥Lp ≤ σf ,

for any x∗ ∈ X ∗.

Remark 3.4. Our results on convex SO problems assume
the combination between both Assumptions 3.1 and 3.3.
This combination is our weakest assumption as per the un-
derlying randomness. Benchmark results by Guigues et al.
(2017) require both the random cost function f(x, ξ) and
the stochastic (sub)gradient ∇f(x, ξ) to be light-tailed for
every x ∈ X . In contrast, the stipulation of the said combi-
nation serves for heavy-tailed and localized alternatives to
the assumptions imposed by Guigues et al. (2017).

For our results on nonconvex SO, some of our results impose
the following less flexible but still heavy-tailed assumption
on the underlying randomness.

Assumption 3.5. For some p ≥ 2 and σ′
f > 0, it holds that

∥f(x, ξ)− F (x)∥Lp ≤ σ′
f ,

for any x ∈ X .

Remark 3.6. As a stronger version of Assumption 3.3, As-
sumption 3.5 stipulates the p-th central moment of f(·, ξ)
is bounded for all x ∈ X . Despite additional stringency,
this assumption permits a uniform bound over x. Due to
the flexibility of allowing for heavy tails, this assumption is
still weaker than the counterpart light-tailed assumptions by
Guigues et al. (2017).

Our most stringent condition on the underlying randomness
is to require the cost function be sub-exponential for all
x ∈ X , as formalized below.

Assumption 3.7. For any given x ∈ X , it holds that

∥f(x, ξ)− F (x)∥ψ1
≤ σψ,

for some σψ ≥ 0.

Remark 3.8. In Assumption 3.7 we focused on light-tailed
random variables, or more precisely sub-exponential ran-
dom variables with their finite sub-exponential norm. Here
the sub-exponential norm of a random variable X , denoted
∥X∥ψ1

, is defined as inf{t > 0 : E[exp(|X|/t)] ≤ 2}.
This is the condition comparable to the counterpart assump-
tion in the benchmark results in the literature, including
those by Guigues et al. (2017); Lan et al. (2012).

4. Non-Asymptotic Confidence Intervals
In this section, we present our promised non-asymptotic
confidence intervals for convex and nonconvex cases in
Sections 4.1 and 4.2, respectively, and some discussions
on the evaluation of important quantities in our result in
Sections 4.3.

4.1. SAA-Based NCBs for Convex SO

This section presents (in Theorem 4.1) our results on con-
structing computable NCBs using information from the con-
ventional SAA formulation.

Theorem 4.1 (Convex SO, heavy-tailed). Let F (·) be dif-
ferentiable at x∗ and f( · , ξ) be convex over a neighbor-
hood of X for all ξ ∈ Ξ. Assume that the q-norm (where
q = p/(1 − p)) diameter of X is bounded from above by
Dq. Suppose that Assumptions 3.1 and 3.3 hold with some
p ≥ 2. For any α ∈ (0, 1), any δ-optimal solution x̂δ to (3)
satisfies the below with probability at least 1− α

F ∗ ∈
[
FN (x̂δ)−

2.74

α1/p
· 61/p · σf ·

√
p

N
− δ,

FN (x̂δ) +
2.74

α1/p
· 61/p · (σgDq + σf ) ·

√
p

N

]
. (10)

Proof. See Section A

As mentioned in Remarks 3.4, our assumptions on underly-
ing randomness in Theorem 4.1 are weaker than the bench-
mark results by Guigues et al. (2017). Under these condi-
tions, the said theorem is perhaps the first NCB result for
convex SO in non-Lipschitzian and heavy-tailed settings. In
particular, our heavy-tailed assumptions are only imposed
locally at x∗ alone, allowing for further flexibility. As a
quality measure for confidence intervals, the length of the
confidence interval in (10) shrinks in terms of sample size
with O(N−1/2), matching with the result in Guigues et al.
(2017).
Remark 4.2. Our results in Theorem 4.1 are non-
Lipschitzian; namely, NCBs do not increase with a larger
Lipschitz constant when all other quantities are fixed.

The metric entropy terms, such as the logarithm of the cover-
ing number, may elevate the NCBs’ dependence on problem
dimensionality, crucial consideration for larger-scale prob-
lems. Our results in Theorem 4.1 do not depend on any
quantification of metric entropy. This feature, combined
with Remark 4.2, perhaps often makes the NCB results
sharper than the metric entropy-dependent results (Oliveira
& Thompson, 2023).
Remark 4.3. Theorem 4.1 describes how the confidence
interval changes with respect to the highest order of existing
moments p, and thus explains how the convergence rate of
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confidence bounds can be strengthened with lighter tails.
Particularly, our result is also comparable with light-tailed
results, as we specify p = ln(6/α) as the following:

L(N,α) := 2.74 · e · σf ·
√

ln(6/α)

N
− δ,

U(N,α) := 2.74 · e · (σgDq + σf ) ·
√

ln(6/α)

N
.

Remark 4.4. The constant 2.74 in (10) originates from
Marcinkiewicz’s inequality, as is shown in Lemma D. The
estimation of the universal constant in Marcinkiewicz’s in-
equality was provided in Theorem 15.4 in Boucheron et al.
(2013), where the constant is shown to satisfy the bound
K < 0.935. With elementary level of algebra the constant
propagates to 2.74 in (10).
Remark 4.5. The factor

√
p in (10) also originates from

Marcinkiewicz’s inequality. Notably, Theorem 4.1 holds
for all admissible p given the problem assumption, and yet
not necessary to be the highest order of existence moments.
One may choose p from all possible values and select the
one that would lead to the smallest length of the confidence
interval.

4.2. DRM-Based NCBs for Nonconvex SO

This subsection presents our results on nonconvex SO. In
nonconvex light-tailed case, our non-Lipschitzian result is
divided into two parts: (i) Lemma 4.6 considers the SAA
problem in (3) to provide a lower bound for F ∗; and (ii)
Theorem 4.7 considers the DRM problem in (4) to provide
an upper bound for F ∗. We further extend these results to
heavy tailed problems and show our DRM-based NCBs for
over-parameterized models in Theorem 4.13.

Our light-tailed assumption (Assumption 3.7) leads to the
well-known Bernstein’s inequality (provided, e.g., by Ver-
shynin (2018) and Zhang & Songxi (2021) with implicit
and explicit universal constants, respectively): for any t ≥ 0
and fixed x ∈ X ,

Prob

∣∣∣∣∣∣ 1N
N∑
j=1

f(x, ξj)− F (x)

∣∣∣∣∣∣
≥ 4σψ ·

(√
t

2N
+

t

N

)]
≤ 2 exp (−t) . (11)

Lemma 4.6 (Nonconvex SO, light-tailed, lower bound).
Recall the definition of F ∗

N in (3). Under Assumption 3.7, it
holds that

F ∗ ≥ F ∗
N − 4σψ

√
1

2N
·
√
ln

4

α
+

4σψ
N

·
(
ln

4

α

)
with probability at least 1− α/2, for any α ∈ (0, 1).

Proof. With the fact that

F ∗
N ≤ N−1

N∑
j=1

f(x∗, ξj),

the proof is done by letting t = ln (4/α) in (11).

The lower bound for the result is straightforward. On the
other hand, the upper bound becomes more critical and
challenging to achieve a non-Lipschitzian result. By ex-
amining the DRM problem in (4) under nonconvexity and
light-tailedness, Theorem 4.7 builds the promised upper
bound of confidence interval.
Theorem 4.7 (Nonconvex SO, light-tailed, upper bound).
Let x̂δ,γ be a δ-optimal solution to (4). Under Assumption
3.7, for any α ∈ (0, 1), it holds that

F ∗ ≤ sup
∥∆x∥≤γ

FN (x̂δ,γ +∆x)

+ 4σψ

√
1

2N
·

√
∆p,qd2/q

γ2
+ ln

4

α

− 4σψ
N

·
(
∆p,qd

2/q

γ2
+ ln

4

α

)
(12)

with probability at least 1− α/2, where

∆p,q :=
4π ln 2

π1/q
·
[
Γ

(
q + 1

2

)]2/q
·max
x∈X

∥x∥2p,

given any (p, q) such that p−1 + q−1 = 1 and p ≥ 1.

Proof. See Section B

In nonconvex cases, Theorem 4.7 constructs perhaps the
first non-Lipschitzian upper bound for F ∗. For light-tailed
nonconvex settings, our NCBs are presented by Theorem
4.7 together with Lemma 4.6. Similar as what is stated in
Remark 4.2, our results in Theorem 4.7 and Lemma 4.6 are
non-Lipschitzian.
Remark 4.8. Theorem 4.7 is not free from metric entropy, as
∆p,q can grow with dimensionality d. However, comparing
with the comparable quantities in (9), ∆p,q in (12) is much
easier to estimate. By Stirling’s approximation to factorials,
we could specify ∆p,q as the following:

∆p,q ≈
(

1

2e

) q+1
q

· (q + 1)
q+2
q ·max

x∈X
∥x∥2p · 4π ln 2,

then

lim
q→∞

∆p,q

q
=

2π ln 2

e
·max
x∈X

∥x∥2p. (13)

This constant limitation in (13) shows that ∆p,q grows al-
most linearly in q; namely, ∆p,q ≤ Cq ·maxx∈X ∥x∥2p for
some universal constant C > 0.
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Remark 4.9. With the assumption that the problem scope
is restricted to a bounded 1−norm feasible set, the term
∥x∥2p is bounded by some universal constant. If we further
let q = ln d, the dependence of dimensionality d is thus
logarithmic in Theorem 4.7.
Remark 4.10. The combination of Theorem 4.7 and Lemma
4.6 provides the desired NCBs in (6).

For heavy-tailed case, we impose a structural assumption as
the below:

Assumption 4.11. The cost function is non-negative;
namely, f(x, ξ) ≥ 0 for all (x, ξ) ∈ X × Ξ and the optimal
solution x̂γ to DRM (4) yields a zero objective function
value, namely

sup
∥∆x∥≤γ

FN (x̂γ +∆x) = 0.

There are many scenarios in machine learning field where
Assumption 4.11 is aligned with truth, e.g. mean squared
error loss for single-label binary classification with no label
ambiguity and there is non-zero margin of separation. Ideal
choices of γ then should be consistent with the said margin
in order to preserve Assumption 4.11.
Remark 4.12. Assumption 4.11 is directly related to the
assumption of the presence of a positive margin in separating
the data population in the application of classification, such
as Assumption 3.3 in Cao & Gu (2020). In this example,
the assumed constant margin therein can imply the said
perturbed settings.

Theorem 4.13 (Over-parameterized models, nonconvex SO,
heavy-tailed, upper bound). Suppose that Assumptions 4.11
and 3.5 hold. Let x̂γ be an optimal solution to (4). Then for
any α ∈ (0, 1), the inequality

sup
∥∆x∥≤γ

FN (x̂γ +∆x)

≥ F (x∗) ·
(
1− 7

ln 2
·
(
∆p,qd

2/q

γ2
+ ln

4

α

)
·N− 1

2

)
− 8

ln 2
·
(
∆p,qd

2/q

γ2
+ ln

4

α

)
·
(
1 +

σ′
f

p− 1

)
·N

2−p
2p

(14)

holds with probability at least 1− α/2, where

∆p,q :=
4π ln 2

π1/q
·
[
Γ

(
q + 1

2

)]2/q
·max
x∈X

∥x∥2p,

given any (p, q) such that p−1 + q−1 = 1 and p ≥ 1.

Proof. See Section C

Remark 4.14. With the scope fixed for over-parameterized
models, the light-tailed result in Theorem 4.7 could be ex-
tended to a heavy-tailed result, as is revealed by Theorem

4.13. Mathematically, this transition from light tail to heavy
tail is achieved by the construction of a bounded auxiliary
problem, which behaves equivalently to the heavy-tailed
DRM under Assumption 4.11. See the proof in Section C
for more details.

Invoking Markov’s inequality under the heavy-tailed As-
sumption 3.3, we have

Prob
[
|FN (x∗)− F (x∗)| ≤ 21/p

α1/p
∥FN (x∗)− F (x∗)∥Lp

]
≥ 1− α/2.

This together with Lemma D.1 then immediately leads to

Prob
[
|FN (x∗)− F (x∗)| ≤ 2.74

α1/p
· 41/p · σf ·

√
p

N

]
≥ 1− α/2,

which then easily provides an lower bound on F ∗. This
lower bound of F ∗, combined with Theorem 4.13, leads to
the result in (7) as promised.

The confidence bounds inequality in (14) could be trans-
formed into the format in (2) by elementary level of algebra,
i.e.

UN,α =

[
F ∗
γ +

8

ln 2
·
(
∆p,qd

2/q

γ2
+ ln

4

α

)
·
(
1 +

σ′
f

p− 1

)
·N− p−2

2p

]
·
(
1− 7

ln 2
·
(
∆p,qd

2/q

γ2
+ ln

4

α

)
·N− 1

2

)−1

,

which is shown earlier in (7). As mentioned in Remark 4.8,
∆p,q also grows almost linearly in q as in Theorem 4.13.
Remark 4.15. Similar as what is stated in Remark 4.2,
our results for nonconvex heavy-tailed NCB are still non-
Lipschitzian.

4.3. Discussions on F ∗
N and F ∗

γ

In the construction of NCBs, quantities such as F ∗
N and F ∗

γ

need to be carefully evaluated to ensure they are computable
for constructing NCBs. The pseudo-code for evaluating
these quantities is summarized below:

Algorithm 1 Evaluation of F ∗
N and F ∗

γ

Input: i.i.d. sampled data points pi ∈ Rm, with sample
size N
Solve for
F ∗
N = infx∈X N−1

∑N
i=1 f(x,pi)

F ∗
γ = infx∈X sup∥v∥≤γ N

−1
∑N
i=1 f(x+ v,pi)

Output:F ∗
N , F ∗

γ

7
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Many studies provide alternatives for solving F ∗
N and F ∗

γ

(as per, e.g., Shapiro et al., 2021; Kleywegt et al., 2002;
Birge & Louveaux, 2011; Nemirovski et al., 2009; Norton
& Royset, 2023; Zheng et al., 2020), and the solutions to
SAA problem are much more frequently visited. Algorithms
for solving SAA, like subgradient descent, have been tested
both for their strong numerical performance and an opti-
mal (or sometimes near optimal) theoretical convergence
rate. As a robust modification of SAA, solving DRM is
generally more expensive than SAA. In general cases, most
of the existing procedure on subgradient method could be
directly applied to DRM, but at the cost of estimating the
true subgradient for DRM formulation. The computation of
such subgradient usually incorporates the computation over
a large number of points within the γ-radius ball centered at
the current solution. As a result, the key element in DRM al-
gorithm is to build efficient and effective approximations to
the true subgradient of DRM. With well-structured approxi-
mation design, DRM can take as approximately 3− 5 times
longer than SAA over the same architecture and dataset, as
noted in Norton & Royset (2023).

5. Numerical Experiments
We conducted two sets of experiments to evaluate our re-
sults as reported in the sequel. The first experiment was per-
formed on a stochastic linear programming problem. The
second experiment was focused on the training formulation
of an over-parameterized neural network.

5.1. Convex NCBs in Stochastic Linear Problem

Our first experiment concern the stochastic linear program
formulation: min

{
E[f(x, ξ)] : x ≥ 0, 1⊤x = 1

}
, where

1 is an all-one vector and f(x, ξ) = −
∑d
i=1 κiξixi.

Here, κi = 0.08 + 0.04(i − 1)/d, for i = 1, . . . , d
and ξ1, ξ2, . . . , ξd are i.i.d. copies of ξ, a power-law dis-
tributed random variable with probability density function
pξ(x) = aba/xa+1 for x > b with distribution parameters
a and b. One may verify that the highest order of exis-
tence of moments is a − 1. We specified a = 3.01, b = 1
(correspondingly p = 2), and the significance level to be
α = 0.01. Other problem quantities in the NCBs were es-
timated with approaches discussed in Appendix E.1. The
optimal solutions to both the SAA and the exact SO prob-
lems admit straightforward closed forms. We calculated the
empirical coverage probability (ECP) — the proportion of
replications in which F ∗ lies within the calculated NCBs
[LN,α, UN,α] — out of 10,000 independent random repli-
cations. The results, as presented in Table 3 of Appendix
E.3, show that the proposed NCBs can achieve high ECPs
comparable to some benchmark scheme derived by Oliveira
& Thompson (2023).

We further evaluated the length of the NCBs relative to the
existing benchmarks. To that end, we calculated the ratio
r1 between the length of our proposed NCBs (referred to as
P-NCBs below) and that of the benchmark NCBs (refered
to as B-NCBs), defined as

r1 :=
UP-NCB − LP-NCB

UB-NCB − LB-NCB
, (15)

where UP-NCB and LP-NCB denote the upper and lower
bounds constructed by the proposed NCBs as in (5). UB-NCB
and LB-NCB denote the benchmark upper and lower bounds
provided by Theorem 3 in Oliveira & Thompson (2023). For
schemes with comparable ECP, smaller r1 ratios indicate
narrower, and thus more desirable, NCBs.

The results are presented in both Table 1 and Figure 1, where
we distinguish between two variants of P-NCB:

• P-NCBE : the proposed NCBs constructed with esti-
mated problem quantities to mimic practical settings
with limited prior knowledge (refer to Appendix E.1
for details);

• P-NCB*: the proposed NCBs constructed with exact
problem quantities as in idealized cases.

Table 1. Length ratio r1 generated by P-NCBE and P-NCB∗ rel-
ative to the benchmark for convex SO problems with different
problem dimensionality d

Method d

100 500 1000 2000 4000

P-NCBE 0.599 0.419 0.300 0.215 0.170
P-NCB∗ 0.281 0.170 0.120 0.085 0.064

As shown in both Table 1 and Figure 1, the length ratios
r1 are less than 1 across different problem dimensionalities.
This indicates that both P-NCBE and P-NCB∗ produced nar-
rower and thus sharper confidence bounds than the bench-
mark scheme B-NCB. Furthermore, in between P-NCBE

and P-NCB∗, the latter is noticeably more preferable when
the true values of problem quantities can be accessible.

In addition, both P-NCBE and P-NCB∗ exhibit a monotonic
decrease in r1 as d grows. This decreasing trend shows the
scalability of P-NCB to higher-dimensional problems, as
the practical benefit of eliminating the Lipschitz constants
in our new derivations.

Note that, given the same set of problem quantities (such as
d, σf , σg, σψ, and Dq), the length ratio remains the same
for different choices of sample size N . This is because that
both P-NCB and B-NCB depends on N at the same rate of
O(1/

√
N), which is canceled out in calculating the length

ratio in (15).
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Figure 1. The length ratios r1 generated by P-NCBE and P-NCB∗

relative to the benchmark across increasing problem dimensionality
d. The x-axis shows dimensionality (from 100 to 4000), and the
y-axis shows the length ratios. Lower values correspond to tighter
confidence bounds provided by P-NCB, comparing with B-NCB.

5.2. Nonconvex NCBs in Over-Parameterized Model

For nonconvex problem, we considered the problem of train-
ing a two-layer neural network with a data generating pro-
cess Y = h(X) + ϵ, where h(·) is some unknown function
in nature to be reconstructed through the observations of
some N -many sample points of (X,Y ). For the purpose
of simulation, we specified h(·) to be a two-layer neural
network with LeakyRelu activation function and randomly
simulated weights. Here, ϵ is assumed to follow student
t-distribution to simulate heavy-tailed underlying random-
ness. We solved the SAA and DRM problem formulations
corresponding to training the said neural network in mini-
mizing mean squared error with different combinations of
the sample size N and problem dimensionality d.

Under significance level α = 0.1, we present the average
length ratio r2 between our proposed nonconvex NCBs
(referred to as P-NCB-NCE) and that of the nonconvex
benchmark NCBs (referred to as B-NCB-NCE) in Table 2,
defined as

r2 :=
1

10
·

10∑
m=1

(Um
P-NCB-NC − LmP-NCB-NC)

Um
B-NCB-NC − LmB-NCB-NC

,

where Um
P-NCB-NC and LmP-NCB-NC denote the upper and lower

bounds constructed by the proposed nonconvex NCBs as
in (7) for one randomly generated problem instance. For
each problem instance, the problem quantities were esti-
mated to mimic practical settings with limited prior knowl-
edge. We repeat the calculation for 10 times. Um

B-NCB-NC
and LmB-NCB-NC denote the corresponding nonconvex upper
and lower bounds provided by a benchmark scheme (as
derived in Theorem 2 of Oliveira & Thompson (2023)).

Note here, in those replications, the nonconvexity of the
formulation led to different solutions in computing the SAA
and DRM formulations, which further resulted in different
NCBs. We present in Table 2 the average length ratio r2 of

Table 2. Average length ratio r2 generated by P-NCB-NCE rela-
tive to B-NCB-NCE for nonconvex SO

N d = 41 N d = 961 N d = 1681

300 0.030 500 0.023 500 0.009
340 0.018 600 0.012 600 0.009
380 0.018 700 0.012 700 0.009
420 0.017 800 0.011 800 0.008

P-NCB-NCE . As shown in Table 2, an average ratio below
one indicates that P-NCB-NCE produces smaller lengths,
resulting in tighter bounds.

The average length ratio r2 decreases consistently as both
the sample size N and problem dimensionality d increase,
and thus confirms the relative improvement of the proposed
NCBs. Such a consistent reduction highlights the scalability
of our approach to higher-dimensional problems due to the
non-Lipschitzian feature of our results.

We further tested the ECP of both methods, which showed
comparable results. We present these results in Table 4 of
Appendix E.1.

6. Conclusions
This paper revisits SAA and its robust reformulation DRM,
and constructs the confidence interval (i.e., both upper and
lower confidence bounds) for the estimation of the true ob-
jective function value. Motivated by the sensitivity to the
Lipschitz constant in the existing non-asymptotic confidence
interval results, this paper presents the non-Lipschitizan re-
sults under three sets of assumptions (i) the convex SO
problems under heavy-tailedness; (ii) the noncovex SO
problems under light-tailedness; and (iii) the nonconvex
over-parameterized models under heavy-tailedness. Our
results show, for the first time, that the elimination of Lip-
schitz constant (in all cases) as well as metric entropy (un-
der heavy-tailedness and convexity) is achievable, resulting
in a reduction in the dependence on both Lipschitz condi-
tions and problem dimensionality for the construction of
non-asymptotic confidence intervals for SO. Our numer-
ical experiments showed an improvement of our method
relative to some existing benchmark especially for higher-
dimensional cases. However, some level of conservatism
still remains in the constructed bounds, which we will seek
further improved in future research.
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A. Proof of Theorem 4.1
Proof. Step 1. Invoking Markov’s inequality under Assumption 3.3, we have

Prob
[
|FN (x∗)− F (x∗)| ≤ 31/p

α1/p
· ∥FN (x∗)− F (x∗)∥Lp

]
≥ 1− α/3.

Combining this with Lemma D.1, we immediately have

Prob
[
|FN (x∗)− F (x∗)| ≤ 2.74

α1/p
· 61/p · σf ·

√
p

N

]
≥ 1− α/3. (16)

By definition, FN (x̂δ) ≤ FN (x∗) + δ. Therefore, FN (x̂δ) − F (x∗) ≤ FN (x∗) − F (x∗) + δ. This combined with (16)
leads to

Prob
[
FN (x̂δ)− F (x∗) ≤ 2.74

α1/p
· 61/p · σf ·

√
p

N
+ δ

]
≥ 1− α/3. (17)

Step 2. Let ∂FN (x∗) be subdifferential of FN at x∗. By Markov’s inequality and the differentiability of F at x∗, if we also
let g∗

N = N−1
∑N
j=1 g

∗
f (ξj) with g∗f (ξ) ∈ ∂f(x∗, ξ) defined as in Assumption 3.1, then

Prob
[
∥g∗

N −∇F (x∗)∥p ≤
31/p

α1/p
∥g∗

N −∇F (x∗)∥Lp

]
≥ 1− α

3
,

which, combined with invoking lemma D.1 under Assumption 3.1, implies that

Prob
[
∥g∗

N −∇F (x∗)∥p ≤
2.74

α1/p
· 61/p · σg ·

√
p

N

]
≥ 1− α/3. (18)

Now, observe that, by convexity of f(·, ξ) for all ξ ∈ Ξ,

FN (x̂δ)− FN (x∗) ≥ ⟨g∗
N , x̂δ − x∗⟩

=⟨g∗
N −∇F (x∗), x̂δ − x∗⟩+ ⟨∇F (x∗), x̂δ − x∗⟩

≥⟨g∗
N −∇F (x∗), x̂δ − x∗⟩ ≥ −∥g∗

N −∇F (x∗)∥p · Dq,

which implies that

FN (x̂δ)− F (x∗) ≥ FN (x∗)− F (x∗)− ∥g∗
N −∇F (x∗)∥p · Dq.

Combining this with (16) and (18) through the union bound implies that

Prob
[
FN (x̂δ)− F (x∗) ≥ − 2.74

α1/p
· 61/p · (σg · Dq + σf ) ·

√
p

N

]
≥ 1− 2α/3. (19)

Invoking the union bound again in joining (17) and (19) then leads to the desired result.

B. Proof of Theorem 4.7
Proof. By the argument of ϵ-net, there exists a sequence of solutions VK := {x1, ..., xK} ⊆ X such that
maxx∈X miny∈VK

∥x − y∥ ≤ γ and that K := |VK | satisfies the following inequality according to Sudakov’s mino-
ration inequality (as presented in Theorem 7.4.1 by Vershynin (2018), where we can explicate the constant therein to
c := 1√

2π·ln 2
by invoking the fact that the expected number of K-many standard normal random variables is at least

1√
π·ln 2

·
√
lnK as per Kamath (2015)):

γ√
2π ln 2

√
lnK ≤ E

[
sup
x∈X

⟨g, x⟩
]
, (20)
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for a vector g of standard Gaussian random variables. Note it holds that E [supx∈X ⟨g, x⟩] ≤ maxx∈X ∥x∥p · E[∥g∥q] ≤
maxx∈X ∥x∥p · (E[∥g∥qq])1/q, where the last inequality is due to the concavity of (·)c on R+ for any c ∈ (0, 1). Since
the ith component of g, denoted by gi, satisfies that E|gi|q = 1√

π
· 2q/2 · Γ( q+1

2 ). Then, E[∥g∥qq] =
∑d
i=1 E[|gi|q] =

d√
π
· 2q/2 · Γ( q+1

2 ). This combined with (20) then implies that

lnK ≤ 4π ln 2

γ2
· d

2/q

π1/q
·
[
Γ

(
q + 1

2

)]2/q
·max
x∈X

∥x∥2p =:
∆p,qd

2/q

γ2
, (21)

where ∆p,q :=
4π ln 2
π1/q ·

[
Γ
(
q+1
2

)]2/q ·maxx∈X ∥x∥2p.

Under Assumption 3.7 (which implies (11)) and invoking the union bound and De Morgan’s law, we then have

Prob

 max
k=1,...,K

∣∣∣∣∣∣N−1
N∑
j=1

f(xk, ξj)− F (xk)

∣∣∣∣∣∣ ≤ 4σψ ·

(√
t

2N
+

t

N

)
≥ 1− 2K · exp (−t) ≥ 1− 2 exp

(
∆p,qd

2/q

γ2
− t

)
,

where the last inequality is the result of (21). Since F (xk) ≥ F (x∗) by the definition of x∗, we have that

FN (xk) ≥ F (x∗)− 4σψ ·

(√
t

2N
+

t

N

)
, ∀k = 1, ...,K,

with probability at least 1 − 2 exp
(

∆p,qd
2/q

γ2 − t
)

. By the construction of this ϵ-net, we know that ∥x̂δ,γ − xκ∥ ≤ γ for
some κ = 1, ...,K. Consequently,

sup
∥∆x∥≤γ

FN (x̂δ,γ +∆x) ≥ FN (xκ) ≥ F (x∗)− 4σψ ·

(√
t

2N
+

t

N

)

with probability at least 1 − 2 exp
(

∆p,qd
2/q

γ2 − t
)

. By letting t =
∆p,qd

2/q

γ2 + ln( 4
α ), we immediately have the desired

result.

C. Proof of Theorem 4.13
Proof. To start the formal proof of Theorem 4.13, we begin with a corollary extending the result in Theorem 4.7 to bounded
random variables. Later one would see how this bounded settings could strengthen our over-parameterized models result.

Corollary C.1 (Bounded random variable). Suppose f(x, ξ) is bounded with L ≤ f(x, ξ) ≤ U , and x̂δ,γ is a δ-optimal
solution to (4) satisfying all the conditions in Theorem 4.7, it holds that

sup
∥∆x∥≤γ

FN (x̂δ,γ +∆x) ≥ F (x∗)− 4(U − L)

ln 2
·
√

1

2N
·

√
∆p,qd2/q

γ2
+ ln

4

α
− 4(U − L)

ln 2
· 1

N
·
(
∆p,qd

2/q

γ2
+ ln

4

α

)
with probability at least 1− α/2.

The proof of Corollary C.1 is trivial. Note that L− U ≤ f(x, ξ)− F (x) ≤ U − L, then

E
[
exp

(
|f(x, ξ)− F (x)|
(U − L)/ ln 2

)]
≤ 2.

By the definition of sub-exponential norm, ∥f(x, ξ) − F (x)∥ψ1 ≤ U−L
ln 2 . This combined with (12) finishes the proof of

Corollary C.1.

13
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With Corollary C.1 concludes the bounded setting, we could construct a bounded auxiliary problem:

max
∥∆x∥≤γ

min
x∈X

N−1
N∑
j=1

min{f(x+∆x, ξj), Γ ·N}. (22)

By Assumption 4.11, it holds that f(x̂γ , ξj) = 0. Thus, for any Γ ≥ 0, it holds that x̂γ is also an optimal solution to
(22). Let h(x, ξ) := min{f(x, ξ),Γ · N}, x∗

H is an optimal solution to minx∈X H(x) := E[h(x, ξ)] and HN (x) :=

N−1
∑N
j=1 min{f(x, ξj),Γ · N}. Note that 0 ≤ min{f(x, ξ),Γ · N} ≤ Γ · N , by Corollary C.1 and the definition of

HN (·), we immediately have

sup
∥∆x∥≤γ

FN (x̂γ +∆x) ≥ sup
∥∆x∥≤γ

HN (x̂γ +∆x)

≥H(x∗
H)− 4Γ ·N

ln 2
·
√

1

2N
·

√
∆p,qd2/q

γ2
+ ln

4

α
− 4Γ ·N

ln 2
· 1

N
·
(
∆p,qd

2/q

γ2
+ ln

4

α

)
(23)

with probability at least 1− α/2. Let Γ = N (1−p)/p + F (x∗
H) ·N−1, we have

F (x∗)−H(x∗
H) ≤F (x∗

H)−H(x∗
H)

=

∫ ∞

0

Prob[f(x∗
H , ξ) > t]dt−

∫ ∞

0

Prob[min{f(x∗
H , ξ),Γ ·N} > t]dt

=

∫ ∞

0

Prob[f(x∗
H , ξ) > t]dt−

∫ Γ·N

0

Prob[f(x∗
H , ξ) > t]dt =

∫ ∞

Γ·N
Prob[f(x∗

H , ξ) > t]dt

=

∫ ∞

Γ·N
Prob[f(x∗

H , ξ)− F (x∗
H) > t− F (x∗

H)]dt

≤
∫ ∞

Γ·N
Prob[|f(x∗

H , ξ)− F (x∗
H)| > t− F (x∗

H)]dt

≤
∫ ∞

Γ·N

∥f(x∗
H , ξ)− F (x∗

H)∥Lp

(t− F (x∗
H))p

dt (24)

≤
∫ ∞

Γ·N

σ′
f

(t− F (x∗
H))p

dt (25)

=
σ′
f

p− 1
· 1

(Γ ·N − F (x∗
H))p−1

=
σ′
f

p− 1
·N− p−1

p , (26)

where (24) is due to Markov’s inequality and (25) is due to Assumption 3.5. By the definition of x∗ and x∗
H and (26),

F (x∗) ≤ F (x∗
H) ≤ H(x∗

H) +
σ′
f

p− 1
·N− p−1

p ≤ F (x∗) +
σ′
f

p− 1
·N− p−1

p , (27)

then by the construction of Γ and (27),

Γ ≤ N
1
p−1 +

(
F (x∗) +

σ′
f

p− 1
·N− p−1

p

)
N−1. (28)

Due to the non-negativity of ∆p,q, d, γ, we know

√
∆p,qd2/q

γ2
+ ln

4

α
≤ ∆p,qd

2/q

γ2
+ ln

4

α
. (29)
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Combining (27), (28), (23) and (29), we have

sup
∥∆x∥≤γ

FN (x̂γ +∆x) (30)

≥F (x∗)− 2
√
2

ln 2
·

√
∆p,qd2/q

γ2
+ ln

4

α
·N

2−p
2p − 2

√
2

ln 2
·

√
∆p,qd2/q

γ2
+ ln

4

α
· F (x∗) ·N− 1

2

− 2
√
2

ln 2
·

√
∆p,qd2/q

γ2
+ ln

4

α
·

σ′
f

p− 1
·N

2−3p
2p − 4

ln 2
·
(
∆p,qd

2/q

γ2
+ ln

4

α

)
·N

1−p
p

− 4

ln 2
·
(
∆p,qd

2/q

γ2
+ ln

4

α

)
· F (x∗) ·N−1 − 4

ln 2
·
(
∆p,qd

2/q

γ2
+ ln

4

α

)
·

σ′
f

p− 1
·N

1−2p
p −

σ′
f

p− 1
·N

1−p
p (31)

=F (x∗) ·

1− 2
√
2

ln 2
·

√
∆p,qd2/q

γ2
+ ln

4

α
·N− 1

2 − 4

ln 2
·
(
∆p,qd

2/q

γ2
+ ln

4

α

)
·N−1


− 2

√
2

ln 2
·

√
∆p,qd2/q

γ2
+ ln

4

α
·N

2−p
2p − 2

√
2

ln 2
·

√
∆p,qd2/q

γ2
+ ln

4

α
·

σ′
f

p− 1
·N

2−3p
2p

− 4

ln 2
·
(
∆p,qd

2/q

γ2
+ ln

4

α

)
·N

1−p
p − 4

ln 2
·
(
∆p,qd

2/q

γ2
+ ln

4

α

)
·

σ′
f

p− 1
·N

1−2p
p −

σ′
f

p− 1
·N

1−p
p (32)

≥F (x∗) ·
(
1− 7

ln 2
·
(
∆p,qd

2/q

γ2
+ ln

4

α

)
·N− 1

2

)
− 7

ln 2
·
(
∆p,qd

2/q

γ2
+ ln

4

α

)
·N

2−p
2p − 7

ln 2
·
(
∆p,qd

2/q

γ2
+ ln

4

α

)
·

σ′
f

p− 1
·N

2−p
2p −

σ′
f

p− 1
·N

2−p
2p (33)

≥F (x∗) ·
(
1− 7

ln 2
·
(
∆p,qd

2/q

γ2
+ ln

4

α

)
·N− 1

2

)
− 8

ln 2
·
(
∆p,qd

2/q

γ2
+ ln

4

α

)
·
(
1 +

σ′
f

p− 1

)
·N

2−p
2p , (34)

where the first inequality (31) is due to (23), (27) and (28). Equation (32) is due to combining like terms. The inequality
(33) is due to (29) and the fact that 1−2p

p ≥ 2−3p
2p ≥ 1−p

p ≥ 2−p
2p , and further combining like terms leads to (34).

D. Auxiliary Lemma
Lemma D.1. Let p ∈ [2,∞). Denote by ξ1, ..., ξN∈ R an i.i.d. sequence of random variables with E[ξ1] = 0. Then∥∥∥N−1

∑N
j=1 ξj

∥∥∥
Lp

≤ 2.74 · 21/p ·
√
pN−1 · ∥ξ1∥Lp .

Proof. This lemma is largely based on the proof embedded in Proposition 1 by Oliveira & Thompson (2023). By
Marcinkiewicz’ inequality, for some universal constant K < 0.935,∥∥∥∥∥∥N−1

N∑
j=1

ξj

∥∥∥∥∥∥
Lp

≤N−121+1/p
√
2K · √p

∥∥∥∥∥∥
N∑
j=1

ξ2j

∥∥∥∥∥∥
1/2

Lp/2

≤ N−121+1/p
√
2K · √p

√√√√ N∑
j=1

∥∥ξ2j∥∥Lp/2

=N−121+1/p
√
2K · √p

√√√√ N∑
j=1

∥ξj∥2Lp = 21+1/p
√
2K ·

√
p ·N−1 · ∥ξ1∥Lp .

as desired.
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E. Additional Detail on Numerical Experiments
E.1. Estimation of Problem Quantities

Problem quantities in P-NCBE were over-estimated to mimic more realistic applications with limited knowledge of the
problem. In the experiment results presented in Table 1 and Table 3, for the stochastic linear problem subject to a simplex,
one may see that over-estimation of the aforementioned quantities like σf and σg are accessible. More specifically, if

we denote κ := (κ1, . . . , κd), then for x ∈ X , it holds that σf = ∥f(x, ξ) − F (x)∥Lp =
∥∥∥∑d

i=1 κi(ξi − E[ξi])xi
∥∥∥
Lp

≤

∥κ∥∞ E [∥ξ1 − E[ξ1]∥p∞]
1/p and σg = ∥g∗f (ξ)− g∗F ∥Lp = E

[∣∣∣∑d
i=1 κi(ξi − E[ξi])

∣∣∣p]1/p. The expected values herein can
be further estimated using Monte Carlo simulation performed on an independent validation set of (no more than) the same
number of sample points in the SAA formulation.

For problem quantities in P-NCB-NCE , we set maxx∈X ∥x∥2p to be 1, and we sample 100 sample points xi, i = 1, . . . , 100
uniformly inside X to be further estimate σf = ∥f(x, ξ) − F (x)∥Lp , using Monte Carlo simulation performed on an
independent validation set of (no more than) the same number of sample points in the SAA formulation, and we choose
the maximum from these 100 sampled estimates. For σ′

f in the upper bound, we used the uniformed quantities σf as an
over-estimation of σ′

f .

E.2. Solving SAA and DRM Problem

For the stochastic linear problem, the optimal solution of the SAA formulation admits a straightforward closed form. For
the over-parameterized model, the SAA solution is achieved using stochastic gradient descent, where the learning rate is
specified as 5× 10−7, and maximum iteration number 100. The DRM solution is achieved using Algorithm 1 in Norton
& Royset (2023), where |Bt| therein is specified as 200, γ is specified as 0.01, learning rate is specified as 1× 10−6, and
maximum iteration number is 1,500.

E.3. Additional Numerical Results

Problem quantities in P-NCBE were over-estimated to mimic more realistic applications with limited knowledge of the
problem, whereas in P-NCB∗ the true values of these quantities were used.

The ECP values in Table 3 shows the varying tightness among P-NCB∗, P-NCBE and B-NCB. B-NCB consistently achieves
full coverage, indicating overly conservative bounds. P-NCB∗ and P-NCBE results attain slightly lower yet valid coverage,
reflecting relatively less conservative bounds.
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Table 3. ECP comparisons among P-NCB∗, P-NCBE and B-NCB across dimensions and sample sizes for convex SO

Sample Size (N) Method dim(d)=100 dim(d)=500 dim(d)=1000 dim(d)=2000 dim(d)=4000

5
P-NCB∗ 1.0000 1.0000 1.0000 1.0000 0.9998
P-NCBE 1.0000 1.0000 1.0000 1.0000 0.9998
B-NCB 1.0000 1.0000 1.0000 1.0000 1.0000

10
P-NCB∗ 1.0000 1.0000 1.0000 0.9998 0.9998
P-NCBE 1.0000 1.0000 1.0000 0.9998 1.0000
B-NCB 1.0000 1.0000 1.0000 1.0000 1.0000

50 P-NCB∗ 1.0000 0.9998 0.9998 0.9999 1.0000
P-NCBE 1.0000 0.9998 1.0000 1.0000 1.0000
B-NCB 1.0000 1.0000 1.0000 1.0000 1.0000

100 P-NCB∗ 1.0000 0.9998 0.9999 1.0000 1.0000
P-NCBE 1.0000 1.0000 1.0000 1.0000 1.0000
B-NCB 1.0000 1.0000 1.0000 1.0000 1.0000

500 P-NCB∗ 0.9998 1.0000 1.0000 1.0000 0.9999
P-NCBE 1.0000 1.0000 1.0000 1.0000 1.0000
B-NCB 1.0000 1.0000 1.0000 1.0000 1.0000

1000 P-NCB∗ 0.9999 1.0000 1.0000 0.9999 1.0000
P-NCBE 1.0000 1.0000 1.0000 1.0000 1.0000
B-NCB 1.0000 1.0000 1.0000 1.0000 1.0000

Table 4 shows the comparison results between the proposed method (P-NCB-NCE) and the benchmark method (B-NCB-
NCE) in terms of ECP. We observed a consistently high ECPs, which indicated the correctness of both methods. Nonetheless,
because our confidence level was 1− α = 0.9, which was noticeably lower than the ECPs. This indicated a remaining level
of conservatism of both our proposed and benchmark NCPs. We leave the further refining of NCPs to future work.

Table 4. Comparisons between P-NCB-NCE and B-NCB-NCE in ECP under various combinations of N and d for nonconvex SO

N d P-NCB-NCE B-NCB-NCE

300 41 1.0000 1.0000
340 41 1.0000 1.0000
380 41 1.0000 1.0000
420 41 1.0000 1.0000

500 961 1.0000 1.0000
600 961 1.0000 1.0000
700 961 1.0000 1.0000
800 961 1.0000 1.0000

500 1681 1.0000 1.0000
600 1681 1.0000 1.0000
700 1681 1.0000 1.0000
800 1681 1.0000 1.0000
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