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Abstract

Graph clustering plays a crucial role in graph representation learning but often faces
challenges in achieving feature-space diversity. While Deep Modularity Networks
(DMoN) leverage modularity maximization and collapse regularization to ensure
structural separation, they lack explicit mechanisms for feature-space separation, as-
signment dispersion, and assignment-confidence control. We address this limitation
by proposing Deep Modularity Networks with Diversity-Preserving Regularization
(DMoN-DPR), which introduces three novel regularization terms: distance-based
for inter-cluster separation, variance-based for per-cluster assignment dispersion,
and an assignment-entropy penalty with a small positive weight, encouraging more
confident assignments gradually. Our method significantly enhances label-based
clustering metrics on feature-rich benchmark datasets (paired two-tailed t-test,
p < 0.05), demonstrating the effectiveness of incorporating diversity-preserving
regularizations in creating meaningful and interpretable clusters.

1 Introduction

Graph clustering is a crucial problem within the graph representation learning domain, and essential
for various applications, including but not limited to community detection in social networks (Perozzi
et al.,[2014} [Xiao et al.,[2015)), data exploration (Perozzi and Akoglu, |2018]), and functional module
identification in biological networks (Jin et al., [2021). Consequently, there has been a surge in
methods aimed at enhancing graph clustering performance. Recent advancements have included
techniques like Graph Neural Networks (GNNs) (Scarselli et al., 2008), which leverage node features
and graph structure for representation learning, often through unsupervised training (Tsitsulin et al.,
2023). In this context, graph pooling methods have also become prominent, as they provide a way
to coarsen graphs by aggregating nodes into clusters (Cangea et al., |2018). Yet, some of these
methods such as DiffPool (Ying et al.,|2018)) and MinCutPool (Bianchi et al.,|2019)) were found to be
computationally costly and/or too rigid, leading to poor convergence (Tsitsulin et al., 2023)).

To address these limitations, Deep Modularity Networks (DMoN) (Tsitsulin et al., [2023)) were intro-
duced, combining spectral modularity maximization (Newmanl, 2006) with collapse regularization
(Tsitsulin et al., |2023)) to avoid trivial clustering solutions. Although DMoN captures structural com-
munities, two practical gaps remain. First, the loss is agnostic to feature-space geometry and to how
sharply clusters specialize over nodes, resulting in structurally distinct but feature-wise homogeneous
clusters, and reducing effectiveness in applications requiring diverse and meaningfully differentiated
clusters. Second, it provides no handle to shape the confidence dynamics of assignments, risking
premature hardening.
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Why diversity matters. Accounting for both inter-cluster separation and intra-cluster variety
prevents information collapse and yields richer representations. In practice, diversity improves
downstream utility—for example, diversified recommendation in e-commerce optimizes cluster-level
variety to boost engagement (Kim and Kang, 2025)), and drawing items from distinct clusters raises
serendipity without sacrificing accuracy (Aytekin and Karakayal, [2014). Beyond recommendation,
biological networks exhibit the same principle: modules that are cohesive inside yet distinct outside
reveal functional relationships that density-only objectives can miss (Spirin and Mirny}, 2003)). Recent
graph-pooling work therefore introduces explicit mechanisms to spread centroids and diversify
within-cluster features (Liu et al.l|2023). These considerations motivate our design.

Present Work Motivated by the above, we propose Deep Modularity Networks with
Diversity-Preserving Regularization (DMoN-DPR), an extension of DMoN that augments its objective
with three regularizers explicitly promoting diversity among clusters. These include a distance-based
regularization term, which penalizes clusters with centroids too close in feature space to encourage
distinct separation; a variance-based regularization term that increases the dispersion of assignment
probabilities across nodes for each cluster, and an assignment-entropy penalty added with a small
positive weight, to avoid premature hard assignments and to let distance/variance terms drive di-
versity. By performing extensive evaluations, we demonstrate that our method improves clustering
performance on the benchmark datasets, noticeably on Coauthor CS and Coauthor Physics datasets,
which benefit from this enriched representation due to their rich feature spaces.

2 Related Work

Early graph clustering often decoupled features from structure. k-means on raw features (Lloyd,
1982) ignores connectivity; pairing k-means with DeepWalk or DGI embeddings (Perozzi et al.,
2014; |Velickovi€ et al.l 2018} [Tsitsulin et al., 2023) injects structural signals but remains a two-
stage pipeline, typically trailing end-to-end models that jointly learn representations and cluster
assignments. Meanwhile, Chebyshev-based spectral convolutions (Defferrard et al., 2016) efficiently
approximate graph filters, laying a scalable foundation for modern GNNss.

On the other hand, pooling methods capture hierarchy. NOCD (Shchur and Glinnemann, [2019)
directly optimizes graph likelihood but can struggle with scale and feature use. DiffPool (Ying et al.|
2018) learns soft cluster assignments end-to-end yet incurs quadratic cost (Tsitsulin et al.| 2023).
MinCut pooling (Bianchi et al.}2020)) adds normalized cut and orthogonality terms that may hinder
convergence; the Ortho variant keeps only the latter and loses structural cues. SAGPool (Lee et al.,
2019) ranks node importance via self-attention, improving selectivity at added training cost on large
graphs.

For unsupervised representation learning, DGI (Velickovic et al., 2019) maximizes mutual information
between local and global summaries; InfoGraph extends this idea to graph-level representations (Sun
et al.,[2019).

More recently, DMoN (Tsitsulin et al.l [2023)) integrates modularity maximization with collapse
regularization in an end-to-end framework, unifying community detection and neural feature learning
and achieving strong NMI and modularity across benchmarks.

3 Deep Modularity Networks with Diversity-Preserving Regularization

DMoN tackles the issues of previous techniques by leveraging an optimization objective that combines
insights from spectral modularity maximization (Newman, 2006) with a unique regularization term
called collapse regularization (Tsitsulin et al., 2023). Specifically, DMoN encodes the cluster
assignments, represented as a soft assignment matrix C' by using a softmax function over the output
of a GNN, allowing differentiation during optimization. For each node, a soft cluster assignment C' is
computed as follows:

C = softmax(GCN(4, X)) (1

where GCN is a multi-layer graph convolutional network, A is the normalized adjacency matrix

A= D_%AD_%, and X represents the node features. The objective function of DMoN, LpoN,
combines a modularity term with a collapse regularization term to optimize the clustering. The



modularity term measures the quality of the cluster assignments by maximizing the density of intra-
cluster edges relative to a null model, while the collapse regularization prevents trivial solutions
where all nodes are assigned to the same cluster. The objective function is formulated as:
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where (ﬁ)Tr(C TBC) is the modularity term (measuring how well clusters are internally connected
T . . . . .
compared to random chance), B = A — % is the modularity matrix, d is the degree vector, m is

the total number of edges, % HZZ oA H  — 1 represents the collapse regularization term, which
discourages the formation of trivial clusters by penalizing the Frobenius norm of the assignment
matrix C, || - || 7 denotes the Frobenius norm, and & is the number of clusters. This regularization term
encourages balanced cluster assignments, thereby improving the quality of clustering and avoiding
degenerate solutions.

Building upon the DMoN framework, we augment the objective with three regularizers:
LDMON—DPR(C; A) = LDMON + Wdist LdDililﬁnce + anr LvDaI.gil'gnce + Wentropy L?)n};gpy- (3)

Here, Wist, Wyar, and Wepgopy control the influence of each term. These additions promote inter-
cluster separation (distance) and per-cluster assignment dispersion (variance). We use a small
positive entropy weight so per-node entropy decreases slowly, preserving higher uncertainty early and
thus indirectly encouraging more balanced cluster usage during exploration; the primary mechanism
for cluster-size balance remains DMoN’s collapse regularizer.

Distance-Based Regularization Inspired by SimCLR (Chen et al., 2020), which showed that
contrastive loss promotes well-separated clusters, the distance-based regularization term encourages
distinct cluster centroids in feature space. It is defined as:
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where k is the number of clusters, p; and p; are the centroids of clusters 7 and j, computed as
Wi = Ezilichu, where X, is the feature vector of node v, || - ||3 denotes the squared Euclidean

v=1 v

norm, € is a predefined threshold that sets the minimum acceptable squared distance between cluster
centroids, and ReLU is the Rectified Linear Unit function, ensuring that only distances below €
contribute to the loss. By penalizing pairs of clusters whose centroids are closer than e, clusters
can be effectively pushed apart in the feature space. By encouraging greater separation between
clusters, it enhances inter-cluster diversity and reduces overlap, leading to more distinguishable and
meaningful clusters.

Variance-Based Regularization The variance-based regularization term encourages dispersion in
the assignment matrix by maximizing, for each cluster, the variance of its assignment probabilities
across nodes:
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where Var(C.;) denotes the variance of the assignment probabilities of all nodes to cluster ¢. Maximiz-
ing this variance prevents uniform cluster columns (e.g., every node assigned with equal probability),
ensuring that clusters specialize over different subsets of nodes and thereby enhancing assignment
diversity.

Entropy-Based Regularization We define:
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which is the average per-node Shannon entropy of the soft assignments, where n is the number of
nodes, C,; is the soft assignment probability of node v to cluster i, ¢ is a small constant added to
prevent logarithm of zero, ensuring numerical stability. We minimize Lppr to gently encourage more
confident assignments. Because minimizing entropy can lead to premature hardening, we apply a
small weight Weygopy (typically 0.001-0.1) so that entropy decreases slowly during training.

4 Experiments

Evaluation Protocol To evaluate the effectiveness of our proposed regularization objective, we
conducted experiments on Cora, CiteSeer, and PubMed datasets (Yang et al.,[2016), as well as the
Coauthor CS and Coauthor Physics datasets (Shchur et al., [2018)). Information regarding these
datasets is presented in Appendix [A] Following the evaluation protocol outlined in (Tsitsulin et al.,
2023)), we employed the following metrics to assess performance: graph conductance (C), modularity
(Q), Normalized Mutual Information (NMI) with ground-truth labels, and the pairwise F1 measure.
Additionally, we use the following quantitative measures to analyze feature-space diversity: average
inter-centroid distance (mean pairwise Euclidean distance between cluster centroids), minimum inter-
centroid distance (the smallest pairwise distance among centroids), average intra-cluster variance
(average within-cluster variance of node embeddings), and Silhouette score (a standard measure of
per-point cohesion vs. separation). The quantification of diversity results are presented in Appendix
13

Baseline & Implementation Details We select DiffPool (Ying et al., 2018), MinCut pooling
(Bianchi et al., 2019) and DMoN (Tsitsulin et al., [2023)) as our baselines. Additionally, we focus on
ablation studies and significance tests against vanilla DMoN to isolate the impact of the new diversity
terms. Furthermore, similar to (Tsitsulin et al., [2023)), one layer of GCN (Kipf and Welling, 2016)
with 512 neurons was used to create the graph embedding, followed by a pooling layer. Likewise,
the models were trained for 1000 epochs using Adam optimizer with a learning rate of 0.001. The
code—implemented by extending the DMoN implementation in PyTorch Geometric (Fey and Lenssen,
2019)- is available at www.github.com/YasminSalehi/DMoN-DPR.

5 Results

Table 1: Comparison of clustering methods on three datasets (Cora, CiteSeer, PubMed). Values are in percentage.

Method Cora CiteSeer PubMed

Graph Labels Graph Labels Graph Labels
cl Q7T NMIt FIt CJ|l Q1 NMItT FIt+ CJl @7 NMItT FIt
DiffPool 1599 62.78 40.13 46.55 7.92 66.69 33.40 47.83 -

MinCut 13.65 71.79 37.74 39.15 6.19 7521 2521 3528 11.14 54.66 2248 41.31
DMoN 10.53 7277 4392 4693 4.86 7545 29.67 4246 8.61 57.13 2239 4323

DPR(D) 1095 7220 4398 47.51 495 7556 30.09 4246 8.60 57.14 2238 43.24
DPR(V) 11.87 7054 4334 4639 495 7517 29.76 4285 8.61 57.13 2239 43.23
DPR(E) 1049 72777 44.00 47.02 4.93 7525 2995 4296 8.62 57.11 2236 4322
DPR(DV) 10.89 72.07 44.40 4736 5.09 75.18 30.50 4325 8.60 57.14 2238 43.24
DPR(DE) 10.88 7230 4430 47.53 5.07 75.18 3047 43.13 8.60 57.12 2238 43.25
DPR(VE) 11.86 70.51 4324 4636 5.05 7501 30.17 4327 8.60 57.13 2237 43.21
DPR(DVE) 1093 72.05 4437 4732 5.16 75.00 3025 43.00 8.61 57.11 2236 43.24

5.1 Effectiveness of DMoN-DPR in Clustering

To assess the effectiveness of DMoN-DPR, we compare the mean values of conductance (C),
modularity (@), NMI, and pairwise F1 measure across 10 randomly selected seeds achieved with
DMoN-DPR (denoted as DPR in all the tables) to those obtained with our baselines. Tables[I] (Cora,
CiteSeer, PubMed) and [2| (Coauthor CS, Coauthor Physics) summarize the results, where graph
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Table 2: Comparison of clustering methods on two datasets (Coauthor CS, Coauthor Physics). Values are in
percentage.

Method Coauthor CS Coauthor Physics

Graph Labels Graph Labels
cCl Q1T NMIt FI1t Cl]l Q1 NMItT Fl1t
DiffPool 18.19 6224 5392 5347 1391 5744 5622 51.71

MinCut 21.36 71.58 6433 49.00 1393 61.75 5139 47.79
DMoN 18.63 72.60 69.26 59.26 13.70 63.45 53.50 47.51

DPR(D)  18.89 7230 71.17 61.82 1644 56.89 53.49 50.99
DPR(V) 18.75 72.50 69.56 59.94 13.18 58.59 53.93 52.78
DPR(E) 19.85 70.92 71.58 61.33 13.49 59.33 52.83 51.09
DPR(DV) 19.14 71.96 70.72 6135 13.43 56.48 5584 57.99
DPR(DE) 19.81 70.57 7096 6236 14.17 56.89 54.02 55.02
DPR(VE) 19.89 70.81 71.47 6133 13.11 55.88 49.95 53.58
DPR(DVE) 19.69 70.71 7128 62.67 12.84 5547 53.50 57.96

Table 3: t-statistics and p-values for all datasets (rounded to two decimal places).

Metric Cora CiteSeer PubMed Coauthor CS  Coauthor Physics
t-stat p-val t-stat p-val t-stat p-val t-stat p-val  t-stat p-val
Conductance -0.88 040 -1.62 0.4 037 072 -525 1le© 0.51 0.62
Modularity 181  0.10 1.17 027 021 084 58 1le® 1756 le~®
NMI 063 054 ~-156 015 023 083 -464 1le 5 -249 0.03
F1 -040 070 -1.28 023 -095 037 -251 0.03 -14.65 le~®

metrics (C, Q) do not rely on ground-truth labels, whereas ‘Labels’ metrics (NMI, F1) compare to
known class labels.

For completeness, we defer supporting analyses to the appendix: (i) quantitative diagnostics of
feature-space diversity (average/min inter-centroid distance, average intra-cluster variance, Silhouette
score) (Appendix E]), (ii) t=SNE visualizations of the learned clusters versus ground-truth labels
(Appendix [C), (iii) ablation and hyperparameter-selection studies that isolate the effect of each DPR
term (Appendix [D)), and (iv) per-seed scores and full tables with error bars (Appendix [E)).

Cora, CiteSeer, and PubMed. Overall, the results confirm that adding diversity-preserving regular-
izers to DMoN almost never harms the purely topological scores—conductance (C' |) and modularity
(@ 1)—while consistently lifting label-aware metrics such as NMI and F1. On Cora, DPR(DV)
achieves the best NMI (44.40%) and only narrowly trails DPR(DE) on F1. On CiteSeer, although
DiffPool attains the highest NMI (33.40%) and F1 (47.83%), DPR variants remain competitive
without the instability that causes DiffPool to collapse on PubMed [H Among the DMoN-family
methods, DPR(DV) is the strongest on CiteSeer. On PubMed, all DPR variants remain stable, in
contrast to DiffPool, while MinCut yields the highest NMI (22.48%) and DPR(DE) edges out others
in F1. The fact that DPR(D) and DPR(DV) match the best conductance (8.60%) confirms that the
regularizers maintain cut quality.

Coauthor CS and Coauthor Physics. On the more feature—riclﬂ Coauthor graphs, diversity-
preserving regularization brings substantial gains. On Coauthor CS, DPR(DVE) achieves a new best
in F1 (62.67%) while DPR(E) sets the highest NMI (71.58%), both outperforming the already strong

'With a single DiffPool layer and our fixed cluster budget (C' = 3), the link-prediction loss on the 19 k-node
PubMed graph stagnated and the assignment matrix collapsed to one cluster. Increasing the budget restores
numerical stability, but yields only marginal label quality and would also violate our fixed-C protocol, so we
omit DiffPool scores for PubMed.

*We define feature-rich graphs as those that exhibit (i) high feature dimensionality and (ii) high average
Shannon entropy per node. Please see Appendix E] for more detail.



DMoN baseline without sacrificing conductance or modularity. On Coauthor Physics, DPR(DVE) ob-
tains the lowest conductance (12.84%) and, along with DPR(DV), surpasses 57% F1—demonstrating
that the full three-term objective generalizes well to larger, noisier graphs.

Key Insights. Therefore, our results show that the effects of distance-based (D), variance-based (V),
and entropy-based (E) regularizations depend on dataset feature richness. On feature-rich datasets
like Coauthor CS and Physics, adding these terms—especially D—significantly boosts NMI and F1,
with DMoN-DPR(DV) raising F1 by over 10 percentage points. The V term increases assignment
dispersion across nodes and performs best when combined with D. The E term, used with a small
positive weight, gradually sharpens per-node assignments, which can indirectly improve cluster
balance during early exploration on feature-rich datasets, but offers little benefit on simpler datasets
like PubMed; the collapse regularizer remains the primary mechanism for cluster-size balance.
Overall, combining D and V often yields the highest performance, underscoring the need to tailor
regularization to dataset characteristics for optimal clustering.

Statistical Significance. To strengthen our claims, we conduct a paired t-test on Conductance,
Modularity, NMI, and F1, comparing DMoN vs. the best-performing DMoN-DPR variants. We
ensure both methods use exactly the same seeds in each dataset. The results are summarized in
Table 3] On the citation benchmarks we adopt the strongest variant for each graph (DV on Cora
and CiteSeer, DVE on PubMed). Although the average NMI and F1 of DMoN-DPR surpass or
match the vanilla DMoN baseline, the paired two-tailed ¢-tests in Table [3]show p-values above 0.10.
This indicates that, given the modest sample of random seeds, the improvements are encouraging
but not yet conclusive for these sparsely featured graphs. The picture is markedly different on the
feature-rich coauthor networks. The gains on NMI and F1 metrics are highly significant, indicated by
p < 0.05, as seen in Table 3] These results validate our hypothesis that encouraging latent cluster
dispersion is most beneficial when node attributes are abundant and heterogeneous, and they confirm
that DMoN-DPR maintains the stability advantage of the original objective while translating it into
measurably better community recovery.

Trade-Offs Between Structural and Label-Based Metrics. Our results reveal a clear trade-off
between structural metrics (e.g., Modularity, Conductance) and label-based metrics (e.g., NMI, F1).
Diversity-preserving regularization improves label alignment, especially on feature-rich datasets
like Coauthor CS and Physics, by forming clusters that better match ground-truth labels—though
sometimes at the cost of structural cohesion (e.g., lower modularity). Conversely, on datasets with
less diverse or lower-dimensional features (e.g., PubMed), the structural metrics are less affected by
the introduction of diversity-preserving regularization terms, and the benefits to label-based metrics
are more modest. As a result, DMoN-DPR emerges as a more effective choice for supervised tasks
prioritizing NMI and F1, whereas vanilla DMoN remains competitive for unsupervised scenarios
where conductance and modularity are paramount. Tailoring the clustering strategy to the dataset and
task requirements is therefore essential.

5.2 Execution Times and Runtime Analysis

Tablefd] reports the execution times (in seconds) of DMoN and DMoN-DPR on five commonly used
graph datasets. All experiments were conducted on a CPU to ensure consistent runtime measurement
without GPU scheduling effects.

Table 4: Execution times (in seconds) on CPU for DMoN and DMoN-DPR.

Method Cora CiteSeer PubMed Coauthor CS Coauthor Physics
DMoN 32 76 310 722 2107
DMoN-DPR 35 71 300 751 1946

Although DMoN-DPR includes additional regularization terms for Distance-based, Entropy-based,
and Variance-based constraints, its runtime is sometimes comparable to or even marginally lower
than plain DMoN. The reason is that the most time-consuming part of both methods is dominated
by adjacency-based operations (e.g., matrix multiplications with the graph Laplacian or adjacency
matrix), which scale on the order of O(|E| k) or O(N?k) for large, dense graphs (where N is the
number of nodes, F is the set of edges, and k is the number of clusters). In contrast, the extra



DPR calculations—computing entropy across nodes, the variance of cluster assignments, or centroid
distances—represent only O(N k + k? F) overhead (with F' being the feature dimension) and are
typically negligible next to the larger matrix multiplications.

5.3 Limitations and Future Directions

While DMoN-DPR introduces clear benefits, it also presents a few limitations. First, tuning the
diversity-preserving weights for distance, variance, and entropy remains manual. Though our
empirical studies revealed consistent patterns: high-dimensional datasets like Coauthor CS and
Physics benefited from larger distance weights (1 or 10), variance weights of 1 or 0.1 worked well
across most datasets, and entropy value of 0.1 served as a good upper bound. A promising direction
for future work is to develop an adaptive scheme that learns these weights during training, reducing
reliance on manual tuning. Second, the gains from diversity regularization are more pronounced on
feature-rich datasets. On lower-dimensional datasets like PubMed, improvements in NMI and F1
are modest—though visualizations (Figure[I]) suggest that DMoN—DPR still forms more coherent
clusters than the baseline. Future research could explore alternative regularizers to better capture
structure in such settings.

6 Conclusion

In this work, we presented DMoN-DPR, an enhanced version of Deep Modularity Networks (DMoN)
that incorporates diversity-preserving regularizations to enrich the clustering objective. By introduc-
ing distance-, entropy-, and variance-based penalties alongside the original modularity and collapse
regularization terms, our approach promotes diversity by increasing inter-cluster feature separation
(distance) and within-cluster assignment dispersion (variance), while a small-weight entropy term
gradually sharpens assignments without sacrificing exploration. Our empirical results on the Coauthor
CS and Coauthor Physics benchmark datasets indicate that DMoN-DPR significantly improves align-
ment with ground-truth labels in feature-rich datasets. While structural metrics such as modularity
and conductance remained competitive, the additional diversity constraints contributed to more inter-
pretable and semantically meaningful cluster formations, marked by significant improvements in NMI
and F1 scores, producing higher alignment with ground-truth labels and generally reflecting clearer
semantic distinctions. Overall, DMoN-DPR achieves a balance between interpretability and structural
integrity, making it a powerful solution for graph clustering tasks that demand both topological
cohesion and semantic differentiation, marking a significant advancement in feature-aware graph
clustering.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We identified a key limitation of DMoN—namely, that it often yields clusters
with insufficient feature-space diversity—and addressed it by introducing three novel regu-
larization terms that are distance, variance, and entropy based. In our paper, we have shown
that the impact on label-based metrics can be substantial on feature-rich datasets such as
Coauthor CS and Coauthor Physics, where DMoN-DPR significantly improves NMI and F1
compared to baseline DMoN. This demonstrates that our approach works especially well in
scenarios where node attributes carry high signal, thus expanding DMoN’s applicability to
more attribute-driven clustering tasks.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer:[Yes]

Justification: In Section 5.1, we clearly highlight the trade-off between DMoN and DMoN-—
DPR, outlining the scenarios in which each is most suitable. Furthermore, Section 5.2
provides a detailed discussion of the limitations of our approach and potential directions for
future work. We have also included a runtime analysis in Appendix D.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.



* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our main contribution is an empirical extension of DMoN that aims to
preserve feature diversity, rather than a new theoretical framework. [Tsitsulin et al.| (2023
showed that DMoN’s collapse regularization avoids trivial solutions and is asymptotically
consistent under certain generative assumptions. Our distance-, variance-, and entropy-based
regularizers further promote diverse, well-separated clusters without disrupting DMoN’s
convergence. Each term is differentiable (or piecewise differentiable), ensuring compatibility
with gradient-based optimization. Specifically:

* Rp (distance) repels centroids in feature space, reducing cluster overlap.

* Ry (variance) prevents overly tight clusters, mitigating premature “hard” assignments.

* Rp (entropy) avoids early dominance by any single cluster, helping to avert mode

collapse.

These terms add complementary constraints but do not create new problematic local minima
or break DMoN’s consistency. Rather, they refine the solution space by adding complemen-
tary constraints. While we do not offer formal proofs here, we consistently observe stable
training across all studied datasets.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All ablation studies, seed values, and hyperparameter settings are thoroughly
documented in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The datasets used in this paper are standard benchmarks, all publicly available
through the PyTorch Geometric library. The code will also be released publicly.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

11


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Answer: [Yes]
Justification: All the details have been discussed in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The result for all trial runs as well as their mean and standard deviation has
been reported in the appendix. Additionally, statistical significance testing has also been
reported in the Results (Section 5.1).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The hardware and implementation settings have been mentioned in the ap-
pendix as well as in Section 4.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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9.

10.

11.

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The work uses public, consented academic-citation and co-authorship data and
involves no sensitive attributes or human subjects.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Improved graph clustering can aid knowledge discovery in scientific networks
(positive), but could also facilitate surveillance or profiling if applied to social graphs
(negative).

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The released code trains only on publicly available graphs and does not include
any pre-trained model with dual-use risk.

Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper cites PyTorch Geometric and references each dataset with its original
publication and Creative Commons/licensing where applicable.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new datasets or pre-trained models are released; only source code is
provided.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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16.

Justification: The study uses only machine-generated data; no human participants were
involved.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Not applicable—no human-subject research.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: No large-language models are part of the methodology; any text editing
assistance was purely editorial.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Datasets

The Cora, CiteSeer, and PubMed datasets are citation networks where nodes represent papers and
edges denote citation relationships, with node labels corresponding to the topic of each paper. The
Coauthor CS and Coauthor Physics datasets are co-authorship graphs, where nodes represent authors
and edges indicate collaborations, with labels reflecting the field of research. The following table
provides information about the datasets used for running experiments.

Feature-rich Datasets A graph is considered to be feature-rich when its nodes are described by
high-dimensional feature vectors that carry substantial information content. Formally, for each node
v, the feature vector z,, is normalized into a probability distribution p, = $+%—, and its information

content is quantified by the Shannon entropy H (p,) = — Zf:l Dv,i 10g4 Dy ;. A dataset of such nodes
is said to be feature-rich when it combines two key properties: (1) high dimensionality, meaning that
the number of features | X | = F' is large, and (2) high average entropy, defined as:

;;H(pv),

indicating that on average, the features across nodes are diverse and well-distributed rather than
concentrated in a few dimensions. Together, these conditions ensure that the feature space provides
both breadth and depth, enabling richer representations for learning tasks. For example, Coauthor-CS
is a feature-rich dataset for having | X| = 6805 and entropy = 5.51 bits, versus PubMed with
| X| = 500 and entropy = 5.17 bits.

Table 5: Dataset characteristics, where (|V]) is the number of vertices , (| E’|) is the number of edges, | X | is the
number of features, and |Y| is the number of cluster labels.

Dataset 4 |E| |X| |Y| Mean Entropy (bits)
Cora 2708 5278 1433 7 4.05
CiteSeer 3327 4614 3703 6 4.94
PubMed 19717 44325 500 3 5.17
Coauthor CS 18333 81894 6805 15 5.51
Coauthor Physics 34493 247962 8415 5 4.76

B Quantification of Diversity

Table 6: Comparison of diversity resulted from the clustering methods on three datasets (Cora, CiteSeer,
PubMed). AICD is average inter-centroid distance, MICD is minimum inter-centroid distance, AICV is average
intra-cluster variance, and Sil is the Silhouette score.

Method Cora CiteSeer PubMed

AICD MICD AICV Sil AICD MICD AICV Sil AICD MICD AICV Sil

DiftPool 369 262 002 0.16 5.03 413 0.02 025 -
MinCut 637 542 002 036 9.03 818 003 046 303 262 000 046
DMoN 810 514 004 027 1011 734 004 037 277 259 000 048

DPR(D) 801 499 004 026 1015 733 004 037 277 259 000 048
DPR(V) 893 525 005 023 1020 7.17 005 035 277 259 000 048
DPR(E) 812 514 004 02 1031 7.14 005 035 277 259 000 048
DPR(DV) 812 480 004 026 1026 726 005 035 277 259 000 048
DPR(DE) 803 488 004 026 1035 723 005 035 278 260 000 048
DPR(VE) 893 525 005 023 1039 7.12 005 034 277 259 000 048
DPR(DVE) 8.13 481 0.04 026 1043 7.07 005 033 278 260 0.00 048
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Table 7: Comparison of diversity resulted from the clustering methods on two datasets (Coauthor CS, Coauthor
Physics). AICD is average inter-centroid distance, MICD is minimum inter-centroid distance, AICV is average
intra-cluster variance, and Sil is the Silhouette score.

Coauthor CS Coauthor Physics

Method

AICD MICD AICV Sil AICD MICD AICV Sil

DiffPool 6.05 293 003 0.12 435 214 001 023
MinCut 1046 6.89 0.06 027 1088 856 0.04 042
DMoN 2047 815 026 0.17 1397 1051 0.09 0.37

DPR(D) 1772 7.01 019 0.18 1455 7.27 0.11 023
DPR(V) 21.02 833 027 0.17 1744 979 016 0.27
DPR(E) 31.67 11.14 058 0.15 1472 746 0.11 0.25
DPR(DV) 18.16 694 020 0.17 1472 746 0.11 025
DPR(DE) 2448 938 037 0.19 1458 7.66 0.11 0.25
DPR(VE) 31.75 11.17 0.59 0.15 19.16 11.15 0.19 0.29
DPR(DVE) 2466 979 036 0.18 1431 7.73 0.11 0.26

The diversity diagnostics in Tables[6H7]echo the accuracy gains: augmenting DMoN with our diversity-
preserving regularizers widens the geometric spread of clusters—captured by the average inter-
centroid distance (AICD) and minimum inter-centroid distance (MICD)—while largely preserving
internal cohesion, as indicated by the near-constant average intra-cluster variance (AICV) and
Silhouette score (Sil). On the citation graphs, most DPR variants leave AICD and MICD within
a few percent of the DMoN baseline (the largest jump is ~ 10% on Cora for V/VE), while AICV
and Silhouette score remain virtually unchanged, confirming that clusters are not overstretched
when the feature signal is weak. The feature-rich Coauthor graphs display a stronger effect: the
entropy-weighted VE model, for example, boosts AICD on Coauthor CS from 20.5 to 31.8 and
MICD from 8.2 to 11.2—at the cost of higher AICV—while hybrids that include the distance term
(DE, DVE) achieve a better trade-off, enlarging centroid spacing by 15 — 25% but capping the rise
in AICV so that Silhouette score stays on par with, or slightly above, the DMoN baseline. The sole
exception is Coauthor Physics, where Silhouette score dips because DPR variants both push centroids
outward and allow somewhat broader clusters; this reduces compactness even as separation improves.
Overall, DPR regularization fulfills its design goal: clusters become globally more dispersed yet
remain locally cohesive, yielding modest benefits on low-feature graphs and pronounced gains when
node attributes are rich and heterogeneous. Note that AICV measures embedding variance within
clusters, whereas our V term maximizes assignment variance across nodes; any changes in AICV
under V are therefore indirect.

C Visualization of Clusters

The clustering results visualized in Figure [I] obtained using t-SNE with a fixed perplexity (30)
and learning rate (200), demonstrate that DMoN-DPR generally outperforms DMoN across the
benchmark datasets Cora, CiteSeer, PubMed, Coauthor CS, and Coauthor Physics. For Cora and
CiteSeer datasets, DMoN-DPR produces tighter, more well-separated clusters with improved align-
ment to the ground truth labels, contrasting with the more scattered and less defined clusters formed
by DMoN. On the other hand, PubMed remains challenging for both methods, resulting in notable
overlap and scattered clusters; yet, DMoN—DPR still provides slightly tighter groupings. Turning
to the Coauthor CS and Coauthor Physics datasets, a similar trend emerges. While DMoN ade-
quately captures overarching modular structures, it can occasionally struggle to separate nuanced
subgroups. In contrast, DMoN-DPR consistently yields more cohesive and better-separated clusters,
offering clearer decision boundaries and higher alignment with the true labels. This improvement
is particularly notable in Coauthor CS, where DMoN-DPR visibly reduces overlap and sharpens
cluster delineations. These findings underscore the effectiveness of promoting diversity within hidden
representations, as DMoN-DPR not only excels in forming compact and accurate clusters for datasets
with greater feature variability but also remains competitive on more challenging datasets.
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Figure 1: Visualization of clusters (circles) vs. ground truth labels (crosses) formed by DMoN on (a) Cora, (b)
CiteSeer, (c) PubMed, (d) Coauthor CS, and (e) Coauthor Physics, and by DMoN-DPR on (f) Cora, (g) CiteSeer,
(h) PubMed, (i) Coauthor CS, and (j) Coauthor Physics datasets.

D Ablation Study

D.1 Hyperparameter Tuning

DiffPool and MinCut For DiffPool, the entropy weight was set to 1 x 1075 on the Coauthor
Physics dataset to achieve optimal performance, and to 1 x 10~ for all other datasets. For MinCut

pooling, both the mincut loss and orthogonality loss weights were set to 1, which consistently yielded
the best results.

DMoN-DPR  The weighting coefficients Wiisi, Wengopy, and Wy, as well as € are hyperparameters
that need to be tuned based on the specific dataset and desired clustering behavior. They control the
trade-off between structural modularity and diversity preservation. To optimize these hyperparameters,
we conducted evaluations on the Cora, CiteSeer, PubMed, Coauthor CS and Coauthor Physics
datasets using 10 random seeds, similar to how it was done in (Tsitsulin et al [2023)), selected
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using a random number generator. The seeds that resulted in the best performance when using the
DMoN pooling layer were selected. For each dataset, we tuned e (for the distance weight Wy;g),
Wiar (variance weight), and Wepgopy (entropy weight) independently. To find the best €, the variance
and entropy weights were set to zero, and ¢ was varied from 10 to 107°. Similarly, W, and
Wenwropy Were tuned by fixing the other weights to zero and varying them across {1, 0.1, 0.01, 0.001}.
The best weights identified were used to construct various DMoN-DPR models, including DMoN
(baseline), DMoN-DPR(D) (distance), DMoN-DPR(V) (variance), DMoN-DPR(E) (entropy), and
combinations: DMoN-DPR(DV) (distance and variance), DMoN-DPR(DE) (distance and entropy),
DMOoN-DPR(VE) (variance and entropy), and DMoN-DPR(DVE) (distance, variance, and entropy).
This systematic approach allowed us to assess the impact of each regularization term and their
combinations on model performance. The ablation study is presented in the following subsections.

D.1.1 Varying the Epsilon

Figure [2|depicts the ablation study done to find the best value of € associated with Wy by setting
Whar and Wepgopy Weights to 0. For the Cora, CiteSeer, PubMed, Coauthor CS, and Coauthor Physics
datasets, the best ¢ values were found to be 0.0001, 0.0001, 0.001, 1.0, and 10.0 respectively.
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Figure 2: Finding the best value of epsilon (¢) by setting Wi to 1 and Wy and Wenopy to zero on the (a) Cora,
(b) CiteSeer, (c) PubMed, (d) Coauthor CS, and (e) Coauthor Physics datasets.

D.1.2 Varying the Variance Weight

Figuredepicts the ablation study done to find the best value of W, by setting Wi, and Wengropy
weights to 0. For the Cora, CiteSeer, PubMed, Coauthor CS, and Coauthor Physics datasets, the best
Whiar values were found to be 1/0.1, 0.1, 0.001, 0.1, and 1.0 respectively.

D.1.3 Varying the Entropy Weight

Figure [Z_f] depicts the ablation study done to find the best value of Wepyopy by setting Wiy and Wy,
weights to 0. For the Cora, CiteSeer, PubMed, Coauthor CS, and Coauthor Physics datasets, the best
Wentropy Values were found to be 0.001, 0.01, 0.001, 0.1 and 0.1 respectively.

D.1.4 Practical Challenges Regarding Manual Tuning

We acknowledge that adding diversity-preserving regularizers introduces more hyperparameters,
which can complicate practical adoption. However, in our experiments:

» We found that larger coefficients for distance (R_D =1 or 10) were typically beneficial on
highly feature-rich datasets (Coauthor CS, Coauthor Physics).
¢ Coefficients of 1 to 0.1 for variance (R_V) often worked well across most datasets.

* For the entropy term, 0.1 was a good upper bound on large feature spaces, whereas a smaller
coefficient was better on less feature-rich datasets.
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Figure 4: Finding the best value of Wenopy by setting Weise and Wy, to zero on the (a) Cora, (b) CiteSeer, (c)
PubMed, (d) Coauthor CS, and (e) Coauthor Physics datasets.

From these observations, we hypothesize that stronger diversity coefficients are advantageous for
richer feature spaces, whereas smaller coefficients are sufficient (and sometimes necessary) for lower-
dimensional or simpler datasets. As a direction for future work, we suggest exploring automated or
adaptive tuning schemes. Such an approach could dynamically adjust the weight of each regularizer
during training, further reducing manual overhead and improving reproducibility.

E Full Results

The tables below are indicative of the value of each evaluation metric obtained using DMoN/DMoN-
DPR pooling for each individual seed for different datasets. The seeds were selected at random using
a random number generator. The numbers are all in percentage (%).

E.1 Cora

The following tables list the performance of DiffPool, MinCut Pool, DMoN and different DMoN-DPR
configurations across different seeds on the Cora dataset.
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Table 8: Results obtained by using DiffPool on the Cora dataset.

Seed Method Conductance Modularity NMI F1
993  DiffPool 15.90 63.81 42.06 51.72
550 DiffPool 18.74 61.16 35.22 36.23
243 DiffPool 15.84 64.02 40.57 49.64

16 DiffPool 17.07 57.90 37.43 46.73
716  DiffPool 15.33 64.34 46.69 53.05
383 DiffPool 15.54 63.93 39.65 44.05
277  DiffPool 12.83 67.00 47.31 55.25
274 DiffPool 16.31 63.31 36.01 39.97
188  DiffPool 18.26 56.66 31.67 35.33
796 DiffPool 14.08 65.66 44.65 53.50

Mean =+ Std 1599 £ 1.77 6278 =328 40.13 £5.15 46.55+7.34

Table 9: Results obtained by using MinCut pooling on the Cora dataset.

Seed Method Conductance Modularity NMI F1
993  MinCut 12.73 72.59 41.66 43.90
550  MinCut 11.61 73.70 45.63 45.03
243 MinCut 13.89 71.56 31.48 33.71
16 MinCut 14.08 71.37 38.06 37.21
716  MinCut 14.38 71.14 33.82 40.37
383  MinCut 15.18 70.36 29.04 28.48
277 MinCut 13.09 72.42 42.81 46.15
274 MinCut 13.32 72.16 39.60 39.77
188  MinCut 13.81 71.65 40.52 44.13
796  MinCut 14.44 70.91 34.75 32.71

Mean =+ Std 13.65+1.01 71.79+£096 37.74+531 39.15+ 5098

Table 10: Results obtained by using DMoN pooling on the Cora dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (DVE) 11.35 71.32 48.90 52.56
550 DMoN-DPR (DVE) 9.81 72.13 38.15 42.84
243  DMoN-DPR (DVE) 10.72 73.08 40.71 40.03

16 DMoN-DPR (DVE) 11.06 71.48 42.84 46.41
716  DMoN-DPR (DVE) 9.93 72.55 42.77 44.43

383 DMoN-DPR (DVE) 11.54 73.41 44.12 51.88
277  DMoN-DPR (DVE) 9.66 73.52 45.61 49.43
274  DMoN-DPR (DVE) 11.03 74.44 41.98 41.83
188  DMoN-DPR (DVE) 9.51 74.37 51.31 56.52
796  DMoN-DPR (DVE) 10.65 71.36 42.78 43.37

Mean =+ Std 1053 £0.74 7277 £1.18 4392 4+3.85 46.93 +£542
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Table 11: Results obtained by using DMoN-DPR pooling, using the best epsilon value of 0.0001, and distance
weight of 1 on the Cora dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (D) 11.31 71.37 49.62 53.10
550 DMoN-DPR (D) 9.76 72.28 40.96 45.72
243  DMoN-DPR (D) 10.40 74.23 43.14 44.89
16 DMOoN-DPR (D) 11.90 71.00 42.22 44.14
716  DMoN-DPR (D) 9.62 71.51 43.06 46.72
383 DMOoN-DPR (D) 11.24 72.86 43.27 51.09
277  DMoN-DPR (D) 13.64 69.81 40.51 44.53
274  DMoN-DPR (D) 11.12 73.24 43.58 45.78
188  DMoN-DPR (D) 9.80 74.15 50.89 56.19
796  DMoN-DPR (D) 10.70 71.52 42.57 42.95
Mean + Std 1095+ 1.21 72204+ 142 4398 +346 47.51+4.40

Table 12: Results obtained by using DMoN-DPR pooling, using the best variance weight of 1 on the Cora

dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (V) 11.25 70.12 48.19 52.60
550 DMoN-DPR (V) 10.95 70.66 39.21 43.64
243  DMOoN-DPR (V) 11.63 71.41 40.33 39.36

16 DMOoN-DPR (V) 11.25 70.02 43.27 45.92

716  DMoN-DPR (V) 11.22 70.58 43.18 45.43
383 DMOoN-DPR (V) 13.40 70.06 42.14 51.60
277  DMoN-DPR (V) 11.33 69.87 41.46 45.44
274  DMOoN-DPR (V) 12.43 72.57 45.58 44.85
188  DMoN-DPR (V) 12.83 70.46 46.59 51.89
796  DMoN-DPR (V) 12.37 69.61 43.49 43.14

Mean =+ Std 11.87+0.83 70.54 £0.88 43.34+279 46.39+432

Table 13: Results obtained by using DMoN-DPR pooling, using the best entropy weight of 0.001 on the Cora
dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (E) 11.20 71.38 48.47 52.36
550 DMoN-DPR (E) 9.91 72.05 38.08 42.93
243  DMoN-DPR (E) 10.57 73.23 40.85 39.97

16 DMOoN-DPR (E) 11.06 71.47 42.93 46.56
716  DMoN-DPR (E) 9.89 72.54 42.62 44.72
383  DMoN-DPR (E) 11.42 73.51 44.30 51.74

277  DMoN-DPR (E) 9.55 73.52 45.49 49.53
274  DMoN-DPR (E) 11.08 74.33 43.10 42.42
188  DMoN-DPR (E) 9.61 74.26 51.24 56.67
796  DMOoN-DPR (E) 10.63 71.45 42.93 43.32

Mean =+ Std 1049 £0.70 7277 £ 1.15 44.00 £3.72 47.02 £5.34
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Table 14: Results obtained by using DMoN-DPR pooling, using the best epsilon value of 0.0001, distance
weight of 1, and variance weight of 0.1 on the Cora dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (DV) 10.93 71.05 49.87 53.66
550 DMoN-DPR (DV) 9.51 72.33 41.04 45.65
243  DMoN-DPR (DV) 10.84 73.28 42.18 42.58
16 DMOoN-DPR (DV) 10.86 71.23 43.08 44.77
716  DMoN-DPR (DV) 9.61 71.39 44.18 47.59
383  DMoN-DPR (DV) 11.80 73.16 43.66 46.75
277  DMoN-DPR (DV) 13.74 69.61 40.23 44.66
274  DMoN-DPR (DV) 11.33 73.29 45.41 47.47
188  DMoN-DPR (DV) 9.61 74.03 51.32 56.96
796  DMoN-DPR (DV) 10.72 71.30 43.02 43.54
Mean + Std 10.89 £ 1.26  72.07 +1.37 4440+3.60 47.36+£4.55

Table 15: Results obtained by using DMoN-DPR pooling, using the best epsilon value of 0.0001, distance
weight of 1, and entropy weight of 0.001 on the Cora dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (DE) 11.16 71.38 49.75 53.29
550 DMoN-DPR (DE) 9.68 72.33 40.85 45.67
243  DMoN-DPR (DE) 10.08 74.45 43.94 46.11

16 DMOoN-DPR (DE) 11.29 71.57 43.55 43.97
716  DMoN-DPR (DE) 9.61 71.58 44.19 47.71
383 DMoN-DPR (DE) 11.73 73.06 42.66 48.52
277  DMoN-DPR (DE) 13.58 69.91 40.43 44.48
274  DMoN-DPR (DE) 11.01 73.29 43.61 45.77
188  DMoN-DPR (DE) 9.81 74.04 51.34 56.67
796  DMoN-DPR (DE) 10.82 71.36 42.67 43.10

Mean =+ Std 10.88 £ 1.21 7230+ 1.40 4430+ 3.54 47.53+4.32

Table 16: Results obtained by using DMoN-DPR pooling, using the best variance weight of 1, and entropy
weight of 0.001 on the Cora dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (VE) 11.16 70.08 48.03 52.85
550 DMoN-DPR (VE) 10.86 70.77 39.39 43.76
243  DMoN-DPR (VE) 11.78 71.27 40.17 39.23

16 DMoN-DPR (VE) 11.29 69.93 43.33 45.86
716  DMoN-DPR (VE) 11.10 70.70 43.42 45.66
383 DMoN-DPR (VE) 13.17 70.14 41.54 51.22
277  DMOoN-DPR (VE) 11.46 69.60 41.28 45.35
274  DMoN-DPR (VE) 12.43 72.56 45.66 44.94
188  DMoN-DPR (VE) 12.90 70.39 46.46 51.76
796  DMoN-DPR (VE) 12.41 69.61 43.10 42.98

Mean =+ Std 11.86 £ 0.82  70.50 £ 0.89 4324 +2.79 46.36 =4.32
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Table 17: Results obtained by using DMoN-DPR pooling, using the best epsilon value of 0.0001, variance
weight of 0.1, and entropy weight of 0.001 on the Cora dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (DVE) 10.65 71.20 49.95 53.90
550 DMoN-DPR (DVE) 9.51 72.33 41.04 45.64
243  DMoN-DPR (DVE) 10.86 73.34 41.92 42.43
16 DMOoN-DPR (DVE) 10.78 71.29 42.83 44.73
716  DMoN-DPR (DVE) 9.74 71.30 43.98 47.36
383 DMoN-DPR (DVE) 12.58 72.50 42.83 45.78
277  DMoN-DPR (DVE) 13.81 69.51 40.61 45.21
274  DMOoN-DPR (DVE) 10.97 73.71 46.42 47.92
188  DMoN-DPR (DVE) 9.64 73.99 51.33 56.97
796  DMoN-DPR (DVE) 10.80 71.35 42.74 43.29
Mean + Std 1093+ 134 7205+ 139 4437+3.69 47.32+4.63

E.2 CiteSeer

The following tables list the performance of DiffPool, MinCut pooling, DMoN and different DMoN—
DPR configurations across different seeds on the CiteSeer dataset.

Table 18: Results obtained by using DiffPool pooling on the CiteSeer dataset.

Seed Method Conductance Modularity NMI F1
993  DiffPool 8.24 64.76 33.99 48.98
550  DiffPool 7.27 70.84 38.27 51.01
243 DiffPool 6.59 66.78 34.97 51.19

16 DiffPool 10.43 68.61 34.15 47.16
716  DiffPool 7.01 70.87 33.12 46.30
383  DiffPool 9.49 56.09 28.78 4591
277  DiffPool 9.58 64.40 29.61 41.80
274  DiffPool 6.50 71.68 32.23 44.80
188  DiffPool 7.18 66.15 32.83 48.86
796  DiffPool 6.94 66.72 36.02 52.33

Mean =+ Std 792+142  66.69+£453 3340282 47.83+£3.27

Table 19: Results obtained by using MinCut pooling on the CiteSeer dataset.

Seed Method Conductance Modularity NMI F1
993  MinCut 5.45 76.59 33.17 45.03
550  MinCut 5.34 75.36 24.92 35.92
243 MinCut 5.01 76.67 30.26 42.82

16 MinCut 7.21 73.20 18.09 26.08
716  MinCut 7.01 74.82 22.11 30.09
383  MinCut 6.04 75.25 23.28 34.72
277  MinCut 7.05 73.86 17.40 25.14
274 MinCut 5.32 76.16 2547 38.90
188  MinCut 6.44 75.23 32.94 42.54
796  MinCut 7.05 74.93 24.43 31.51

Mean =+ Std 6.19+ 086 7521+ 1.11 2521+£552 3528=£7.05
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Table 20: Results obtained by using DMoN pooling on the CiteSeer dataset.

Seed Method Conductance Modularity NMI F1
993 DMoN 6.81 74.92 20.78 26.09
550 DMoN 4.11 75.53 26.91 42.64
243 DMoN 4.28 75.57 32.12 45.74

16 DMoN 4.64 77.22 33.11 44.56

716  DMoN 4.53 76.24 36.95 50.12
383 DMoN 4.24 75.55 33.25 47.00
277 DMoN 4.26 75.63 29.25 42.33
274 DMoN 4.48 75.77 30.83 45.65
188 DMoN 6.17 72.74 24.52 36.01
796 DMoN 5.12 75.34 28.98 44.42

Mean =+ Std 4.86 = 0.91 7545+ 1.13  29.67 £4.70 42.46 £6.82

Table 21: Results obtained by using DMoN-DPR pooling using the best epsilon value of 0.0001, and distance
weight of 1 on the CiteSeer dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (D) 7.18 74.27 23.90 27.73
550 DMoN-DPR (D) 422 75.80 26.23 41.98
243  DMoN-DPR (D) 3.82 76.02 3591 50.13

16  DMoN-DPR (D) 4.83 76.31 32.78 44.47
716  DMoN-DPR (D) 4.57 76.13 36.99 50.14

383  DMoN-DPR (D) 4.81 75.97 33.02 45.96
277  DMoN-DPR (D) 3.87 75.75 29.37 42.34
274  DMoN-DPR (D) 4.15 76.06 30.88 45.48
188  DMoN-DPR (D) 6.37 73.98 25.00 36.47
796  DMoN-DPR (D) 5.71 75.26 26.83 39.93

Mean =+ Std 495+ 1.12  7555+£0.81 30.09£4.57 42.46 £ 6.69

Table 22: Results obtained by using DMoN-DPR pooling using the best variance weight of 0.1 on the CiteSeer

dataset.

Seed Method Conductance = Modularity NMI F1
993  DMOoN-DPR (V) 6.83 74.31 21.24 28.03
550  DMoN-DPR (V) 4.04 75.60 26.97 4275
243  DMOoN-DPR (V) 4.28 75.41 32.23 45.77

16 DMOoN-DPR (V) 5.14 76.33 34.01 46.10

716  DMoN-DPR (V) 4.57 76.13 36.89 50.11
383  DMoN-DPR (V) 4.15 75.38 33.48 47.59
277  DMOoN-DPR (V) 4.35 75.42 28.95 42.12
274  DMoN-DPR (V) 4.59 75.13 30.92 46.21
188  DMoN-DPR (V) 6.39 73.03 24.67 35.88
796  DMoN-DPR (V) 5.21 74.93 28.27 43.93

Mean =+ Std 496 £096 7517+£094 2976 £4.71 42.85+6.46
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Table 23: Results obtained by using DMoN-DPR pooling using the best entropy weight of 0.01 on the CiteSeer
dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (E) 7.27 73.95 21.36 28.28
550 DMoN-DPR (E) 4.15 75.67 26.79 42.59
243  DMoN-DPR (E) 4.31 75.39 32.27 45.75
16 DMOoN-DPR (E) 4.92 76.51 34.13 46.04
716  DMoN-DPR (E) 448 76.00 37.03 50.46
383 DMOoN-DPR (E) 4.46 75.36 32.82 46.38
277  DMoN-DPR (E) 4.20 75.58 29.78 43.08
274  DMoN-DPR (E) 4.26 75.81 31.63 46.59
188  DMOoN-DPR (E) 6.22 73.30 25.10 36.09
796  DMoN-DPR (E) 5.07 74.98 28.59 44.38
Mean + Std 493+ 1.03 7525+096 29.95+4.63 4296+ 6.35

Table 24: Results obtained by using DMoN-DPR pooling using the best epsilon value of 0.0001, distance
weight of 1, and variance weight of 0.1 on the CiteSeer dataset.

Seed Method Conductance  Modularity NMI F1
993  DMoN-DPR 7.54 73.39 2391 29.07
550 DMoN-DPR 4.35 75.62 26.61 42.29
243  DMoN-DPR 3.84 75.78 36.17 50.51
16 DMoN-DPR 4.86 76.09 33.03 44.97
716  DMoN-DPR 4.55 76.03 38.13 51.55
383  DMoN-DPR 4.90 75.53 33.12 46.09
277  DMoN-DPR 4.06 75.33 29.89 42.79
274  DMoN-DPR 4.28 75.82 31.51 46.34
188  DMoN-DPR 6.50 73.71 25.38 36.63
796  DMoN-DPR 6.04 74.53 27.25 42.22
Mean =+ Std 5.09 £ 1.21 75.18 £ 097 30.50 £4.72 43.25+6.58

Table 25: Results obtained by using DMoN-DPR pooling using the best epsilon value of 0.0001, distance
weight of 1, and entropy weight of 0.01 on the CiteSeer dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (DE) 7.45 73.34 24.03 29.50
550 DMoN-DPR (DE) 4.37 75.63 26.92 42.46
243  DMoN-DPR (DE) 3.89 75.81 36.33 50.53
16 DMoN-DPR (DE) 5.07 75.80 32.09 43.42
716  DMoN-DPR (DE) 4.33 75.97 38.51 52.05
383 DMoN-DPR (DE) 4.83 75.58 32.59 45.72
277  DMoN-DPR (DE) 4.02 75.47 30.22 43.10
274  DMoN-DPR (DE) 4.35 75.80 31.50 46.10
188  DMoN-DPR (DE) 6.35 73.93 25.29 36.35
796  DMoN-DPR (DE) 6.06 74.49 27.23 42.08
Mean =+ Std 507£1.17 7518 £092 3047+£470 43.13+6.53
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Table 26: Results obtained by using DMoN-DPR pooling using the best variance weight of 0.1, and best entropy
weight of 0.01 on the CiteSeer dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (VE) 7.51 73.51 21.85 28.66
550 DMoN-DPR (VE) 4.35 75.43 26.50 42.19
243  DMoN-DPR (VE) 4.48 75.15 32.58 46.11
16 DMOoN-DPR (VE) 4.79 76.51 33.09 45.03
716  DMoN-DPR (VE) 4.50 75.95 37.46 51.15
383  DMoN-DPR (VE) 4.61 74.94 33.20 46.98
277 DMoN-DPR (VE) 4.24 75.33 30.08 43.40
274  DMoN-DPR (VE) 4.37 75.69 31.72 46.90
188  DMoN-DPR (VE) 6.39 72.92 25.40 36.39
796  DMoN-DPR (VE) 5.23 74.71 29.84 45.84
Mean + Std 505+ 1.07 75.01+£1.09 30.17+4.53 43.27+6.40

Table 27: Results obtained by using DMoN-DPR pooling using the best epsilon value of 0.0001, distance
weight of 1, variance weight of 0.1, and entropy weight of 0.01 on the CiteSeer dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR 7.45 73.17 23.84 29.48
550 DMoN-DPR 4.15 75.58 26.66 42.48
243 DMoN-DPR 391 75.68 36.30 50.67

16  DMoN-DPR 5.23 75.44 31.58 42.92
716  DMoN-DPR 4.59 75.96 37.14 50.08
383 DMoN-DPR 4.75 7543 32.95 45.93
277  DMoN-DPR 4.44 75.10 29.34 41.94
274  DMoN-DPR 435 7591 31.30 46.10
188  DMoN-DPR 6.52 73.57 26.09 37.49
796  DMoN-DPR 6.24 74.21 27.32 4291

Mean =+ Std 516 £1.18  75.01 £1.00 30.25+441 43.00+£6.16
E.3 PubMed

The following tables list the performance of MinCut pooling, DMoN and different DMoN-DPR
configurations across different seeds on the PubMed dataset.

Table 28: Results obtained by using MinCut pooling on the PubMed dataset.

Seed Method Conductance Modularity NMI F1
993  MinCut 12.82 53.38 23.17 41.29
550  MinCut 8.41 56.48 21.15 44.79
243 MinCut 12.52 53.77 23.64 40.72
16 MinCut 12.60 53.65 23.65 39.98
716  MinCut 10.43 55.36 21.44 37.44
383  MinCut 12.62 53.67 23.85 41.18
277  MinCut 8.32 56.56 20.47 44.08
274 MinCut 8.33 56.46 20.25 44.46
188  MinCut 12.52 53.76 23.34 38.89
796  MinCut 12.79 53.53 23.84 40.30

Mean =+ Std 11.14 £2.04 5466 £138 2248+147 4131+244
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Table 29: Results obtained by using DMoN pooling on the PubMed dataset.

Seed Method Conductance Modularity NMI F1
993 DMoN 10.94 55.54 22.49 40.20
550 DMoN 7.64 58.82 26.92 49.53
243 DMoN 7.93 57.62 21.77 44.56

16 DMoN 7.96 57.63 21.74 44.37

716 DMOoN 8.05 57.34 21.70 44.97
383 DMoN 9.79 56.12 22.79 37.01
277 DMOoN 7.80 57.63 21.69 44.89
274 DMoN 7.90 57.45 21.60 44.80
188 DMOoN 10.09 55.60 21.39 37.09
796 DMoN 7.96 57.52 21.76 44 .85

Mean =+ Std 861 £1.19 57.13+£1.04 2238+£1.65 43.23+£3.93

Table 30: Results obtained by using DMoN-DPR pooling using the best epsilon value of 0.001 and distance
weight of 1 on the PubMed dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (D) 10.82 55.67 22.35 40.01
550 DMoN-DPR (D) 7.65 58.81 26.89 49.57
243  DMoN-DPR (D) 7.95 57.60 21.79 44.56

16  DMoN-DPR (D) 7.99 57.59 21.73 44.35
716  DMoN-DPR (D) 8.05 57.36 21.71 44.95

383  DMoN-DPR (D) 9.78 56.13 22.83 37.08
277  DMoN-DPR (D) 7.81 57.62 21.67 44.88
274  DMoN-DPR (D) 7.82 57.53 21.67 4491
188  DMoN-DPR (D) 10.14 55.54 21.34 37.09
796  DMoN-DPR (D) 7.97 57.51 21.82 44.96

Mean =+ Std 8.60+1.17 57.14+£1.03 2238+1.64 43.24+3.95

Table 31: Results obtained by using DMoN-DPR pooling using the best variance weight of 0.001 on the
PubMed dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (V) 10.94 55.54 22.54 40.25
550 DMoN-DPR (V) 7.64 58.82 26.91 49.52
243  DMoN-DPR (V) 7.94 57.61 21.76 44.54
16 DMOoN-DPR (V) 7.96 57.63 21.73 44.37
716  DMoN-DPR (V) 8.05 57.34 21.70 44.97
383 DMOoN-DPR (V) 9.78 56.13 22.85 37.03
277  DMoN-DPR (V) 7.80 57.63 21.69 44.89
274  DMOoN-DPR (V) 791 57.45 21.60 44.79
188  DMoN-DPR (V) 10.09 55.60 21.38 37.07
796  DMoN-DPR (V) 7.98 57.50 21.76 44.86
Mean =+ Std 8.61£1.19 57.12+£1.04 2239+1.65 43.234+3.93
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Table 32: Results obtained by using DMoN-DPR pooling using the best entropy weight of 0.001 on the PubMed
dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (E) 10.96 55.52 22.51 40.19
550 DMoN-DPR (E) 7.65 58.81 26.90 49.50
243  DMoN-DPR (E) 7.94 57.61 21.76 44.55
16 DMOoN-DPR (E) 7.97 57.62 21.74 44.37
716  DMoN-DPR (E) 8.05 57.33 21.63 4491
383 DMOoN-DPR (E) 9.82 56.08 22.79 36.95
277 DMOoN-DPR (E) 7.80 57.63 21.69 44.89
274  DMoN-DPR (E) 7.91 57.45 21.60 44.80
188  DMOoN-DPR (E) 10.08 55.56 21.26 37.16
796  DMoN-DPR (E) 7.98 57.51 21.75 44.85
Mean + Std 8.62+1.19 57.11+1.05 2236+1.66 43.22+3.92

Table 33: Results obtained by using DMoN-DPR pooling using the best epsilon value of 0.001, distance weight
of 1, and variance weight of 0.001 on the PubMed dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (DV) 10.84 55.65 22.38 40.02
550 DMoN-DPR (DV) 7.65 58.81 26.87 49.55
243  DMoN-DPR (DV) 7.95 57.60 21.79 44.56
16 DMOoN-DPR (DV) 7.99 57.59 21.74 44.37
716  DMoN-DPR (DV) 8.06 57.35 21.72 44.96
383  DMoN-DPR (DV) 9.76 56.15 22.84 37.08
277  DMoN-DPR (DV) 7.81 57.62 21.67 44.88
274  DMoN-DPR (DV) 7.82 57.53 21.67 4491
188  DMoN-DPR (DV) 10.12 55.55 21.30 37.10
796  DMoN-DPR (DV) 7.97 57.50 21.79 44.92
Mean =+ Std 8.60+1.17 57.13+1.03 2238+ 1.64 43.23 £3.95

Table 34: Results obtained by using DMoN-DPR pooling using the best epsilon value of 0.001, distance weight
of 1, and entropy weight of 0.001 on the PubMed dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (DE) 10.83 55.65 22.42 40.03
550 DMoN-DPR (DE) 7.65 58.80 26.87 49.55
243  DMoN-DPR (DE) 7.95 57.60 21.79 44.57
16 DMoN-DPR (DE) 8.02 57.57 21.69 44.34
716  DMoN-DPR (DE) 8.03 57.37 21.77 45.03
383 DMoN-DPR (DE) 9.81 56.10 22.81 37.07
277  DMoN-DPR (DE) 7.81 57.62 21.67 44.87
274  DMoN-DPR (DE) 7.82 57.52 21.68 44.92
188  DMoN-DPR (DE) 10.10 55.50 21.32 37.24
796  DMoN-DPR (DE) 7.98 57.50 21.79 44.92
Mean =+ Std 8.60+1.17 57.12+£1.04 2238+1.63 43.254+3.93
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Table 35: Results obtained by using DMoN-DPR pooling using the best variance weight of 0.001, and entropy
weight of 0.001 on the PubMed dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (VE) 10.85 55.64 22.48 40.10
550 DMoN-DPR (VE) 7.65 58.82 26.90 49.50
243  DMoN-DPR (VE) 7.94 57.61 21.76 44.54
16 DMoN-DPR (VE) 7.97 57.62 21.74 44.37
716  DMoN-DPR (VE) 8.06 57.33 21.63 4491
383  DMoN-DPR (VE) 9.80 56.09 22.79 36.98
277 DMoN-DPR (VE) 7.80 57.63 21.68 44.88
274  DMoN-DPR (VE) 7.92 57.44 21.60 44.79
188  DMoN-DPR (VE) 10.01 55.65 21.43 37.15
796  DMoN-DPR (VE) 7.97 57.50 21.73 44.84
Mean + Std 860+ 1.16 57.13+1.02 2237+1.65 43.21+3.93

Table 36: Results obtained by using DMoN-DPR pooling using the best epsilon value of 0.001, distance weight
of 1, variance weight of 0.001, and entropy weight of 0.001 on the PubMed dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (DVE) 10.85 55.63 22.40 40.04
550 DMoN-DPR (DVE) 7.66 58.80 26.86 49.54
243  DMoN-DPR (DVE) 7.94 57.61 21.79 44.57

16  DMoN-DPR (DVE) 8.02 57.57 21.69 44.34
716  DMoN-DPR (DVE) 8.07 57.34 21.68 4493

383  DMoN-DPR (DVE) 9.81 56.09 22.81 37.08
277  DMoN-DPR (DVE) 7.81 57.62 21.67 44.87
274  DMoN-DPR (DVE) 7.83 57.51 21.69 4493
188  DMoN-DPR (DVE) 10.15 55.47 21.31 37.20
796  DMoN-DPR (DVE) 797 57.50 21.75 44.87

Mean =+ Std 8.61£1.18 57.11+1.05 2237+1.64 43.24+392

E.4 Coauthor CS

The following tables list the performance of DiffPool, MinCut pooling, DMoN and different DMoN—
DPR configurations across different seeds on the Coauthor CS dataset.

Table 37: Results obtained by using DiffPool pooling on the Coauthor CS dataset.

Seed Method Conductance Modularity NMI F1
993  DiftPool 16.20 61.90 53.06 53.73
550  DiffPool 19.88 62.52 54.40 46.18
243 DiftPool 20.41 59.39 49.01 49.43

16 DiffPool 16.41 62.75 53.63 56.78
716  DiftPool 16.64 61.46 54.03 57.47
383  DiffPool 19.21 62.93 54.93 56.09
277  DiftPool 20.95 63.84 56.25 47.35
274  DiffPool 16.04 62.92 53.34 52.78
188  DiffPool 20.58 61.21 56.02 56.85
796  DiffPool 15.61 63.44 54.53 58.08

Mean =+ Std 18.19 £2.18 6224 +130 53.92+2.02 53.47+440
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Table 38: Results obtained by using MinCut pooling on the Coauthor CS dataset.

Seed Method Conductance Modularity NMI F1
993  MinCut 22.08 70.93 63.96 46.60
550 MinCut 21.02 71.89 64.48 47.58
243 MinCut 21.43 71.52 63.83 49.56

16 MinCut 21.38 71.57 63.92 49.60
716  MinCut 21.53 71.33 61.94 47.48
383 MinCut 21.26 71.68 65.02 50.28
277  MinCut 21.09 71.80 65.17 49.75
274 MinCut 21.33 71.64 65.19 49.55
188  MinCut 21.39 71.49 64.73 50.51
796 MinCut 21.05 71.92 65.03 49.13

Mean =+ Std 2136 £0.31 7158 4+£0.29 6433 +0.99 49.00+1.31

Table 39: Results obtained by using DMoN pooling on the Coauthor CS dataset.

Seed Method Conductance Modularity NMI F1
993 DMOoN 18.28 72.47 68.53 58.97
550 DMoN 18.01 72.56 67.90 57.26
243 DMOoN 18.50 72.80 70.05 59.31

16 DMoN 18.04 72.93 70.70 62.98
716 DMoN 18.23 72.24 68.54 62.21
383 DMoN 17.72 73.06 70.11 60.39
277 DMoN 20.05 72.04 66.73 54.74
274 DMoN 18.13 73.24 71.11 62.35
188 DMoN 18.49 73.22 71.11 60.66
796 DMoN 20.81 71.42 67.82 53.72

Mean =+ Std 18.63 099 72.60+0.58 69.26 +1.55 59.26 £ 3.17

Table 40: Results obtained by using DMoN-DPR pooling using the best epsilon value of 1, and distance weight
of 1 on the Coauthor CS dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (D) 19.52 71.62 70.00 60.13
550 DMoN-DPR (D) 18.63 72.19 70.76 61.55
243  DMoN-DPR (D) 19.37 71.83 69.94 60.27

16 DMoN-DPR (D) 19.14 72.53 72.67 64.33
716  DMoN-DPR (D) 18.83 72.46 70.96 62.26
383 DMoN-DPR (D) 19.05 72.16 71.26 62.23
277  DMoN-DPR (D) 18.70 72.93 72.60 63.38
274  DMoN-DPR (D) 18.46 72.51 71.16 61.65
188  DMoN-DPR (D) 19.29 71.97 71.58 61.29
796  DMoN-DPR (D) 17.94 72.77 70.78 61.08

Mean =+ Std 18.89 £ 048 7230+ 042 71.17+093 61.82+1.30
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Table 41: Results obtained by using DMoN-DPR pooling using the best variance weight of 0.1 on the Coauthor
CS dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (V) 18.09 72.79 69.54 60.69
550 DMOoN-DPR (V) 19.20 72.05 69.23 60.66
243  DMOoN-DPR (V) 17.60 73.27 71.19 62.29
16 DMOoN-DPR (V) 18.45 72.43 68.76 60.54
716  DMoN-DPR (V) 18.58 72.35 68.53 59.02
383 DMOoN-DPR (V) 19.05 72.25 69.61 59.12
277  DMoN-DPR (V) 19.33 72.27 69.12 57.74
274  DMoN-DPR (V) 18.62 72.97 70.38 62.66
188 DMoN-DPR (V) 18.55 73.04 71.22 60.91
796  DMoN-DPR (V) 20.01 71.56 67.98 55.77
Mean + Std 18.75+0.68 72504+ 0.52 69.56 + 1.08 59.94 + 2.08

Table 42: Results obtained by using DMoN-DPR pooling using the best entropy weight of 0.1 on the Coauthor
CS dataset.

Seed Method Conductance = Modularity NMI F1
993  DMOoN-DPR (E) 20.73 69.18 70.29 57.08
550 DMoN-DPR (E) 19.82 71.30 70.48 57.63
243  DMoN-DPR (E) 19.35 71.39 72.46 64.00
16 DMOoN-DPR (E) 18.71 71.88 73.81 66.15
716  DMoN-DPR (E) 18.77 72.20 74.36 66.49
383 DMOoN-DPR (E) 19.01 71.17 70.30 60.87
277  DMoN-DPR (E) 21.91 69.36 70.12 59.57
274  DMOoN-DPR (E) 19.90 71.03 72.03 60.58
188  DMoN-DPR (E) 19.49 71.84 73.02 62.90
796  DMoN-DPR (E) 20.85 69.82 68.94 58.00
Mean =+ Std 19.85+1.03 70924+1.08 7158+ 1.81 61.33+343

Table 43: Results obtained by using DMoN-DPR pooling using the best epsilon value of 1, distance weight of
1, and variance weight of 0.1 on the Coauthor CS dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (DV) 19.55 71.66 69.75 60.56
550 DMoN-DPR (DV) 18.24 72.37 71.14 61.70
243  DMoN-DPR (DV) 18.94 71.86 70.04 60.62

16 DMOoN-DPR (DV) 19.75 71.81 72.52 63.87
716  DMoN-DPR (DV) 20.11 71.14 68.74 58.85
383 DMoN-DPR (DV) 19.52 71.72 69.75 60.47

277  DMoN-DPR (DV) 18.63 72.57 72.00 62.98
274  DMoN-DPR (DV) 18.68 72.21 71.43 62.77
188  DMoN-DPR (DV) 19.89 71.46 69.60 58.73
796  DMoN-DPR (DV) 18.13 72.81 72.20 62.90

Mean =+ Std 19.14 £ 0.71 7196 £0.52 70.72+1.30 61.35+1.78
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Table 44: Results obtained by using DMoN-DPR pooling using the best epsilon value of 1, distance weight of
1, and entropy weight of 0.1 on the Coauthor CS dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (DE) 19.75 70.62 71.29 63.49
550 DMoN-DPR (DE) 20.49 70.46 71.58 63.84
243  DMoN-DPR (DE) 20.83 69.25 69.19 60.23

16 DMOoN-DPR (DE) 19.57 70.68 70.86 62.53
716  DMoN-DPR (DE) 19.12 71.23 71.83 62.71
383 DMoN-DPR (DE) 19.22 71.16 72.81 64.86
277  DMoN-DPR (DE) 19.78 71.78 73.49 65.51
274  DMoN-DPR (DE) 19.52 70.15 70.28 61.17
188  DMoN-DPR (DE) 20.82 69.37 67.33 57.40
796  DMoN-DPR (DE) 19.00 70.96 70.94 61.83

Mean + Std 19.81 £ 0.68 70.57 +£0.80 70.96+1.76 62.36 £ 2.37

Table 45: Results obtained by using DMoN-DPR pooling using the best variance weight of 0.1, and entropy
weight of 0.1 on the Coauthor CS dataset.

Seed Method Conductance  Modularity NMI F1
993  DMOoN-DPR (VE) 20.74 69.08 70.35 57.99
550 DMoN-DPR (VE) 19.85 71.25 70.50 57.59
243  DMoN-DPR (VE) 19.43 71.30 72.55 64.08
16  DMoN-DPR (VE) 18.74 71.85 73.81 66.17
716  DMoN-DPR (VE) 19.22 71.37 73.19 65.61
383  DMoN-DPR (VE) 18.65 7143 70.49 60.75
277  DMoN-DPR (VE) 21.92 69.32 70.10 59.50
274  DMoN-DPR (VE) 19.93 70.96 71.96 60.58
188  DMoN-DPR (VE) 19.44 71.87 73.01 63.01
796  DMoN-DPR (VE) 20.99 69.70 68.72 57.97
Mean =+ Std 19.89 £1.04 70.81+1.04 7147+1.66 61.33+3.21

Table 46: Results obtained by using DMoN-DPR pooling using the best epsilon value of 1, distance weight of
1, variance weight of 0.1, and entropy weight of 0.1 on the Coauthor CS dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (DVE) 20.34 70.31 70.86 63.39
550 DMoN-DPR (DVE) 20.09 70.77 71.87 64.16
243  DMoN-DPR (DVE) 19.56 70.27 70.03 60.73
16 DMoN-DPR (DVE) 20.21 70.65 72.33 63.54
716  DMoN-DPR (DVE) 19.26 71.08 71.81 62.97
383 DMoN-DPR (DVE) 19.17 71.20 72.88 64.81
277  DMoN-DPR (DVE) 18.96 72.10 73.54 65.43
274  DMoN-DPR (DVE) 19.65 70.36 70.79 61.93
188  DMoN-DPR (DVE) 20.98 69.20 67.10 57.05
796  DMoN-DPR (DVE) 18.70 71.14 71.62 62.70
Mean + Std 19.69 £0.71 7071 £0.76 71.28+1.79 62.67 +2.40

E.5 Coauthor Physics

The following tables list the performance of DiffPool, MinCut pooling, DMoN and different DMoN—
DPR configurations across different seeds on the Coauthor Physics dataset.
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Table 47: Results obtained by using DiffPool pooling on the Coauthor Physics dataset.

Seed Method Conductance Modularity NMI F1
993  DiffPool 13.06 56.73 57.94 53.93
550  DiffPool 15.25 59.42 59.33 53.71
243 DiffPool 13.06 57.18 56.61 52.20

16 DiffPool 13.26 56.55 57.69 53.75

716  DiffPool 14.42 58.97 61.09 53.65
383  DiffPool 14.03 57.15 58.03 54.06
277  DiffPool 13.37 56.48 47.24 46.20
274  DiffPool 13.26 55.70 58.06 56.79
188  DiffPool 12.23 57.04 58.30 54.31
796  DiffPool 17.18 59.19 47.89 38.47

Mean =+ Std 1391 +142 5744+£129 5622+4.71 51.71 £5.38

Table 48: Results obtained by using MinCut pooling on the Coauthor Physics dataset.

Seed Method Conductance Modularity NMI F1
993  MinCut 14.08 61.78 4891 45.03
550  MinCut 14.35 61.54 56.89 51.00
243 MinCut 13.74 61.79 51.41 47.76

16 MinCut 13.38 62.16 57.19 51.39

716  MinCut 13.18 62.55 57.10 51.27
383  MinCut 13.95 62.12 48.62 42.59
277 MinCut 14.17 61.39 48.28 46.92
274 MinCut 14.20 61.31 45.80 46.44
188  MinCut 13.33 62.51 52.14 47.82
796  MinCut 14.95 60.38 47.53 47.70

Mean =+ Std 1393 +0.54 61.75+0.65 51.39+430 47.79+2.84

Table 49: Results obtained by using DMoN pooling on the Coauthor Physics dataset.

Seed Method Conductance Modularity NMI F1
993 DMoN 12.64 59.92 44.49 46.04
550 DMoN 13.87 64.01 54.36 47.54
243 DMoN 13.89 63.77 56.67 49.51

16 DMoN 13.82 63.77 56.89 49.55

716 DMoN 13.93 63.72 55.42 49.02
383 DMoN 13.65 63.63 52.66 46.65
277 DMoN 13.48 63.85 50.84 44.74
274 DMoN 13.84 64.02 53.53 46.36
188 DMoN 13.89 63.73 55.87 49.33
796 DMoN 14.02 64.12 54.29 46.36

Mean =+ Std 1370 £ 040 6345+125 5350+3.67 4751+£1.73
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Table 50: Results obtained by using DMoN-DPR pooling using the best epsilon value of 10, and distance
weight of 1 on the Coauthor Physics dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (D) 14.00 62.17 51.59 47.84
550 DMoN-DPR (D) 19.30 56.61 50.82 46.32
243  DMoN-DPR (D) 18.21 57.77 58.61 50.55
16 DMOoN-DPR (D) 16.19 54.39 53.19 55.67
716  DMoN-DPR (D) 16.93 55.94 48.09 49.54
383 DMoN-DPR (D) 19.58 55.58 52.71 46.44
277  DMoN-DPR (D) 14.97 55.73 51.49 53.53
274  DMoN-DPR (D) 15.55 56.74 59.80 55.95
188  DMoN-DPR (D) 14.85 55.96 55.95 54.65
796  DMoN-DPR (D) 14.78 58.04 52.68 49.37
Mean + Std 1644 +199 56.89+2.14 5349 +3.61 50.99+3.71

Table 51: Results obtained by using DMoN-DPR pooling using the best variance weight of 1 on the Coauthor
Physics dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (V) 12.28 58.05 45.73 45.50
550 DMOoN-DPR (V) 11.94 57.38 54.27 54.78
243  DMoN-DPR (V) 13.49 60.85 59.11 53.04
16 DMOoN-DPR (V) 13.55 58.65 58.50 56.62
716  DMoN-DPR (V) 11.83 58.84 56.84 53.74
383 DMOoN-DPR (V) 14.44 57.84 54.21 55.65
277  DMoN-DPR (V) 12.03 58.71 57.09 53.73
274  DMOoN-DPR (V) 14.15 57.02 53.90 55.44
188  DMoN-DPR (V) 13.11 57.40 54.62 53.97
796  DMoN-DPR (V) 15.02 61.14 45.01 45.34
Mean =+ Std 13.18 + 1.14 5859+ 1.41 5393+4.87 5278 +4.02

Table 52: Results obtained by using DMoN-DPR pooling using the best entropy weight of 0.1 on the Coauthor
Physics dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (E) 13.59 59.64 48.13 45.60
550 DMoN-DPR (E) 11.94 57.60 54.02 54.19
243  DMoN-DPR (E) 13.72 61.90 58.72 51.62

16 DMOoN-DPR (E) 13.53 58.94 57.15 55.16
716  DMoN-DPR (E) 14.17 57.80 47.71 51.12
383  DMoN-DPR (E) 14.24 58.41 53.68 54.15

277  DMoN-DPR (E) 11.57 58.08 53.16 52.07
274  DMoN-DPR (E) 13.26 57.99 53.77 51.77
188  DMoN-DPR (E) 14.08 60.75 55.54 50.03
796  DMOoN-DPR (E) 14.81 62.19 46.39 45.17

Mean =+ Std 1349+ 1.02 5933+1.72 5283 +4.13 51.09£3.39
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Table 53: Results obtained by using DMoN-DPR pooling using the best epsilon value of 10, distance weight of
1, and variance weight 1 on the Coauthor Physics dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (DV) 15.37 55.95 48.78 53.49
550 DMOoN-DPR (DV) 14.84 55.32 52.13 57.57
243  DMoN-DPR (DV) 13.82 56.19 56.71 57.69
16 DMOoN-DPR (DV) 11.67 56.14 54.87 57.53
716  DMoN-DPR (DV) 10.97 57.41 62.02 61.81
383  DMoN-DPR (DV) 13.45 56.41 54.45 57.87
277  DMOoN-DPR (DV) 14.25 56.26 52.86 57.93
274  DMoN-DPR (DV) 11.79 56.58 57.37 59.70
188  DMOoN-DPR (DV) 14.17 56.86 60.24 58.29
796  DMoN-DPR (DV) 13.98 57.70 58.95 58.04
Mean + Std 1343+ 146 5648 +0.70 55.84 +4.02 57.99 +2.06

Table 54: Results obtained by using DMoN-DPR pooling using the best epsilon value of 10, distance weight of
1, and entropy weight of 0.1 on the Coauthor Physics dataset.

Seed Method Conductance = Modularity NMI F1
993  DMOoN-DPR (DE) 13.94 61.00 47.60 46.37
550 DMoN-DPR (DE) 14.11 56.74 54.67 55.98
243 DMoN-DPR (DE) 13.89 57.00 60.05 58.60

16 DMoN-DPR (DE) 13.90 54.44 53.68 57.90
716  DMoN-DPR (DE) 11.35 57.47 63.18 61.39
383 DMoN-DPR (DE) 15.41 54.93 51.58 53.92
277  DMoN-DPR (DE) 15.84 54.43 51.48 57.57
274  DMoN-DPR (DE) 14.14 57.42 53.66 56.28
188  DMOoN-DPR (DE) 15.33 56.20 56.80 55.88
796  DMoN-DPR (DE) 13.83 59.24 47.47 46.26

Mean =+ Std 1417 £124 56.89 £2.09 54.02+5.00 55.0244.99
Mean 14.22 56.10 54.71 56.94
Variance 0.01 0.01 0.16 0.10

Table 55: Results obtained by using DMoN-DPR pooling using the best variance weight of 1, and entropy
weight Of 0.1 on the Coauthor Physics dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (VE) 8.51 36.26 14.21 44.28
550 DMOoN-DPR (VE) 13.11 57.01 52.67 57.06
243  DMoN-DPR (VE) 14.40 59.91 56.09 52.22

16 DMoN-DPR (VE) 13.97 58.17 62.31 59.21
716  DMoN-DPR (VE) 13.66 58.24 53.74 53.47
383 DMoN-DPR (VE) 14.12 57.60 56.52 57.86

277  DMoN-DPR (VE) 16.66 60.87 48.23 44.09
274  DMoN-DPR (VE) 12.18 56.56 51.47 56.39
188  DMoN-DPR (VE) 11.16 56.05 56.50 60.71
796  DMoN-DPR (VE) 13.32 58.12 47.75 50.50

Mean + Std 13.11 £2.17 5588 £7.04 4995+ 13.27 53.58 £5.86
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Table 56: Results obtained by using DMoN-DPR pooling using the best epsilon value of 10, distance weight of
1, variance weight of 1, and entropy weight of 0.1 on the Coauthor Physics dataset.

Seed Method Conductance = Modularity NMI F1
993  DMoN-DPR (DVE) 14.25 57.43 42.12 46.26
550 DMoN-DPR (DVE) 14.53 55.66 53.54 57.87
243  DMoN-DPR (DVE) 12.50 55.96 54.67 59.77
16 DMOoN-DPR (DVE) 13.27 54.52 51.00 57.72
716  DMoN-DPR (DVE) 12.95 54.76 54.90 58.06
383 DMoN-DPR (DVE) 12.76 55.00 56.93 60.32
277 DMoN-DPR (DVE) 14.47 54.87 52.66 59.00
274  DMoN-DPR (DVE) 12.47 55.39 58.52 61.38
188  DMoN-DPR (DVE) 11.29 57.23 62.59 62.06
796  DMoN-DPR (DVE) 9.90 53.89 48.04 57.18
Mean + Std 12.84 + 145 5547+ 1.14 53.50+5.67 57.96+4.42

F Implementation Details

The code was implemented by extending the DMoN implementation in PyTorch Geometric (Fey and
Lenssen, 2019)), and was trained and evaluated using the evaluation protocols found in the official
DMoN repository (Tsitsulin et al.,[2023)). The experiments were run on an A100 GPU with 40GB
of memory offered by Google Colab Pro. Regarding the runtime analysis results and clustering
visualization, the code was run on an Apple M2 Max CPU.
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