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ABSTRACT

Detecting training data for large language models (LLMs) is receiving growing
attention, especially in high-reliability applications. While numerous efforts have
been made to address this issue, they typically focus on accuracy without ensur-
ing controllable results. To fill this gap, we propose Knockoff Inference-based
Training data Detector (KTD), a novel method that achieves rigorous false dis-
covery rate (FDR) control in training data detection. Specifically, KTD generates
synthetic knockoff samples that seamlessly replace original data points without
compromising contextual integrity. A novel knockoff statistic, which incorporates
multiple knockoff draws, is then calculated to ensure FDR control while main-
taining high power. Our theoretical analysis demonstrates KTD’s asymptotic op-
timality in terms of FDR control and power. Empirical experiments on real-world
datasets, such as WikiMIA, XSum, and Real-Time BBC News, further validate
KTD’s superior performance compared to existing methods.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable performance across a wide range of nat-
ural language processing (NLP) tasks, including machine translation (Wong et al., 2023), code com-
pletion (Chen et al., 2021; Li et al., 2022), and question answering (Dong et al., 2024; Li et al.,
2024a). This success is largely driven by the use of massive language corpora, often reaching the
trillion-token scale (Computer, 2023). While such extensive datasets equip LLMs with broad knowl-
edge and strong text generation capabilities, they may also contain private information (Carlini et al.,
2021) or copyrighted content (Chang et al., 2023) collected from the Internet, leading to potential
risks. For instance, LLMs can inadvertently memorize and reproduce sensitive information when
prompted with carefully crafted inputs, posing significant threats to privacy and intellectual property
rights (Carlini et al., 2021).

To address this issue, recent studies have explored methods for detecting training data within LLMs
(Shi et al., 2023; Golchin & Surdeanu, 2023). However, these approaches typically frame the prob-
lem as a binary classification task, focusing solely on distinguishing between training and non-
training samples with high accuracy. We argue that accuracy alone is insufficient, particularly in
cases involving copyright violation detection. For instance, if a copyright holder seeks legal ac-
tion against a technology company for unauthorized use of proprietary content (Grynbaum & Mac,
2023), it is critical to ensure that the majority of identified training samples were genuinely used
by the company for training. False detections in such cases could lead to unwarranted legal con-
sequences. Therefore, beyond accuracy, controlling the false discovery rate (FDR) (Benjamini &
Hochberg, 1995)—also referred to as the false positive rate in binary classification—is essential for
training data detection and should not be overlooked.

In this paper, we study the problem of detecting training samples from LLMs with controllable
FDR. Specifically, given a set of text samples, our goal is to determine whether the model has
been trained on them while ensuring that the proportion of falsely identified training samples (i.e.,
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non-training samples mistakenly classified as training samples) remains within a predefined bound.
Inspired by controllable variable selection, we propose a Knockoff Inference-based Training Data
Detector (KTD), which treats the problem of detecting training samples as an instance of relevant
variable selection, thereby enabling the use of knockoff inference’s (KI) robust capacity in FDR
controlling. KI generates knockoff variables corresponding to each original variable and computes
knockoff statistics for each pair of original and knockoff variables, which are then used to identify
relevant variables. Building on the KI paradigm, KTD operates in two stages. In the first stage,
KTD generates knockoffs that preserve the semantics of the original text samples, ensuring they
can substitute for the originals without altering the context. In the second stage, KTD computes
knockoff statistics to capture differences between the original text samples and their corresponding
knockoffs, using these differences as indicators to identify training samples.

In KTD, a fundamental component for successful detection is the construction of the knockoff statis-
tic. While the knockoff statistic from the vanilla KI method can be directly applied to KTD, it has
a significant drawback: the vanilla KI method uses only a single draw of the knockoff variable to
calculate the knockoff statistic Wj . This approach results in a high variance in Wj due to the in-
herent randomness of the knockoff process, making it difficult to distinguish between training and
non-training samples. Such indistinguishability can lead to overly conservative detection results,
excluding too many true training samples to achieve the desired FDR control. As a result, the
detection efficiency—measured by power (i.e., the proportion of actual training samples correctly
identified)—is significantly compromised.

To address this issue, KTD adopts a novel approach for calculating the knockoff statistic which
utilizes multiple draws of the knockoff variable. This design effectively reduces the variance of
the knockoff statistic, making it more centralized and thereby enhancing the separability between
training and non-training samples. Specifically, KTD draws m realizations of the knockoff variable
and computes the knockoff statistic W̃j by comparing the importance score of the original variable
to the average of the importance scores of these realizations.

To theoretically justify KTD, we first demonstrate that the knockoff statistic of KTD, i.e., WKTD
j

retains the symmetric property, ensuring that it can control the FDR just like the vanilla KI. Further-
more, we distinguish KTD from the vanilla KI by proving its asymptotically optimal property: as m
approaches infinity, the power converges to 1 and the FDR converges to 0.

We empirically evaluate KTD using three popular large language models on three real-world
datasets, including the established benchmark WikiMIA. The experimental results demonstrate that
KTD not only achieves the desired FDR control without relying on a validation set, which exist-
ing methods depend on but also exhibits significantly higher power compared to vanilla KI when
achieving similar FDR levels.

To summarize, our contributions are as follows:

1. We address the problem of detecting training data from LLMs with FDR control through the per-
spective of knockoff inference and propose a knockoff inference-based detecting method KTD.

2. We theoretically justify our proposed KTD from two aspects. Firstly, we prove that the knockoff
statistic in KTD possesses the symmetric property, which is essential for effective FDR control.
Secondly, we show that KTD exhibits asymptotically optimal properties, distinguishing it from
the vanilla KI.

3. Our experimental analysis validates the effectiveness of KTD by demonstrating its ability to
achieve the desired FDR level with competitive power.

2 RELATED WORK

2.1 TRAINING DATA LEAKAGE IN LLMS

Memorization in language models, a key aspect of training data leakage, has been widely studied.
Research such as Kandpal et al. (2022); Carlini et al. (2021; 2022b); Zeng et al. (2024) examines the
memorization behaviors of language models, offering insights into their underlying mechanisms.
However, these studies do not propose practical methods for detecting training samples.

In the context of LLMs, other works (Brown et al., 2020; Wei et al., 2021; Du et al., 2022) explore
the potential impact of training data leakage on evaluation results. To ensure reliable assessments,
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Table 1: Algorithmic properties
Property FX-Knockoff MX-Knockoff Contamination Test Mink% Time Traveling KTD (Ours)

Metadata-free ✓ ✓ ✓ ✓ ✗ ✓
Threshold-free ✓ ✓ ✓ ✗ ✓ ✓
FDR Control ✓ ✓ ✗ ✗ ✗ ✓
FDR analysis ✗ ✗ ✗ ✗ ✗ ✓

Power analysis ✗ ✗ ✗ ✗ ✗ ✓

these studies exclude test samples that share n-gram overlaps with any data used during pre-training.
These approaches requires access to pre-training datasets, making it infeasible to detect training
samples without support from the model provider.

To evaluate training data leakage without access to the training dataset, various methods have been
proposed for detecting training samples. For example, Golchin & Surdeanu (2023) prompt a model
to generate completions using two types of instructions and identify training samples by comparing
the resulting texts. Shi et al. (2023) assume that non-training texts are more likely to contain outlier
tokens that induce significantly higher loss and propose detecting training samples based on top-k
token log probabilities. While these methods have shown empirical effectiveness, they do not offer
theoretical guarantees for controlling the FDR. Considering this, some studies leverage statistical
methods to ensure controlled outcomes. Oren et al. (2023) assume sample exchangeability in non-
training datasets and apply hypothesis testing to detect data contamination. Dekoninck et al. (2024)
define contamination based on performance differences between the tested and reference models,
relying on a predefined threshold δ to determine significance. However, these methods are mainly
designed for dataset-level contamination detection, which differs from our scenario.

Membership inference attacks (MIAs) have also garnered significant attention in the context of train-
ing data detection. Similar to our approach, Mattern et al. (2023); Fu et al. (2024) generate neighbor-
ing samples that resemble the original ones and compare each sample with its generated neighbors
to identify training data. However, these methods do not explicitly aim to control the FDR and
rely primarily on empirical observations rather than rigorous theoretical foundations. Carlini et al.
(2022a); Mireshghallah et al. (2022), consider FDR as an evaluation metric in their paper. However,
these methods are not inherently designed for FDR control and require either training a large number
of shadow models or accessing the distribution of data that was not used to train the target model.
These constraints make them impractical for LLM scenarios.

2.2 KNOCKOFFS

The knockoff framework was first introduced by Barber & Candès (2015) as a data-driven approach
to controlling the FDR in variable selection for sparse regression problems. It was later extended
to high-dimensional regression by Candes et al. (2018). Over time, knockoff inference has been
adapted for various applications, including multi-task regression (Dai & Barber, 2016), outlier de-
tection (Xu et al., 2016), and sample selection (Wang et al., 2024). To the best of our knowledge,
we are the first to apply knockoff inference to LLM training data detection.

To highlight the novelty of our proposed method, KTD, we compare it with existing works from both
the knockoff and training data detection literature. Specifically, we contrast KTD with FX-Knockoff
(Barber & Candès, 2015) and MX-Knockoff (Candes et al., 2018) from the knockoff literature,
as well as Contamination Test (Oren et al., 2023), Mink% (Shi et al., 2023), and Time Traveling
(Golchin & Surdeanu, 2023) from the training data detection literature, as summarized in Table 1.
In the table, ”Metadata-free” indicates that the method does not require auxiliary information such
as dataset names or partition details, while ”Threshold-free” refers to methods that do not rely on
heuristically determined thresholds. This comparison underscores the comprehensiveness of KTD,
demonstrating our contributions in both training data detection and knockoff-based inference.

3 BACKGROUND

Notation We use bold letters to represent vectors of random variables, e.g., X =
{X1, X2, . . . , Xn}. Furthermore, let X−j denote the vector resulting from the exclusion of the
j-th variable Xj , i.e., X\{Xj}. The independence between two random variables X and Y is sym-
bolized as X ⊥ Y . Let [n] represent the set {1, 2, . . . , n}; for any given set A, |A| denotes the
cardinality of A. For two number a and b, let a ∨ b represent max(a, b).
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Problem Definition Suppose we have n potential training samples X1, X2, . . . , Xn to be tested.
For the sake of clarity afterward, we defined Dtotal as the index set of these samples, i.e.,
Dtotal = [n]. Depending on whether a sample has been used for training the model, Dtotal can
be divided into two disjoint subsets: Dtrain and Dnon−train, which represent the index of training
samples and non-training samples respectively. Given the dataset Dtotal and the language model fθ,
our objective is to identify an estimate of Dtrain, denoted as Ŝ ⊂ Dtotal, with an FDR bounded by a
predefined threshold q, while maintaining as high power as possible. Here, the power and FDR are
defined as:

Power := E

[
|Ŝ ∩ Dtrain|
|Dtrain| ∨ 1

]
and FDR := E

[
|Ŝ ∩ Dnon−train|

|Ŝ| ∨ 1

]
. (1)

Auto-regressive LLMs The goal of auto-regressive large language models is to capture the un-
derlying language distribution Pθ(X). They achieve this by predicting the next token in a sequence
based on the preceding tokens. Specifically, given a sequence X = (x1, x2, · · · , xT ), these models
represent the probability of X using the chain rule:

Pθ(X) =

T∏
t=1

Pθ(xt | x1, x2, . . . , xt−1)

where θ denotes the parameters of the language model. The parameters θ are trained to maximize
the log-likelihood of sequences in the training dataset.

4 METHODOLOGY

In this section, we introduce our knockoff inference-based training data detector, KTD. We begin
by illustrating two critical procedures of KTD, which include synthetic knockoff generation and
knockoff statistic calculation. Then, the asymptotic analysis for KTD is provided.

4.1 KTD: A NOVEL KNOCKOFF-BASED FRAMEWORK

Motivation Knockoff inference is a method originally designed for selecting variables relevant to
certain outputs of interest while controlling FDR. In our settings, we can reformulate our problem as
a variable selection problem by treating the training samples {Xj}j∈Dtrain

as relevant variables and
model parameter θ as the output of training algorithm Alg which takes training samples as input,
i.e., θ = Alg({Xj}j∈Dtrain−total

). Here, Dtrain−total represents the model’s entire training dataset,
and Dtrain is a subset of it. Through this reformulation, the robust FDR control ability of KI can be
utilized in our context. Since in our approach, we treat samples as random variables, we will use
these two terms interchangeably in the following text.

Intuitively, the fundamental idea behind the knockoff inference-based method is to identify relevant
variables by comparing them with their noisy counterparts, known as knockoffs. As a result, the
knockoff inference-based method usually involves two critical procedures: first, generating knock-
offs for the text samples to be tested; second, calculating the knockoff statistic for these text samples
by comparing the scores assigned to them with the scores assigned to their knockoff counterparts.
Next, we illustrate how these two stages work in vanilla KI and how they are instantiated in KTD.

4.1.1 KNOCKOFF GENERATION

In vanilla KI, knockoffs are typically generated based on specific assumptions about the distribution
of variables {Xj}nj=1, such as Gaussian (Candes et al., 2018), Markov model Sesia et al. (2018) and
hidden Markov model (Sesia et al., 2018). However, due to the complexity of natural language, it
is challenging to use common distributions to model the relationships between text samples, render-
ing existing methods unsuitable for knockoff generation in this context. Consequently, we directly
adhere to the fundamental definition of knockoffs:
Definition 1. Model-X Knockoffs, (Candes et al., 2018) Model-X knockoffs for a family of random
variables X = {X1, X2, . . . , Xn} are a new family of random variables X̃ = {X̃1, X̃2, . . . , X̃n}
satisfying:

1. X̃ ⊥ θ | X.
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2. For any s ⊂ [n], (X, X̃)swap(s)
d
= (X, X̃).

Here, (X, X̃) = (X1, X2, . . . , Xn, X̃1, X̃2, . . . , X̃n), and (X, X̃)swap(s) is obtained by swapping
Xj with its corresponding knockoff X̃j for all j ∈ s. For example, when n = 3, (X, X̃)swap({1,3}) =

(X̃1, X2, X̃3, X1, X̃2, X3).

This definition guides generating knockoff texts. Property (1) implies that the knockoff text should
not be generated by the model being tested, and property (2) requires that the generated knockoff
texts be able to replace the original text samples without altering the overall joint distribution. In
other words, the knockoff text should convey the same meaning as the original text but in a different
manner. To meet these requirements, we generate knockoffs in the KTD framework using a natural
language paraphraser, which restates or rephrases the text while preserving its original meaning.

4.1.2 KNOCKOFF STATISTIC CALCULATION

Knockoff Statistic in Vanilla KI After constructing the knockoffs, a test statistic known as the
knockoff statistic is calculated for each text sample by comparing the importance of the original text
sample with that of its knockoff counterparts. This statistic can be viewed as a relevance measure
for each text sample and will serve as the basis for training sample selection, which is defined as
Definition 2. Knockoff Statistic, (Candes et al., 2018) A knockoff statistic W = {W1,W2, . . . ,Wn}
is a measure of variable importance that satisfies the following conditions:

1. W depends only on X, X̃, and θ:
W = f(X, X̃,θ). (2)

2. Swapping the original variable Xj with its corresponding knockoff X̃j switches the sign of Wj:

Wj([X, X̃]swap(s),θ) =

{
Wj([X, X̃],θ), if j /∈ s

−Wj([X, X̃],θ), if j ∈ s.
(3)

Typically, the calculation of the knockoff statistic of each variable can be decomposed into two steps.
First, assign importance scores Zj and Z̃j to each variable Xj and its knockoff X̃j respectively,
where the importance scores are calculated by a pre-defined scoring function T , i.e.,

Zj = Tj([X, X̃],θ) and Z̃j = Tj+n([X, X̃],θ). (4)
Next, calculate the knockoff statistic of j-th sample by

Wj = Zj − Z̃j . (5)

Intuitively, the scores Zj and Z̃j represent the importance of the original sample Xj and its knockoff
X̃j , respectively. A positive Wj (Wj > 0) indicates that the j-th sample is more relevant to the
model parameter θ than its knockoff, implying its membership in the training data. Conversely, a
negative Wj (Wj < 0) suggests that the j-th sample is more likely to be irrelevant to θ.

During this procedure, the key is to select an appropriate scoring function t that can effectively
measure the importance of each sample and its knockoff. In our scenario, we aim to ensure that
samples seen by the model are assigned higher scores. Inspired by works using gradient information
for OOD detection (Huang et al., 2021; Liang et al., 2018), we use the L2 norm of the model’s
gradient as the score in KTD, which is defined as:

Zj = −
∥∥∥∥∂ logPθ(Xj)

∂θ

∥∥∥∥
2

and Z̃j = −
∥∥∥∥∥∂ logPθ(X̃j)

∂θ

∥∥∥∥∥
2

(6)

where Pθ(·) represents the probability distribution modeled by the model.

Finally, a threshold is determined for thresholding knockoff statistics for training sample detection
with an FDR control guarantee. This procedure is illustrated as follows:
Proposition 1. By choosing the threshold τ according to

τ = argmin
t>0

{
1 + |{j ∈ [n] : Wj ≤ −t}|
|{j ∈ [n] : Wj ≥ t}| ∨ 1

≤ q

}
. (7)

and setting Ŝ = {j : Wj ≥ τ}, the procedure can control the FDR at ≤ q.
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Our Calculation of Knockoff Statistic Despite the effectiveness of vanilla KI in controlling the
FDR, its knockoff statistic Wj is prone to high variance due to the inherent randomness in the knock-
off generation process. This variability makes it more difficult to distinguish between training and
non-training samples, leading to the selection of a more conservative threshold τ . Consequently, a
larger number of true training samples are excluded to maintain FDR control, resulting in a signifi-
cant power reduction.

To address this issue, we modify the calculation of the vanilla knockoff statistic Wj by considering
multiple draws of the knockoff variables X̃. Specifically, we calculate the knockoff statistic in KTD
as follows:

WKTD
j = Zj −

1

m

m∑
i=1

Z̃
(i)
j (8)

where Z̃
(i)
j is the score calculated based on the X̃

(i)
j , the i-th draw of X̃j . Clearly, Wj is a special

case of WKTD
j when m = 1. By taking multiple knockoff draws into consideration, we can reduce

the variance of knockoff statistic WKTD
j , thereby enhancing the separability between training and

non-training samples.

Next, we show that WKTD
j can also select the appropriate threshold for FDR controlling as Wj do in

Proposition 1. We first give the independence assumption of WKTD
j following Nguyen et al. (2020):

Assumption 1. For any j ∈ Dnon−train, the knockoff statistic WKTD
j defined in Equation 8 are

independent with each other.

Next, we illustrate the symmetric property of WKTD
j :

Lemma 1. WKTD
j associated with irrelevant samples is symmetrically distributed around 0, i.e.,

P (WKTD
j < −t) = P (WKTD

j > t) for any t > 0 and j ∈ Dnon−train. (9)

This Lemma is empirically validated by our experiments. For details please refer to the third part of
our experimental results.

This Lemma, combined with the independence assumed in Assumption 1 implies that the num-
ber of non-training samples whose WKTD

j > 0 equals the number of non-training samples whose
WKTD

j < 0. This conclusion allows the use of the right-hand side of Equation 10 as an upper bound
for FDR, thereby providing an FDR control guarantee.

Consequently, we can select training samples while controlling the FDR using WKTD
j through a

procedure similar to that described in Proposition 1, defined as follows:
Proposition 2. Assume {WKTD

j }nj=1 are independent with each other, by choosing the threshold τ
according to

τ = min
t>0

{
1 + |{j ∈ [n] : WKTD

j ≤ −t}|
|{j ∈ [n] : WKTD

j ≥ t}| ∨ 1
≤ q

}
(10)

and setting Ŝ = {j : WKTD
j ≥ τ}, the procedure can control the FDR at ≤ q.

4.2 THE ASYMPTOTIC OPTIMAL PROPERTY OF KNOCKOFF STATISTIC IN KTD

Here, we provide analysis inspired by Zhao et al. (2022) to illustrate the asymptotic optimality of
FDR and power in KTD. We begin by stating an assumption on which these theorems rely.
Assumption 2. For any j ∈ Dtrain, we have E[WKTD

j ] > 0.
Remark 1. This assumption ensures that, on average, training samples will have higher importance
scores than their knockoff counterparts. This is reasonable because a sample that has been seen by
the model will induce fewer updates (thus higher Zj) compared to its knockoff. Like Lemma 1, we
provide the empirical validation of this assumption in our experiment section.
Theorem 1. Assuming Assumption 2 holds, the variable selection procedure described in Proposi-
tion 2 satisfies

Power = E

[
|Ŝ ∩ Dtrain|
|Dtrain|

]
→ 1 as m → ∞. (11)
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Theorem 2. Assuming Assumption 2 holds and the threshold τ found by Proposition 2 is not equal
to 0, the variable selection procedure satisfies

FDR = E

[
|Ŝ ∩ Dnon−train|

|Ŝ|

]
→ 0 as m → ∞. (12)

Remark 2. Intuitively, as m approaches infinity, the values of WKTD
j will become increasingly

centralized around their expectations. Consequently, given Assumption 2, the WKTD
j values corre-

sponding to training and non-training samples will form distinct clusters. This separation allows
the KTD method to identify a threshold that optimizes both FDR and power.

5 EXPERIMENTS

In this section, we conduct extensive experiments to validate the empirical efficacy of our proposed
method. We begin by testing the effectiveness of our method in terms of FDR control. Following
that, we empirically validate the symmetric property of our proposed knockoff statistic WKTD

j .
Next, we investigate the influence of m, the number of knockoff draws, on FDR control performance
and the trade-off between power and FDR. Finally, we conduct experiments using Pythia models
with different numbers of parameters to examine how model size affects performance. The code for
our experiments is available at https://github.com/huzr1999/KTD

5.1 SETUP

Baselines We first select several classic baselines from MIA literature for comparison. Specifi-
cally, they include LOSS (Yeom et al., 2018), which uses the auto-regressive loss of a sample to
determine whether it has been seen during training; MinK% (Shi et al., 2023), which takes the
average loss of the top k% tokens with the highest loss as the basis for detection and methods that
compare a sample’s loss to its zlib compression entropy (Zlib (Carlini et al., 2021)), its loss after
lowercasing (Lowercase (Carlini et al., 2021)), and its loss from a smaller reference model (Ref
(Mireshghallah et al., 2022)). Then, we compare our method with vanilla KI, which is an instance
of our method when setting m = 1.

Models We adopt three popular large language models to evaluate our detection algorithm: GPT-2
(137M parameters) (Radford et al., 2019), Pythia (1.4B parameters) (Biderman et al., 2023), and
GPT-Neo (1.3B parameters) (Black et al., 2021). Experiments for larger models are available in
Appendix D. For baseline Ref, we employ Distilled-GPT2 (Sanh et al., 2019), Pythia-410m, and
GPT-Neo-125m as reference models for the three aforementioned main models, respectively. To
generate reliable knockoffs for text samples, we use a paraphraser (Vladimir Vorobev, 2023) with
the highest downloads on Hugging Face. This paraphraser is based on the T5-base model and fine-
tuned with paraphrased texts generated by ChatGPT. Throughout our experiments, we use the model
checkpoints provided by Hugging Face1.

Dataset We conduct our experiments on three datasets: WikiMIA (Shi et al., 2023) includes texts
collected from Wikipedia events. The dataset is separated into two disjoint parts: one corresponding
to events happening before 2017 and the other to events happening after 2023. These two parts
are used as training samples and non-training samples, respectively. XSum (Narayan et al., 2018)
includes summaries of BBC news articles. We select the test set of this dataset and randomly separate
it into two parts, corresponding to training and non-training samples. BBC Real Time (Li et al.,
2024b) includes BBC articles from January 2017 to August 2024. Following the process in Shi et al.
(2023), we use the articles published in 2017 as training samples and articles published in 2024 as
non-training samples. To evaluate our method, we fine-tune the models using the training parts of
these datasets while ensuring that the non-training parts remain unseen by the models.

Computation and Hyperparameters All the experiments are run with a single NVIDIA Tesla
V100 32GB GPU and a 10-core Intel Xeon (Skylake IBRS) CPU. When the model is too large, we
use 16-bit quantization to fit the model into GPU memory. Unless explicitly stated, we fix m = 10
for all experiments. All codes are implemented with Pytorch (Paszke et al., 2019).

1https://huggingface.co/

7

https://github.com/huzr1999/KTD


Published as a conference paper at ICLR 2025

Table 2: Comparison between KTD and baselines. For each dataset and model, if any methods
achieve FDR control, the one with the highest power among them will be bolded. Otherwise, the
method with the best FDR will be bolded.

WikiMIA XSum BBC Real Time

GPT-2 Pythia GPT-Neo GPT-2 Pythia GPT-Neo GPT-2 Pythia GPT-Neo
FDR Power FDR Power FDR Power FDR Power FDR Power FDR Power FDR Power FDR Power FDR Power

LOSS 0.179 0.928 0.175 0.999 0.145 0.996 0.153 0.150 0.163 0.938 0.133 0.843 0.135 0.950 0.122 0.999 0.123 0.998
MinK% 0.193 0.232 0.193 0.987 0.120 0.749 0.313 0.024 0.165 0.060 0.203 0.293 0.245 0.279 0.103 0.958 0.130 0.964

Zlib 0.000 0.060 0.187 0.984 0.096 0.881 0.237 0.499 0.164 0.880 0.164 0.801 0.122 0.800 0.142 0.997 0.112 0.993
Lowercase 0.484 0.995 0.485 0.991 0.487 0.983 0.570 0.096 0.697 0.019 0.654 0.081 0.807 0.005 0.495 0.016 0.671 0.017

Ref 0.326 0.835 0.167 1.000 0.181 1.000 0.172 0.487 0.140 0.999 0.114 0.990 0.182 0.553 0.169 1.000 0.126 0.996
Vanilla KI 0.207 0.476 0.194 0.991 0.198 0.972 0.194 0.998 0.117 0.973 0.109 0.936 0.161 0.223 0.083 0.915 0.083 0.873

KTD (Ours) 0.197 0.869 0.230 0.998 0.193 0.958 0.238 1.000 0.109 0.995 0.101 0.990 0.101 0.349 0.071 0.980 0.067 0.973
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Figure 1: The FDR control results on three datasets. We vary the FDR bound q from 0.05 to 0.95
and calculate its corresponding FDR and power. Each subplot represents results on a dataset and
each line in the subplots represents the results of a model. To clearly visualize the bound, we also
plot the red line (y = x) in each subplots. If a model’s FDR is bounded, its corresponding line
should be below the red line.

5.2 RESULTS

The Effectiveness of FDR Control with fixed q We set the FDR bound to q = 0.1 and present
a comparative analysis of our method against the baselines in Table 2. Since the baseline meth-
ods—LOSS, MinK%, Zlib, and Lowercase—only produce confidence scores for training data mem-
bership inference, they require a validation set to determine an appropriate threshold. To accommo-
date this, we sample a validation set of 100 instances and select thresholds that achieve the highest
power while maintaining a bounded FDR on the validation set. For the Ref baseline, which relies on
a ”general distribution” to determine the threshold, we approximate this distribution by combining
all non-training samples from the three datasets. From Table 2, we observe that our method, KTD,
effectively controls the FDR on the XSum and BBC Real-Time datasets while maintaining relatively
stable performance across different datasets and models. In contrast, baselines such as Zlib, MinK%,
and Lowercase occasionally exhibit extremely poor FDR or power, suggesting that their effective-
ness is highly dependent on the choice of the validation set. Although some baselines achieve more
favorable results on WikiMIA, we argue that this comparison is not entirely fair. These baselines
require access to a validation set with ground truth membership labels or an accurate distribution of
non-training samples—resources that may not be available in real-world scenarios.

The Effectiveness of FDR Control under Varying q We vary q and plot the corresponding power
and FDR in Figure 1. The results show that our method effectively controls the FDR in most cases.
Although in certain cases (e.g., three models on WikiMIA), the FDR is not strictly bounded by q,
the corresponding curves closely track the red line, indicating that the FDR remains within q plus a
small constant. For a more detailed analysis of these cases please refer to Appendix B.

The Symmetric Property of WKTD
j To empirically validate Lemma 1 and Assumption 2, we plot

the distribution of WKTD
j calculated on the BBC Real Time dataset in Figure 2. From the figure,

we can make three observations. Firstly, the WKTD
j of non-training samples are symmetrically

distributed around 0, which is aligned with Lemma 1. Secondly, the expectation of non-training
samples’ WKTD

j is greater than 0, illustrating the validity of Assumption 2, which Theorems 1 and 2
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Figure 2: The distribution of our knockoff statistic WKTD
j .
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Figure 3: m’s influence on power and FDR. We fix the bound q at 0.1 and vary m in {1, 3, 5, 10, 30,
50, 100} to calculate the power and FDR for each model. The red line in the figure represents the
FDR bound given by q. Dots below the red line indicate successful bounding.

rely on. Lastly, larger models (Pythia and GPT-Neo) exhibit better separability between training and
non-training samples. This is consistent with expectations, as larger models have a higher probability
of memorizing their training data (Carlini et al., 2022b), thereby showing different behavior for
training versus non-training samples.

The Influence of the Number of Knockoff Draws In KTD, we use multiple knockoff draws to
compute the KTD statistic WKTD

j . Here, we justify this design by examining two key questions: (1)
how m affects FDR control and power, and (2) how m influences the power-FDR trade-off. Note
that vanilla KI is a special case of KTD with m = 1.

For the first question, we plot power and FDR against m in Figures 3a and 3b, respectively. Sev-
eral observations emerge from these figures. First, KTD provides better FDR control than vanilla
KI. Specifically, vanilla KI fails to control the FDR for GPT-2, whereas KTD successfully bounds
it when m ≥ 10. Second, increasing m benefits both FDR control and power—both metrics im-
prove consistently as m grows. Finally, for Pythia and GPT-Neo, power approaches 1 while FDR
approaches 0 as m increases, validating the asymptotic optimality stated in Theorems 1 and 2.

To address the second question, we plot power-FDR pareto curves for different m values in Figure
4. The figure shows that as m increases, the curves shift toward the upper left corner, indicating an
improved power-FDR trade-off. Even small values, such as m = 3, yield significant improvements.
This demonstrates that multiple knockoff draws substantially enhance the balance between power
and FDR. Additionally, for GPT-2, we observe an unusual trend when m is small (1 to 5): some-
times, FDR decreases as the target FDR level q increases. We hypothesize that this is due to the high
instability associated with small m.

Since computation time is primarily dominated by the gradient norm calculations for knockoffs,
Figure 3 also illustrates the trade-off between computation time and performance. From the figure,
we find that m = 10 strikes an optimal balance, achieving strong performance within a reasonable
computation time.

The influence of Model Size We evaluate the FDR in terms of the power-FDR trade-off across
three datasets using different-sized Pythia models (440M, 1B, 1.4B, 2.8B). Figure 5 shows a clear
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Figure 4: Trade-off between FDR and power under different m. For each m, we vary the FDR
bound q and calculate the corresponding trade-off between power and FDR. Each subplot represents
a model and each line in the subplots represents the trade-off curve under certain m. The closer the
curve is to the upper left corner, the better the trade-off between power and FDR.
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Figure 5: Trade-off between FDR and power under different model sizes. For each model size,
varying FDR bound q is applied to compute the trade-off between power and FDR. Each subplot
presents the results on a different dataset, with each line representing the trade-off curve of a model.
Curves closer to the upper-left corner indicate a more favorable balance between power and FDR.

trend that the trade-off improves as model size increases. This aligns with our expectations, as larger
models are more likely to memorize training data, making it easier to distinguish between training
and non-training samples. Moreover, models with sizes larger than 1 billion parameters exhibit
relatively high power even when a strict FDR bound is imposed. This observation suggests that 1
billion parameters may serve as a threshold, beyond which models can easily memorize samples
from these three datasets, thereby making the distinction between training and non-training samples
exceptionally clear.

6 CONCLUSION

In this paper, we tackled the critical issue of detecting training data for LLMs with a focus on
controlling FDR and introduced a novel knockoff-based method, KTD. KTD instantiates the KI
framework in the context of training data detection and employs a novel calculation method that
leverages multiple knockoff draws to address the high variance of the knockoff statistic in vanilla
KI. To support KTD, we provided theoretical guarantees for KTD, demonstrating that it not only
effectively controls the FDR but also possesses asymptotic optimal properties. Our empirical evalu-
ations on three datasets further validated the efficacy of KTD, showcasing its superior performance
in terms of FDR control and the power-FDR trade-off compared to existing methods.

7 LIMITATIONS

The limitations of our method primarily stem from two factors. First, the effectiveness of our ap-
proach depends on access to the gradients of LLMs, which may not be available for certain propri-
etary models where gradient information is inaccessible. This dependency also limits the applica-
bility of our method to tasks such as paraphrased text detection. Second, our method assumes the
availability of a high-quality paraphraser to generate knockoff samples. This reliance on paraphraser
quality introduces a potential bottleneck in achieving optimal performance. In the future, we will
explore the possibility of designing a framework for FDR control that relies solely on logits or even
the output text of LLMs.
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Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
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bership Inference Attacks From First Principles. In 2022 IEEE Symposium on Security and Pri-
vacy (SP), pp. 1897–1914, May 2022a. doi: 10.1109/SP46214.2022.9833649.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan
Zhang. Quantifying Memorization Across Neural Language Models. In The Eleventh Interna-
tional Conference on Learning Representations, September 2022b.

Kent Chang, Mackenzie Cramer, Sandeep Soni, and David Bamman. Speak, Memory: An Ar-
chaeology of Books Known to ChatGPT/GPT-4. In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Process-
ing, pp. 7312–7327, Singapore, December 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.emnlp-main.453.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex

11

https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715


Published as a conference paper at ICLR 2025

Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
Large Language Models Trained on Code, July 2021.

Together Computer. Redpajama: an open dataset for training large language models, 2023. URL
https://github.com/togethercomputer/RedPajama-Data.

Ran Dai and Rina Barber. The knockoff filter for FDR control in group-sparse and multitask regres-
sion. In Proceedings of The 33rd International Conference on Machine Learning, pp. 1851–1859.
PMLR, June 2016.

Jasper Dekoninck, Mark Niklas Mueller, and Martin Vechev. ConStat: Performance-Based Contam-
ination Detection in Large Language Models. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, November 2024.

Junnan Dong, Qinggang Zhang, Huachi Zhou, Daochen Zha, Pai Zheng, and Xiao Huang. Modality-
Aware Integration with Large Language Models for Knowledge-Based Visual Question Answer-
ing. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2417–
2429, Bangkok, Thailand, August 2024. Association for Computational Linguistics.

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus, Maarten P. Bosma,
Zongwei Zhou, Tao Wang, Emma Wang, Kellie Webster, Marie Pellat, Kevin Robinson, Kathleen
Meier-Hellstern, Toju Duke, Lucas Dixon, Kun Zhang, Quoc Le, Yonghui Wu, Zhifeng Chen, and
Claire Cui. GLaM: Efficient Scaling of Language Models with Mixture-of-Experts. In Proceed-
ings of the 39th International Conference on Machine Learning, pp. 5547–5569. PMLR, June
2022.

Wenjie Fu, Huandong Wang, Chen Gao, Guanghua Liu, Yong Li, and Tao Jiang. A Probabilistic
Fluctuation based Membership Inference Attack for Diffusion Models, June 2024.

Shahriar Golchin and Mihai Surdeanu. Time Travel in LLMs: Tracing Data Contamination in
Large Language Models. In The Twelfth International Conference on Learning Representations,
October 2023.

Michael M. Grynbaum and Ryan Mac. The Times Sues OpenAI and Microsoft Over A.I. Use of
Copyrighted Work. The New York Times, December 2023. ISSN 0362-4331.

Rui Huang, Andrew Geng, and Yixuan Li. On the Importance of Gradients for Detecting Distribu-
tional Shifts in the Wild. In Advances in Neural Information Processing Systems, volume 34, pp.
677–689. Curran Associates, Inc., 2021.

Nikhil Kandpal, Eric Wallace, and Colin Raffel. Deduplicating Training Data Mitigates Privacy
Risks in Language Models. In Proceedings of the 39th International Conference on Machine
Learning, pp. 10697–10707. PMLR, June 2022.

Xiaoxi Li, Yujia Zhou, and Zhicheng Dou. UniGen: A Unified Generative Framework for Retrieval
and Question Answering with Large Language Models. Proceedings of the AAAI Conference
on Artificial Intelligence, 38(8):8688–8696, March 2024a. ISSN 2374-3468. doi: 10.1609/aaai.
v38i8.28714.

Yucheng Li, Frank Guerin, and Chenghua Lin. Latesteval: Addressing data contamination in lan-
guage model evaluation through dynamic and time-sensitive test construction. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 38, pp. 18600–18607, 2024b.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
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A APPENDIX

A.1 THE PROOF OF LEMMA 1

Lemma 1. WKTD
j associated with irrelevant samples is symmetrically distributed around 0, i.e.,

P (WKTD
j < −t) = P (WKTD

j > t) for any t > 0 and j ∈ Dnon−train. (13)

Proof. For simplicity, let W (i)
j denote Zj − Z

(i)
j . Then,

P (WKTD
j < −t) = P

(
1

m

m∑
i=1

W
(i)
j < −t

)

=

∫ −t

−∞

∫
Dv

P (W
(1)
j = a1,W

(2)
j = a2, . . . ,W

(m)
j = am) da1 da2 . . . dam dv,

(14)

where Dv = {(a1, a2, . . . , am) | 1
m

∑m
i=1 ai = v}.

According to Lemma 3.3 in Candes et al. (2018), the signs of W (i)
j are independent of their magni-

tudes. As a result, we can express the probability P (W
(1)
j = a1,W

(2)
j = a2, . . . ,W

(m)
j = am) as

the product of the following two terms:

1. P (|W (1)
j | = |a1|, |W (2)

j | = |a2|, . . . , |W (m)
j | = |am|),

2.
∏m

i=1 P (sign(W
(i)
j ) = ϵi), where ϵi = sign(ai) ∈ {−1, 1}.

Given the symmetric property of standard knockoff statistic Wj , we have
P (sign(W

(i)
j ) = −1) = P (sign(W

(i)
j ) = 1). Therefore, switching the sign of W (i)

j will not af-
fect the probability above. Consequently, for any element (a1, a2, . . . , am) in Dv , there exists a cor-
responding element (−a1,−a2, . . . ,−am) in D′

v = {(a′1, a′2, . . . , a′m) | 1
m

∑m
i=1 a

′
i = −v} satisfy-

ing P (W
(1)
j = a1,W

(2)
j = a2, . . . ,W

(m)
j = am) = P (W

(1)
j = a′1,W

(2)
j = a′2, . . . ,W

(m)
j = a′m).
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As a result, Equation 14 equals:∫ −t

−∞

∫
Dv

P (W
(1)
j = a1,W

(2)
j = a2, . . . ,W

(m)
j = am) da1 da2 . . . dam dv

=

∫ −t

−∞

∫
D′

v

P (W
(1)
j = a′1,W

(2)
j = a′2, . . . ,W

(m)
j = a′m) da1 da2 . . . dam dv

=

∫ ∞

t

∫
Dv

P (W
(1)
j = a1,W

(2)
j = a2, . . . ,W

(m)
j = am) da1 da2 . . . dam dv

= P

(
1

m

m∑
i=1

W
(i)
j > t

)
= P (WKTD

j > t).

(15)

A.2 THE PROOF OF THEOREM 1

Theorem 1. Assuming Assumption 2 holds, the variable selection procedure described in Proposi-
tion 2 satisfies

Power = E

[
|Ŝ ∩ Dtrain|
|Dtrain|

]
→ 1 as m → ∞. (16)

Proof. The main idea of the proof comes from (Zhao et al. (2022), Theorem 6). For the sake of
clarity of the article, we provide the complete proof here. Let ξj denote the expectation of WKTD

j ,
i.e., ξj = E[WKTD

j ], and let ξ be the minimum ξj among the relevant variable set Dtrain, i.e.,
ξ = minj∈Dtrain

ξj . Use σj to represent the standard error of WKTD
j .

For any j ∈ Dtrain, we have

P

(
WKTD

j > −ξ

2

)
≥ P

(
WKTD

j >
ξj
2

)
≥ P

(
|WKTD

j − ξj | <
ξj
2

)
≥ 1−

4σ2
j

ξ2jm

≥ 1−
4σ2

j

ξ2m
.

(17)

Due to the symmetric property of elements in Dnon−train, we have ξj = 0 for all j ∈ Dnon−train.
Hence, similar to the above equation, the following formula holds:

P

(
WKTD

j > −ξ

2

)
≥ 1−

4σ2
j

ξ2m
∀j ∈ Dnon−train. (18)

Combining Equation 17 and Equation 18, we get:

P

(
min
j

WKTD
j < −ξ

2

)
= P

(
WKTD

1 < −ξ

2
∨WKTD

2 < −ξ

2
∨ · · · ∨WKTD

n < −ξ

2

)
=

n∑
j=1

P

(
WKTD

j < −ξ

2

)

≤ 4

ξ2m

n∑
j=1

σ2
j .

(19)
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If minj W
KTD
j < − ξ

2 , according to the procedure described in Proposition 2 to determine the
threshold, we have τ ≤ max{0,−minj W

KTD
j }. Therefore, we can derive a lower bound for the

power:

Power = E

[
|Dtrain ∩ Ŝ|
|Dtrain|

]
≥ E

[
|Dtrain ∩ Ŝ|
|Dtrain|

∣∣∣∣min
j

WKTD
j > −ξ

2

]
· P
(
min
j

WKTD
j > −ξ

2

)
.

(20)

Note that τ < ξ
2 . Thus, the above formula is less than or equal to

1

|Dtrain|
∑

j∈Dtrain

1

[
WKTD

j >
ξ

2

]
· P
(
min
j

WKTD
j > −ξ

2

)
. (21)

This lower bound approaches 1 as m → ∞.

A.3 THE PROOF OF THEOREM 2

Theorem 2. Assuming Assumption 2 holds and the threshold τ found by Proposition 2 is not equal
to 0, the variable selection procedure satisfies

FDR = E

[
|S̃ ∩ Dtrain|

|Ŝ|

]
→ 0 as m → ∞. (22)

Proof. Similar to Equation 19, we have:

P

(
min

j∈Dtrain

WKTD
j <

ξ

2

)
≤ 4

ξ2m

∑
j∈Dtrain

σ2
j . (23)

This probability approaches 0 as m → ∞.

We then consider FDR:

E
[
|Dnon−train ∩ Ŝ|

|Ŝ|

]
= E

[
|Dnon−train ∩ Ŝ|

|Ŝ|

∣∣∣∣min
j

W
KTD
j > −

ξ

2

]
· P (min

j
W

KTD
j > −

ξ

2
)

+ E
[
|Dnon−train ∩ Ŝ|

|Ŝ|

∣∣∣∣min
j

W
KTD
j > −

ξ

2
, min
j∈Dtrain

W
KTD
j <

ξ

2

]
· P (min

j
W

KTD
j > −

ξ

2
, min
j∈Dtrain

W
KTD
j <

ξ

2
)

+ E
[
|Dnon−train ∩ Ŝ|

|Ŝ|

∣∣∣∣min
j

W
KTD
j > −

ξ

2
, min
j∈Dtrain

W
KTD
j >

ξ

2

]
· P (min

j
W

KTD
j > −

ξ

2
, min
j∈Dtrain

W
KTD
j >

ξ

2
).

(24)

The probabilities in the first and second terms go to 0 as m → ∞. Hence, we focus on the expec-
tation in the third term. Under the condition minj W

KTD
j > − ξ

2 , we have τ < ξ
2 . Additionally,

considering minj∈Dtrain W
KTD
j > ξ

2 , it follows that |Ŝ| > |Dtrain|.

E

[
|Dnon−train ∩ Ŝ|

|Ŝ|

∣∣∣∣min
j

WKTD
j > −ξ

2
, min
j∈Dtrain

WKTD
j >

ξ

2

]

≤ 1

|Dtrain|
∑

j∈Dnon−train

1
[
WKTD

j > τ
]
.

(25)

Since we assume τ > 0, there exists a δ > 0 such that τ > δ > 0. Therefore, the above formula is
less than or equal to:

1

|Dtrain|
∑

j∈Dnon−train

σj

mδ
, (26)

which goes to 0 as m → ∞.
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A.4 PARAMETER SETTINGS

For fine-tuning, we used the following settings:

• warmup step = 100
• weight decay = 0.01
• batch size = 8
• num epochs = 3 (10 for GPT-2)

All other hyperparameters were set to the default values provided by the ’TrainingArguments’ class
in the Transformers library.

For paraphrasing, we applied the following configurations:

• Top-k sampling with ’topk’ = 50
• Top-p sampling with ’topp’ = 0.95
• Temperature scaling with ’temperature’ = 1.9

B EXPERIMENTS ON ”GOOD KNOCKOFFS”

B.1 WHY ”GOOD KNOCKOFFS” MATTER?

As shown in Figure 1, TKD cannot strictly control the FDR in the low-FDR region. According
to our analysis, the performance limitations observed for small q values are primarily attributed to
imperfections in the generated knockoffs.

Theoretically, we prove that the WKTD
j for non-training samples should be symmetrically dis-

tributed around zero (Lemma 1). This proof relies on the assumption that the generated knockoffs
are perfectly swappable with the original texts (the second requirement in Definition 1).

However, in natural language processing scenarios, generating perfect knockoffs that fully meet
the second requirement in Definition 1 for all texts is inherently challenging, which differs from
traditional settings where data distributions are often assumed to follow well-defined distributions,
such as the Gaussian distribution. As a result, we observe in our experiments that the distribution of
WKTD

j values for non-training samples is not perfectly symmetrical in some cases.

Next, we illustrate why this asymmetry can impair FDR control. In Equation 10, we use the expres-
sion (denoted as frac1(t))

1 + |{j ∈ [n] : WKTD
j ≤ −t}|

|{j ∈ [n] : WKTD
j ≥ t}| ∨ 1

(from the left-hand side of Equation 10) to upper bound the true FDR(t). Here, |{j ∈ [n] :
WKTD

j ≤ −t}| acts as an upper bound for the numerator in the definition of FDR(t), i.e.,

|{j ∈ [n] : WKTD
j ≤ −t}|︸ ︷︷ ︸

part1

≥ |{j ∈ Dnon−train : WKTD
j < −t}| = |{j ∈ Dnon−train : WKTD

j > t}|︸ ︷︷ ︸
part2

,

(27)

similar to Equation 3.9 of Candes et al. (2018). Consequently, the violation of the symmetry property
results in a situation where frac1(t) can no longer serve as a strict upper bound for FDR(t).

This issue becomes more pronounced as q approaches very small values, since in such cases, the
threshold τ determined by Equation 10 increases. A larger τ reduces the denominator of frac1(τ)
(which is also the denominator of FDR(τ)), thereby amplifying the impact of the asymmetry-
induced disparity between part 1 and part 2 in Equation 27 (the numerators of frac1(τ) and FDR(τ)).
As a result, when q is very small, it becomes increasingly difficult to impose a strict FDR bound.

This highlights the importance of generating high-quality knockoffs, which is especially critical for
effective FDR control in low-FDR settings.
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Figure 6: The FDR control results on three datasets with the more symmetrical distribution of
WKTD

j . Other settings are identical to those in Figure 1
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Figure 7: The FDR control results in extremely low FDR-region on three datasets with more sym-
metrical distribution of WKTD

j . Other settings are identical to those in Figure 1.

B.2 KTD’S PERFORMANCE WITH GOOD KNOCKOFFS

While the imperfections in the generated knockoffs can impact the effectiveness of our method,
particularly in the low-FDR region, we emphasize that the primary focus of this paper is on de-
signing the overall framework rather than optimizing the generation of high-quality knockoffs. We
argue that KTD can achieve improved performance with better knockoffs and conduct experiments
to empirically illustrate this. In this section, we select a subset of non-training samples to adjust the
distribution of their WKTD

j , ensuring greater symmetry. Such selection can be challenging in practi-
cal settings, as it is unclear whether each sample is from the training or non-training data. However,
our goal here is to explore the performance of KTD under good knockoffs, so we make this ideal
selection.

FDR Controlling Performance We first evaluate the performance of KTD in terms of FDR con-
trol when the distribution of non-training samples’ WKTD

j is made more symmetrical. To be specific,
we apply our method in both the regular-FDR region (0.1–0.9) and the extremely low-FDR region
(0.01–0.09). The results of these experiments are shown in Figures 6 and 7. From these figures, we
observe that a more symmetrical distribution of WKTD

j for non-training samples enables more strict
FDR control, even when the restrain q is extremely low.

Power-FDR Tradeoff We extend Figure 4 to explore the extremely low-FDR region, with the
results shown in Figure 8. From the figure, we can observe that with a more symmetrical WKTD

j
distribution, the trends in the low-FDR region are consistent with those observed in the ordinary
scenario (where FDR > 0.1).

Robustness to Imbalanced Test Set We evaluated the performance of KTD in scenarios with
highly imbalanced ratios of training to non-training samples in the test set. Specifically, we sampled
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Figure 8: Trade-off between FDR and power under different m in the extremely low-FDR region
with more symmetrical distribution of WKTD

j . All other settings are identical to those in Figure 4.
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Figure 9: The FDR control results for different training-to-non-training ratios with more symmetri-
cal distribution of WKTD

j . Other settings are identical to those in Figure 1
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Figure 10: The FDR control results for different diluting degrees. The ”Ratio” represents the pro-
portion of training samples selected for testing. Other settings are identical to those in Figure 1

the training data within the test set to achieve training-to-non-training ratios of 0.1, 0.05, and 0.01
in the test set. The results are presented in Figure 9. As shown in the figure, when the WKTD

j
distribution becomes more balanced, KTD demonstrates robustness in highly imbalanced scenarios.

C EXPERIMENTS ON DILUTION

In this section, we investigate the robustness of KTD in a ”diluted scenario,” where the models’
fine-tuning data are mixed with ”background” samples that are absent from the test set. To simulate
this scenario, we use only a proportion of the fine-tuning data for subsequent testing and present
the results for different proportions in Figure 10. As shown in the figure, the results follow a trend
similar to those in the standard scenario, demonstrating that KTD remains robust across varying
levels of dilution.
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Table 3: KTD’s performance on 7B LLM under varying q (corresponding to Figure 1)

q 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pythia-6.9B Power 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
FDR 0.103 0.215 0.326 0.347 0.347 0.347 0.347 0.347 0.347

Mistral-7B Power 0.811 0.928 0.954 0.969 0.971 0.971 0.971 0.971 0.971
FDR 0.077 0.129 0.199 0.308 0.322 0.322 0.322 0.322 0.322

Table 4: KTD’s performance on the 7B model with varying m (corresponding to Figure 3).

Pythia-6.9B Mistral-7B
m 1 3 5 10 1 3 5 10

Power 0.877 0.945 0.957 0.967 0.520 0.735 0.778 0.811
FDR 0.121 0.111 0.112 0.103 0.095 0.078 0.076 0.077

D EXPERIMENTS ON 7B MODELS

To assess the effectiveness of KTD on models with approximately 7 billion parameters, we present
the results of 2 models (Pythia-6.9B and Mistral-7B) on the BBC Real-Time dataset in Tables 3 and
4, corresponding to Figures 1 and 3, respectively. From these tables, we observe that the performance
trend of these models is consistent with that of smaller models.

E COMPARISON WITH CONSTAT

We attempt to extend Constat Dekoninck et al. (2024) from benchmark-level detection to sample-
level detection by treating each sample as an individual benchmark. However, we find that this
approach is not well-suited to our setting for the following reasons:

• Computational complexity: Using the default number of bootstrapping, evaluating a dataset with
approximately 1,400 samples requires around 42 hours, making the approach computationally
expensive and impractical in our settings.

• Choice of predefined δ: Constat requires users to specify a threshold δ to determine whether the
performance difference between the test model and the reference models is significant. However,
in our setting, the range of the gradient norms varies significantly across different datasets and
models, making it challenging to select an appropriate δ. We observe that an improperly chosen δ
can lead to trivial results, such as classifying all samples as training samples.
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