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Abstract—This paper studies the event-triggered containment-
formation control problem for nonlinear multi-agent systems.
Neural networks are utilized to approximate uncertain dynamics.
An adaptive neural network controller is designed, and an event-
triggering mechanism based on a relative threshold is con-
structed, which is set on the control channel. By using Lyapunov
stability theory, the bounded stability of the closed-loop systems
is proven, and the formation tracking error converges to a small
neighborhood around zero. It is also shown that the event-
triggered control method used does not cause Zeno behavior.
Finally, simulation results are provided to verify the effectiveness
of the proposed formation control method.

Index Terms—Containment-formation, nonlinear multi-agent
systems, event-trigger control, adaptive neural network control

I. INTRODUCTION

In recent years, formation control has been widely used
in various fields, such as mobile robots [1], spacecrafts [2]
and unmanned aerial vehicles [3]. And the application of
formation control allows agents to share information and tasks
to achieve collaborative work. The principle of formation
control is to design a control strategy to make the intelligences
work according to the envisaged formation [4], and this aspect
is a hot topic in control research.

Nowadays, there are many formation control methods, in-
cluding consensus-based formation control, rule-based forma-
tion control, behavior-based formation control, and so on. In
[5], a consensus algorithm was designed to address forma-
tion control problems by appropriately selecting information
states upon which consensus was achieved. The auther in
[6] considered employing a rule-based strategy to address the
unique estimation issues associated with spacecraft formation
flying. The aricle in [7] discussed a distributed formation
control for networked multi-agent systems. The paper [8]
adopted a simple leader-follower formation tracking control
strategy to address the formation control problem of non-
holonomic mobile robots under communication constraints.
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In [9], the authers proposed the application of behavior-
based formation control, which achieves the formation control
solely by utilizing the relative position information between
robots and their neighbors as well as obstacles. And in [10]
proposed a communication structure design algorithm that
enables followers to form a predetermined formation based
on containment control. The formation control mentioned in
the above article belongs to the category of formation control
with no leader and with one leader. When multi leaders exist
in the multi-agent systems, the formation problem is called
as containment-formation control. For example, the authers in
[11] studied the time-varying output formation for containment
control of linear homogeneous and heterogeneous systems. In
the [12], the authers proposed a communication structure de-
sign algorithm that enables followers to form a predetermined
formation based on containment control. Therefore, studying
containment-formation control is meaningful.

Due to the limited communication network resources in
multi-agent systems, designing event-triggered mechanisms
to reduce communication overhead and enhance system ef-
ficiency is crucial for ensuring optimal system performance
[13]. Consequently, investigating the application of event-
triggered control in multi-agent systems is highly significant,
as it offers a promising approach to optimizing resource
utilization and achieving better overall system performance.
Neural networks are used to approximate uncertain dynamics.
An adaptive neural network controller is designed, incor-
porating an event-triggering mechanism based on a relative
threshold set on the control channel. Using Lyapunov stability
theory, the bounded stability of the closed-loop systems is
proven, ensuring the formation tracking error converges to
a small neighborhood around zero. It is also demonstrated
that the event-triggered control method does not induce Zeno
behavior. Simulation results confirm the effectiveness of the
proposed formation control method.



II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

F = {V,W,A} represents a weighted undirected graph of
A orders, where V = {v1, v2, . . . , vA} is the note set, W ⊆
{(vi, vj) : vi, vj ∈ V} is the edge set, and A = [sij ] ⊆ RA×A
is the weighted adjacency matrix. Suppose that there are A
agents, where B of them are followers and A − B > 0 are
leaders. Let F = {1, 2, . . . , B} be the follower subscript set,
and E = {B + 1, B + 2, . . . , A} be the leader subscript set.
For anyi, j ∈ E ∪ F , we can denote sij

sij =

 0, i = j or vij /∈ W
bj > 0, j ∈ E and vij ∈ W
cij > 0, j /∈ E and vij ∈ W

 (1)

Lemma 1 [14]: The following inequality holds for any ε >
0 and x ∈ Rm

0 ≤ xT sign(x)− xT taε(x) ≤ ε1 (2)

where taε(xi) = xi/
√
x2
i + ε, taε(x) =

[taε(x1), taε(x2), . . . , taε(xB)]T , ε1 = mε, and
sign is the meaning of the sign function.

Lemma 2 [15]: For any vector ε3 > 0 and x ∈ R, the
following inequality satisfies

0 ≤ |x| − x tanh

(
x

ε3

)
≤ 0.2785ε3. (3)

B. Problem Description

Consider multi-agent systems consisting of A agents, where
B of them are followers and A−B > 0 of them are leaders.
Let F = {1, 2, . . . , B} be the follower subscript set, and E =
{B + 1, B + 2, . . . , A} be the leader subscript set.

The dynamics of follower i and the leader k(k ∈ E)can be
modeled as follows{

ẋi(t) = vi(t) + qi(xi(t), t) + Ψ1i(t)
v̇i(t) = si(xi(t), vi(t), t) + ui(t) + Ψ2i(t)

(4){
ẋk(t) = vk(t)
v̇k(t) = uk(t)

(5)

where i = 1, 2, . . . , B, k = B + 1, B +
2, . . . , A, xi(t), vi(t) are the states input vectors of
followers, while vk(t) are the states input vectors of lead-
ers. ui(t), uk(t) represent the control vectors of system.
qi(xi(t), t) and si(x1(t), vi(t), t) are the uncertain dynam-
ics. Ψ1i(t) and Ψ2i(t) are the unknown disturbances.
Defmition 1 : A time-varying formation is specified

by a vector cF (t) = [cT1 (t), cT2 (t), . . . , cTB(t)]T ∈ R2B

with ci(t) = [cix(t), civ(t)]
T (i ∈ F ) piecewise continuously

differentiable. For the multi-agent system (3) and (4), the
containment formation is achieved, if for any given bounded
initial states xi(0) and vi(0) the following conditions are
satisfied

1) All the states of the ith closed-loop system of the i th
follower are bounded.

2) There is positive scalar ε1 and ε2, a finite time Tε(∀t ≥
Tε) such that

‖xi(t)− cix(t)− xk(t)‖ ≤ ε1

‖vi(t)− civ(t)− vk(t)‖ ≤ ε2
(6)

where ε1 is called the tracking position error, and ε2 is called
the tracking velocity error.
Assumption 1: All the following containment formation

in this paper must satisfy the time-varying formation condition

lim
t→∞

(cv(t)− ċx(t)) = 0 (7)

From the models of system, we get that the Laplacian matrix
L can be described as follows

L =

[
L1 L2

0 0

]
(8)

where L1 = [sij ] ∈ RB×B and L2 = [si,k] ∈ RB×(A−B).

Let ∂xi(t) =
∑B
j=1 sij((xi(t) − cix(t)) − (xj(t) − cjx(t)))+∑A

k=B+1 sik(xi(t) − cix(t) − xk(t)), ∂vi(t) =
∑B
j=1 sij

((vi(t) − civ(t)) − (vj(t) − cjv(t))) +
∑A
k=B+1 sik(vi(t)−

civ(t) − vk(t)) be the two auxiliary variables of the multi-
agent system.

Let ∂x(t) = [∂Tx1(t), ∂Tx2(t), . . . , ∂TxB(t)]T ,
∂v(t) =

[
∂Tv1(t), ∂Tv2(t), . . . , ∂TvB(t)T

]
,

u(t) = [uT1 (t), uT2 (t), . . . , uTB(t)]T , cv(t) =
[cT1v(t), c

T
2v(t), . . . , c

T
Bv(t)]

T , cx(t) =
[cT1x(t), cT2x(t), . . . , cTBx(t)]T , ċx(t) =
[ċT1x(t), ċT2x(t), . . . ċTBx(t)]T , and uE(t) =
[u1(t), u2(t), . . . , uB(t)]T .

Then, denoting ζ(t) = [x(t), v(t)]T , multi-agent systems
can be written in the following compact form ∂̇x(t) = ∂v(t) + L1q(x(t), t)

+L1(cv(t)− ċx(t)) + L1Ψ1(t),

∂̇v(t) = L1(s(ζ(t), t) + u(t) + Ψ2(t)) + L2uE(t).

(9)

where q(x(t), t) = [q1(x1(t), t), q2(x2(t), t) . . . , qB(xB(t), t)]T ,
f(ζ(t), t) = [f1(ζ1(t), t), f2(ζ2(t), t), . . . , fB(ζB(t), t)]T −
ċυ(t), and Ψz(t) = [Ψz1(t),Ψz2(t), . . . ,ΨzB(t)]T (z = 1, 2).

III. CONTROLLER AND EVENT TRIGGERING MECHANISM
DESIGN

In this section, the containment-formation controller will be
carried out based on the dynamic surface control design. And
the event-triggering mechanism based on a relative threshold
will be constructed on the control channel.

Due to q(x(t), t) and s(ζ(t), t) are uncertain functions,
they can be approximated by using the neural networks.
Denote q(x(t), t) = W ∗T1 (t)S1(t) + ε4 and s(ζ(t), t) =
W ∗Ts (t)S2(t) + ε5, we can use ŴT

i to approxiamte W ∗Ti .
Then, multi-agent systems (9) can be written
∂̇x(t) = ∂v(t) + L1(W1

∗T (t)S1(t) + ε4)
+L1(cv(t)− ċx(t)) + L1Ψ1(t),

∂̇v(t) = L1(W2
∗T (t)S2(t) + u(t)) + L1(ε5 + Ψ2(t))

+L2uE(t).
(10)



To design the controller, the error surface can be designed

Z1(t) = ∂x(t) (11)
Z2(t) = ∂v(t)− ᾱ (12)

where Z1(t) =
[
ZT11, Z

T
12, . . . , Z

T
1B

]T
is tracking error. ᾱ =[

ᾱT1 , ᾱ
T
2 , . . . , ᾱ

T
B

]T
is the virtual controller going to be de-

signed in the following contents.
Firstly, we can take the derivative of the Z1(t), and combine

with ∂̇(t) in (10). And we can denote L1 = D+E, where D =
diag[L1,11, L1,22, . . . , L1,BB ] is the positive definite diagonal
matrix of L1.

Thus, we can obtain the following expressions

Ż1(t) = ∂v(t) +D(W ∗T1 (t)S1(t)) + E(W ∗T1 (t)S1(t))

+ L1(ε4 + Ψ1(t)) + L1(cv(t)− ċx(t)).
(13)

Since E(W ∗T1 (t)S1(t)) and L1Ψ1(t) are bounded, we can
found a positive constant γ1 which satisfies the following
inequality ∥∥E(W ∗T1 (t)S1(t)) + L1Ψ1(t)

∥∥ ≤ γ1 (14)

Building the first Lyapunov function as follows

V1(t) =
1

2
ZT1 (t)Z1(t) (15)

Then, the derivative of V1(t) can be obtained

V̇1(t) = ZT1 (t)(Ż2(t))

= ZT1 (t)(Z2(t) + ᾱ+D(W ∗T1 (t)S1(t))

+E(W ∗T1 (t)S1(t)) + L1(ε4 + Ψ1(t))

+L1(cv(t)− ċx(t)))

(16)

Considering the Young’s inequality, we can get

ZT1 (t)L1(cv(t)− ċx(t)) ≤ δ0ZT1 (t)Z1(t)

+
1

4δ0
‖L1‖2‖cv(t)− ċx(t)‖2

ZT1 (t)L1ε4 ≤ δ1ZT1 (t)Z1(t) +
ε2

4,A

4δ1

(17)

where δ0 and δ1 are all positive scalars, and ε4 ≤ ε4,A.
Taking (14) and (17) into (16), we can get an inequality

V̇1(t) ≤ ZT1 (t)(Z2(t) +D(W ∗T1 (t)S1(T ) + γ1 + ᾱ1)

+ δ0Z
T
1 (t)Z1(t) +

1

4δ0
‖L1‖2‖cv(t)− ċx(t)‖2

+ δ1Z
T
1 (t)Z1(t) +

ε2
4,A

4δ1

(18)

For the above inequality, the virtual controller α1 can be
cosntructed

α1(t) = −C1Z1(t)−DŴT
1 (t)S1(t)− γ1taε(Z1(t)) (19)

To avoid taking the derivative of the above virtual controller,
the following low-pass filter is introduced as

T ˙̄α1(t) + ᾱ1(t) = α1(t) (20)

where T is a positive time contant.

Denote σ(t) = ᾱ1(t) − α1(t), the above equation can be
rewritten

σ̇ (t) = −T−1σ (t)− α̇1(t). (21)

Taking (19) and (20) into (18), we can get

V̇1(t) ≤ ZT1 (t)(Z2(t)− C1Z1(t) +D(W̃T
1 (t)S1(T )

+γ1 − γ1taε(Z1(t) + σ(t)) + δ0Z
T
1 (t)Z1(t)

+ 1
4δ0
‖L1‖2‖cv(t)− ċx(t)‖2 + δ1Z

T
1 (t)Z1(t) +

ε24,A
4δ1

(22)

where W̃T
1 (t) = W ∗T1 − ŴT

1 .
By the Lemma 1, we can get

− γ1Z
T
1 (t)taε(Z1(t))

+ ZT1
(
E
(
WT

1 (t)S1(t)
)

+ L1Ψ1(t)
)
≤ γ2

(23)

According to the Young’s inequality, we can obtain that

ZT1 (t)σ(t) ≤ δ2
2
ZT1 (t)Z1(t) +

1

2δ2
σT (t)σ(t) (24)

where δ2 is a positive scalar.
Define γ2 = γ1 +

ε4,A
4δ1

.
Then, taking (23) and (24) into (22), we can get

V̇1(t) ≤ ZT1 (t)(Z2(t)− C1Z1(t) +D(W̃T
1 (t)S1(T ))

+ γ2 + δ0Z
T
1 (t)Z1(t) +

1

4δ0
‖L1‖2‖cv(t)− ċx(t)‖2

+
δ2
2
ZT1 (t)Z1(t) +

1

2δ2
σT (t)σ(t) + δ1Z

T
1 (t)Z1(t) +

ε2
4,A

4δ1
(25)

Secondly, the derivative of Z2(t) can be obtained

Ż2(t) = ξ̇v(t)− ˙̄α1(t)

= L1

(
W ∗T2 (t)S2(t) + ε5 + u(t) + Ψ2

)
+ L2uE(t)− ˙̄α1(t).

(26)

Since ε5, L−1
1 L2uE(t), Ψ2 and L−1

1
˙̄α1(t) are bounded, we

can obtain that∥∥(Ψ2(t) + ε5 + L−1
1 L2uE(t)− L−1

1
˙̄α1(t))i

∥∥
∞ ≤ γ3i (27)

We can construct u(t)

u(t) = −C2Z2(t)− Z1(t)− ŴT
2 (t)S2(t)− γ̂3 (28)

Due to the event-triggering mechanism shuld be set on the
control channel, the event-triggering can be built

o(t) = u(tk), ∀t ∈ [tk, tk+1)

tk+1 = inf{t > tk||e(t)| ≥ ϑ |o(t)|+m}
(29)

where e(t) = u(t) − o(t) represents the measurement error
casued by event trigger, 0 < ϑ < 1, ε, σ,m are all positive
constants, and m̃ > m

1−ϑ .tk, k ∈ z+, represents the moment
when the event is triggered.

That is when (22) be sparked while this moment marks as
tk, and the control signal u(tk+1) of this moment can apply to
the system. In the gap between two event-triggered moments
t ∈ [tk, tk+1), the control signal u(tk) remains unchanged.

Denote l(t) = −ŴT
2 (t)S2(t)− C2Z2(t)− Z1(t)−

γ̂3(t).



Thus, u(t) can be rewritten

u(t) = −(1 + ϑ)[l(t)]tanh

(
Z2(t)(l(t))

ε3

)
+ m̃ tanh(

Z2(t)m̃

ε3
)

(30)

Triggering inerval between two events [tk, tk+1), (23) can
be obtained

|o(t)− u(t)| ≤ ϑ |o(t)|+m (31)

u(t) = (1 + ρ1(t)ϑ)o(t) + ρ2(t)m (32)

where |ρ1(t)| ≤ 1 and |ρ2(t)| ≤ 1.
Then, we can obtain that

o(t) =
u(t)

1 + ρ1(t)ϑ
− ρ2(t)m

1 + ρ1(t)ϑ
(33)

Consider the second Lyapunov function

V2(t) =
1

2
ZT2 (t)Z2(t) +

1

2

B∑
i=1

(γ̂3i − γ3i)
2/ς0 (34)

Then, substituting u(t) into (26) yields

Ż2(t) = L1(W ∗T2 (t)S2(t) + ε5

+
u(t)− ρ2(t)m

1 + ρ1(t)ϑ
+ Ψ2) + L2uE − ˙̄α1(t)

(35)

Taking the derivative of V2(t) yields

V̇2(t) = ZT2 (t)(W ∗T2 (t)S2(t) + ε5 +
u(t)− ρ2(t)m1

1 + ρ1(t)ϑ
+ Ψ2)

+ZT2 (t)(L−1
1 L2uE − L−1

1
˙̄α1(t)) +

B∑
i=1

(γ̂3i − γ3i) ˙̂γ3i/ς0

+

B∑
i=1

(γ̂3i − γ3i)
∣∣ZT2 (t)

∣∣ .

(36)
Due to λ1(t) ∈ [−1, 1], λ2(t) ∈ [−1, 1], we can obtain

z2u

1 + ρ1(t)ϑ
≤ z2u

1 + ϑ∣∣∣∣ ρ2(t)m

1 + ρ1(t)ϑ

∣∣∣∣ ≤ m

1− ϑ

(37)

According to Lemma 2, we can get

ZT2 (t)(u(t)−ρ2(t)m
1+ρ1ϑ

)

≤ ZT2 (t)(−l(t) tanh(Z2(t)l(t)
ε3

) + m̃ tanh(Z2m̃
ε3

))

≤ 0.557ε3 + ZT2 (t)l(t)

(38)

Then, we can obtain

−
M∑
i=1

γ3i|ZT2i(t)|

+ ZT2 (t)(Ψ2(t) + ε5 + L−1
1 L2uE(t)− L−1

1
˙̄α(t))

≤ −
B∑
i=1

γ2i|ZT2i(t)|+
B∑
i=1

γ3i|ZT2i(t)| = 0.

(39)

Noting that ˙̂γ2i/ς0 + |ZT2 (t)| = 0, and substituting l(t) into
(36), we can obtain

V̇2(t) ≤ −ZT2 (t)C2Z2(t)− ZT2 (t)Z1(t)

+ ZT2 (t)W̃T
2 (t)S2(t) + 0.557ε3.

(40)

IV. STABILITY ANALYSIS

Theorem 1: For nonlinear second-order systems (4) and (5),
if the controller (28), virtual controller (19), and the adaptive
laws (28), (21), (46) and (47) are applied. Then, all signals in
the closed-loop system are bounded and the formation tracking
error will converge to a small range.

To prove the Theorem 1, we can consider V (t)

V (t) = V1(t) + V2(t) +
1

2
σT (t)σ(t)

+
1

2
tr
[
W̃T

1 (t)ε6
−1W̃1(t)

]
+

1

2
tr
[
W̃T

2 (t)ε7
−1W̃2(t)

]
.

(41)

By(22)-(40), taking the derivative of V (t), we can get

V̇ (t) = V̇1(t) + V̇2(t) + σT (t)σ̇(t)

+tr[W̃T
1 (t)ε−1

6
˙̃W1(t)] + tr[W̃T

2 (t)ε−1
7

˙̃W 2(t)]

≤ −ZT1 (t)

(
C1 −

(
δ2
2

+ δ0 + δ1

)
I2

)
Z1(t)

−ZT2 (t)C2Z2(t) + 0.557ε3 +
1

2δ2
σT (t)σ(t)

+σT (t)σ̇(t) + ZT1 (t)DW̃T
1 (t)S1(t) + ZT2 (t)W̃T

2 (t)S2(t)

−tr
[
W̃T

1 (t)ε−1
6

˙̂
W1(t)

]
− tr

[
W̃T

2 (t)ε−1
7

˙̂
W2(t)

]
+γ2 +

1

4δ0
‖L1‖2‖cv(t)− ċx(t)‖2.

(42)
From (21), it follows that

σT (t)σ̇(t) = −T−1σ(t)− σT (t)α̇1(t)

≤ −σT (t)

(
T−1 − δ4

2
I

)
σ(t) +

1

2δ4
‖α̇1(t)‖2

(43)
where δ4 is a positive scalar.By the property of the
trace of a matrix, which has ZT1 (t)DW̃T

1 (t)S1(t) =
tr[W̃T

1 (t)S1(t)ZT1 D] and ZT2 (t)W̃T
2 (t)S2(t) =

tr[W̃T
1 (t)S2(t)ZT2 (t).

Substituting (38) into (37), we can obtain

V̇ (t) ≤ −ZT1 (t)

(
C1 −

(
δ2
2

+ δ0 + δ1

)
I2

)
Z1(t)

− ZT2 (t)C2Z2(t) + 0.557ε3

− σT (t)

(
T−1 − 1

2δ2
− δ4

2
I

)
σ(t)

+ tr
[
W̃T

1 (t)
(
S1(t)ZT1 (t)D − ε−1

6
˙̂
W1(t)

)]
+ tr

[
W̃T

2 (t)
(
S2(t)ZT2 (t)− ε−1

7
˙̂
W2(t)

)]
+

1

2δ4
‖α̇1(t)‖2 + γ2 +

1

4δ0
‖L1‖2‖cv(t)− ċx(t)‖2.

(44)



We can get

˙̂
W1(t) = ε6S1(t)ZT1 (t)D − ε6Ξ1(t)Ŵ1(t) (45)

˙̂
W2(t) = ε7S2(t)ZT2 (t)− ε7Ξ2(t)Ŵ2(t). (46)

So taking (45) and (46) into (44), the equation about W̃1

changes

tr
[
W̃T

1 (t)
(
S1(t)ZT1 (t)D − ε−1

6
˙̂
W1(t)

)]
= tr

[
W̃T

1 (t)Ξ1Ŵ1(t)
]

≤ −ϕ1tr
[
W̃T

1 (t)W̃1(t)
]

+
λmax(Ξ1)

2µ1
‖W ∗1 (t)‖2F

(47)

where 0 ≤ µ1 ≤ 2λmin(Ξ1)
λmax(Ξ1) , ϕ1 =(

λmin(Ξ1)− 1
2µ1λmax(Ξ1)

)
.

By the same reasoning, we can build W̃2.
From (44), we can get

V̇ (t) ≤ −ZT1 (t)

(
C1 − (

δ2
2

+ δ0 + δ1)I2

)
Z1(t)

− ZT2 (t)C2Z2(t) + 0.557ε3

− σT (t)(T−1 − 1

2δ2
− δ4

2
)σ(t)

− ϕ1tr[W̃
T
1 (t)W̃1(t)]− ϕ2tr

[
W̃T

2 (t)W̃2(t)
]

+
λmax(Ξ1)

2µ1
‖W ∗1 (t)‖2F +

λmax(Ξ2)

2µ2
‖W ∗2 (t)‖2F

+
1

2δ4
‖α̇1(t)‖2 + γ2 +

1

4δ0
‖L1‖2‖cv(t)− ċx(t)‖2

≤ −α0V + β1 +
1

4δ0
‖L1‖2‖cv(t)− ċx(t)‖2

(48)
where β1 = ‖α̇1(t)‖2/2δ4 + γ2 + 0.557ε3 +
λmax(Ξ1)‖W ∗1 (t)‖2F /(2µ1) + λmax(Ξ2)‖W ∗2 (t)‖2F /(2µ2),
α0 = min{λ1, λ2, λ3, λ4, λ5}, λ1 =
−λmin(C1 − (δ2/2 + δ0 + δ1)I), λ2 = −λmin(C2),
λ3 = −λmin(Ξ−1 − (1/2 + δ4/2)I), λ4 = ϕ1 and λ5 = ϕ2.

Denote Φi(t) = (1/(4δ0))‖L1‖2‖civ(t) − ċix(t)‖2 and we
can define Φ(t) = (1/(4δ0))‖L1‖2

∑A−1
i=1 ‖civ(t)− ċix(t)‖2.

Then, inequality (48) can be rewritten as

V̇ (t) ≤ −α0V (t) + β1 + Φ(t). (49)

Then, we should prove the prerequisities before anlysis the
system stability.

Firstly, integrating (49) gives

V (t) ≤ e−α0tV (0) +
β1

α0
(1− e−α0t) +

∫ t

0

(e−α0(t−τ)Φ(τ))dτ

= e−α0tV (0) +
β1

α0
(1− e−α0t) + e−α0t

∫ t

0

(eα0τΦ(τ))dτ.

(50)
One has limt→∞ Φ(t) = 0 and Φ(t) is uniformly bounded,

which means that there is a positive constant Φ0 such that
Φ(t) ≤ Φ0. Denote a positive constant $ > 0, there exists a
fixed time T$ > 0, such that 0 < Φ(t) < $/4, ∀t > T$.

Then, we can obtain that

V (t)− β1

α0
≤ e−α0tV (0)− β1

α0
e−α0t

+ e−α0tΦ0(eα0T$ − 1)

+
$

4
e−α0t(eα0t−eα0T$

).

(51)

Found a time constant TD which satisfies ∀t >
TD > T$. One obtains e−α0tV (0) < $/4, | −
e−α0tβ0/α0| < $/4, e−α0tΦ0(eα0T$ − 1) < $/4,
and (1 − e−α0(t−T$))$/4 < $/4.

Thus, (51) can be changed to V̇ (t) ≤ β1

α0
+$, for the reason

limt→∞$ = 0 and limt→∞ V (t) ≤ β1/α0.

We can easily get that from (6) and (8):
‖xi(t)− cix(t)− xk(t)‖ =

∥∥L−1
1 ∂xi(t)

∥∥ and
‖vi(t)− civ(t)− vk(t)‖ =

∥∥L−1
1 ∂vi(t)

∥∥. It is easy to
get that the above equations are bounded.

Due to the introduction of event triggers, Zeno should be
prevented. From (23) we can obtain e(t) = u(t)− o(t), ∀t ∈
[tk, tk+1).

Then, the derivitivate of e(t)

d

dt
|e| = d

dt
(e ∗ e) 1

2 = sign(e)ė ≤ |u̇| (52)

Since u̇ is a continuous function, and the variables in the
function are all globally bounded. So there must be a constant
χ which satisfies |u̇| ≤ χ. When e(tk) = 0 and lim

t→tk+1

e(t) =

ϑu, hence a positive constant t∗ which satisfies t∗ ≥ ϑu
χ can

be found. Moreover, the Zeno phenomenon does not occur.
From all the analysis above, it is concluded that all closed-loop
signals of multi-agent systems are bounded. The containment-
formation control protocols and event-triggering mechanism
are designed.

V. SIMULATION

Consider multi-agent systems combining six followers and
two leaders. The mathematical models of followers can be
constructed

ẋi(t) = G1 ∗ vi(t) + qi(xi(t), t) + Ψ1i(t)
v̇i(t) = G2 ∗ ui(t) + si(xi(t), vi(t), t) + Ψ2i(t)

(53)

where i = 1, 2, . . . , 6, G1 = 1.5, G2 = 5, Ψ1i(t)
and Ψ2i(t) represent the disturbances. Suppose Ψ1i(t) =
2 + 0.3 sin(0.2t) + 0.2 cos(2t) and Ψ2i(t) = 2 cos(0.2t).
And qi(xi(t), t) and si(xi(t), vi(t), t) are the nonlinear
parts, we set them as qi(xi(t), t) = dicos(xi(t))

2 and
si(xi(t), vi(t), t) = nisin(xivi)

2. The constants di and ni be-
long to [−1; 1; 1.5; 2;−1.5;−2] and [2; 0.3; 1.6; ; 0.6; 0.8; 0.4],
respectively.

The leaders are modeled as xk =[
sin(t)2 + 1
2 sin(t)2 + 0.8

]
, vk =

[
cos(t)2 + 0.6
1.2 cos(t)2 + 0.5

]
.



The follwer adjacency matrix is


0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

,

and the leader adjacency matrix is


1 1
0 0
1 1
1 1
0 0
0 0

.

The desired containment-formation of followers are pre-
sented

cxi =
[
0.8 cos(t+ i−1

3 π)
]

cvi =
[
−0.8 sin(t+ i−1

3 π)
] (54)

The parameters could be chosen C1 = 50, C2 = 50, T =
0.001, ε6 = 0.01, ε7 = 0.01, Ξ1 = 0.005, Ξ2 = 0.005,
γ1 = 2.5, m = 1, m̃ = 2, ϑ = 0.5, ε3 = 0.5.

The simulation resluts are shown, Figs. 1-4 describe snap-
shots of the states of six followers and two leaders at t=0s,
t=5s, t=15s, and t=20s.
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Figs. 5-8 are the diagrams of continuous controller, event-
triggered controller, and control moments shows that event-
triggered control effectively reduces the update frequency of
the controller.

VI. CONCULSIONS

This paper studied the containment-formation control
for second-order nonlinear multi-agent systems via event-
triggering. An adaptive neural network controller and a relative
threshold event-triggered mechanism based on control signals
have been designed to control multi-agent systems. In the
multi-agent systems, neural networks are used to approximate
unknown dynamics. In terms of stability, Lyapunov’s method
is adopted to prove it. Furthermore, it is demonstrated that
there is no Zeno phenomenon in the multi-agent systems.
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Finally, simulation results are presented to validate the effec-
tiveness of the proposed formation control method.
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