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ABSTRACT

A counterfactual explanation describes the smallest input change required to alter
the prediction of an AI model towards a desired outcome. When using neural net-
works, counterfactuals are obtained using variants of projected gradient descent.
Such counterfactuals have been shown to be brittle and implausible, potentially
jeopardising the explanatory aspects of counterfactuals. Numerous approaches
for obtaining better counterfactuals have been put forward. Even though these
solutions address some of the shortcomings, they often fall short of providing
an all-around solution for robust and plausible counterfactuals. We hypothesise
this is due to the deterministic nature and limitations of neural networks, which
fail to capture the uncertainty of the training data. Bayesian Neural Networks
(BNNs) are a well-known class of probabilistic models that could be used to over-
come these issues; unfortunately, there is currently no framework for developing
counterfactuals for them. In this paper, we fill this gap by proposing a formal
framework to define counterfactuals for BNNs and develop algorithmic solutions
for computing them. We evaluate our framework on a set of commonly used
benchmarks and observe that BNNs produce counterfactuals that are more robust,
plausible, and less costly than deterministic baselines.1

1 INTRODUCTION

As Artificial Intelligence (AI) and Machine Learning (ML) increasingly influence critical decisions
in areas such as finance (Cao, 2022) and healthcare (Shaheen, 2021), the need for reliable explana-
tions of the decisions made by AI is becoming increasingly important. Counterfactual Explanations
have emerged as a powerful tool for interpreting the decision-making processes of ML models, of-
fering actionable insights into how the input to an ML model needs to be changed for the model
to produce a different, and often desirable, outcome (CFXs) (see (Guidotti, 2024) for a recent sur-
vey). This is particularly useful in the context of algorithmic recourse (Karimi et al., 2023), where
CFXs are used to generate recourse recommendations for users that have been negatively affected
by the decisions of an ML model. CFXs are particularly suited for this task given their intelligi-
bility (Byrne, 2019), appeal to users (Barocas et al., 2020), information capacity (Kenny & Keane,
2021) and alignment with human reasoning (Miller, 2019).

To see what makes CFXs useful, consider a (fictional) loan application where a customer applies
for a loan with a bank which uses an ML model to process the application and predict whether the
customer will be able to repain the loan or not. For illustration, assume the application is modelled
by an input x with features 32 years of age, $10, 000 loan amount and $25, 000 salary. Assume
that the application is initially rejected, based on the prediction made by the AI that the customer
will not be able to repay the loan back. A possible CFX for this rejection could be an altered input
x′, where a salary of $30, 000 (with the other features unchanged) would result in the loan being
accepted, thus pointing the user to what they would need to change in their application for the loan
to be accepted.

Despite their potential, current approaches to generating CFXs often fall short in terms of satisfy-
ing two key properties: plausibility (Laugel et al., 2019) and robustness (Jiang et al., 2024). The
former requires that CFXs adhere as much as possible to the data manifold, to avoid suggesting

1The code for reproducing the results is provided in the supplementary materials.
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unrealistic input changes. The latter instead requires that similar CFXs be generated for similar in-
puts (Artelt et al., 2021), to ensure fairness in applications such as algorithmic recourse (Slack et al.,
2021). These properties are more than just metrics characterising the utility of CFXs; they are core
desiderata without which CFXs may erode trust in the model they are trying to explain, rather than
engendering it.

We posit that these limitations stem from the deterministic nature of traditional neural networks,
which fail to capture the inherent uncertainty in the data. To address this fundamental issue, we pro-
pose a novel framework for generating counterfactual explanations using Bayesian Neural Networks
(BNNs). Our approach leverages the uncertainty quantification capabilities of BNNs to produce
CFXs that are more plausible and robust than those generated by deterministic models. Specifically,
our contributions are as follows:

• Defining counterfactual explanations for BNNs. We first introduce a formal definition of coun-
terfactual explanations in the context of Bayesian Neural Networks. This definition extends the
concept of CFXs to this class of probabilistic models, accounting for the distribution over model
parameters, which in turn enables a more nuanced understanding of the decision boundary.

• Demonstrating enhanced plausibility. Through extensive experiments on both vision and tabular
datasets, we show that CFXs generated using our proposed BNN-based approach consistently lie
closer to the data manifold than those produced by deterministic MLPs or ensembles. In this way,
our explanations are more realistic and usable in practice.

• Demonstrating improved robustness. We demonstrate that our BNN-based CFXs exhibit superior
robustness, meaning that similar inputs map to similar counterfactual explanations. This property
is crucial for building trust in the explanations provided, as it ensures consistency across mean-
ingful perturbations on the data manifold.

To validate our approach, we conduct a comprehensive empirical evaluation across multiple datasets,
including MNIST (LeCun et al., 1998) for vision tasks and several tabular datasets, including Ger-
man Credit Risk (Dua & Graff, 2017), Diabetes (Smith et al., 1988), News Categorisation (Fernan-
des et al., 2015), and Spam Base (Hopkins et al., 1999), covering various domains such as finance
and healthcare. Our results consistently show that BNN-based CFXs outperform their deterministic
counterparts across various metrics, including plausibility and robustness. Notably, this result holds
when comparing against previously-proposed uncertainty-aware models.

The remainder of this paper is organised as follows. We provide the essential background for this
paper in Section 2. We then present our key contribution in Section 3, where we formally define
counterfactual explanations for BNNs and show how they can be computed. We validate our pro-
posal in Section 4 and present an extensive experimental evaluation using common datasets from
the literature on CFXs. Finally, we discuss related work in Section 5 and discuss the broader impli-
cations of our work for the field of explainable AI and the practical deployment of machine learning
models.

2 BACKGROUND

Counterfactual explanations. Counterfactual explanations (CFXs) provide a way to interpret the
decisions of ML models by showing how changes to the input of a model would lead to different
outcomes. Mainstream approaches to compute CFXs characterise these explanations in terms of
the solutions of an optimisation problem (Wachter et al., 2017; Mohammadi et al., 2021), which
we present next for a binary classification setting without loss of generality. LetM be a machine
learning model mapping an input x ∈ X to label ℓ ∈ {0, 1}. For ease of exposition, we refer to
M(x) = 0 as the negative outcome and to M(x) = 1 as the positive outcome. Assuming M
initially produces a negative outcome for an input x, a CFX xc for this decision can be obtained as:

argmin
xc∈X

d(x,xc) s.t.M(xc) = 1, (1)

where d : X × X → R+ is a distance metric defined over the input space from which x and xc are
drawn. Since computing an exact solution for the problem presented in Equation (1) may be viable
only for certain types of machine learning models, the following relaxation is typically considered
for more general classes of differentiable models:
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argmin
xc∈X

L(M(xc), 1) + λ · d(x,xc) (2)

where L is a differentiable loss function that guides the search towards an input xc for which M
yield a positive outcome with high confidence, and λ is a parameter controlling the trade-off between
the first term and a distance loss d defined as in Equation (1).

Several metrics have been proposed to assess the quality of CFXs (Karimi et al., 2023). For ex-
ample, validity captures the basic requirement that a CFX should change the output of a model,
turning a negative outcome into a positive one. Validity is typically considered in tandem with prox-
mity (Wachter et al., 2017), which gives a higher preference to CFXs that are closer to the original
input. Additionally, CFXs are typically required to be actionable (Ustun et al., 2019) and only alter
features that can be realistically modified by the user (e.g. users cannot modify their age but they
can act on credit score). Sparsity (Wachter et al., 2017) is also deemed important in many cases,
whereby CFXs requiring changes on fewer features are to be preferred to avoid overloading users
with too much information. Another important requirement is plausibility (Dhurandhar et al., 2018;
Altmeyer et al., 2024), which requires that counterfactual explanations adhere as much as possible to
the data manifold, to avoid causing unrealistic changes to input features. Finally, robustness (Artelt
et al., 2021; Slack et al., 2021; Leofante & Potyka, 2024), advocates for the generation of similar
CFXs for similar inputs, to ensure CFXs are not perceived as potentially malicious or discrimina-
tory. Validity, plausibility, and robustness will be the focus of the experimental analysis presented
in this paper.

Bayesian Neural Networks (BNNs) A BNN B is a probabilistic model based on a Neural Net-
work (NN) architecture, where for each layer l = 1, . . . , L, the parameters w are sampled from a
posterior distribution P (w).

Definition 1 (BNN). A BNN B is a pair (fw∼P (w)(x), P (w)), where fw(x) defines the architec-
ture and operations of the network and P (w) is the posterior distribution over the parameters of
the BNN. Thus, the output of a BNN, denoted by B(x) for simplicity, is the expected value of the
forward pass over fw∼P (w)(x) with respect to the distribution of weights. Formally,

B(x) = Ew∼P (w)[fw(x)] =

∫
w

fw(x)P (w) dw. (3)

When considering classification models we denote the l-th output unit of a BNN as B(x)l.
In practice, computing the output of a BNN as defined in Equation (3) is intractable. Thus, we
approximate Equation (3) using Monte Carlo sampling of the posterior distribution P (w). The
approximate BNN output is given by

B̃(x) = 1

N

N∑
i=1

fw(x), (4)

where w1, . . . ,wN ∼ P (w) are iid samples from the posterior.

While deterministic NNs are trained via maximum likelihood estimation (MLE), training a BNN
corresponds to performing Bayesian inference on P (w). For this, we begin with a prior over the
BNN parameters, Π(w), and update this prior using observations D, P (w) = Π(w|D). Various
BNN inference approaches exist. Bayes-by-backprop updates the parameters of the prior iteratively
in a process that mirrors MLE (Blundell et al., 2015). Markov chain Monte Carlo (MCMC) methods
directly sample from the posterior using accept-reject-style algorithms such as Metropolis-Hastings
(Borkar, 1953), or Hamiltonian Monte Carlo (HMC) (Duane et al., 1987). In this paper, we focus
on the definition and procedure for obtaining counterfactuals on BNNs trained using HMC, as it is
the most precise inference algorithm. More discussion on how we train the BNNs is available in
Section 4.
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3 COUNTERFACTUAL EXPLANATIONS FOR BNNS

Counterfactuals do not have a commonly accepted definition in probabilistic models and, to the best
of our knowledge, they have never been formally defined for BNNs. Here, we propose a framework
for defining and computing counterfactuals specific to BNNs. In contrast to deterministic networks,
the parameters of a BNN are modelled as distributions rather than fixed values, complicating the
definition of counterfactuals. Specifically, while counterfactuals for deterministic networks usually
require the computation of model gradients, the gradient of a BNN’s output with respect to its input
is distributional, and its expected value is difficult to compute exactly. Moreover, to compute the
true gradient of a BNN with respect to its input, we differentiate Equation (3) with respect to x:

∂xB(x) = ∂x

(∫
w

fw(x)P (w) dw

)
=

∫
w

∂xfw(x)P (w) dw. (5)

However, both Equation (3) and its gradient in Equation (5) are intractable to compute directly.
Similarly to Equation (4) we can approximate the expected gradient of a BNN through Monte Carlo
sampling,

∂xB̃(x) =
1

N

N∑
i=1

∂xfwi(x). (6)

In this setting, the gradient ∂xfwi
(x) can be computed in the same way as a standard, deterministic

MLP.

Having established the mathematical framework, we can now formally define probabilistic counter-
factuals for Bayesian Neural Networks (BNNs). This definition not only computes counterfactuals
with minimal distance from the original input but also incorporates the model’s inherent uncertainty.
Definition 2 (Probabilistic Counterfactual). Given a BNN B, an input x, with observed negative
outcome, B(x) = 0, a probabilistic counterfactual is an input xc such that the output achieves the
desired outcome i.e., B(xc) = Ew[fw∼P (w)(x)] = 1. Formally,

xc = argmin
xc

d(x,xc) s.t. argmax
l

B(xc)l = 1. (7)

Equation (7) describes the output constraint for the classification setting on which we focus. For
regression tasks we can replace the constraint with a bound on the output units of the network,
li ≤ B(xc)i ≤ ui, i = 1, . . . , n where B has n output units. Moreover, where we have focused on
the binary classification setting, this definition can be extended to the multi-class case by replacing
the negative outcome with the original class y, and the positive outcome with some target class, t.
We continue with this more generalised notation for the classification setting.

To compute counterfactuals, we parallel the optimisation formulation given in Equation (2). Con-
cretely, and focusing on the classification case, we use a linear loss, Llin, for a specified target class,
t, and write our objective function as

argmin
xc

Llin(B̃(xc), t) + λ · d(x,xc), (8)

where Llin(B̃(xc), t) = B̃(xc)y − B̃(xc)t with B̃(x′)y being the average value of the output unit
corresponding to the observed class y and B̃(xc)t that for the target class. We have selected linear
loss due to its computational efficiency and its frequent application in the robustness literature, where
it is known for prompting rapid changes in model outputs (Carlini & Wagner, 2017). However,
alternative loss functions, such as cross-entropy, may also be employed, as discussed in Section 4.
Echoing Equation (2), the first term in the objective of Equation (8) accounts for the validity of
candidate CFXs, while the second term in Equation (8) promotes CFXs that are closer to the original
input x.

Based on this objective function we outline our algorithm for computing probabilistic counterfactu-
als in Algorithm 1. The procedure begins by initialising the counterfactual with the original input
vector and proceeding to the main loop. Within the main loop, we alternate between computing
approximate gradients using Equation (6), and stepping the counterfactual according to the gradient.
In our experiments, we set L and U as the upper and lower bounds on the input, though it is possible
to limit this to an lp ball if there is a pre-defined budget for the counterfactuals. We note that, as for
the deterministic setting, this algorithm does not guarantee a valid counterfactual and that the choice
of λ, ϵ, and N will dictate this as tunable parameters.
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Algorithm 1: Generating CFX for BNNs
Input : BNN B, input sample x, target class y, stepsize ϵ, distance weight λ, number of

iterations N , lower and upper bounds on input L and U .
Output: Counterfactual xc.

1 xc ← x ▷ Initialise the counterfactual
2 for n← 1, . . . , N do
3 δ ← ∂xc

[Llin,t(B̃(xc)) + λ(∥x− xc∥p)] ▷ Compute loss’ gradient w.r.t. to the input
4 xc ← xc + ϵ · δ ▷ Update counterfactual using the gradient
5 xc ← clip(xc, L, U) ▷ Clip the adversarial example to ensure it is within bounds
6 end
7 return xc

4 EVALUATION

In this section, we evaluate the properties of counterfactuals produced on BNNs. We focus on three
main properties, i.e. validity, robustness, and plausibility, and show that CFXs obtained for BNNs
outperform those produced for traditional Multi-Layer Perceptrons (MLPs). We also test other meth-
ods for uncertainty quantification, namely ensemble methods, and show that BNNs produce better
CFXs in most instances. We conducted experiments on various popular datasets to cover different
data types and classification tasks. They include one vision dataset, MNIST (LeCun et al., 1998),
and four tabular datasets: credit (Dua & Graff, 2017), diabetes (Smith et al., 1988), news (Fernan-
des et al., 2015), and spambase (Hopkins et al., 1999). For each dataset, we trained the following
models: a single standard deterministic multi-layer perceptron (MLP), an ensemble of 50 randomly
initialised MLPs (Ensemble), and a Bayesian Neural Network (BNN). We keep the architectures of
the three models consistent with 2 hidden layers, 150 nodes each, to aid comparison. In training
our BNNs we use an adaptive variant of the HMC algorithm called NUTS provided as part of the
numpyro package.

We have chosen these benchmarks as they represent BNN’s closest deterministic counterparts. An
MLP is the least complex form of deep neural network and is also used exhaustively in the CFX
literature as a case study making it a key benchmark. We also compare with ensembles of MLPs as
these have previously been studied in the context of uncertainty-aware CFX by Schut et al. (2021).
MLP ensembles also have functional similarities to BNNs; as we use a sampling-based Bayesian
inference algorithm, our BNNs can be considered as a finite ensemble of samples in the same way
as an ensemble of MLPs. In these comparisons, we hypothesise that the BNN will greater be able
to capture the underlying data manifold, leading to more robust and plausible counterfactuals in
practice.

Counterfactual explanations are generated using gradient-based optimization methods tailored to
each model type. For MLPs and ensembles, we used standard projected gradient descent to find min-
imal input perturbations that change the model’s prediction according to Equation (2). For BNNs,
we utilized the probabilistic counterfactual framework defined in Section 3, leveraging Monte Carlo
sampling to approximate gradients and defined in Equation (6). For every dataset, we compute
counterfactuals for 50 random samples from the test set. All experiments are performed on an RTX
3080 GPU and AMD Ryzen Threadripper 3960x 24-core CPU with 256GB of RAM running Ubuntu
22.04.

In the rest of this section, we first look at a visual example from the MNIST dataset in Section 4.1,
before defining our metrics and discussing numeric results in Sections 4.2 and 4.3. Finally, we
compare against previous work on uncertainty-aware CFX in Section 4.4.

4.1 VISUAL INTERPRETATION

We begin with an example from the MNIST image classification dataset where we randomly select
a target class for each image. Figure 1 shows snapshots of computing a counterfactual explanation
on the three model types. Each row is run with the same hyperparameters, original image, and target
class.

5
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MLP

Ensemble

(a)

BNN

(b) (c) (d) (e)

Figure 1: Generation of a counterfactual for an MLP, an Ensemble, and a BNN. a) shows the orig-
inal image and then a counterfactual with target ‘6’ is progressively generated, with b)-d) showing
snapshots of the image as the number of iterations increases.

We observe that as the number of iterations increases from left to right, the images increasingly
resemble the number 6. However, the MLP suffers some erroneous fragments on either side of the
number in b) and c). By e) the MLP’s CFX has begun to degrade, particularly on the right-hand side,
to a point where it is nearly unrecognisable as a 6 to the human eye. The ensemble row also shows
some noise around the number, but the degradation of the ‘key’ pixels in the number are less affected
and the final image is more recognisable as a 6. The BNN also suffers from noise above and to the
sides of the number at the b) and c) stages; however, the noise is less pronounced in these stages
than we observe for the Ensemble and MLP. At stage e) the BNN’s CFX is much more complete
than for the Ensemble or MLP, even though the noise has become quite pronounced, the key pixels
are largely preserved and the number six is evident.

We attribute the improved preservation of ‘key’ pixels in the BNN to the better representation of the
data distribution captured by this model. Similarly, we propose that the model averaging in the En-
semble prevents the major deterioration of the key pixels that we observe for the MLP. Specifically,
for pixels to significantly change in the Ensemble model, they must have a significant impact in the
output across all models of the ensemble. This helps to mitigate any local minima we might observe
in any single MLP. We emphasise that these counterfactuals are produced with no CFX-specific
regularisation scheme in either training or the CFX algorithm, with the intention of examining the
explanations produced by these models in an unmodified state.

4.2 METRICS

We use three metrics for evaluating the counterfactuals produced on each model: Local Outlier
Factor (Breunig et al., 2000) (LOF) provides a measure of how closely a counterfactual lies to the
manifold of training data. It is frequently used as a measure of plausibility in the CFX literature. We
also use the Implausibility measure from (Altmeyer et al., 2024) as a secondary measure of plausi-
bility. As outlined in (Altmeyer et al., 2024), this metric considers the sample-averaged Euclidean
distance between a counterfactual and any in-class sample from the training set. Finally, we define
a novel metric, the Robustness Ratio, to measure the robustness of counterfactuals. This metric is
inspired by experimental protocols used to evaluate the robustness of CFXs to input changes (Artelt
et al., 2021; Leofante & Potyka, 2024) and is formally defined as follows.
Definition 3 (Robustness Ratio). Given an original input, x, and a counterfactual explanation, xc,
based on x. We compute a second counterfactual, x′

c, on a point x′ where x′ is sampled uniformly

6
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Table 1: Numeric results for counterfactuals produced on the MNIST, credit, diabetes, news, and
spambase datasets, and the MLP, Ensemble, and BNN model types. For each dataset/model pair we
report three metrics covering the plausibility and robustness of the counterfactuals. We also report
the clean accuracy, percentage of valid counterfactuals found for each pair, and the mean l2 cost.
Arrows indicate for each metric whether high is better (↑) or lower is better (↓).

Dataset Model Clean Accuracy (%) Valid CFX (%) Metric
l2 Cost ↓

LOF ↑ Implausibility ↓ Robustness Ratio (10−3) ↓

MNIST
MLP 95.6 88.0 0.721 87.4 41.4 18.7

Ensemble 97.3 82.0 0.463 91.0 3.94 54.4
BNN 98.2 74.0 0.838 87.1 44.1 7.57

credit
MLP 75.5 100.0 1.0 3.45 36.5 0.730

Ensemble 76.5 96.0 1.0 3.35 36.6 0.422
BNN 71.0 88.0 1.0 3.30 28.0 0.850

diabetes
MLP 77.9 100.0 0.949 0.428 15.0 0.302

Ensemble 76.0 100.0 0.897 0.422 15.5 0.301
BNN 72.7 100.0 1.0 0.423 25.4 0.254

news
MLP 65.0 92.0 1.0 65.7 629 22.2

Ensemble 65.9 74.0 1.0 68.0 636 18.8
BNN 65.9 80.0 1.0 64.2 460 22.8

spambase
MLP 92.9 80.0 0.886 55.0 497 45.6

Ensemble 92.9 92.0 0.902 64.6 399 44.1
BNN 92.9 92.0 0.854 58.4 369 44.0

from the neighborhood of x: ∥x−x′∥∞ < b with some budget b. We term the distribution governing
these samples Ub(x). The Robustness Ratio is then defined as the ratio of the distance between the
two counterfactuals, x and x′, to the cost of the initial counterfactual. Formally,

Robustness Ratio = Ex′∼Ub(x)

[
∥x′

c − xc∥p
∥xc − x∥p

]
. (9)

We compute the expected value in Equation (9) using Monte Carlo sample averaging of Ub(x). For
all our experiments we instantiate Definition 3 using l2 norms, although this metric can be applied
with any lp norm in general. For the budget vector, we use 5% of the element-wise input domain.
Where a feature has no obvious predefined input domain we use the range of that feature in the
training set. Any instance where we are unable to find a valid counterfactual is discarded when
computing the Robustness Ratio.

4.3 NUMERIC RESULTS

In Table 1 we report numeric results across three model types and five datasets. In addition to the
metrics, we report the clean accuracy of the models and the percentage of valid counterfactuals
found. Valid Counterfactuals is defined as the percentage of counterfactuals that our algorithm ob-
tained that successfully change the model output to the intended target class. A validity of 100%
implies that we found a valid counterfactual for all 50 sampled test inputs. For these results we per-
formed hyperparameter tuning of ϵ, λ, and N in Algorithm 1 independently for each dataset/model
run, and excluded any run which obtained a Valid Counterfactuals score of less than 70%.

Focusing initially on LOF, the results show that the BNN achieved the largest or equivalent LOF
score across all datasets except spambase. This indicates that on the BNN model, the counterfactuals
we find better represent the training data distribution. We observe similarly that the Implausibility
score was better or the same across all datasets except for spambase. Regarding CFX robustness,
we note that in the two benchmarks where LOF was equal, the Robustness Ratio was lower for the
BNN model than either baseline. We noted in our experiments that there appeared to be a trade-off
between LOF and Robustness Ratio. In Table 1, we have prioritised LOF in selecting the best runs
as this is a highly recognised metric in the CFX literature. For each dataset/model pair, we have
also reported the mean l2 cost of counterfactuals found. Although this is not a metric pertaining to
plausibility or robustness, the literature on counterfactuals generally considers cheap counterfactuals
to be desirable. Our results show that in three of the five datasets, the counterfactuals produced on
the BNN were the cheapest, as well as maintaining high scores over our metric suite. In two cases,
providing both the cheapest counterfactuals and the highest LOF score; these results support our
hypothesis. It is important to note that this is achieved with no hyperparameter tuning for low cost.
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Table 2: Best performance results by metric across all hyperparameter tuning runs. Arrows indicate
for each metric whether high is better (↑) or lower is better (↓).

Metrics Model Datasets

MNIST credit diabetes news spambase

LOF ↑
MLP 0.721 1.0 0.949 1.0 0.886

Ensemble 0.463 1.0 0.897 1.0 0.902
BNN 1.0 1.0 1.0 1.0 0.853

Implausibility ↓
MLP 87.4 3.34 0.428 64.0 55.0

Ensemble 91.0 3.35 0.422 63.9 58.3
BNN 86.9 3.30 0.423 64.2 57.0

Robustness Ratio
(10−3) ↓

MLP 10.5 34.3 6.48 513 370
Ensemble 2.38 27.6 6.46 405 239

BNN 5.38 9.79 25.4 289 226

In Table 2 we provide the best scores for each metric across all runs. Here we see a clear divide
between the models with some component of averaging (Ensemble and BNN) and the MLP, which
only achieves a best result in Implausibility on spambase. When comparing the Ensemble and BNN
models the metrics are similar with the BNN yielding improved scores in seven of the twelve head-
to-heads with the Ensemble model. We note that these scores are to give a full picture only and
that prioritising a single metric is usually at heavy detriment to other metrics or the l2 cost of the
counterfactual.

4.4 COMPARISON WITH (SCHUT ET AL., 2021)

In (Schut et al., 2021) the authors propose producing counterfactuals that consider aleatoric and
epistemic uncertainty. They use softmax output and an ensemble of MLPs to capture the aleatoric
and epistemic uncertainties respectively. Differently to us, their counterfactuals are generated using
cross-entropy loss rather than our linear loss function Llin. Moreover, in (Schut et al., 2021) the au-
thors apply a variation on the Jacobian-based saliency map (JSMA) originally applied in adversarial
attacks (Papernot et al., 2016). Specifically, the JSMA limits updates to the input to only consider
the input dimension with the largest partial gradients.

Here we apply these modifications to align our CFX algorithm with that from (Schut et al., 2021)
and compare the CFXs produced by the Ensemble models and our BNNs. As in Section 4.3 we
compare each model/dataset pair using three established metrics and show the results in Table 3.

The results in Table 3 show that the BNN outperforms or ties the Ensemble in LOF for every
benchmark, and where there is a tie the BNN maintains a lower Robustness Ratio. The performance
is more consistently in favour of the BNN than we see in Table 1. However, we note that the cost
of the BNN’s counterfactuals are often higher than the Ensemble, in contrast to what we observe
in Table 1.

Table 3: Numeric results for MNIST, credit, diabetes, news, and spambase datasets on the (Schut
et al., 2021) MLP Ensembles and our BNNs. For each metric arrows indicate whether higher is
better(↑) or lower is better (↓).

Dataset Model Clean Accuracy (%) Valid CFX (%) Metric
l2 Cost ↓

LOF ↑ Implausibility ↓ Robustness Ratio (10−3) ↓

MNIST Ensemble 97.3 100.0 0.560 98.3 58.0 14.0
BNN 98.2 74.0 0.946 94.5 124 3.40

credit Ensemble 76.5 100.0 1.0 3.70 19.7 1.58
BNN 71.0 100.0 1.0 4.03 3.54 2.38

diabetes Ensemble 100.0 100.0 0.949 0.417 22.3 0.202
BNN 72.7 100.0 1.0 0.435 23.7 0.277

news Ensemble 65.9 74.0 1.0 66.8 561 19.0
BNN 65.9 80.0 1.0 64.1 517 22.5

spambase Ensemble 92.9 76.0 0.879 52.7 463 47.8
BNN 92.9 78.0 0.882 54.3 530 47.0
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In Figure 2 we compare counterfactuals produced by the Ensemble and BNN models. Here we
observe a much clearer counterfactual for both models than in Figure 1, this is due to the JSMA
filtering applied. However, we note that the Ensemble model continues to produce more prominent
erroneous artifacts than the BNN.

(a) (b) (c)

Figure 2: Visual comparison of two counterfactuals produced under the same setting as in (Schut
et al., 2021) for (b) an Ensemble model, and (c) a BNN. Original inputs are shown in (a). The top
counterfactual is for an original input of 5, with a target of 6 and the lower counterfactual is for an
original input of 9 with target class 4.

5 RELATED WORK

Various methods for generating CFXs have been proposed for a wide range of machine learning clas-
sifiers; see, e.g. (Guidotti, 2024; Karimi et al., 2023) for recent surveys. These include approaches
targeting tree-based classifiers (Tolomei et al., 2017), linear classifiers (Ustun et al., 2019) as well
as non-linear ones implemented by means of deep neural networks (Wachter et al., 2017). These
algorithms typically cast the problem of finding explanations as an optimisation problem aimed at
generating explanations that satisfy properties of interest, including validity, actionability, sparsity,
and robustness. We refer the reader to Section 2 for a more detailed discussion on this.

Closely related to this work are approaches that generate CFXs for probabilistic models. For exam-
ple, Bayesian classifiers are considered in (Albini et al., 2020), where CFXs are given in the form of
influence relations between features. This is different from the type of counterfactuals that we aim
to generate, in that our explanations are built from feature-wise modifications as commonly studied
in the literature (Guidotti, 2024). Bayesian Neural Networks are considered in (Antorán et al., 2021;
Ley et al., 2022), where counterfactual explanations are defined in terms of minimal modifications
to input features that would result in an increase in confidence for the prediction produced by the
BNN. Our objective is different, as our counterfactuals are designed to change the prediction of the
classifier, in line with common definitions encountered in the literature on CFX (Guidotti, 2024;
Karimi et al., 2023). Other approaches have considered techniques for uncertainty quantification
to improve the quality of CFX in the presence of uncertainty. For instance, conformal prediction
sets and deep ensembling techniques were used in (Altmeyer et al., 2024) to generate CFXs that lie
closer to the data manifold. While these techniques are effective at improving the plausibility of
counterfactuals, they differ from our approach in that we aim to generate explanations by reasoning
directly on a model trained to incorporate uncertainty in its decision-making process.

We would like to note that while in this paper we will focus mostly on tabular data and images,
explanation algorithms for other data types have been proposed, including graph data (Bajaj et al.,
2021), vision tasks (Augustin et al., 2022) and time series classification tasks (Delaney et al., 2021).

Unlike deterministic NNs, Bayesian NNs provide a natural, yet powerful, way of quantifying uncer-
tainty in Deep Learning Models (Gal, 2016). BNNs treat model parameters as probability distribu-
tions, allowing for the computation of predictive uncertainty (MacKay, 1992). In this paper, we use
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this powerful feature to synthesise counterfactuals that are more plausible than those generated by
deterministic or even ensemble models.

Although, to our knowledge, counterfactual explanations have not been defined for BNNs, there is
work that considers related concepts. For instance, Ali et al. (2023) study counterfactual explana-
tions of Bayesian model uncertainty. Unlike the work presented here (Ali et al., 2023) adapts existing
counterfactual generation techniques to work with BNNs; thus, not fully utilising the BNNs. Raman
et al. (2023) on the other hand, consider deterministic NNs but treat the feature perturbations as
random variables endowed with prior distribution functions to provide several alternative explana-
tions rather than a single point solution. Schut et al. (2021) use aletoric and epistemic uncertainties
obtained from an ensemble of models to generate more interpretable counterfactuals.

CONCLUSION

In this paper we have presented the first formal study of counterfactual explanations for Bayesian
Neural Networks. We proposed a definition for CFX within the context of BNNs as well as a
framework for computing them in practice. We reported results on five commonly used datasets
from the CFX literature and compared the performance of our method against two baselines: MLPs
and MLP ensembles. We have shown that BNNs often produce cheaper, more robust, and more
plausible explanations. We observe that some state-of-the-art metrics appear to exhibit trade-off
behaviour in all models. Notably, obtaining highly robust explanations is observed to be more
costly, confirming previous observations made in the context of deterministic models (Jiang et al.,
2024).

LIMITATIONS AND FUTURE WORK

In this work, we have explored CFX produced on BNNs in a straightforward setting, namely, by
solving Equation (8) without applying additional regularisations to promote robustness or plausi-
bility as sometimes used in the literature (Karimi et al., 2023; Jiang et al., 2024). It would be
interesting to see how our results hold up in such a setting and we leave this investigation for fu-
ture work. Furthermore, we consider only HMC-based Bayesian inference algorithms and a single
network architecture for ease of comparison. We leave exploring CFX on BNNs produced by less
precise inference algorithms and varying architectures as points for future work.

Reproducibility Statement. We have provided the models and code for reproducing all exper-
iments in the supplementary materials. All datasets used in this study are open source and freely
available on the Internet. Additionally, we have included relevant citations to facilitate locating these
resources online for result reproduction.
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