
Published as a conference paper at ICLR 2021

VARIATIONAL STATE-SPACE MODELS FOR
LOCALISATION AND DENSE 3D MAPPING IN 6 DOF

Atanas Mirchev Baris Kayalibay Patrick van der Smagt Justin Bayer

Machine Learning Research Lab, Volkswagen Group, Munich, Germany
{atanas.mirchev,bkayalibay,bayerj}@argmax.ai

ABSTRACT

We solve the problem of 6-DoF localisation and 3D dense reconstruction in spatial
environments as approximate Bayesian inference in a deep state-space model.
Our approach leverages both learning and domain knowledge from multiple-view
geometry and rigid-body dynamics. This results in an expressive predictive model
of the world, often missing in current state-of-the-art visual SLAM solutions. The
combination of variational inference, neural networks and a differentiable raycaster
ensures that our model is amenable to end-to-end gradient-based optimisation. We
evaluate our approach on realistic unmanned aerial vehicle flight data, nearing the
performance of state-of-the-art visual-inertial odometry systems. We demonstrate
the applicability of the model to generative prediction and planning.

1 INTRODUCTION

We address the problem of learning representations of spatial environments, perceived through RGB-D
and inertial sensors, such as in mobile robots, vehicles or drones. Deep sequential generative models
are appealing, as a wide range of inference techniques such as state estimation, system identification,
uncertainty quantification and prediction is offered under the same framework (Curi et al., 2020; Karl
et al., 2017a; Chung et al., 2015). They can serve as so-called world models or environment simulators
(Chiappa et al., 2017; Ha & Schmidhuber, 2018), which have shown impressive performance on
a variety of simulated control tasks due to their predictive capability. Nonetheless, learning such
models from realistic spatial data and dynamics has not been demonstrated. Existing spatial generative
representations are limited to simulated 2D and 2.5D environments (Fraccaro et al., 2018).

On the other hand, the state estimation problem in spatial environments—SLAM—has been solved in
a variety of real-world settings, including cases with real-time constraints and on embedded hardware
(Cadena et al., 2016; Engel et al., 2018; Qin et al., 2018; Mur-Artal & Tardós, 2017). While modern
visual SLAM systems provide high inference accuracy, they lack a predictive distribution, which is a
prerequisite for downstream perception–control loops.

Our approach scales the above deep sequential generative models to real-world spatial environments.
To that end, we integrate assumptions from multiple-view geometry and rigid-body dynamics com-
monly used in modern SLAM systems. With that, our model maintains the favourable properties of
generative modelling and enables prediction. We use the recently published approach of Mirchev et al.
(2019) as a starting point, in which a variational state-space model, called DVBF-LM, is extended
with a spatial map and an attention mechanism. Our contributions are as follows:

• We use multiple-view geometry to formulate and integrate a differentiable raycaster, an
attention model and a volumetric map.

• We show how to integrate rigid-body dynamics into the learning of the model.
• We demonstrate the successful use of variational inference for solving direct dense SLAM

for the first time, obtaining performance close to that of state-of-the-art localisation methods.
• We demonstrate strong predictive performance using the learned model, by generating

spatially-consistent real-world drone-flight data enriched with realistic visuals.
• We demonstrate the model’s applicability to downstream control tasks by estimating the

cost-to-go for a collision scenario.

1

Published as a conference paper at ICLR 2021

Predicted colour Observed colour

Predicted depth SGBM depth

−4 −2 0 2 4
x [m]

−4

−3

−2

−1

0

1

2

3

4

y
[m

]

star, max speed 3.0 m/s

MOCAP
proposed

Figure 1: Illustration of the proposed quadcopter localisation and dense mapping. Left: top-down
view of the localisaton estimate. Right: generative depth and colour reconstructions for one time step.

The contributions allow the reformulated model to tackle realistic RGB-D scenarios with 6 DoF.

2 RELATED WORK

Generative models for spatial environments GTM-SM (Fraccaro et al., 2018) focuses on long-
term predictions with a non-metric deterministic external memory. Chaplot et al. (2018) formulate an
end-to-end learning model for active global localisation, filtering with a likelihood update predicted
by a neural network. The agent can turn in four directions and move on a plane, perceiving images of
the environment. VAST (Corneil et al., 2018) assumes a discrete state space for a generative model
applied to the 2.5D Vizdoom environment. Whittington et al. (2018) model agents moving on a
2D grid with latent neurologically-inspired grid and place cells. Other works propose end-to-end
learnable generative scene models (Eslami et al., 2018; Engelcke et al., 2020), without considering the
agent dynamics. Like in the above, we put major emphasis on the generative predictive distribution
of our model. With it, the agent can imagine the consequences of its future actions, a prerequisite
for data-efficient model-based control (Chua et al., 2018; Hafner et al., 2019a;b; Becker-Ehmck
et al., 2020). However, the aforementioned deep generative spatial models have only been applied on
simulated 2D, 2.5D (movement restricted to a plane) and very simplified 3D environments.

A major challenge when scaling to the real world is to ensure that the learned components, and in
turn the generative predictions, generalise to observed but yet unvisited places. Gregor et al. (2019)
highlight another problem, that of long-term consistency when predicting ahead, and address it by
learning with overshooting. In contrast, our method resolves these issues by injecting a sufficient
amount of domain knowledge, without limiting the flexibility w. r. t. learning. To this end, we begin
by sharing the probabilistic factorisation of DVBF-LM (Mirchev et al., 2019), a deep generative
model that addresses the tasks of localisation, mapping, navigation and exploration in 2D. We then
redefine the map, the attention, the states, the generation of observations and the overall inference,
allowing for real-world 3D modelling and priming our method for data-efficient online inference in
the future. We discuss why these changes are necessary more thoroughly in appendix A.

Combining learning and spatial domain knowledge Fully-learned spatial models with an explicit
memory component have been studied by Parisotto & Salakhutdinov (2018); Zhang et al. (2017);
Oh et al. (2016). Further relying on geometric knowledge, Tang & Tan (2019) propose learning
through the whole bundle adjustment optimisation, formulated on CNN feature maps of the observed
images. Czarnowski et al. (2020) define a SLAM system based on learned latent feature codes of
depth images, a continuation of the works by Zhi et al. (2019); Bloesch et al. (2018). Factor-graph
maximum a posteriori optimisation is then conducted, substituting the observations for their respective
low-dimensional codes, leading to point estimates of the individual geometry of N keyframes and
the agent poses over time. Wei et al. (2020) maintain cost volumes (Newcombe et al., 2011) for
discretised poses and depth, and let a 3D CNN learn how to predict the correct geometry and pose
estimates from them. Depth cost volumes are also used by Zhou et al. (2018) in learning to predict
depth and odometry with neural networks. In the work by Yang et al. (2020), networks that predict
odometry and depth are combined with DSO, leading to a SLAM system that utilises learning to its

2

Published as a conference paper at ICLR 2021

advantage. Jatavallabhula et al. (2019) investigate differentiable SLAM, treating odometry estimation
and mapping separately. The considered rendering gradients in that method are from the fused map
to the observations, which is the opposite of the gradient paths used for learning in our work.

As in our approach, the geometric assumptions in the majority of these works allow the systems to
generalise more easily to unseen cases and real-world data. What distinguishes our method is an
explicit generative model, able to predict the agent movement and observations in the future. Addi-
tionally, our approach is fully-probabilistic, maintaining complete distributions over the variables of
interest, whereas the aforementioned approaches are not. Our method is also end-to-end differentiable
and can be implemented in auto-diff frameworks, welcoming learned components. We are bridging
the gap between probabilistic generative models, learning and spatial domain knowledge.

Depth estimation and differentiable rendering Recent promising approaches combine learning
and non-parametric categorical distributions for depth estimation (Laidlow et al., 2020; Liu et al.,
2019), fusing likelihood terms into a consistent depth estimate. Such depth estimation is compatible
with our system and can be used to formulate priors, but for now we rely on a traditional method
as a first step (Hirschmuller, 2007). Inferring whole scenes parameterised with neural networks by
backpropagation through realistic differentiable rendering has also become a prevalent direction of
research (Bi et al., 2020; Mildenhall et al., 2020; Sitzmann et al., 2020). In our method the occupancy
and colour map are inferred in a similar way, but the raycasting scheme we follow is simple, meant
only to illustrate the framework as a whole. We note that the current inference times of e.g. Bi
et al. (2020) amount to days (see appendix of that work), which is hard to scale to online inference.
Extending our approach with a more advanced rendering method is the subject of future work.

Bayesian SLAM inference To keep exposition brief, we refer to (Cadena et al., 2016) for an
overview of modern SLAM inference and focus only on approaches that have applied fully-Bayesian
methods to SLAM. The inference in this work can be categorised as probabilistic SLAM, other
prominent examples of which are FastSLAM (Montemerlo et al., 2002) and RBPF SLAM (Grisetti
et al., 2005). What distinguishes our method is the application of variational inference with SGVB
(Kingma & Welling, 2014). Our model does not restrict the used distributions and allows any
differentiable functional form, which enables us to use neural networks. The contribution by Murphy
(Murphy, 1999) is one of the first to infer a global map with Bayesian methods. Bayesian Hilbert
maps (Senanayake & Ramos, 2017) focus on a fully Bayesian treatment of Hilbert maps for long-term
mapping in dynamic environments. Stochastic variational inference is used to infer agent poses from
observed 2D image features in (Jiang et al., 2017; Jiang et al., 2019). DVBF-LM (Mirchev et al.,
2019) uses Bayes by Backprop (Blundell et al., 2015) for the inference of the global map variable.

3 METHOD

Background We adhere to the graphical model of DVBF-LM (Mirchev et al., 2019), but we
introduce novel design choices for every model component and implement the overall inference
differently, to allow for real-world 3D modelling. In the following, we will first describe the assumed
factorisation and then explain the introduced modifications. The assumed joint distribution of all
variables is:

p(x1:T , z1:T ,m1:T ,M | u1:T−1)

= p(M)ρ(z1)

T∏
t=1

p(xt |mt)p(mt | zt,M)

T−1∏
t=1

p(zt+1 | zt,ut), (1)

where x1:T are observations, z1:T agent states, m1:T map charts and u1:T−1 conditional inputs
(controls). The factorisation defines a traditional state-space model extended with a global map
variable M. For a single step t, an observation xt is generated from a map chart mt—the relevant
extract from the global M around the current agent pose zt (cf. fig. 2a). Chart extraction is given
by p(mt | zt,M), which can be seen as an attention mechanism. In this graphical model, SLAM
is equivalent to inference of the agent states z1:T and the map M. For the remainder of this work,
we assume all observations xt ∈ Rw×h×4 are RGB-D images. Next, we will describe the functional
forms of the map M, the attention p(mt | zt,M), the emission p(xt |mt) and the states z1:T .

3

Published as a conference paper at ICLR 2021

xt

ot ct mt

zt

Mocc Mcol M

.

latent
observed

(a)

5.75 6.00 6.25 6.50 6.75 7.00 7.25 7.50 7.75

depth values

0.0

0.2

0.4

0.6

0.8

1.0

oc
cu

pa
nc

y
va

lu
es

τ

dk−1 dk

oi,
j,k
−

1
oi,

j,k

(b)

Figure 2: (a) One time step of the proposed probabilistic graphical model. (b) Linear interpolation
during ray casting for a single ray in the emission model. dk is the depth corresponding to the first
ray value that exceeds τ . The output depth d is formed by linearly interpolating between dk−1 and
dk based on the occupancy values oi,j,k−1 and oi,j,k.

Geometric map The map random variable M = (Mocc,Mcol) consists of two components.
Mocc ∈ Rl×m×n is a spatially arranged 3D grid of scalar values that represent occupancy. Mcol

represents the parameters of a feed-forward neural network fMcol : R3 → [0, 255]3. The network
assigns an RGB colour value to each point in space. In this work, the network weights are deterministic
and point-estimated via maximum likelihood, the fully-Bayesian treatment of the colour map is left
for future work. The prior and approximate posterior distributions over the occupancy map are:

p(Mocc) =
∏
i,j,k

N (Mocc
i,j,k | 0, 1), qφ(Mocc) =

∏
i,j,k

N (Mocc
i,j,k | µi,j,k, σ2

i,j,k).

Here and for the rest of this work qφ will denote a variational approximate posterior distribution, with
all its optimisable parameters summarised in φ. We assume p(Mocc) and qφ(Mocc) factorise over
grid cells. The variational parameters µi,j,k, σi,j,k are optimised with Bayes by Backprop (Blundell
et al., 2015).

Attention In the proposed model, the composition of the attention p(mt | zt,M) and the emission
p(xt | mt) implements volumetric raycasting. We engineer them based on our understanding of
geometry to ensure generalisation across unseen environments. The attention p(mt | zt,M) forms
latent charts mt, which correspond to extracts from the map M around zt. We identify mt with
the part of the map contained in the frustum of the current camera view. To attend to that region,
first the intrinsic camera matrix K (assumed to be known) and the agent pose zt are used to cast a
ray for any pixel [i, j]T in the reconstructed observation. The ray is then discretised equidistantly
along the depth dimension into r-many points, resulting into a collection of 3D world coordinates
pt ∈ Rw×h×r×3. Depth candidate values d ∈ {kε}1≤k≤r are associated with each point along a ray,
where ε is a resolution hyperparameter. The latent chart mt = (ot, ct) factorises into an occupancy
chart ot ∈ Rw×h×r and a colour chart ct ∈ Rw×h×r×3. Let pijkt ∈ R3 be a 3D point in the spanned
camera frustum. To form the occupancy chart ot, cells from the map Mocc around pijkt are combined
with a weighted kernel oijkt =

∑
l,h,sM

occ
l,h,sαl,h,s(p

ijk). Note that here l, h, s are indices of the
occupancy map voxels. We choose a trilinear interpolation kernel for α, merging only eight map cells
per point. This makes the attention fast and differentiable w.r.t zt. The colour chart ct = fMcol(pt)
is formed by applying fMcol , the colour neural network, point-wise to each 3D point. In this work,
we keep the chart mt deterministic. The full attention procedure can be described as:

p(mt | zt,M) =
∏
ijk

δ(mijk
t = fA(M, pijk)), pijk = T(zt)K

−1[i, j, 1]T d︸︷︷︸
:=kε

.

Here T(zt) ∈ SE(3) denotes the rigid camera transformation defined by the current agent state zt
and i, j, k index the points lying inside the attended camera frustum.

4

Published as a conference paper at ICLR 2021

Emission through ray casting The emission model factorises over the observed pixels:

p(xt |mt) =
∏
ij

p(xijt |mt), p(xijt |mt) = p(dijt , c̃
ij
t | ot, ct).

It operates on the extracted chart mt = (ot, ct). Here xijt ∈ R4 denotes an RGB-D pixel value, i.e.
for each pixel [i, j]T we reconstruct a depth dijt and a colour value c̃ijt . The mean of the depth value
dijt is formed by a function fE :

fE(ot)
ij = ε · min

k∈[r]
k s.t. oijkt > τ.

fE traces the ray for pixel [i, j]T , searching for the minimum depth d = εk for which the occupancy
value oijkt exceeds a threshold τ (a hyperparameter).1 Since the above min operation is not differen-
tiable in ot, we linearly interpolate between the depth value for the first ray hit and its predecessor to
form the mean of the emitted depth (cf. fig. 2b):

µijdt = αfE(ot)
ij + (1− α)(fE(ot)

ij − ε), α =
τ − oi,j,k−1t

oi,j,kt − oi,j,k−1t

.

The mean of the emitted colour µijc̃t
= cijkt directly corresponds to the k-th element of the attended

colour values, where k is the index of the first hit from raycasting above. A heteroscedastic Laplace
distribution is assumed for both the emitted depth and colour values:

p(xijt |mt) = Laplace(xijt ; (µijdt ,µ
ij
c̃t

), diag(σijE)).

Agent states All agent states are represented as vectors zt = (λt,ωt, z
rest
t) ∈ Rdz . λt ∈ R3 is the

agent location in space. ωt ∈ H4 is the agent orientation, represented as a quaternion. zrest
t ∈ Rdz−7

is a remainder. Depending on the used transition model, zrest
t can be λ̇t alone or it can contain

an abstract latent portion not explicitly matching physical quantities. The approximate posterior
variational family over the agent states factorises over time:

qφ(z1:T) =
∏
t

qφ(zt) =
∏
t

N (zt | µz
t , diag(σz

t)
2).

Here µz
t ∈ Rdz and σz

t ∈ Rdz are free variables for each latent state and are optimised with
SGVB (Kingma & Welling, 2014). Notably, the above factorisation over states bears similarity to
pose-graph optimisation. One can see the individual terms qφ(zt) as graph nodes, and the loss terms
induced by the transition and emission in the objective presented next as the edge constraints.

Overall objective The elements described so far, together with the transition p(zt+1 | zt,ut)
discussed in the next section, form the probabilistic graphical model in eq. (1). The assumed
variational approximate posterior is

qφ(z1:T)qφ(M) ≈ p(z1:T ,M | x1:T ,u1:T−1).

For the optimisation objective we use the negative evidence lower bound (ELBO) (Jordan et al.,
1999), given as

Lelbo = −Eq
[
T∑
t=1

log p(xt |mt)

]
+ KL(qφ(M) || p(M)) + Eq

[
T∑
t=2

KL(qφ(zt) || p(zt | zt−1,ut−1))

]
. (2)

We employ the approximate particle optimisation scheme from (Mirchev et al., 2019) to deal with
long data sequences. The only optimised parameters are φ, containing the parameters of the map and
the agent states.

Making image reconstruction tractable Using the full observations during inference is not fea-
sible, as raycasting for all pixels is too computationally demanding. To ensure tractability of the
inference method we therefore use reconstruction sampling (Dauphin et al., 2011), emitting a random
part of xt at a time, by randomly selecting c-many pixel coordinates [i, j]T for every gradient step.
Here c is a constant much smaller than the image size wh, speeding up gradient updates by a few
orders of magnitude. Note that this results in an unbiased, faster and more memory-efficient Monte
Carlo approximation of the original objective, avoiding loss of information due to subsampling or
sparse feature selection.

1oijk
t is set to 0 for k ≤ 1 and fE(ot) = rε if no value exceeds τ along the ray.

5

Published as a conference paper at ICLR 2021

4 LEARNING RIGID-BODY DYNAMICS

The introduced model factorisation includes a transition p(zt+1 | zt,ut), which allows the natural
inclusion of agent movement priors. This is reflected in the corresponding KL terms in eq. (2). Note
that using variational inference lets us integrate any differentiable transition model as-is, without
additional linearisation. In the following, we assume the agent has an inertial measurement unit
(IMU) providing readings λ̈

imu
t (linear acceleration) and ω̇imu

t (angular velocity) over time, which we

choose to treat as conditional inputs ut = (λ̈
imu
t , ω̇imu

t).

Engineering rigid-body dynamics In the absence of learning, one can use an engineered transition
prior that integrates the IMU sensor readings over time. The latent state zt = (λt,ωt, λ̇t) then
contains the location, orientation and linear velocity of the agent at every time step. The transition is
defined as:

p(zt+1 | zt,ut) = N (zt+1 | fT (zt,ut), diag(σT)2).

The state update fT implements standard rigid-body dynamics using Euler integration (see ap-
pendix D.3). This engineered model will serve as a counterpart for the learned transition model
presented next.

Learning a dynamics model Engineered models of the agent movement are often imperfect or
not available. We therefore provide a method for learning a fully-probabilistic transition model from
streams of prerecorded controls and agent pose observations, which we can then seamlessly include
as a prior in the full model. We do not learn the transition with per-step, fully-supervised regression.
Instead we formulate a generative sequence model for T time steps. This allows us to separate the
aleatoric uncertainty in the observed agent states from the uncertainty in the transition itself. We
follow the literature on variational state-space models (Fraccaro et al., 2016; Karl et al., 2017a). We
assume we have a sequence of locations λ̂1:T and orientations ω̂1:T as observations, and a sequence
of IMU readings, as well as per-rotor revolutions per minute (RPM) and pulse-width modulation
(PWM) signals, as conditional inputs u1:T−1 = (λ̈

imu
1:T−1, ω̇

imu
1:T−1,u

rpm
1:T−1,u

pwm
1:T−1). We define the

generative state-space model:

p(λ̂1:T , ω̂1:T , z1:T | u1:T−1) = δ(z1)p(λ̂1, ω̂1 | z1)

T−1∏
t=1

pθT
(zt+1 | zt,ut)p(λ̂t+1, ω̂t+1 | zt+1).

The objective is to learn generative transition parameters θT , such that the marginal likeli-
hood of observed agent poses pθT

(λ̂1:T , ω̂1:T | u1:T−1) is maximised. The latent state is
zt = (λt,ωt, λ̇t, z

rest
t), identifying its first three components with location, orientation and lin-

ear velocity. The remainder zrest
t acts as an abstract state part. Its role is to absorb any quantities that

might affect the transition, for example higher moments of the dynamics or sensor biases accumulated
over previous time steps. The transition is implemented as a residual neural network on top of Euler
integration:

pθT
(zt+1 | zt,ut) = N (zt+1 | µt+1, diag(σt+1)2)

µt+1 =

[
fT (zt,ut)

0

]
+ MLPµ(zt,ut), σt+1 = MLPσ(zt,ut),

where fT is the engineered Euler integration from the previous section and the abstract remainder
of the latent state is formed entirely by the network (MLP). This strong inductive bias shapes
the transition to resemble regular integration in the beginning of training, exploiting engineering
knowledge, while still allowing the MLP to eventually take over and correct biases as necessary.

The emission isolates the location and orientation from the latent state as its mean:

p(λ̂t, ω̂t | zt) = N (λ̂t, ω̂t | (λt,ωt), diag(σ)2).

The inference over the latent states uses Gaussian fusion as per (Karl et al., 2017b) and the necessary
inverse emission is given by a bidirectional RNN that looks into all observations and conditions:

q̂(zt | λ̂1:T , ω̂1:T ,u1:T−1) = N (zt | RNN(λ̂1:T , ω̂1:T ,u1:T−1)).

6

Published as a conference paper at ICLR 2021

We minimise the negative ELBO w.r.t. θT , omitting the conditions in q for brevity:

L(θT) = −Eq
[
T∑
t=1

log p(λ̂t, ω̂t | zt)
]

+ Eq

[
T∑
t=2

KL(q(zt) || pθT
(zt | zt−1,ut−1))

]
.

5 EXPERIMENTS

The experiments are designed to validate three model aspects—the usefulness of the reconstructed
3D world maps, multi-step prediction given future controls and the localisation quality.

For evaluation, we use the Blackbird data set (Antonini et al., 2020). It consists of over ten hours
of real quadcopter flight data. The ground truth poses are recorded by a motion capture (MOCAP)
system. For each trajectory, Blackbird contains realistic simulated stereo images. We obtain depth
from these images using OpenCV’s Semi-Global Block Matching (SGBM) (Hirschmuller, 2007)
and treat the left RGB camera image and the estimated depth as an observation xt. We evaluate our
method on the test trajectories used in (Nisar et al., 2019). Other trajectories with no overlap are used
for training the learned dynamics model and model selection. All model hyperparameters are fixed to
the same values for all evaluations. More details can be found in appendices C and D.

5.1 DENSE GEOMETRIC MAPPING

A fused dense map, obtained as an approximate variational posterior qφ(M), allows us to simulate
(emit) the environment from any novel view point. We take the NYC subway station Blackbird
environment as an example, in which the test set trajectories take place. Figure 3a shows image
reconstructions, generated along an example trajectory segment. The model can successfully generate
both colour and depth based on qφ(M). Note that the true observations are not needed for this, as all
of the information is recorded in M through gradient descent. Even though we use reconstruction
sampling during training, on average all image pixels contribute to learning the map. This leads to
dense predictions of the agent’s sensors. The inferred map correctly filters out wrong observations, as
can be seen in the top-down point-cloud comparison in fig. 4d, noting the subway station columns.

5.2 USING MAPS FOR DOWNSTREAM TASKS

Besides parameterising predictive emissions, a map can be used to define downstream navigation
and exploration tasks. Since the map is modelled as a random variable, the approximate posterior
qφ(M) also gives us an uncertainty estimate, in this work only applying to Mocc. Figure 4a shows
a horizontal slice from the occupancy grid, along which the map uncertainty is evaluated. The
uncertainty is low inside the subway station, and high on the outside where the agent has not visited.
Meaningful map uncertainty is useful for information-theoretic exploration (Mirchev et al., 2019).

The occupancy map can also be used to construct navigation plans, by computing a collision cost-to-
go J(z1) = Eu1:T ,z1:T∼p(·)[

∑
t c(ut, zt)] (Bertsekas, 2005). For example, the cost c(u, z) can be

the occupancy value in the map at zt, defining a collision cost. To simulate a control policy, we use
an empirical distribution of randomly picked 40-step sequences of IMU readings u1:T from the test
data. Then we generatively sample future states z1:T for these controls and evaluate the respective
costs. Figure 4c shows J(z) evaluated for all states along the considered 2D slice of the map. The
cost-to-go is high near the walls and columns, and gradually drops off in the free space.

5.3 GENERATING FUTURE PREDICTIONS

The proposed model can predict the agent movement and observations for a sequence of future
conditional inputs, i.e. p(z2:T ,x1:T | u1:T−1, z1). Such predictions are crucial for model-based
control, and typically not readily available from modern visual SLAM systems. Figure 3b shows
predictions of the full spatial model for 200 steps in the future, comparing both the engineered and
learned transition priors. Long-term prediction is significantly better with the learned transition,
indicating that it corrects biases present in the agent sensors. Conversely, with the engineered
transition localisation drift is higher and wrong map regions are queried for generation, translating
into wrong depth and colour predictions. We refer to the supplementary video for more examples
using the predictive model. Evaluated on 200 test set trajectories with 100 steps, the learned transition

7

Published as a conference paper at ICLR 2021

pr
ed

ic
te

d
ob

se
rv

ed
pr

ed
ic

te
d

ob
se

rv
ed

(a)

ob
s.

colour depth

−5 0 5 10
x [m]

−6

−4

−2

0

2

4

6

y
[m

]

MOCAP eng. learn.

(b)

Figure 3: (a) Emissions at different trajectory points, sampled at a one second interval. Top to bottom:
predicted colour, observed colour, predicted depth, observed depth. (b) Generative predictions using
the engineered transition vs. the learned transition in the complete model. Left: top-down view of
200-step location predictions. Right: predicted colour and depth for the same step for both models.

−5 0 5
x [m]

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

y
[m

]

(a)

−5 0 5
x [m]

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

y
[m

]

(b)

−5 0 5
x [m]

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

y
[m

]

(c) (d)

Figure 4: An illustration of a reconstructed dense map for the NYC subway station environment. Note
that columns from the subway are captured in the reconstructed map. The figures show a horizontal
map slice. (a) Occupancy map uncertainty (white means low uncertainty). (b) Occupancy map mean
(white means occupied). (c) Collision cost-to-go (red means high cost). (d) Generated point cloud
(black, for inferred agent poses) vs. data point cloud (red, for ground truth MOCAP poses).

leads to better predictions than its engineered counterpart, with an average translational RMSE
of 1.156 and rotational RMSE of 0.096, compared to 13.768 and 0.111 for the engineered model.
Similarly, the pixel-wise log-likelihood of the observation predictions is −1.23 when the learned
model is used, and −1.85 for the engineered model, averaged over 1000 images. This evaluation
clearly illustrates the positive effect of the learned transition on the model’s predictive performance.

5.4 AGENT LOCALISATION

Finally, we evaluate localisation performance during SLAM inference. Figure 5 shows estimates for
the fastest trajectories in the test set (up to 4m/s). We refer to appendix F and the supplementary
video for more inference examples in different environments. Table 1 summarises the average
absolute RMSE for all test trajectories, evaluated following Zhang & Scaramuzza (2018). Here
we compare to the results reported by Nisar et al. (2019), including VIMO (Nisar et al., 2019) and
VINS-MONO (Qin et al., 2018)—two state-of-the art visual odometry methods. In this case both
systems are carefully tuned to the environment. While the RMSE of our method is not as low as
that of the baselines, we note that these are absolute values. The online translational error of our
method does not exceed 0.4m, which is practical considering the average 232m trajectory length. Our
method also succeeds on the fastest star test trajectory, for which both baselines have been reported
to fail without specific retuning. We note that the two systems run in real-time, whereas currently our
method does not—we will tackle real-time inference in our future work (see appendix E).

We also compare to the system benchmarks provided by Antonini et al. (2020), including results
for VINS-MONO, VINS-Fusion (Qin et al., 2019) and ORB-SLAM2 (Mur-Artal & Tardós, 2017).
We use the same star and picasso trajectories reported in table 1, and refer to Antonini et al. (2020)
for the exact evaluation assumptions. We also explicitly restate a note made by the authors: the
benchmarked systems are not carefully tuned to the Blackbird environment and their loop-closure

8

Published as a conference paper at ICLR 2021

−4 −2 0 2 4
x [m]

−4

−2

0

2

y
[m

] MOCAP
proposed

(a)

−4 −2 0 2 4
x [m]

−4

−2

0

2

y
[m

]

MOCAP
proposed

(b)

20 40 60 80 100
distance travelled [m]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

%
dr

if
tr

at
e

Relative translational error
proposed (eng. trans.)
proposed (learn. trans.)
ORB-SLAM
VINS-MONO
VINS-FUSION

20 40 60 80 100
distance travelled [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

er
ro

r[
de

g/
m

]

Relative yaw error
proposed (eng. trans.)
proposed (learn. trans.)
ORB-SLAM
VINS-MONO
VINS-FUSION

(c)

Figure 5: (a,b) Top-down view of localisation for star, forward yaw, max speed 4.0m/s and picasso,
constant yaw, max speed 4.0m/s. (c) Localisation with our method compared to the benchmark
results reported by Antonini et al. (2020) for picasso, constant yaw and star, forward yaw, 1 to 4m/s.

Table 1: Absolute localisation RMSE for each test trajectory. See appendix B for a discussion of the
two noticeable translation RMSE outliers with the learned transition.

Translational RMSE [m] Rotational RMSE [rad]
proposed
(eng. trans.)

proposed
(learn. trans)

VIMO VINS proposed
(eng. trans.)

proposed
(learn. trans.)

VIMO VINS

picasso 1 m/s 0.139 0.143 0.055 0.097 0.053 0.052 0.013 0.011
2 m/s 0.136 0.131 0.040 0.043 0.069 0.064 0.007 0.008
3 m/s 0.120 0.122 0.043 0.045 0.073 0.070 0.005 0.005
4 m/s 0.174 0.368 0.049 0.056 0.124 0.149 0.009 0.011

star 1 m/s 0.137 0.133 0.088 0.102 0.057 0.056 0.008 0.008
2 m/s 0.163 0.626 0.082 0.133 0.061 0.157 0.010 0.011
3 m/s 0.281 0.187 0.183 0.235 0.080 0.059 0.015 0.016
4 m/s 0.156 0.160 - - 0.065 0.059 - -

modules are disabled, which might not be reflective of their best possible performance. Therefore,
these baselines represent the performance of an off-the-shelf visual odometry system without changing
its hyperparameters. Figure 5c summarises the comparison, reporting error statistics for segments of
different length (x-axis) divided by the distance travelled. Localisation with our method is robust and
drift does not compound, which we attribute to the global map variable M serving as an anchor.

Overall, localisation is successful for all test trajectories and its accuracy is practical and close to that
of state-of-the-art systems, while all merits of deep probabilistic generative modelling are retained.

6 CONCLUSION

This work is the first to show that learning a dense 3D map and 6-DoF localisation can be accomplished
in a deep generative probabilistic framework using variational inference. The proposed spatial
model features an expressive predictive distribution suitable for downstream control tasks, it is
fully-differentiable and can be optimised end-to-end with SGD. We further propose a probabilistic
method for learning agent dynamics from prerecorded data, which significantly boosts predictive
performance when incorporated in the full model. The proposed framework was used to model
quadcopter flight data, exhibiting performance close to that of state-of-the-art visual SLAM systems
and bearing promise for real-world applications. In the future, we will address the current model’s
speed limitations and move towards downstream applications based on the learned representation.

REFERENCES

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for
large-scale machine learning. In 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), pp. 265–283, 2016.

9

Published as a conference paper at ICLR 2021

Amado Antonini, Winter Guerra, Varun Murali, Thomas Sayre-McCord, and Sertac Karaman. The
blackbird uav dataset. The International Journal of Robotics Research, 0(0):0278364920908331,
2020. doi: 10.1177/0278364920908331.

Philip Becker-Ehmck, Maximilian Karl, Jan Peters, and Patrick van der Smagt. Learning to fly via
deep model-based reinforcement learning, 2020.

Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, volume I. Athena Scientific,
Belmont, MA, USA, 3rd edition, 2005.

S. Bi, Zexiang Xu, Pratul P. Srinivasan, Ben Mildenhall, Kalyan Sunkavalli, Milovs Havsan, Yannick
Hold-Geoffroy, D. Kriegman, and R. Ramamoorthi. Neural reflectance fields for appearance
acquisition. ArXiv, abs/2008.03824, 2020.

Michael Bloesch, Jan Czarnowski, Ronald Clark, Stefan Leutenegger, and Andrew J. Davison.
Codeslam - learning a compact, optimisable representation for dense visual slam. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 2560–2568, 2018.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural networks. CoRR, abs/1505.05424, 2015.

Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, José Neira, Ian D.
Reid, and John J. Leonard. Past, present, and future of simultaneous localization and mapping:
Toward the robust-perception age. IEEE Trans. Robotics, 32(6):1309–1332, 2016.

Devendra Singh Chaplot, Emilio Parisotto, and Ruslan Salakhutdinov. Active neural localization. In
International Conference on Learning Representations, 2018. URL https://openreview.
net/forum?id=ry6-G_66b.

Silvia Chiappa, Sébastien Racanière, Daan Wierstra, and Shakir Mohamed. Recurrent environment
simulators. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=B1s6xvqlx.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. In Advances in Neural
Information Processing Systems, pp. 4754–4765, 2018.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C. Courville, and Yoshua
Bengio. A recurrent latent variable model for sequential data. In Advances in Neural Information
Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015,
December 7-12, 2015, Montreal, Quebec, Canada, pp. 2980–2988, 2015.

Dane Corneil, Wulfram Gerstner, and Johanni Brea. Efficient model-based deep reinforcement
learning with variational state tabulation. volume 80 of Proceedings of Machine Learning Research,
pp. 1049–1058, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

Sebastian Curi, Silvan Melchior, Felix Berkenkamp, and Andreas Krause. Structured variational
inference in partially observable unstablegaussian process state space models. volume 120 of
Proceedings of Machine Learning Research, pp. 147–157, The Cloud, 10–11 Jun 2020. PMLR.

J Czarnowski, T Laidlow, R Clark, and AJ Davison. Deepfactors: Real-time probabilistic dense
monocular slam. IEEE Robotics and Automation Letters, 5:721–728, 2020. doi: 10.1109/lra.2020.
2965415. URL http://dx.doi.org/10.1109/lra.2020.2965415.

Yann N. Dauphin, Xavier Glorot, and Yoshua Bengio. Large-scale learning of embeddings with
reconstruction sampling. In Proceedings of the 28th International Conference on Machine Learning,
ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011, pp. 945–952, 2011.

J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry. IEEE Transactions on Pattern Analysis
and Machine Intelligence, March 2018.

10

https://openreview.net/forum?id=ry6-G_66b
https://openreview.net/forum?id=ry6-G_66b
https://openreview.net/forum?id=B1s6xvqlx
https://openreview.net/forum?id=B1s6xvqlx
http://dx.doi.org/10.1109/lra.2020.2965415

Published as a conference paper at ICLR 2021

Martin Engelcke, Adam R. Kosiorek, Oiwi Parker Jones, and Ingmar Posner. Genesis: Generative
scene inference and sampling with object-centric latent representations. In International Conference
on Learning Representations, 2020.

S. M. Ali Eslami, Danilo Jimenez Rezende, Frederic Besse, Fabio Viola, Ari S. Morcos, Marta
Garnelo, Avraham Ruderman, Andrei A. Rusu, Ivo Danihelka, Karol Gregor, David P. Reichert,
Lars Buesing, Theophane Weber, Oriol Vinyals, Dan Rosenbaum, Neil Rabinowitz, Helen King,
Chloe Hillier, Matt Botvinick, Daan Wierstra, Koray Kavukcuoglu, and Demis Hassabis. Neural
scene representation and rendering. Science, 360(6394):1204–1210, 2018. doi: 10.1126/science.
aar6170. URL https://science.sciencemag.org/content/360/6394/1204.

Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet, and Ole Winther. Sequential neural models
with stochastic layers. In Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, pp. 2199–2207, 2016.

Marco Fraccaro, Danilo Jimenez Rezende, Yori Zwols, Alexander Pritzel, S. M. Ali Eslami, and
Fabio Viola. Generative temporal models with spatial memory for partially observed environments.
CoRR, abs/1804.09401, 2018.

Karol Gregor, Danilo Jimenez Rezende, Frederic Besse, Yan Wu, Hamza Merzic, and Aaron van den
Oord. Shaping belief states with generative environment models for rl. In Advances in Neural
Information Processing Systems, pp. 13475–13487, 2019.

Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improving grid-based slam with rao-
blackwellized particle filters by adaptive proposals and selective resampling. Proceedings of the
2005 IEEE International Conference on Robotics and Automation, pp. 2432–2437, 2005.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in
Neural Information Processing Systems 31, pp. 2450–2462. Curran Associates, Inc., 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019a.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International Conference on
Machine Learning, pp. 2555–2565. PMLR, 2019b.

Heiko Hirschmuller. Stereo processing by semiglobal matching and mutual information. IEEE
Transactions on pattern analysis and machine intelligence, 30(2):328–341, 2007.

Krishna Murthy Jatavallabhula, Ganesh Iyer, and Liam Paull. gradslam: Dense slam meets automatic
differentiation, 2019.

X. Jiang, M. Hoy, H. Yu, and J. Dauwels. Linear-complexity stochastic variational bayes inference
for slam. In 2017 IEEE 20th International Conference on Intelligent Transportation Systems
(ITSC), pp. 1–6, 2017.

Xiaoyue Jiang, Hang Yu, Michael Hoy, and Justin Dauwels. Robust linear-complexity approach to full
slam problems: Stochastic variational bayes inference. In 2019 IEEE 90th Vehicular Technology
Conference (VTC2019-Fall), pp. 1–5. IEEE, 2019.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction to
variational methods for graphical models. Machine learning, 37(2):183–233, 1999.

Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick van der Smagt. Deep variational bayes
filters: Unsupervised learning of state space models from raw data. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, 2017a.

Maximilian Karl, Maximilian Soelch, Philip Becker-Ehmck, Djalel Benbouzid, Patrick van der
Smagt, and Justin Bayer. Unsupervised real-time control through variational empowerment. arXiv
preprint arXiv:1710.05101, 2017b.

11

https://science.sciencemag.org/content/360/6394/1204

Published as a conference paper at ICLR 2021

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In Proceedings of the 2nd
International Conference on Learning Representations (ICLR), 2014.

T. Laidlow, J. Czarnowski, A. Nicastro, R. Clark, and S. Leutenegger. Towards the probabilistic
fusion of learned priors into standard pipelines for 3d reconstruction. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pp. 7373–7379, 2020. doi: 10.1109/ICRA40945.
2020.9197001.

Chao Liu, Jinwei Gu, Kihwan Kim, Srinivasa G Narasimhan, and Jan Kautz. Neural rgb (r) d sensing:
Depth and uncertainty from a video camera. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 10986–10995, 2019.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

Atanas Mirchev, Baris Kayalibay, Maximilian Soelch, Patrick van der Smagt, and Justin Bayer.
Approximate bayesian inference in spatial environments. In Proceedings of Robotics: Science and
Systems, FreiburgimBreisgau, Germany, June 2019.

Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Wegbreit. Fastslam: A factored
solution to the simultaneous localization and mapping problem. In AAAI/IAAI, 2002.

Raul Mur-Artal and Juan D Tardós. Orb-slam2: An open-source slam system for monocular, stereo,
and rgb-d cameras. IEEE Transactions on Robotics, 33(5):1255–1262, 2017.

Kevin P. Murphy. Bayesian map learning in dynamic environments. In Advances in Neural Informa-
tion Processing Systems 12, [NIPS Conference, Denver, Colorado, USA, November 29 - December
4, 1999], pp. 1015–1021, 1999.

Richard A. Newcombe, Steven Lovegrove, and Andrew J. Davison. Dtam: Dense tracking and
mapping in real-time. 2011 International Conference on Computer Vision, pp. 2320–2327, 2011.

Barza Nisar, Philipp Foehn, Davide Falanga, and Davide Scaramuzza. Vimo: Simultaneous visual
inertial model-based odometry and force estimation. In Proceedings of Robotics: Science and
Systems, FreiburgimBreisgau, Germany, June 2019.

Junhyuk Oh, Valliappa Chockalingam, Satinder P. Singh, and Honglak Lee. Control of memory,
active perception, and action in minecraft. In Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, pp. 2790–2799, 2016.
URL http://jmlr.org/proceedings/papers/v48/oh16.html.

Emilio Parisotto and Ruslan Salakhutdinov. Neural map: Structured memory for deep reinforcement
learning. In International Conference on Learning Representations, 2018. URL https://
openreview.net/forum?id=Bk9zbyZCZ.

Tong Qin, Peiliang Li, and Shaojie Shen. Vins-mono: A robust and versatile monocular visual-inertial
state estimator. IEEE Transactions on Robotics, 34(4):1004–1020, 2018.

Tong Qin, Jie Pan, Shaozu Cao, and Shaojie Shen. A general optimization-based framework for local
odometry estimation with multiple sensors. arXiv preprint arXiv:1901.03638, 2019.

Ransalu Senanayake and Fabio Ramos. Bayesian hilbert maps for dynamic continuous occupancy
mapping. In Proceedings of the 1st Annual Conference on Robot Learning, volume 78 of Proceed-
ings of Machine Learning Research, pp. 458–471. PMLR, 13–15 Nov 2017.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in Neural Information
Processing Systems, 33, 2020.

Chengzhou Tang and Ping Tan. BA-net: Dense bundle adjustment networks. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=B1gabhRcYX.

12

http://jmlr.org/proceedings/papers/v48/oh16.html
https://openreview.net/forum?id=Bk9zbyZCZ
https://openreview.net/forum?id=Bk9zbyZCZ
https://openreview.net/forum?id=B1gabhRcYX
https://openreview.net/forum?id=B1gabhRcYX

Published as a conference paper at ICLR 2021

Dustin Tran, Matthew D. Hoffman, Dave Moore, Christopher Suter, Srinivas Vasudevan, Alexey
Radul, Matthew Johnson, and Rif A. Saurous. Simple, distributed, and accelerated probabilistic
programming. In Neural Information Processing Systems, 2018.

Xingkui Wei, Yinda Zhang, Zhuwen Li, Yanwei Fu, and Xiangyang Xue. Deepsfm: Structure from
motion via deep bundle adjustment. In ECCV, 2020.

James Whittington, Timothy Muller, Shirely Mark, Caswell Barry, and Tim Behrens. Generalisation
of structural knowledge in the hippocampal-entorhinal system. In Advances in neural information
processing systems, pp. 8484–8495, 2018.

Nan Yang, Lukas von Stumberg, Rui Wang, and Daniel Cremers. D3VO: Deep depth, deep pose and
deep uncertainty for monocular visual odometry. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.

Jingwei Zhang, Lei Tai, Joschka Boedecker, Wolfram Burgard, and Ming Liu. Neural slam: Learning
to explore with external memory. arXiv preprint arXiv:1706.09520, 2017.

Zichao Zhang and Davide Scaramuzza. A tutorial on quantitative trajectory evaluation for visual(-
inertial) odometry. In IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), 2018.

Shuaifeng Zhi, Michael Bloesch, Stefan Leutenegger, and Andrew J Davison. Scenecode: Monocular
dense semantic reconstruction using learned encoded scene representations. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 11776–11785, 2019.

H. Zhou, B. Ummenhofer, and T. Brox. Deeptam: Deep tracking and mapping. In European
Conference on Computer Vision (ECCV), 2018.

13

Published as a conference paper at ICLR 2021

A USE OF DOMAIN KNOWLEDGE WHEN DESIGNING LEARNED SPATIAL
MODELS

(a) When the attention to the map is too narrow, emit-
ting from observed but yet unvisited places suffers from
non-local generalisation issues in an online setting.

(b) A 2D illustration of attending to the whole field of
view of the agent. Note that in our method the occu-
pancy map is a 3D volume, and the attended camera
frustum resembles a pyramid.

Figure 6: Simplified 2D examples of the conceptual difference the chosen attention can have on
generating observations.

What distinguishes our method from DVBF-LM (Mirchev et al., 2019) and other previous 2D and
2.5D deep generative sequence models is that we introduce geometric inductive biases (multiple-view
geometry, rigid-body dynamics) in a deep generative sequence model (inferred via the ELBO). We
hope the following overview of DVBF-LM’s methodology will exemplify why such assumptions
could be necessary and motivate our design choices.

DVBF-LM models the world as a 2D chessboard where the content of each grid cell describes a
360° horizontal panoramic view around the z-axis, centered at the agent 2D location. Observation
predictions are cropped from that view, relative to the way the agent is facing in 2D (and transformed
by an MLP). This already consitutes a set of basic geometric assumptions, but they can be limiting,
as explained below. First of all, the agent movement is restricted to a plane, with rotations around
one axis (no 6-DoF modelling). The main problem, however, is that the map is updated very locally,
only at the 2D location of the agent, because the attention of DVBF-LM only considers four map
cells directly underneath. For example, if the agent is standing 5m in front of a wall and facing it,
DVBF-LM only stores this information at that location in the map. If the agent moves 2m closer
to the wall, it is now accessing different cells, whose content is completely arbitrary (see fig. 6a).
These cells will have to learn the presence of the wall again. The map is thus unnecessarily redundant
and the agent would have to visit virtually all map cells to infill everything. This means observation
predictions from cells which have not been visited before will not be meaningful, even when they
were already in the field of view (FoV) of the agent. Localisation also suffers, as the map is more
easily allowed to establish multiple modes for the pose posterior because of the redundancy (same
content can be stored at different places by mistake), further complicating the perceptual aliasing
problem of spatial environments.

By contrast, in our method we use raycasting and attend to the whole camera frustum, accessing
all map content in the field of view of the agent, as shown in fig. 6b. Note that the depiction is
intentionally simplified to 2D for the sake of clarity, while the actual attention in our approach
operates in 3D. In the above example, the wall and the empty space in front of the agent would be
captured as soon as the agent sees the wall for the first time, and can be predicted from all regions
in the FoV. This constitutes a strong geometric inductive bias that will generalise across different
environments.

In general, the lack of geometric assumptions in previous deep spatial generative models (e.g. the
ones described in the first paragraph of section 2) is attractive, as it lessens the need for domain
knowledge, instead attempting to learn the whole system end-to-end. However, learning everything

14

Published as a conference paper at ICLR 2021

becomes problematic (not just in terms of runtime) when the inference needs to happen on-the-fly
and data is scarce, as is the case for autonomous agents. When the agent cannot afford to exhaustively
observe the whole environment, insufficient data for learning from scratch can lead to problems with
consistency in the map, consistency in the long-term predictions and ambiguous agent localisation.
One option is to address this through learning certain components in advance (e.g. as we do with
the dynamics model, see section 4). Once image data is involved, however, the generalisation of
learned components is much harder to ensure because of the curse of dimensionality. Observations
can vary greatly from one scene to the next, and free 6-DoF movement of the agent exacerbates
the problem further. Instead of collecting data exhaustively, in an attempt to pretrain a network to
learn how to render, we rely on the geometric knowledge that is already available to us to design
the map, the attention and the emission in section 3. Such assumptions are also at the core of many
of the models discussed in the second paragraph in the related work (section 2). In contrast to
these models, however, in our work we weave the aforementioned inductive biases into the deep
generative framework, which is fully-probabilistic, implies end-to-end differentiability and eases
the introduction of new learned components when needed. Therefore, our goal is to maintain an
expressive predictive distribution p(z2:T ,x1:T | u1:T−1, z1) that lets us predict the future, precisely
aligning with the performed inference based on past data at the same time. We stress that maintaining
a full probabilistic predictive model is needed to quantify uncertainty when planning for future actions
of the agent.

15

Published as a conference paper at ICLR 2021

B CASE STUDY: DRONE LANDING

In terms of the integrated transition p(zt+1 | zt,ut), we find that the learned transition performs
on par with its engineered counterpart when used for inference in the full model. However, when
inspecting the absolute RMSE in table 1, there appear to be two outliers—picasso, max speed 4.0
m/s and star, max speed 2.0 m/s, when using the learned transition. A closer examination showed
that this is entirely due to a large localisation error during landing at the end of the trajectories. In
both cases the agent fails to land correctly or falls over, leading to out-of-distribution conditions ut
from the IMU sensor (cf. fig. 7), for which the learned model does not generalise. Such behaviour is
not unexpected when it comes to neural networks. Localisation beforehand is stable along the whole
trajectory, the landing tracking failure happens only during the last 2 seconds of movement.

0 50 100 150
time [s]

−2

0

2

IM
U

va
lu

e

Angular velocity (x,y,z)

0 50 100 150
time [s]

−10

0

IM
U

va
lu

e

Linear acceleration (x,y,z)

0 50 100 150
time [s]

0.0

2.5

5.0

di
st

an
ce

er
ro

r[
m

]

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
value

de
ns

ity
Linear accelerations in y

flight landing

Figure 7: Illustration of the discussed failure landing of the quadcopter at the end of the two test set
trajectories, taking star, max speed 2.0 m/s as an example. The problematic segment of the trajectory
is marked with a red vertical band. Note the outlier controls at the end. Top left: angular velocity IMU
readings. Top right: linear acceleration IMU readings. Bottom left: absolute Euclidean distance error
w.r.t. the ground truth MOCAP locations. Note how the error is large only at the end of the trajectory,
and directly coincides with the outlier controls. Bottom right: comparison of the distribution of linear
accelerations in y during flight (red) vs. during landing (gray). The controls during landing are out of
distribution for the learned transition model.

16

Published as a conference paper at ICLR 2021

C DATA DETAILS AND OVERALL SETUP

For all presented experiments we used the Blackbird data set (Antonini et al., 2020), which can be
found here: https://github.com/mit-fast/Blackbird-Dataset. In the following
we describe the exact pre-processing of the data.

C.1 DATA PARTITIONING AND USAGE

The data was partitioned into a training, a validation and a test set. The trajectory shapes (e.g. star,
picasso, patrick, etc.) in every split were different. This was done to prevent accidental overfitting of
the learned transition model to any particular trajectory shape. In particular, the test set contains the
trajectories star, forward yaw and picasso, constant yaw, traversed at different speeds, everything else
is used for training and validation. This is the same test setup as the one used by Nisar et al. (2019)
(considered as a baseline). Appendix G lists the exact trajectories used for each split, along with the
number of steps in each trajectory after pre-processing (which includes subsampling).

The training set was used only to train the learned transition model pθT
(zt+1 | zt,ut), following the

method described in section 4. The learned transition model is trained separately before it is used as a
prior in the full spatial model. Pretraining the model on multiple trajectories beforehand, as opposed
to training it from scratch during SLAM inference, ensures that the transition really captures the agent
dynamics and does not overfit the currently explored environment. The training trajectories were
further randomly rotated around the z axis and linearly translated in space, to promote generalisation.

The validation set was used for checkpointing and selecting the best weights θT of the neural network
in the learned transition model, based on the ELBO defined in section 4. The validation set was also
used for hyperparameter selection for the engineered transition model, the learned transition model
and the full spatial model. The best hyperparameters for all models (cf. appendix D) were selected
with random search. You can find details for the search ranges in appendix E.

The test set was used for evaluation only—all results reported in the experimental section of the paper
were done on the test data. The full spatial model was tested with the forward yaw star trajectories,
speeds 1.0 m/s to 4.0 m/s and with the constant yaw picasso trajectories, speeds 1.0 m/s to 4.0 m/s, to
match the evaluation by Nisar et al. (2019). These trajectories take place in the NYC subway station
environment.

C.2 DATA PREPROCESSING

Each trajectory contains IMU, RPM and PWM readings, MOCAP ground truth pose observations, as
well as simulated grayscale images from a forward-facing stereo pair and a downward-facing camera.

We pre-processed every trajectory in the following way:

• Ground truth MOCAP state readings were extracted from the provided ROS bags.
• Downward-facing images were ignored.
• The remaining data was subsampled to 10 Hz, using nearest neighbour subsampling based

on the provided time stamps.
• Depth was then precomputed from the left and right images using OpenCV’s SGBM

(Hirschmuller, 2007).
• For every time step, the right colour image was then ignored, while the left image and the

depth estimate were together treated as an RGB-D observation xt ∈ Rw×h×4.
• The provided IMU readings are measured in the coordinate frame of the IMU sensor.

Therefore, they had to be rotated to the body frame of the agent, using the respective
quaternion provided with the data set: q = [0.707, 0.005,−0.004, 0.706]T .

The intrinsic parameters of the camera, specifying the intrinsic camera matrix K, and the stereo
baseline were fixed to the values provided with the data set:

• Stereo baseline: 0.1m.
• Image size: 1024× 768.

17

https://github.com/mit-fast/Blackbird-Dataset

Published as a conference paper at ICLR 2021

• Focal length, x: 665.1.

• Focal length, y: 665.1.

• Principal point offset, x: 511.5.

• Principal point offset, y: 383.5.

Depth was computed based on the disparity values produced by SGBM. We used the following
parameters, keeping the default values for everything else:

• Block size: 5.

• Min. disparity: 0.

• Max. disparity: 256.

We did not filter the images and the produced depth values in any way and treated them as direct
observations, to limit the pre-processing steps as much as possible and rely on the defined spatial
model instead. Note that due to the simplicity of the method used for depth estimation, the depth
observations contain significant amounts of noise (e.g. fig. 4d). The pixel values for the color images
were normalized to be in the range [0, 1].

D MODEL DETAILS

This section lists all model and optimisation hyperparameters used for generating the results reported
in the paper.

D.1 FULL SPATIAL MODEL

The full spatial model uses either the learned or the engineered transition, see appendix D.2 and
appendix D.3 for their respective hyperparameters.

D.1.1 OPTIMISATION

After subsampling, the trajectories in the Blackbird dataset can still contain thousands of time steps.
To deal with this, during inference the proposed model follows the approximate particle optimisation
scheme introduced by Mirchev et al. (2019), using chunks of 5 time steps for every gradient update,
using 50 approximating state particles and refreshing the respective particles after every gradient step.

Adam (Kingma & Ba, 2014) is used to optimise the parameters φ for the approximate posterior
distribution qφ(z1:T ,M). Table 2b lists the used optimiser hyperparameters. Note that due to the
employed attention p(mt | zt,M), due to the reconstruction sampling in the emission and due to
the approximate optimisation scheme mentioned above (which uses only a chunk of the trajectory at
a time), only a part of the parameters for the occupancy map and the full trajectory of agent states is
used for a gradient step. In other words, gradient updates happen locally in the spatially arranged
occupancy map parameters, based on the currently selected local chunk of the agent trajectory.
Because of this, momentum is disabled in Adam for both the occupancy map and the agent states, to
avoid accidental drift in regions currently not covered by the optimisation.

For every variable in question, the same optimiser is used to optimise the mean and scale of the
assumed distribution (where applicable). For any scale distribution parameters (e.g. standard
deviations for the assumed Gaussian distributions), the optimisation is performed in log-space to
satisfy the positive value constraint.

D.1.2 INITIALISATION OF NEW POSES

While performing SLAM, data is added incrementally to the spatial model, to emulate online usage
of the method. A new time step t is explored every 500 gradient steps, effectively adding a new
observation xt and a new conditional input ut to the data. Whenever a new time step is added, the
parameters of the corresponding state zt are unlocked for optimisation and initialized according to
table 2a.

18

Published as a conference paper at ICLR 2021

Table 2: Model details.

(a) Hyperparameters of the individual spatial model components.

Component Parameter Value

zt init. value for µt mean of pθT (zt | µt−1,ut)
init. value for σt 0.01× 1

Mocc grid size 200× 200× 200
init. value for µi,j,k −0.5
init. value for σi,j,k 0.1

Mcol # hidden layers 5
hidden units 256

activation softsign
residual connections true

p(mt | zt,M) ε (ray resolution) 0.1m
max depth (kε) 20m

reconstr. pixels 200

(b) Optimisation hyperparameters for the full
spatial model.

Variables Parameter Value

z1:T Adam, learning rate 0.001
Adam, β1 0.0
Adam, β2 0.999

Mocc Adam, learning rate 0.05
Adam, β1 0.0
Adam, β2 0.999

Mcol Adam, learning rate 0.001
Adam, β1 0.9
Adam, β2 0.999

(c) Hyperparameters of the learned transition model.

Component Parameter Value
pθT

(zt+1 | zt,ut) # hidden layers 5
hidden units 64

activation relu
residual connections true

size of zrest 8

q̂(zt | λ̂1:T , ω̂1:T ,u1:T) RNN type LSTM
RNN units 64

D.1.3 CHOICE OF APPROXIMATE POSTERIOR OVER STATES

In (Mirchev et al., 2019) a bootstrap particle filter is used to implement the variational posterior
over agent states. The increased model complexity due to the presented raycasting model makes
the application of particle filters with sufficiently many particles costly. In section 3 we therefore
introduce an approximate posterior over the agent states qφ(z1:T), with free state parameters φ, that
factorises over time. The chosen variational states approximation represents a shift in perspective—
from filtering towards a method more similar to pose-graph optimisation.

D.1.4 HANDLING ORIENTATIONS

The portions ωt of the sampled latent states zt are identified with quaternions and are explicitly
normalised to unit quaternions after gradient updates before they are used in the rest of the model.
This means that the assumed Gaussian distribution is not directly expressed on the manifold SO(3),
but we found that this parameterisation works well enough.

D.1.5 COMPONENT PARAMETERS

The rest of the hyperparameters for the full spatial model, including initial values for the optimised
variational parameters, are specific to the individual model components and are listed in table 2a.

The scale σE for the heteroscedastic Laplace emission p(xt |mt) is learned with gradient descent
(applied in log-space). The colour part of σE is forced to be 10 times smaller than that for the depth
part, to account for the different scales of the observed values (colour range is [0, 1], depth range is
[0, 20]).

19

Published as a conference paper at ICLR 2021

D.2 LEARNED TRANSITION

The learned transition is obtained by training the generative parameters θT in the context of the
model defined in section 4. When reconstructing orientations in that model, we do not reconstruct
quaternions directly because of the ambiguity q = −q. Instead we reconstruct the rotation matrix
corresponding to the observed orientation ω̂t, i.e. the mean of the emission p(ω̂t | zt) is a rotation
matrix constructed from the quaternion ωt that’s part of the latent state zt. When used in the full
spatial model, the weights of the transition neural network θT are fixed to their pretrained values.
This is done to avoid accidental overfitting of the transition parameters to the current trajectory and
current environment for which SLAM is performed.

The selected hyperparameters of the learned transition are listed in table 2c.

D.3 ENGINEERED TRANSITION

The mean of the engineered transition prior p(zt+1 | zt,ut) from section 4 is formed by a function
fT , which implements the rigid body dynamics

fT (zt,ut) =

λt+1

ωt+1

λ̇t+1

 =

 λt + λ̇t∆t
ωt ⊕R(ωt)ω̇

imu
t ∆t

λ̇t + R(ωt)λ̈
imu
t (∆t)2

 .
Here ⊕ denotes standard quaternion integration. The standard deviation σT of p(zt+1 | zt,ut) (a
Gaussian) is a hyperparameter, estimated via search on the validation set. Its diagonal entries are 0.01
for the location state dimensions, 0.001 for the orientation state dimensions and 0.001 for the velocity
state dimensions. The gravitational force g is subtracted from the IMU readings when applying the
Euler integration given by fT . The time delta for the integration is set to ∆t = 0.1, to match the
10Hz data subsampling.

E HYPERPARAMETER SEARCH AND EXECUTION DETAILS

All models are implemented in python using TensorFlow (Abadi et al., 2016), making use of automatic
differentiation to optimise model parameters. This allows for the easy integration of neural networks
and makes end-to-end optimisation straightforward. In TensorFlow 1.15, one gradient step of the
model takes 0.0607s on average, without XLA compilation. In TensorFlow 2.3 one gradient step of
the model takes 0.0073s on average, with XLA compilation enabled. The inference experiments in the
paper currently assume 500 iterations per added data point (once every 0.1s for a 10Hz stream), which
amounts to 36.5s of inference runtime per 1s of real-time movement in the newer TensorFlow version.
As already mentioned in the main text, we have not yet optimised the model for real-time inference,
and we will address this in our future work. The large speed-up achieved by simply enabling XLA
and switching to a higher version of TensorFlow indicates that a lot of the computations in the model
can be improved further (e.g. by moving to a C++ runtime or writing dedicated CUDA kernels). We
also anticipate that better initialisation and careful tuning of the model hyperparameters will let the
system reach interactive operation rates.

All probabilistic modelling aspects were implemented using Edward (Tran et al., 2018). Hyperpa-
rameter search (HPS) experiments were executed in a cluster with 8 Tesla V100 GPUs and 40 Intel
Xeon E5-2698 CPU cores. Because of the large amount of Blackbird data (4.7 TB) and the current
model’s speed limitations, the search was performed for a subset of all possible hyperparameters. The
performed model selection is therefore not exhaustive, possibly leaving potential for improvement.
In the following we list the considered hyperparameter search ranges and the number of trials for
each model.

E.1 HPS: FULL SPATIAL MODEL

The hyperparameters for the full spatial model were selected based on localisation RMSE for 500-step
segments of trajectories in the validation set. A total of 200 experiments were conducted, randomly
picking a trajectory segment on which SLAM inference is performed. The considered parameter
ranges are listed in table 3a.

20

Published as a conference paper at ICLR 2021

Table 3: HPS details.

(a) HPS ranges for the full spatial model.

Parameter Range
reconstr. pixel count [100, 200, 500]
q(Mocc) init. value stddev [0.01, 0.1, 1.0]
p(Mocc) stddev [0.1, 1.0, 10.0]
Mocc grid side [50, 100, 200]
Mocc learning rate [0.01, 0.05, 0.001]

Mcol learning rate [0.01, 0.05, 0.001]
z1:T learning rate [0.01, 0.05, 0.001]

(b) HPS ranges for the learned transition model.

Parameter Range
learning rate [0.0001, 0.0005, 0.001, 0.005]
zrest [8, 16]
hidden units [32, 64, 128, 256]
layers [2, 3, 4, 5]
activation [softsign, relu]
RNN units [32, 64, 128, 256]

(c) HPS ranges for the engineered transition model.

Parameter Range
λ stddev [0.0001, 0.001, 0.01]
ω stddev [0.0001, 0.001, 0.01]

λ̇ stddev [0.0001, 0.001, 0.01]

E.2 HPS: LEARNED TRANSITION MODEL

The learned transition hyperparameters were selected based on the validation set ELBO value from the
model discussed in section 4. A total of 400 experiments were conducted, using all of the blackbird
training and validation data. The considered parameter ranges are listed in table 3b.

E.3 HPS: ENGINEERED TRANSITION MODEL

The engineered transition hyperparameters were selected in the same HPS for the full model discussed
above, based on localisation RMSE for 500-step segments of trajectories in the validation set. The
considered parameter ranges are listed in table 3c.

21

Published as a conference paper at ICLR 2021

F FURTHER INFERENCE EXAMPLES

Predicted colour

Predicted depth

Observed colour

SGBM depth

−6 −4 −2 0 2 4 6
x [m]

−6

−4

−2

0

2

4

6

y
[m

]
clover, max speed 3.0 m/s

MOCAP
proposed

Predicted colour

Predicted depth

Observed colour

SGBM depth

−6 −4 −2 0 2 4 6
x [m]

−6

−4

−2

0

2

4

6

y
[m

]

patrick, max speed 3.0 m/s
MOCAP
proposed

Predicted colour

Predicted depth

Observed colour

SGBM depth

−6 −4 −2 0 2 4 6
x [m]

−6

−4

−2

0

2

4

6

y
[m

]

sphinx, max speed 3.0 m/s
MOCAP
proposed

Predicted colour

Predicted depth

Observed colour

SGBM depth

−6 −4 −2 0 2 4 6
x [m]

−6

−4

−2

0

2

4

6

y
[m

]

sid, max speed 3.0 m/s
MOCAP
proposed

Figure 8: Examples of inference in the full spatial model, expressed in localisation and mapping for
segments of the following trajectories: clover, forward yaw, max speed 3.0 m/s, patrick, forward yaw,
max speed 3.0 m/s, sphinx, forward yaw, max speed 3.0 m/s and sid, forward yaw, max speed 3.0 m/s.
Left on every subfigure: top-down view of the localisaton estimate. Right on every subfigure: depth
and colour reconstructions from the generative model for one time step.

22

Published as a conference paper at ICLR 2021

G DATA SET SPLITS

Training set
trajectory # steps duration [s]

3dFigure8, constant yaw, 1.0 m/s 2087 208.7
3dFigure8, constant yaw, 2.0 m/s 2130 213.0
3dFigure8, constant yaw, 3.0 m/s 2091 209.1
3dFigure8, constant yaw, 4.0 m/s 2136 213.6
3dFigure8, constant yaw, 5.0 m/s 2240 224.0
ampersand, constant yaw, 1.0 m/s 2086 208.6
ampersand, constant yaw, 2.0 m/s 2061 206.1
ampersand, constant yaw, 3.0 m/s 833 83.3
clover, constant yaw, 1.0 m/s 2575 257.5
clover, constant yaw, 2.0 m/s 2605 260.5
clover, constant yaw, 3.0 m/s 833 83.3
clover, constant yaw, 4.0 m/s 2631 263.1
clover, constant yaw, 5.0 m/s 2607 260.7
dice, constant yaw, 2.0 m/s 2605 260.5
dice, constant yaw, 3.0 m/s 833 83.3
dice, constant yaw, 4.0 m/s 2614 261.4
figure8, constant yaw, 1.0 m/s 1513 151.3
figure8, constant yaw, 2.0 m/s 2052 205.2
figure8, constant yaw, 5.0 m/s 1999 199.9
mouse, constant yaw, 1.0 m/s 2641 264.1
mouse, constant yaw, 2.0 m/s 2674 267.4
mouse, constant yaw, 3.0 m/s 833 83.3
mouse, constant yaw, 4.0 m/s 2620 262.0
mouse, constant yaw, 5.0 m/s 2655 265.5
oval, constant yaw, 2.0 m/s 2033 203.3
oval, constant yaw, 3.0 m/s 833 83.3
oval, constant yaw, 4.0 m/s 2035 203.5
thrice, constant yaw, 1.0 m/s 2726 272.6
thrice, constant yaw, 2.0 m/s 2658 265.8
thrice, constant yaw, 3.0 m/s 2656 265.6
thrice, constant yaw, 4.0 m/s 2656 265.6
thrice, constant yaw, 5.0 m/s 2621 262.1
tiltedThrice, constant yaw, 1.0 m/s 2624 262.4
tiltedThrice, constant yaw, 2.0 m/s 2624 262.4
tiltedThrice, constant yaw, 3.0 m/s 833 83.3
tiltedThrice, constant yaw, 4.0 m/s 2602 260.2
tiltedThrice, constant yaw, 5.0 m/s 2574 257.4
winter, constant yaw, 1.0 m/s 2625 262.5
winter, constant yaw, 2.0 m/s 2570 257.0
winter, constant yaw, 3.0 m/s 833 83.3
winter, constant yaw, 4.0 m/s 2569 256.9
winter, constant yaw, 5.0 m/s 2620 262.0
ampersand, forward yaw, 1.0 m/s 1100 110.0
ampersand, forward yaw, 2.0 m/s 893 89.3
clover, forward yaw, 1.0 m/s 1088 108.8
clover, forward yaw, 2.0 m/s 1088 108.8
clover, forward yaw, 3.0 m/s 833 83.3
clover, forward yaw, 4.0 m/s 1101 110.1
clover, forward yaw, 5.0 m/s 1091 109.1
dice, forward yaw, 1.0 m/s 1096 109.6
dice, forward yaw, 2.0 m/s 1099 109.9
dice, forward yaw, 3.0 m/s 833 83.3
mouse, forward yaw, 1.0 m/s 1110 111.0
mouse, forward yaw, 2.0 m/s 1107 110.7
mouse, forward yaw, 3.0 m/s 833 83.3
mouse, forward yaw, 4.0 m/s 1108 110.8
mouse, forward yaw, 5.0 m/s 1107 110.7
oval, forward yaw, 1.0 m/s 1086 108.6
oval, forward yaw, 2.0 m/s 892 89.2
oval, forward yaw, 3.0 m/s 833 83.3
oval, forward yaw, 4.0 m/s 1086 108.6
thrice, forward yaw, 1.0 m/s 1088 108.8
thrice, forward yaw, 2.0 m/s 1088 108.8
thrice, forward yaw, 3.0 m/s 833 83.3
thrice, forward yaw, 4.0 m/s 1088 108.8
thrice, forward yaw, 5.0 m/s 1088 108.8
tiltedThrice, forward yaw, 1.0 m/s 898 89.8
tiltedThrice, forward yaw, 2.0 m/s 1088 108.8
tiltedThrice, forward yaw, 3.0 m/s 833 83.3
tiltedThrice, forward yaw, 4.0 m/s 1088 108.8
tiltedThrice, forward yaw, 5.0 m/s 1087 108.7
winter, forward yaw, 2.0 m/s 1089 108.9
winter, forward yaw, 3.0 m/s 833 83.3
winter, forward yaw, 4.0 m/s 1091 109.1

Test set
trajectory # steps duration [s]

star, constant yaw, 1.0 m/s 2680 268.0
star, constant yaw, 2.0 m/s 2635 263.5
star, constant yaw, 3.0 m/s 2640 264.0
star, constant yaw, 4.0 m/s 2667 266.7
star, constant yaw, 5.0 m/s 2611 261.1
star, forward yaw, 1.0 m/s 1491 149.1
star, forward yaw, 2.0 m/s 1503 150.3
star, forward yaw, 3.0 m/s 1523 152.3
star, forward yaw, 4.0 m/s 1627 162.7
star, forward yaw, 5.0 m/s 1108 110.8
picasso, constant yaw, 1.0 m/s 2040 204.0
picasso, constant yaw, 2.0 m/s 2071 207.1
picasso, constant yaw, 3.0 m/s 2072 207.2
picasso, constant yaw, 4.0 m/s 2109 210.9
picasso, constant yaw, 5.0 m/s 2626 262.6
picasso, forward yaw, 1.0 m/s 833 83.3
picasso, forward yaw, 3.0 m/s 2083 208.3
picasso, forward yaw, 4.0 m/s 2057 205.7
picasso, forward yaw, 5.0 m/s 891 89.1

Validation set
trajectory # steps duration [s]

sid, constant yaw, 1.0 m/s 2688 268.8
sid, constant yaw, 2.0 m/s 2677 267.7
sid, constant yaw, 3.0 m/s 833 83.3
sid, constant yaw, 4.0 m/s 2668 266.8
sid, constant yaw, 5.0 m/s 2661 266.1
sid, forward yaw, 1.0 m/s 897 89.7
sid, forward yaw, 2.0 m/s 1109 110.9
sid, forward yaw, 3.0 m/s 833 83.3
sid, forward yaw, 4.0 m/s 1109 110.9
sid, forward yaw, 5.0 m/s 1110 111.0
sphinx, constant yaw, 1.0 m/s 2612 261.2
sphinx, constant yaw, 2.0 m/s 2601 260.1
sphinx, constant yaw, 3.0 m/s 833 83.3
sphinx, constant yaw, 4.0 m/s 2560 256.0
sphinx, forward yaw, 1.0 m/s 1088 108.8
sphinx, forward yaw, 2.0 m/s 1087 108.7
sphinx, forward yaw, 3.0 m/s 833 83.3
sphinx, forward yaw, 4.0 m/s 1086 108.6
bentDice, constant yaw, 1.0 m/s 2624 262.4
bentDice, constant yaw, 2.0 m/s 2698 269.8
bentDice, constant yaw, 3.0 m/s 417 41.7
bentDice, constant yaw, 4.0 m/s 2632 263.2
bentDice, forward yaw, 1.0 m/s 1088 108.8
bentDice, forward yaw, 2.0 m/s 1088 108.8
bentDice, forward yaw, 3.0 m/s 833 83.3
patrick, constant yaw, 1.0 m/s 2598 259.8
patrick, constant yaw, 2.0 m/s 2584 258.4
patrick, constant yaw, 3.0 m/s 417 41.7
patrick, constant yaw, 4.0 m/s 2611 261.1
patrick, constant yaw, 5.0 m/s 2580 258.0
patrick, forward yaw, 1.0 m/s 1089 108.9
patrick, forward yaw, 2.0 m/s 1089 108.9
patrick, forward yaw, 3.0 m/s 833 83.3
patrick, forward yaw, 4.0 m/s 1091 109.1

23

	Introduction
	Related work
	Method
	Learning rigid-body dynamics
	Experiments
	Dense geometric mapping
	Using maps for downstream tasks
	Generating future predictions
	Agent localisation

	Conclusion
	Use of domain knowledge when designing learned spatial models
	Case study: drone landing
	Data details and overall setup
	Data partitioning and usage
	Data preprocessing

	Model details
	Full spatial model
	Optimisation
	Initialisation of new poses
	Choice of approximate posterior over states
	Handling orientations
	Component parameters

	Learned transition
	Engineered transition

	Hyperparameter search and execution details
	HPS: full spatial model
	HPS: learned transition model
	HPS: engineered transition model

	Further inference examples
	Data set splits

