
On the Role of Numerical Encoding in Foundation Model of
Sequential Recommendation with Sequential Indexing

Refaldi Intri Dwi Putra, Toyotaro Suzumura
Graduate School of Information Science and Technology

The University of Tokyo
{refaldiputra,suzumura}@g.ecc.u-tokyo.ac.jp

Abstract

We study a foundation model for recommender systems
named P5 on a sequential recommendation task with sequen-
tial indexing. The P5 needs to handle numerical values due
to the usage of user-item IDs in the prompt. However, it is
unclear how the prior numerical encoding affects the task.
We think this requires special attention since it may pose a
challenge to the performance and future development of rec-
ommender systems. To do so, we run experiments where the
prior numerical encoding is set from an addition task. We find
that by doing so, it can improve the performance compared
with the vanilla P5. We also find that this performance is af-
fected by the structure of the priors. However, the models no
longer retain their addition ability. This gives insight into the
role of numerical encoding in the foundation models for rec-
ommender systems.

1 Introduction
Foundation models (FMs) have emerged as a new paradigm
in the deep learning field (Bommasani et al. 2021). FMs are
trained on broad data sets and can be used for various down-
stream tasks. Recently, we have seen the power of FMs in
the language domain through GPT4, Llamas, etc. (OpenAI
2023; Touvron et al. 2023). They can perform outstanding
various language tasks such as translation and generation.
Moreover, this exciting new paradigm is prevalent in ma-
chine learning applications.

An example is to build an FM for the recommender sys-
tems (RS). Such a model may play an important role in a
’healthy’ recommender ecosystem (recosystem) (Boutilier,
Mladenov, and Tennenholtz 2023). In this study, we are in-
terested in an FM for RS named P5 (Geng et al. 2022). The
P5 is based on language modeling and was considered the
first FM for RS. It is trained by using a unified framework
in natural language processing. Its model is based on T5
(Raffel et al. 2020), an encoder-decoder Transformer model
(Vaswani et al. 2017). Some common RS tasks such as rat-
ing prediction and sequential recommendation are done in
a single training. This approach gives P5 the advantage of
performing various RS tasks in a single training.

In more detail, the P5 is trained on special prompt tem-
plates for each respective task. The prompts would be filled

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in by user and item IDs. For example, in the sequential rec-
ommendation task, a prompt template was ”What would
⟨user id⟩ be likely to purchase next after buying items
{⟨item id⟩} ?”. In which, ⟨user id⟩ and ⟨item id⟩ were a
mixture of text and numerical values such as user 23 and
item 7391. Because of this, P5 needs to handle numerical
values. However, when it comes to numbers, language mod-
els seemed to have difficulty handling it. For example, in
the GPT-3 technical paper (Brown et al. 2020) (see section
3.9 in Arxiv’s version) the models were tested for arithmetic
tasks where only the models with billion parameters could
produce the correct answers. Even for GPT-4, the accuracy
was still 59% as stated in (Dziri et al. 2023). Therefore, it
makes sense to ask whether similar problems will happen in
FMs for RS, especially related to the numerical encoding.

Recently, there was also an extended work of open-
sourced P5, named OpenP5 (Xu, Hua, and Zhang 2023),
which we use as our framework. Here, the terms P5 and
OpenP5 are used interchangeably. In OpenP5, they re-
initialized the numerical encoding of pre-trained T5 with a
random distribution, see section 5.2 in (Xu, Hua, and Zhang
2023). This is because the numbers serve as identifiers of the
user items and may not follow the natural structure of num-
bers (e.g. 5>3). However, it is unclear whether this prior
setting is suitable for the FMs that also need to grasp the
concept of the number’s structure.

We think this requires special attention, considering that
future RS is going to exploit various side information of the
users (He et al. 2023). For example, if a timestamp or price
tag is used, the models may need to understand the num-
ber’s structure. This may also pose a problem for recosys-
tem, where the numbers embedding needs to find a balance
between the two concepts. Which, the formation of these
concepts should be affected by prior distribution of numeri-
cal encoding.

Objective of this study. Since it is still unclear whether
prior numerical encoding with specific structure affects the
performance of RS. We think assessing this problem is im-
portant to get insights on the role of numerical encoding in
FMs for RS, as well as the way to improve its performance.
So, this study sets out to investigate this specific problem.

To do so, we first train T5 with an addition task to become
T5n. We chose the addition task because it is a number-

(a) The illustration of our
framework compared with
existing work.

(b) The illustration of our assumptions on
concepts in P5n.

Figure 1: The illustrations of our study. (a) Framework of P5n that we study here is fine-tuned with an addition task first, (b)
Assumed concepts where the number’s concept is shared together with arithmetic (A) and RS (R) tasks.

related task and due to its simplicity. Moreover, T5 had
relatively good performance for this task as reported in
(Nogueira, Jiang, and Lin 2021) that may induce a specific
structure to the prior. After that, we train T5n on a sequential
recommendation task to become P5n. This framework may
induce a shared concept of numbers between RS (R) and
the addition task (A). We illustrate the P5n training frame-
work compared with the vanilla P5 and the assumed shared
number concept in Figure 1.

Furthermore, indexing is fundamental in P5 to cap-
ture collaborative and personalized feature representations.
There are several indexing approaches that have been ex-
plored by (Hua et al. 2023). One of them is called sequential
indexing which we will explain briefly in a later section and
the others in the appendix. In that regard, we want to focus
on the sequential indexing first. An important point is that
sequential indexing assigns the user-items’s ID in an incre-
mental way, except when the items are repeated. This incre-
mental characteristic may share the same concept of num-
bers with the addition task. So, the effect of the concepts
may be mutual.

With previous considerations, we have a hypothesis as
follows:

Learning addition task will give better performance for
language-based RS model with sequential indexing.

We then pose following research questions:
• Is P5n better than vanilla P5 in performance?
• What aspects of T5n affect the performance of P5n?
• Can P5n retain its addition ability?

Contributions. To the extent of our knowledge, this paper
is the first work that assesses the effect of the prior distribu-
tion of numerical encoding in FMs for RS. Our findings are
followings:
• Learning the addition task can improve the P5 sequential

recommendation performance with sequential indexing.
But, it depends on the structure of the prior numerical
encoding, in which there may be an optimum structure.
The training can also fail when using randomized T5n or
a smaller batch size leading to zero performance of P5n,
suggesting instability of training.

• The performance of P5n models on addition tasks has
been nullified, suggesting they may use different con-
cepts of numbers (Figure 1b is wrong).

Limitation. Our study in this paper used ”T5-small” with
60M number of parameters and 5 rather small data sets. But,
we will continue to extend our work in the future.

2 Problem Formulation
General notation. Let x1:T be a sequence of words with
length T . Let denote words ⟨user id⟩,⟨item id⟩ as x(u), x(v),
respectively. In a OpenP5’s prompt template x(u), x(v) ∈
x1:T . Let us refer to the user’s ID as u and its history items’
IDs as a sequence v1:V with length V . Let denote D as a
set, such that D = {u,v1:V }. Let also x(n) denote an inte-
ger as word and D(n) as its set. In the addition task’s prompt
template D(n) ∈ x1:T . Let F ,A,R represent algorithms for
language model, arithmetic, and recommender tasks, respec-
tively. Finally, let T be a tokenizer splits a word x into sub-
words (tokens) such that T (x1:T) : x1:T 7→ q1:Q, Q ≥ T .

OpenP5 and addition task formulation. Let f is a func-
tion parameterized with θ that takes input q1:Q. We train f
for next-token prediction following this objective function

min
θ

−ΣQ
t log (qt|q1:t−1, θ) (1)

This makes f as a language model and we train f to have an
algorithm F . When the OpenP5’s prompt template is used,
we also train f for R on D. On the other hand, when we
use the addition prompt’s template, we also train f for A
on D(n). Hence, we can have a model for sequential recom-
mender systems and addition tasks, respectively.

Prior’s effect on P5n. Since we train P5n by using T5n
as the base model, we have a prior of numerical encoding
based on A, instead of a random distribution N (µ, σ). This
way, we indirectly change the prior of numerical encoding
because T (D) ∩ T (D(n)) ̸= ∅. Hence, we can assess how
the prior of numerical encoding affects the performance of
sequential recommendation.

Sequential Indexing. P5 uses SentencePiece tokenization
and this is cleverly exploited in the sequential indexing. Un-
der SentencePiece, numbers are tokenized into separated
numbers such as ”1001” which becomes ”100” and ”1”.
First, the IDs are assigned by sorting the user and then start-
ing indexing the items from 1001. After that, by iteration
from the first item to the last item in a user, the index is
added when an item is not repeated. By doing so, there is a
co-occurrence of items such as ”1001” and ”1002”, where
”100” shares the embedding. Therefore, it can capture the
clusters of co-occurrence items in a collaborative way.

3 Methodologies
3.1 Prompts and Base Models
Prompt templates. Since we use OpenP5 as our frame-
work, we follow their prompt templates for a sequential rec-
ommendation task. There are 10 different templates for fine-
tuning training and a template for zero-shot learning. The
former is denoted as ’seen’ while the latter is denoted as
’unseen’. We show these templates in the appendix. On the
other hand, the addition task has a single template which is
”What is x(n)

1 plus x(n)
2 ?” as the input and its answer ”x(n)

3 ”
as the output. The number of digits for x(n) ranged from 1
to 9 digits.

Details on base models. We use several versions of base
models that we denote as T5v, T5n-e, and T5n-r. In more
detail, T5v is the vanilla version of the base model avail-
able from the HuggingFace repository (Wolf et al. 2020).
T5n-e is a base model that we train on the addition task first
for e epochs, such as T5n-10 and T5n-50. We prepare mod-
els with fewer epochs and larger epochs to see the effect
of the quality of T5n on the performance of P5n. T5r is a
base model that we train on the addition task but the answers
are random, we train them for 10 epochs. For all the train-
ing, we re-initialize the numbers embedding to N (0, 1). It
is also noteworthy that T5n-r can be used to assess whether
the model needs to ”understand” addition operation or just
needs to see numbers in examples. For convenience, we use
the same prefix of base models for P5, e.g. P5v and P5n-10.

3.2 Data Sets, Training, Metrics, and Analysis
Data sets. Since we utilize OpenP5, we use the provided
data sets. We train the models on 5 rather small data sets.
These are Beauty, Clothing, Taobao, ML100K, and LastFM.
The details of these data sets can be seen in Table 3. We
also follow the train and test data sets splitting provided by
OpenP5. For the addition task, we generate 1 million exam-
ples as the training data set and 10000 as the test data set.

Training hyperparameters. For every run, we train each
model into T5n, P5 or P5n with the same training hyperpa-
rameters. Except for T5-e, we train a model for 10 epochs.
We use batch optimization using the AdamW algorithm,
with a batch size of 128 and 32. We set the peak learn-
ing rate as 10−3 and use a learning scheduler with warmup
on 100 first steps. To train all the models we use 2 GPUs
(NVIDIA RTX 3090). We use W&B for training manage-
ment (Biewald 2020).

Metrics. Following OpenP5, for the sequential recom-
mendation task we use top-k Hit Ratio (hit@k) and Nor-
malized Discounted Cumulative Gain (ndcg@k), we then set
k = {5, 10}. For the addition task, we use the ratio between
the exact match number in ground truth and prediction. We
give this metric in percentage and denote it as (% Acc). For
all the metrics, the higher means better.

Representational similarity. To analyze the representa-
tions induced by two models in the embedding space, we
use the linear centered kernel alignment (CKA), described
in (Kornblith et al. 2019), as a similarity score s ∈ (0, 1).
We explain the method in more detail in the appendix. We
measure the pairwise of T5n models and since the T5v dis-
tribution comes from the random distribution we can also
compare with it.

4 Experimental Results
Sequential recommendation. We present the results of
the performance of P5 and P5n according to their base mod-
els in Table 1 for a batch size of 128. We show the results
for a batch size of 32 in Table 5 that we put in the appendix
due to space. Accordingly, on both batch sizes 128 and 32,
P5n-5 and P5n-10 have the most occurrences of the best and
the second-best scores. We found that P5n-50 and P5n-75
have better performance on less sparse data sets (ML100K
and LastFM). Meanwhile, P5n-r is generally the worst for
all the data sets. We also found that in a batch size of 32, the
P5n-5 and P5n-r sometimes fail to learn (zero performance).

Addition task. We show the results of the evaluation of
models on the addition task in Table 2 and Table 4. In par-
ticular, T5n-75 is the best followed by T5n-50, T5n-10, and
T5n-5, while T5n-r and T5v have zero performance. On the
other hand, the evaluation of P5n models trained shows that
the efficacy of the addition task has been nullified.

Representation of numerical encoding. We show s be-
tween the pairwise number embeddings of T5n models for
each batch size in Figure 2 as a heatmap. We found that the
representation of numerical encoding of T5n-10 and T5n-5
are more similar with T5n-50 and T5n-75 than N (0, 1).

5 Discussion and Related Work
Based on the results, we found that the prior numerical en-
coding affects the performance of the RS tasks. In particu-
lar, when the training has not failed, P5n-5 and P5n-10 have
better overall performances compared with the vanilla one.
Meanwhile, P5n-50 and P5n-75 are better on less sparse data
sets. If we compare their base model’s performance on the
addition task, actually T5n-50 and T5n-75 are the best. Be-
cause of that, we assume that their representation is more
structured. But, it turns out that T5n-10 and T5n-5 give bet-
ter performance. This highlights there may be an optimum
prior that gives the balance between the continuous struc-
ture of indexing and the sparsity of the data sets. Moreover,
this aligns with representation similarity analysis where the
lower epochs T5n are in between N (0, 1) and upper epochs
T5n. On the other hand, the performance of P5n-r is gen-
erally the worst. Its base model has seen numbers during

Table 1: Performance of P5 and P5n with different base models on datasets using a batch size of 128. Boldface for the best
score and underline the second-best score over a metric and a data set.

Model → P5v (Baseline) P5n-50
Dataset ↓ / Metric → hit@5 hit@10 ndcg@5 ndcg@10 hit@5 hit@10 ndcg@5 ndcg@10
Beauty (seen) 0.0030 0.0039 0.0020 0.0023 0.0016 0.0038 0.0012 0.0019
Taobao (seen) 0.1837 0.2192 0.1406 0.1521 0.1725 0.2077 0.1315 0.1429
Clothing (seen) 0.0013 0.0020 0.0008 0.0010 0.0010 0.0015 0.0007 0.0009
ML100K (seen) 0.0700 0.1220 0.0430 0.0601 0.0806 0.1230 0.0526 0.0664
LastFM (seen) 0.0174 0.0339 0.0104 0.0156 0.0248 0.0330 0.0158 0.0184
Beauty (unseen) 0.0028 0.0039 0.0019 0.0022 0.0017 0.0036 0.0012 0.0019
Taobao (unseen) 0.1843 0.2199 0.1412 0.1527 0.1712 0.2089 0.1304 0.1426
Clothing (unseen) 0.0012 0.0019 0.0008 0.0010 0.0010 0.0015 0.0007 0.0008
ML100K (unseen) 0.0657 0.1262 0.0422 0.0620 0.0848 0.1262 0.0540 0.0675
LastFM (unseen) 0.0211 0.0339 0.0120 0.0160 0.0229 0.0330 0.0146 0.0179
Model → P5n-10 P5n-r
Dataset ↓ / Metric → hit@5 hit@10 ndcg@5 ndcg@10 hit@5 hit@10 ndcg@5 ndcg@10
Beauty (seen) 0.0031 0.0039 0.0021 0.0023 0.0026 0.0031 0.0016 0.0017
Taobao (seen) 0.1845 0.2164 0.1409 0.1512 0.1540 0.1791 0.1206 0.1287
Clothing (seen) 0.0014 0.0019 0.0009 0.0011 0.0000 0.0000 0.0000 0.0000
ML100K (seen) 0.0827 0.1315 0.0497 0.0652 0.0138 0.0276 0.0104 0.0147
LastFM (seen) 0.0239 0.0349 0.0134 0.0169 0.0128 0.0193 0.0072 0.0092
Beauty (unseen) 0.0032 0.0041 0.0022 0.0024 0.0026 0.0031 0.0016 0.0017
Taobao (unseen) 0.1833 0.2154 0.1400 0.1505 0.1553 0.1796 0.1222 0.1301
Clothing (unseen) 0.0013 0.0020 0.0009 0.0011 0.0000 0.0000 0.0000 0.0000
ML100K (unseen) 0.0817 0.1304 0.0497 0.0652 0.0138 0.0308 0.0104 0.0156
LastFM (unseen) 0.0220 0.0312 0.0133 0.0163 0.0128 0.0202 0.0067 0.0091

Table 2: Performance of models on addition task. The P5n
model results are from the average across data sets and with
a batch size of 128.

Model T5n-50 T5n-10 T5n-r T5v
% Acc 72.4 43.8 0.0 0.0
Model P5n-50 P5n-10 P5n-r P5v
% Acc ∼ 10−3 ∼ 10−3 0.0 0.0

training, but the answer is random. Hence, it suggests that
what matters here is the structure of the priors of numer-
ical encoding, but it needs to be precise. As also pointed
out, the training can fail and this may be related to the train-
ing instability problem that is common in the Transformer-
based model, as in (Liu et al. 2020). Finally, we also want to
point out the poor results of P5, and P5n models on the ad-
dition task. This suggests that the assumed shared concept
in Figure 1b is wrong and they may use different concepts
of numbers. If it is so, then building an FM for RS with side
information that contains numbers needs to consider this.

This study is also related to work from (Kocmi and Bojar
2017) that explored several initializations of word embed-
dings and found it could improve models’ performance. We
also think that the problem we study can be considered as a
problem of ”Elephant in the Room”, described in (Boutilier,
Mladenov, and Tennenholtz 2023). Suppose we have only a
single FM for our RS in the ecosystem, then the embedding
of x(u) and x(v) need to accommodate sparse and contin-

uous representation. Moreover, the embedding of x(n) also
needs to accommodate in case of number-related informa-
tion is used. This may be accessible via a sophisticated loss
function specialized for numerical encoding. Consequently,
it incites us to delve further into this avenue in the future, as
well as consider multiple agents with their own concept of
numbers.

6 Concluding Remark and Future Study
In conclusion, we trained the base models of a foundation
model for the recommender systems with an additional task
first. We found that by doing so, the performances were af-
fected where the prior of the number encoding is important.
This gives an insight into the importance of numerical en-
coding in the foundation model of recommender systems as
well as its relationship to other number-related tasks.

Lastly, we acknowledge that our study was still very lim-
ited. Hence, it is still not clear the effect of other aspects such
as different indexing, other arithmetic tasks, other embed-
ding strategies e.g. whole-word embedding, and other base
models. Therefore, more works need to be done to study the
role of numerical encoding in the FM for RS.

Acknowledgments
This work was supported by JST SPRING Grant Num-
ber JPMJSP2108 and JSPS KAKENHI Grant Numbers
JP23H03408.

References
Biewald, L. 2020. Experiment Tracking with Weights and
Biases. Software available from wandb.com.

Bommasani, R.; Hudson, D. A.; Adeli, E.; Altman, R.;
Arora, S.; von Arx, S.; Bernstein, M. S.; Bohg, J.; Bosselut,
A.; Brunskill, E.; et al. 2021. On the opportunities and risks
of foundation models. arXiv preprint arXiv:2108.07258.

Boutilier, C.; Mladenov, M.; and Tennenholtz, G. 2023.
Modeling Recommender Ecosystems: Research Challenges
at the Intersection of Mechanism Design, Reinforce-
ment Learning and Generative Models. arXiv preprint
arXiv:2309.06375.

Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; et al. 2020. Language Models are Few-Shot Learners.
arXiv preprint arXiv:2005.14165.

Dziri, N.; Lu, X.; Sclar, M.; Li, X. L.; Jiang, L.; Lin, B. Y.;
Welleck, S.; West, P.; Bhagavatula, C.; Bras, R. L.; Hwang,
J. D.; Sanyal, S.; Ren, X.; Ettinger, A.; Harchaoui, Z.; and
Choi, Y. 2023. Faith and Fate: Limits of Transformers on
Compositionality. In Thirty-seventh Conference on Neural
Information Processing Systems.

Geng, S.; Liu, S.; Fu, Z.; Ge, Y.; and Zhang, Y. 2022. Rec-
ommendation as language processing (rlp): A unified pre-
train, personalized prompt & predict paradigm (p5). In Pro-
ceedings of the 16th ACM Conference on Recommender Sys-
tems, 299–315.

He, Z.; Liu, W.; Guo, W.; Qin, J.; Zhang, Y.; Hu, Y.; and
Tang, R. 2023. A Survey on User Behavior Modeling in
Recommender Systems. In Elkind, E., ed., Proceedings of
the Thirty-Second International Joint Conference on Artifi-
cial Intelligence, IJCAI-23, 6656–6664. International Joint
Conferences on Artificial Intelligence Organization. Survey
Track.

Hua, W.; Xu, S.; Ge, Y.; and Zhang, Y. 2023. How to Index
Item IDs for Recommendation Foundation Models. arXiv
preprint arXiv:2305.06569.

Kocmi, T.; and Bojar, O. 2017. An Exploration of Word
Embedding Initialization in Deep-Learning Tasks. In Pro-
ceedings of the 14th International Conference on Natural
Language Processing (ICON-2017), 56–64.

Kornblith, S.; Norouzi, M.; Lee, H.; and Hinton, G. 2019.
Similarity of neural network representations revisited. In
International conference on machine learning, 3519–3529.
PMLR.

Liu, L.; Liu, X.; Gao, J.; Chen, W.; and Han, J. 2020. Under-
standing the difficulty of training transformers. In 2020 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2020, 5747–5763. Association for Com-
putational Linguistics (ACL).

Nogueira, R.; Jiang, Z.; and Lin, J. 2021. Investigating
the limitations of transformers with simple arithmetic tasks.
arXiv preprint arXiv:2102.13019.

OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774.

Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2020. Explor-
ing the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research,
21(1): 5485–5551.
Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux,
M.-A.; Lacroix, T.; Rozière, B.; Goyal, N.; Hambro, E.;
Azhar, F.; et al. 2023. Llama: Open and efficient founda-
tion language models. arXiv preprint arXiv:2302.13971.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. Advances in neural information pro-
cessing systems, 30.
Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.;
Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al.
2020. Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 conference on empirical
methods in natural language processing: system demonstra-
tions, 38–45.
Xu, S.; Hua, W.; and Zhang, Y. 2023. OpenP5: Benchmark-
ing Foundation Models for Recommendation. arXiv preprint
arXiv:2306.11134.

A Appendix
A.1 Indexing in P5
There are several indexing approaches for the foundation
model of recommender systems, which we will briefly ex-
plain here based on (Hua et al. 2023). The important thing
here is to balance between capturing co-occurrence and not
creating any spurious relationship among user items.

• Random indexing: In random indexing, the user-item IDs
are randomly selected from the number random genera-
tor. Since it is random, it is really hard to capture co-
occurrence as well as can induce spurious relationships.

• Title indexing: It uses the title of the items such as in
the movie. The same problem may happen here where as
in the random indexing where similar titles might induce
spurious relationships.

• Independent indexing: It creates independent out-of-
vocabulary tokens for each of the items. This can solve
the previously existing problems, but it is hard to capture
collaborative representation. This is because each item is
independent now.

• Collaborative indexing: In collaborative indexing, user
items are clustered based on a graph or tree method. An
example is to build a graph where the node is the item
and its edge is based on the strength of its co-occurrence.

• Semantic indexing: This indexing utilizes the metadata
of the items to assign the IDs. It also uses a tree-based
method so it can capture the co-occurrence.

A.2 Prompt Templates
The prompt templates that are used for fine tuning (seen) and
zero-shot learning (unseen) for sequential recommendation
task are listed below which follows from OpenP5.

• (seen) Considering S x(u) has interacted with S items
{x(v)} . What is the next recommendation for the user ?;
S x(v)

• (seen) Here is the purchase history of S x(u) : S item
{x(v)} . I wonder what is the next recommended item for
the user .; S x(v)

• (seen) S x(u) has purchased S items {x(v)}, predict next
possible item to be bought by the user ?; S x(v)

• (seen) I find the purchase list of S x(u) : S items {x(v)}
, I wonder what other items does the user need . Can you
help me decide ?; S x(v)

• (seen) According to what items S x(u) has purchased : S
items {x(v)} , Can you recommend another item to the
user ?; S x(v)

• (seen) What would S x(u) be likely to purchase next after
buying S items {x(v)} ?; S x(v)

• (seen) By analyzing the S x(u) ’s purchase of S items
{x(v)} , what is the next item expected to be bought ?; S
x(v)

• (seen) Can you recommend the next item for S x(u) ,
given the user ’s purchase of S items {x(v)} ?; S x(v)

• (seen) After buying S items {x(v)} , what is the next item
that could be recommended for S x(u) ?; S x(v)

• (seen) The S x(u) has bought items : S items {x(v)} ,
What else do you think is necessary for the user ?; S x(v)

• (unseen) What is the top recommended item for S x(u)

who interacted with S item {x(v)} ?; S x(v)

where S = {Beauty, Clothing, Taobao, ML100K, LastFM}
is the name of data set and {xv} denote the user’s history as
a sequence of xv for v1:V given u.

A.3 Statistics of Data Sets
We show the statistics of the data sets that we use in this
study in Table 3 based on OpenP5.

Table 3: Statistics of the data sets from (Xu, Hua, and Zhang
2023)

Data set Beauty Clothing Taobao
Users 22363 39387 6104
Items 12101 23033 4192

Interactions 198502 278677 46337
Sparsity (%) 99.93 99.97 99.82

Data set ML100K LastFM
Users 943 1090
Items 1349 3646

Interactions 99287 52551
Sparsity (%) 92.20 98.68

A.4 Performance on a batch size of 32
The evaluation of base models on addition tasks trained with
a batch size of 32 can be seen in Table 4. Meanwhile, the
results for P5 and P5n for the batch size of 32 are shown in
Table 5.

Table 4: Performance of models on addition task. The P5
model results are from the average across data sets and with
a batch size of 32.

Model T5n-75 T5n-5 T5n-r T5v
% Acc 92.4 9.7 0.0 0.0
Model P5n-50 P5n-10 P5n-r P5v
% Acc ∼ 10−3 ∼ 10−3 0.0 0.0

A.5 Representation Similarity Analysis
Consider an embedding of an input as z ∈ Rd where d is
the dimension of the embedding space. Then, for N sam-
ples we stack them row-wise to get the embedding matrix
Z ∈ RN×d. From this, we can create a kernel matrix that
measures the similarity pairwise samples as K ∈ RN×N .
We then choose K = ZZT which is called a linear kernel
matrix. Let s(., .) measure the similarity between K1 and
K2, two different kernel matrices. Then, the linear centered
kernel alignment (CKA) as s can be written as

s(K1,K2) =
∥Z̃T

1 Z̃2∥2F
∥Z̃T

1 Z̃1∥F ∥Z̃
T

2 Z̃2∥F
, (2)

where ∥.∥F refer to Frobenius matrix norm, and the tilde
symbol means it has been centered by applying centering
matrix I − 1

N 11T . s = 1 means that the representations are
the same.

We present the heatmap of the pairwise between T5n
models and T5v from each batch size in Figure 2. For each
plot, the representation similarity is between the T5n-50 and
T5n-75 and N (0, 1). In which, the T5n-10 and T5n-5 are
more similar to the upper epochs T5n, suggesting that their
structure of representations is away from random.

Figure 2: The heatmap plots of the linear CKA of pairwise T5n models, and T5v which its distribution comes from N (0, 1).
The batch size of the training is shown on top of each plot. Compared fewer epochs T5n with larger epochs T5n and N (0, 1)
(first column, the second and fourth row of each plot), the fewer epochs T5n is more similar to the larger epochs T5n than to
N (0, 1) indicates by darker color on second row.

Table 5: Performance of P5 and P5n with different base models on datasets using a batch size of 32. Boldface for the best score
and underline the second-best score over a metric and a data set.

Model → P5v (Baseline) P5n-75
Dataset ↓ / Metric → hit@5 hit@10 ndcg@5 ndcg@10 hit@5 hit@10 ndcg@5 ndcg@10
Beauty (seen) 0.0033 0.0043 0.0023 0.0027 0.0033 0.0044 0.0026 0.0030
Taobao (seen) 0.1669 0.2048 0.1288 0.1410 0.1635 0.1984 0.1293 0.1407
Clothing (seen) 0.0012 0.0016 0.0007 0.0008 0.0009 0.0014 0.0006 0.0008
ML100K (seen) 0.0530 0.0965 0.0337 0.0477 0.0583 0.1060 0.0361 0.0513
LastFM (seen) 0.0128 0.0266 0.0091 0.0135 0.0202 0.0339 0.0139 0.0182
Beauty (unseen) 0.0034 0.0043 0.0024 0.0027 0.0032 0.0044 0.0027 0.0031
Taobao (unseen) 0.1669 0.2056 0.1290 0.1415 0.1638 0.1979 0.1292 0.1403
Clothing (unseen) 0.0011 0.0015 0.0007 0.0008 0.0008 0.0015 0.0006 0.0008
ML100K (unseen) 0.0498 0.1007 0.0332 0.0495 0.0573 0.1103 0.0352 0.0522
LastFM (unseen) 0.0156 0.0248 0.0100 0.0130 0.0239 0.0358 0.0160 0.0199
Model → P5n-5 P5n-r
Dataset ↓ / Metric → hit@5 hit@10 ndcg@5 ndcg@10 hit@5 hit@10 ndcg@5 ndcg@10
Beauty (seen) 0.0050 0.0075 0.0032 0.0040 0.0029 0.0039 0.0019 0.0022
Taobao (seen) 0.1709 0.2056 0.1343 0.1455 0.1714 0.2069 0.1319 0.1434
Clothing (seen) 0.0013 0.0018 0.0009 0.0010 0.0001 0.0002 0.0001 0.0001
ML100K (seen) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LastFM (seen) 0.0220 0.0349 0.0138 0.0179 0.0193 0.0321 0.0121 0.0164
Beauty (unseen) 0.0047 0.0070 0.0030 0.0038 0.0030 0.0037 0.0020 0.0022
Taobao (unseen) 0.1694 0.2040 0.1341 0.1454 0.1712 0.2054 0.1313 0.1423
Clothing (unseen) 0.0013 0.0018 0.0009 0.0010 0.0001 0.0002 0.0001 0.0001
ML100K (unseen) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LastFM (unseen) 0.0193 0.0284 0.0115 0.0145 0.0202 0.0330 0.0135 0.0177

