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ABSTRACT

Video matting is crucial for applications such as film production and virtual reality,
yet deploying its computationally intensive models on resource-constrained devices
presents challenges. Quantization is a key technique for model compression and
acceleration. As an efficient approach, Post-Training Quantization (PTQ) is still
in its nascent stages for video matting, facing significant hurdles in maintaining
accuracy and temporal coherence. To address these challenges, this paper proposes
a novel and general PTQ framework specifically designed for video matting models,
marking, to the best of our knowledge, the first systematic attempt in this domain.
Our contributions include: (1) A two-stage PTQ strategy that combines block-
reconstruction-based optimization for fast, stable initial quantization and local
dependency capture, followed by a global calibration of quantization parameters
to minimize accuracy loss. (2) A Statistically-Driven Global Affine Calibration
(GAC) method that enables the network to compensate for cumulative statistical
distortions arising from factors such as neglected BN layer effects, even reducing
the error of existing PTQ methods on video matting tasks up to 20%. (3) An Optical
Flow Assistance (OFA) component that leverages temporal and semantic priors
from frames to guide the PTQ process, enhancing the model’s ability to distinguish
moving foregrounds in complex scenes and ultimately achieving near full-precision
performance even under ultra-low-bit quantization. Comprehensive quantitative
and visual results show that our PTQ4VM achieves the state-of-the-art accuracy
performance across different bit-widths compared to the existing quantization
methods. We highlight that the 4-bit PTQ4VM even achieves performance close to
the full-precision counterpart while enjoying 8× FLOP savings.

1 INTRODUCTION

Figure 1: Visual comparison of our PTQ4VM against Full-
Precision (RVM) and QDrop. Our method demonstrates significant
advantages in preserving fine details and temporal coherence.

The purpose of video mat-
ting (Aksoy et al., 2017; Bai
& Sapiro, 2007; Chen et al.,
2013; Chuang et al., 2001; Feng
et al., 2016; Li et al., 2024;
Lin et al., 2021; 2022; Sen-
gupta et al., 2020; Sun et al.,
2021; Zhang et al., 2021; Zhao
et al., 2021; 2022; 2023a;b;c;
Yao et al., 2024) is to accurately
estimate the alpha matte (α ∈
[0, 1]) of the foreground objects
for each frame in a video se-
quence. The alpha matte defines
the foreground opacity at each
pixel, governed by the compositing equation I = αF + (1 − α)B, where I is the observed pixel,
F is the foreground, and B is the background. This challenging computer vision task has broad
applications in film production, video conferencing, virtual reality, and more. To enable real-time
performance and deployment on resource-constrained platforms for these diverse applications, effi-
cient model representations are crucial. This necessitates advanced model compression techniques to
reduce the computational and memory footprint of video matting models, making them suitable for
edge computing devices.
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Model compression techniques, particularly quantization (Jacob et al., 2018; Nagel et al., 2021;
Gholami et al., 2022), are paramount for deploying advanced video matting models on resource-
constrained devices by converting high-precision floating-point numbers to low-bit integers, thereby
reducing model size and accelerating computation. While Quantization-Aware Training (Qin et al.,
2023)(QAT) simulates quantization during training to achieve good performance, it demands extensive
labeled data and computational resources, which are often scarce for video matting. In contrast,
Post-Training Quantization (PTQ) quantizes pre-trained models directly with minimal calibration
data and no retraining, offering significant advantages in deployment efficiency. However, dedicated
Post-Training Quantization research for video matting models remains nascent. In this work, we aim
to systematically investigate the challenges and opportunities of applying PTQ to video matting tasks.

However, applying PTQ to complex video matting models presents challenges. Firstly, their deep
topological structures and the reliance on limited calibration data often lead to unstable convergence
during the PTQ calibration process. Secondly, at low bit-widths, quantization errors propagate
through the network, resulting in artifacts and increased uncertainty in the output. Furthermore,
recurrent structures, crucial for capturing temporal dependencies, are particularly vulnerable to
quantization noise, which can destabilize learned temporal dynamics and manifest as flickering or
jitter.

To address these challenges, this paper proposes a novel PTQ framework specifically designed for
video matting models. To the best of our knowledge, this is the first work to systematically tackle
PTQ for this task. Our framework is designed to be general, and its main contributions are as follows:

1. A Two-Stage PTQ Strategy Combining Block-wise and Global Optimization We ini-
tially quantize the network using block-wise optimization, which achieves fast and stable
convergence while capturing critical local dependencies. Subsequently, we perform a global
calibration of quantization parameters to minimize accuracy loss while preserving PTQ
efficiency.

2. Statistically-Driven Global Affine Calibration of Quantization Parameters We observe
that neglecting Batch Normalization (BN) layers (Ioffe & Szegedy, 2015) in standard Post-
Training Quantization (PTQ) pipelines often leads to significant statistical alterations in the
distributions of intermediate layer outputs. We propose a Global Affine Calibration (GAC)
method that enables the network to learn a compensation for these cumulative statistical
distortions.

3. Optical Flow Assistance to Guide Post-Training Quantization To align with the temporal
and semantic characteristics of video, we innovatively introduce an Optical Flow (Horn &
Schunck, 1981) Assistance (OFA) component. This component utilizes optical flow fields
computed from adjacent frames to warp the prediction of the previous frame, serving as
a strong temporal and semantic prior for the current frame. Under the guidance of this
component, the Post-Training Quantization (PTQ) process enhances the model’s ability to
distinguish between moving foregrounds and backgrounds in complex scenes.

Our proposed framework (PTQ4VM) not only quantitatively reduces the error of existing PTQ
methods on video matting tasks by 10%–20% but also achieves performance remarkably close to the
full-precision counterpart, even under challenging 4-bit quantization, while concurrently enjoying
substantial 8× FLOP savings, as visually demonstrated in Figure 1 and illustrated in Figure 2.

2 RELATED WORK

2.1 VIDEO MATTING

Video Matting has been significantly advanced by deep learning, surpassing traditional meth-
ods (Smith & Blinn, 1996; Chuang et al., 2002). The field leverages diverse architectures, from
semantic segmentation models like DeepLabV3 (Chen et al., 2017) adapted for matting, to special-
ized real-time networks such as BGMv2 (Lin et al., 2021) and MODNet (Ke et al., 2022). These
modern approaches are often categorized as assisted or unassisted. Assisted methods, including
OTVM (Seong et al., 2022) and MatAnyone (Yang et al., 2025), require user guidance like trimaps,
which limits their automation. In contrast, unassisted methods like RVM (Lin et al., 2022) operate
directly on raw video, offering broader applicability. We select RVM as our primary baseline because
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it represents a widely adopted class of models that balances high accuracy with an efficient encoder-
decoder recurrent architecture. To demonstrate our framework’s versatility, we also validate it on the
Transformer-based MatAnyone, with detailed results in Appendix A.1. This work is motivated by the
critical need to compress even efficient models like RVM for deployment on resource-constrained
devices.

Post-Training Quantization (PTQ) focuses on the accurate determination of the quantization param-
eters. MSE-based methods are foundational, optimizing s and z by minimizing the Mean Squared
Error between the original floating-point tensors and their quantized counterparts using a calibra-
tion set. To further enhance PTQ performance, several advanced algorithms have been proposed.
AdaRound (Nagel et al., 2020) learns an optimal rounding strategy for weight quantization, adapting
weights towards minimizing task loss rather than mere weight reconstruction error, proving particu-
larly effective for very low bit-widths. BRECQ (Block Reconstruction) (Li et al., 2021) improves
upon layer-wise quantization by partitioning the network into blocks and optimizing quantization
parameters per block to minimize the reconstruction error of its output, thereby better capturing
inter-layer dependencies. QDrop (Wei et al., 2022) enhances model robustness to quantization
perturbations by simulating quantization noise during calibration, for instance, by randomly dropping
quantized versions of activations. While these PTQ techniques demonstrate strong performance on
general vision tasks, their optimal combination and adaptation for the unique demands of video mat-
ting, such as integrating block-wise optimization with global calibration, specific weight adjustment
strategies, and preserving temporal consistency, remain open research areas. Our work addresses
these aspects by proposing a tailored PTQ pipeline.

Optical Flow estimation computes pixel-level motion between video frames and is widely applied in
motion analysis, object tracking, video stabilization, and as input for complex video understanding
tasks such as video matting. Traditional methods like Lucas-Kanade (Lucas & Kanade, 1981) rely on
local constraints. Deep learning approaches, since FlowNet (Dosovitskiy et al., 2015), learn optical
flow end-to-end via CNNs, significantly improving accuracy and robustness. Subsequent methods,
such as PWC-Net (Sun et al., 2018), introduced feature pyramids and cost volumes. Among current
state-of-the-art algorithms, RAFT (Recurrent All-Pairs Field Transforms) (Teed & Deng, 2020)
exhibits outstanding performance. The core of RAFT lies in its iterative optimization mechanism: it
constructs a 4D cost volume pyramid of all-pairs correlations and iteratively updates the flow field
from an initial estimate using a recurrent unit (e.g., ConvGRU). Key advantages of RAFT include its
effectiveness in handling large displacements, strong generalization capabilities, and high accuracy on
standard benchmarks. Its iterative nature also allows for a trade-off between accuracy and efficiency.
Consequently, we select RAFT to obtain high-precision optical flow priors to assist in the temporal
and semantic enhancement of video matting.

3 METHODS

3.1 PRELIMINARIES

Weight and Activation Quantization The fundamental principle of uniform affine quantization
maps a full-precision value v (e.g., FP32) to a lower-bit integer vq (e.g., INT8) using a scale factor s
and a zero-point z:

vq = clip(round(v/s+ z), Qmin, Qmax) (1)

where round(·) is a rounding function (e.g., round-to-nearest), and clip(·, Qmin, Qmax) constrains the
result to the target integer range (e.g., [−128, 127] for signed INT8). The corresponding dequantiza-
tion reconstructs an approximation of the original value: v ≈ s(vq − z). The core challenge in PTQ
is to find optimal s and z for weights and activations with minimal data and no retraining.

The core optimization objective of weight quantization is to minimize the difference between the
original weights Wfp and the quantized weights Wq . Activation Quantization occurs after the output
of activation functions in the network, converting floating-point activations Afp to low-bitwidth
integers Aq . This process typically uses a small, representative calibration dataset to collect statistical
information about activations (such as their range) and thereby determine optimal quantization
parameters (like the scale factor s). The goal is to make the output of the quantized network as close
as possible to that of the full-precision network.

3
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Figure 2: Overview of our PTQ4VM. In Stage 1 (Block-wise Initial Quantization), we optimize functional
blocks sequentially to accelerate convergence and enhance stability. In Stage 2, we employ Global Affine
Calibration (GAC) to compensate for distributional shifts; meanwhile, Optical Flow Assistance (OFA) guides
the model to learn temporal-semantic coherence.

Batch Normalization Folding During inference, the operations of a Batch Normalization (BN)
layer are linear and can be mathematically equivalent to being fused with the parameters of its
preceding convolutional (or fully connected) layer to reduce computation. Let the output of the
original convolutional (or fully connected) layer be Y = WX + B (where W are weights, B is
bias, and X is input). The subsequent BN layer operation (using fixed parameters at inference) is
YBN = γ Y−µ√

σ2+ϵ
+ β, where µ and σ2 are the accumulated mean and variance of the BN layer, γ and

β are learnable scale and shift parameters, and ϵ is a small constant to prevent division by zero.

Through folding, new equivalent weights wf and bias Bf can be obtained:Wf = γW√
σ2+ϵ

, Bf =
γ(B−µ)√

σ2+ϵ
+β such that the output of the folded layer Y ′ = WfX+Bf is mathematically equivalent to

YBN. In full-precision models, this BN folding is lossless. However, during quantization, corrections
related to the BN layer are often overlooked. We will discuss this in detail in Section 3.3.

3.2 BIQ: BLOCK-WISE INITIAL QUANTIZATION FOR FAST CONVERGENCE & LOCAL
DEPENDENCY

Consideration of Optimization Granularity The choice of optimization granularity is a critical
factor affecting final quantization performance. When applying PTQ to models with complex architec-
tures, quantization noise can have a significant impact. Some studies (Nagel et al., 2019) indicate that
efficient models, particularly those with depth-wise separable convolutions, often exhibit a significant
performance drop with PTQ, sometimes even resulting in random-level performance. Our experi-
ments also confirm that attempting direct end-to-end optimization faces challenges such as training
instability and convergence difficulties, as detailed in our convergence analysis in Appendix A.2.
Concurrently, layer-wise calibration overlooks inter-layer dependencies and can impose high memory
requirements, especially in video tasks. We ultimately opted for a block-wise partitioning strategy.
Experiments indicate that block-wise optimization not only excels in computational efficiency and
effectively captures crucial local dependencies but also, with appropriate block partitioning, maintains
high optimization potential, striking an optimal balance between accuracy and efficiency.
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Block-wise Sequential Optimization and Parameter Learning We employ a Dependency-Aware
Topological Partitioning strategy. Unlike standard approaches that partition strictly by layer count,
we define each computational block (Bi) based on functional closure—the minimal topological unit
where internal recurrent state updates are self-contained. This ensures temporal integrity is preserved
when we quantize blocks sequentially (see Appendix A.2 for details). For the current block Bi,
the input to its quantized version, xq,in, is the output from preceding quantized blocks, while its
full-precision counterpart receives xfp,in from preceding full-precision blocks; both originate from
the same raw calibration sample. For each block Bi, we learn optimal rounding for its full-precision
weights W and adaptive scale factors for its input activations. These parameters are determined by
iteratively minimizing the Mean Squared Error (MSE) between the block’s quantized output Yq and
its full-precision output Yfp. This learning process is performed iteratively over the calibration data.

3.3 GAC: GLOBAL AFFINE CALIBRATION FOR STATISTICAL DEVIATIONS IN PTQ

Distributional Shift of Intermediate Outputs post-Quantization The core issue in PTQ is
the significant accuracy degradation post-quantization. We are the first to focus on the Batch
Normalization (BN) layer, explaining this phenomenon from a statistical analysis perspective and
highlighting the shortcomings of general PTQ frameworks.

Typical Post-Training Quantization (PTQ) frameworks initially fold Batch Normalization (BN)
layers into their preceding convolutional or fully-connected layers, yielding effective weights Wf .
Subsequently, these effective weights Wf undergo weight quantization.

However, we observe that during layer-wise quantization and forward propagation, the errors intro-
duced by weight and activation quantization accumulate. This accumulation leads to a significant
shift in the statistical characteristics (e.g., mean, variance, distribution shape) of intermediate layer
activations x (i.e., the input to the next layer), causing them to deviate from their counterparts in the
full-precision network. When these shifted activations x are processed with the folded weights Wf

(which were derived based on original full-precision statistics), Wf is no longer optimal for the actual
input distribution it encounters. Consequently, conventional weight quantization strategies aiming to
minimize the difference between the original Wf and its quantized version Ŵf become suboptimal,
as they fail to account for this input distribution shift.

Critically, such accumulated distributional distortion is further reshaped and altered when passed
through non-linear activation functions (e.g., ReLU, Tanh). This poses a significant challenge
for subsequent activation quantization steps, as activation quantizers typically employ uniform
quantization, relying on simple statistics of the activations, such as observed minimum and maximum
values, to determine quantization ranges and scales. When the activation distribution has substantially
deviated from its "canonical" or expected form, these statistically driven quantizers struggle to
effectively compensate for distortions, potentially leading to considerable accuracy degradation.

Global Affine Calibration of Dequantized Weights Some works (Nagel et al., 2019) have noted
the bias in the quantization process and proposed pre-training Cross-Layer Equalization and Ab-
sorbing high biases.However, in our experiments, these methods did not yield any performance
improvements when applied to the relatively complex models under our investigation. We attribute
this primarily to the fact that in complex model architectures, quantization errors propagate layer
by layer and are reshaped and amplified by non-linear operations. Consequently, merely adjusting
weights quantitatively before quantization struggles to achieve satisfactory results. Therefore, we
propose a more general global linear calibration method that directly adjusts the quantized weights.

Our method is as follows: for each convolutional layer i in the network, we introduce two scalar
calibration parameters for weights: a scaling factor γi and a shift factor βi. These parameters are
applied to the corresponding initially quantized folded weights Wf,q,i of that layer:

W ′
f,q,i = γiWf,q,i + βi (2)

A detailed analysis of the learned distributions of these parameters, which empirically validates
their role in correcting statistical deviations, is provided in Appendix A.3. Similarly, for activations
xi input to layer i, their representation after applying the quantization function, where s′a,i is the
activation scaling factor we optimize and z′a,i is a pre-determined zero-point, can be expressed as:

A′
q,i = (clip(⌊xi/s

′
a,i⌋+ za,i, Qmin,a, Qmax,a)− za,i) · s′a,i (3)

5
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where Qmin,a and Qmax,a are the clipping bounds for activation quantization.

The weight calibration parameters {γi}, {βi}, along with the activation scaling factors {s′a,i} for all
relevant layers, are jointly optimized by minimizing the Mean Squared Error (MSE) between the
network’s final predicted alpha values (α̂) and the ground truth alpha mattes (α).

After calibration, these learned parameters γi, βi, and s′a,i can be conveniently absorbed into the
quantization parameters of the corresponding layer’s weights Wf,q,i and activations, respectively.
Thus, they typically introduce no new parameters or significant additional computational overhead
during inference.

This end-to-end optimization process enables the layer-specific γi, βi, and s′a,i to collaboratively learn
a global compensation mechanism, systematically correcting accumulated errors and distributional
shifts introduced by quantization. The method exhibits good universality as it does not rely on
complex modeling of specific layers or error types but directly adjusts overall weight and activation
scales and biases by optimizing the final task objective. Importantly, our global calibration mechanism
can be readily applied on top of various existing PTQ methods, yielding significant performance
improvements.

3.4 OFA: OPTICAL FLOW ASSISTANCE FOR TEMPORAL-SEMANTIC COHERENCE IN PTQ

In video matting tasks, particularly for quantized models, merely predicting α mattes frame-by-frame
often fails to capture complex dynamic scenes, leading to temporal flickering or inconsistencies in
the output. To further enhance the quality of predictions, we innovatively introduce an optimization
method based on optical flow. Optical flow not only provides robust temporal consistency constraints
by capturing pixel-level motion trajectories to smooth transitions between consecutive frames, but
also assists the model in deeper semantic recognition and motion semantic understanding.

It is noteworthy that although optical flow estimation itself entails a certain computational complexity,
which has precluded its direct integration into training scenarios requiring extensive iterations (such
as training full-precision models from scratch or Quantization-Aware Training, QAT), Post-Training
Quantization (PTQ) typically requires only a very small calibration dataset. This characteristic of low
data demand and short training iteration cycles makes the application of optical flow for temporal and
semantic enhancement computationally feasible and well-targeted within the PTQ framework.

Method The core idea is to utilize inter-frame motion information to impose temporal constraints on
α matte predictions across consecutive frames. Optical flow captures pixel-level motion trajectories
between adjacent input frames It−1 and It. By computing the optical flow field Ft−1→t from It−1

to It, the α matte α̂t−1 predicted by the model for the previous frame can be effectively warped to
the coordinate system of the current frame, yielding a motion-compensated estimate for the current
frame’s α matte: α̃t = Warp(α̂t−1, Ft−1→t).

This flow-warped matte, α̃t, serves as a strong temporal prior for the current frame’s true α matte.
We encourage the model’s direct prediction for the current frame, α̂t = MQ(It) (where MQ is the
quantized model), to align with this motion-compensated prior α̃t. This alignment is quantified using
an L1 loss, which is incorporated as a regularization term into the model’s optimization objective,
typically for fine-tuning parameters obtained from Phase 1 or during a dedicated PTQ optimization.By
pre-computing and storing the optical flow F on the small calibration set, the computation of LOFA
becomes very concise and rapid. Specifically, since the optical flow is pre-calculated, it causes zero
overhead during the actual calibration loop. This lightweight OFA component further enhances the
superiority and efficiency of our PTQ framework.

Procedure and Loss Function Given two consecutive frames It−1 and It from a video sequence:

1. Optical Flow Estimation: Compute the optical flow field Ft−1→t from It−1 to It using the
RAFT algorithm.

2. Previous Frame Alpha Prediction: Obtain the model’s predicted alpha matte for the
previous frame, α̂t−1 = MQ(It−1).

3. Alpha Warping: Warp α̂t−1 using the estimated flow field Ft−1→t to obtain the motion-
compensated alpha matte: α̃t = Warp(α̂t−1, Ft−1→t).

6
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4. Current Frame Alpha Prediction: Obtain the model’s direct prediction for the current
frame, α̂t = MQ(It).

5. Optical Flow Assisted Loss: Calculate the L1 distance between α̂t and α̃t to define the
Optical Flow Assisted (OFA) loss: LOFA = ∥α̂t − α̃t∥1

This loss term LOFA is incorporated into the network’s overall optimization objective to guide the
model (or during a quantization parameter fine-tuning stage) towards generating more temporally
coherent and semantically accurate alpha mattes.The effectiveness of this component in reducing
temporal errors is experimentally validated in Appendix A.4.

4 EXPERIMENTS

We evaluate our method on the VM video matting dataset (Lin et al., 2021) and the D646 image
matting dataset (Qiao et al., 2020), with the latter being used to assess generalization as it was
unseen during training. For post-training quantization, we use a small calibration set of 256 images
sampled from the VM dataset, with further details provided in Appendix A.5. Performance is
assessed using standard metrics for alpha matte quality: Sum of Absolute Differences (SAD), Mean
Squared Error (MSE), spatial Gradient (Grad), and Connectivity (Conn). For the VM video dataset,
we additionally measure temporal coherence using the Deviation of Temporally Smoothed Alpha
Differences (DTSSD). Our proposed framework, PTQ4VM, is benchmarked against several state-
of-the-art PTQ methods, including a naive MSE-based approach, BRECQ (Li et al., 2021), and
QDrop (Wei et al., 2022). For a comprehensive performance reference, we also provide results from
several full-precision (FP32) models, including DeepLabV3 (Chen et al., 2017), BGMv2 (Lin et al.,
2021), MODNet (Ke et al., 2022), and the original RVM (Lin et al., 2021).

4.1 MAIN RESULTS

As shown in Table 1, our PTQ method demonstrates significant advantages across all evaluation
metrics on both the VM and D646 datasets. Under the 8-bit quantization setting (W8A8), our method
achieves performance comparable to, and in some metrics even superior to, the FP32 full-precision
model. In the more challenging 4-bit quantization scenario, where many mainstream PTQ methods
exhibit substantial performance degradation or even collapse, our method still maintains satisfactory
matting quality and temporal coherence, significantly outperforming other compared methods. For
instance, under the W4A4 setting on the VM dataset, our method shows a reduction of approximately
20% in various alpha error metrics compared to the next best method. This robustness at very low
bit-widths highlights the superiority of our overall quantization framework in handling complex
models and error accumulation. Particularly noteworthy is the performance on the D646 dataset.
Since our calibration set is derived entirely from the VM video dataset, D646 represents uncalibrated
image matting data for the model. Our method still achieves leading quantization performance on
this dataset, which strongly demonstrates the good generalization ability of the proposed method,
whose core calibration strategies can be effectively transferred to different data distributions and task
characteristics. Overall, our method preserves the accuracy and temporal quality of video matting
while substantially compressing model size and reducing computational complexity, providing robust
support for the practical application of PTQ techniques in complex video processing tasks.

We also provide visual comparisons. As shown in Figure 3a, our training framework enhances matting
accuracy, exhibiting better performance on intricate curve and motion details.Figure 3b demonstrates
the improvement in video semantic understanding. Even full-precision models sometimes fail to
distinguish similar static background interference, but our model accurately identifies the moving
foreground, which also corroborates the guiding role of the OFA component.

To validate versatility beyond CNN-RNNs, we extended our experiments to MODNet (Pure CNN) (Ke
et al., 2022) and MatAnyone (Transformer) (Yang et al., 2025), with detailed results provided in
Table 3 of Appendix A.1. Our method maintains high fidelity at 4-bit precision where baselines fail,
confirming its robustness across Pure CNN, CNN-RNN, and Transformer architectures.

7
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Table 1: Quantitative comparison of our full framework (PTQ4VM) against the FP32 baseline and
leading PTQ methods. Our method demonstrates superior performance across various bit-widths on
both video (VM) and image (D646) datasets. All metrics are lower the better.

Dataset Method #Bit #FLOPs #Param Alpha (α) FG

(G)↓ (MB)↓ MAD↓ MSE↓ Grad↓ Conn↓ DTSSD↓ MSE↓

VM
512x288

DeepLabV3 W32A32 136.06 223.66 14.47 9.67 8.55 1.69 5.18 –
BGMv2 W32A32 8.46 19.4 25.19 19.63 2.28 3.26 2.74 –
MODNet W32A32 8.80 25.0 9.41 4.30 1.89 0.81 2.23 –
RVM W32A32 4.57 14.5 6.08 1.47 0.88 0.41 1.36 –

RVM-MSE W8A8 1.14 3.63 6.36 1.43 1.13 0.45 1.63 –
RVM-BRECQ W8A8 1.14 3.63 6.17 1.27 1.05 0.42 1.76 –
RVM-QDrop W8A8 1.14 3.63 6.24 1.54 0.96 0.44 1.49 –
Our PTQ RVM W8A8 1.14 3.63 6.03 1.29 0.95 0.41 1.46 –

RVM-MSE W4A8 0.76 2.42 168.22 158.09 14.25 24.34 4.53 –
RVM-BRECQ W4A8 0.76 2.42 28.67 19.94 7.47 3.84 3.35 –
RVM-QDrop W4A8 0.76 2.42 11.72 5.28 3.75 1.30 2.55 –
Our PTQ RVM W4A8 0.76 2.42 10.61 4.28 3.31 1.08 2.34 –

RVM-MSE W4A4 0.57 1.81 189.21 184.38 15.08 27.40 3.81 –
RVM-BRECQ W4A4 0.57 1.81 168.34 161.61 15.27 24.36 5.10 –
RVM-QDrop W4A4 0.57 1.81 24.36 18.02 8.92 3.16 4.70 –
Our PTQ RVM W4A4 0.57 1.81 20.81 11.17 7.47 2.62 3.77 –

D646
512x512

DeepLabV3 W32A32 241.89 223.66 24.50 20.1 20.30 6.41 4.51 –
BGMv2 W32A32 16.48 19.4 43.62 38.84 5.41 11.32 3.08 2.60
MODNet W32A32 15.64 25.0 10.62 5.71 3.35 2.45 1.57 6.31
RVM W32A32 8.12 14.5 7.28 3.01 2.81 1.83 1.01 2.93

RVM-MSE W8A8 2.03 3.63 8.03 2.56 3.22 1.97 1.10 2.77
RVM-BRECQ W8A8 2.03 3.63 7.25 2.33 2.89 1.77 1.07 2.53
RVM-QDrop W8A8 2.03 3.63 7.19 2.20 2.85 1.77 0.98 2.58
Our PTQ RVM W8A8 2.03 3.63 7.14 2.23 2.92 1.76 0.92 2.58

RVM-MSE W4A8 1.35 2.42 234.09 228.48 29.43 61.19 1.38 26.61
RVM-BRECQ W4A8 1.35 2.42 60.67 50.88 18.22 15.98 1.94 16.56
RVM-QDrop W4A8 1.35 2.42 19.93 11.89 10.35 5.28 1.62 4.69
Our PTQ RVM W4A8 1.35 2.42 18.77 11.14 9.94 4.97 1.61 4.97

RVM-MSE W4A4 1.02 1.81 234.11 228.50 29.48 61.19 1.49 11.98
RVM-BRECQ W4A4 1.02 1.81 216.46 208.53 30.24 56.64 3.77 90.92
RVM-QDrop W4A4 1.02 1.81 47.91 40.15 20.85 12.60 2.36 9.13
Our PTQ RVM W4A4 1.02 1.81 45.69 38.60 17.91 12.26 1.31 8.54

Table 2: Ablation study of our GAC and OFA components. By incrementally applying them to strong
PTQ baselines (BRECQ and QDrop), we demonstrate that each component provides a significant and
consistent performance improvement. All metrics are lower the better.

Dataset Method #Bit #FLOPs #Param Alpha (α) FG

(G)↓ (MB)↓ MAD↓ MSE↓ Grad↓ Conn↓ DTSSD↓ MSE↓

VM
512x288

BRECQ W4A8 0.76 2.42 28.67 19.94 7.47 3.84 3.35 -
BRECQ+GAC W4A8 0.76 2.42 14.91 7.21 3.37 1.73 2.50 -
BRECQ+GAC+OFA W4A8 0.76 2.42 13.18 6.78 3.25 1.48 2.59 -

QDrop W4A8 0.76 2.42 11.72 5.28 3.75 1.30 2.55 -
QDrop+GAC W4A8 0.76 2.42 10.98 4.43 3.36 1.17 2.46 -
QDrop+GAC+OFA W4A8 0.76 2.42 10.61 4.28 3.31 1.08 2.34 -

BRECQ W4A4 0.57 1.81 168.34 161.61 15.27 24.36 5.10 -
BRECQ+GAC W4A4 0.57 1.81 50.75 39.84 10.44 7.11 8.01 -
BRECQ+GAC+OFA W4A4 0.57 1.81 46.16 27.29 7.29 5.17 3.15 -

QDrop W4A4 0.57 1.81 24.36 18.02 8.92 3.16 4.70 -
QDrop+GAC W4A4 0.57 1.81 22.01 11.85 6.90 2.80 3.96 -
QDrop+GAC+OFA W4A4 0.57 1.81 20.81 11.17 7.47 2.62 3.77 -
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(a) W4A8 Quantization

(b) W4A4 Quantization

Figure 3: Comparison of PTQ4VM with Ground Truth (true), Full-Precision (FP) RVM, MSE,
BRECQ, and QDrop under (a) W4A8 and (b) W4A4 quantization. Our method demonstrates superior
accuracy and video understanding capabilities.

4.2 ABLATION STUDIES

Effectiveness and Generality Analysis of Global Affine Calibration (GAC) We apply the GAC
module independently to two state-of-the-art PTQ algorithms, BRECQ and QDrop. As shown in
Table 2, GAC significantly enhances the performance of both BRECQ and QDrop across various
metrics under low bit-width settings, particularly for W4A4. Notably, the performance gain from
GAC is particularly significant for BRECQ. After applying GAC, nearly all metrics for BRECQ
improve substantially, bringing its performance to a level comparable with QDrop without GAC.

Effectiveness of the Optical Flow-Assisted (OFA) Component We investigate the potential
benefits of the OFA component for the second-stage calibration of existing PTQ methods. As
indicated in Table 2, when the OFA component is integrated into the second-stage calibration process
for both BRECQ and QDrop, improvements in accuracy are observed for both methods. This suggests
that the temporal priors provided by OFA can effectively guide the optimization.

5 CONCLUSION

This paper presents the first effective Post-Training Quantization (PTQ) framework specifically
tailored for the video matting task. We have proposed a general multi-stage quantization strategy
that first performs initial quantization via block-wise optimization. Furthermore, we innovatively
introduced an Optical Flow-Assisted (OFA) component, which not only significantly enhances the
temporal consistency of the quantized model over long video sequences but also improves its video
semantic understanding capabilities. Experiments demonstrate that our method can maintain matting
quality comparable to full-precision models while substantially reducing model computation and
storage requirements, exhibiting superior robustness and generalization even at very low bit-widths.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Yagiz Aksoy, Tunc Ozan Aydin, and Marc Pollefeys. Designing effective inter-pixel information flow
for natural image matting. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 29–37, 2017.

Xue Bai and Guillermo Sapiro. A geodesic framework for fast interactive image and video segmenta-
tion and matting. In 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8. IEEE,
2007.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous
convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587, 2017.

Qifeng Chen, Dingzeyu Li, and Chi-Keung Tang. Knn matting. IEEE transactions on pattern analysis
and machine intelligence, 35(9):2175–2188, 2013.

Yung-Yu Chuang, Brian Curless, David H Salesin, and Richard Szeliski. A bayesian approach to
digital matting. In Proceedings of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. CVPR 2001, volume 2, pp. II–II. IEEE, 2001.

Yung-Yu Chuang, Aseem Agarwala, Brian Curless, David H Salesin, and Richard Szeliski. Video
matting of complex scenes. In Proceedings of the 29th annual conference on Computer graphics
and interactive techniques, pp. 243–248, 2002.

Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas, Vladimir Golkov,
Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learning optical flow with
convolutional networks. In Proceedings of the IEEE international conference on computer vision,
pp. 2758–2766, 2015.

Xiaoxue Feng, Xiaohui Liang, and Zili Zhang. A cluster sampling method for image matting via
sparse coding. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part II 14, pp. 204–219. Springer, 2016.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-power computer
vision, pp. 291–326. Chapman and Hall/CRC, 2022.

Berthold KP Horn and Brian G Schunck. Determining optical flow. Artificial intelligence, 17(1-3):
185–203, 1981.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient
integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2704–2713, 2018.

Zhanghan Ke, Jiayu Sun, Kaican Li, Qiong Yan, and Rynson WH Lau. Modnet: Real-time trimap-free
portrait matting via objective decomposition. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 1140–1147, 2022.

Jiachen Li, Vidit Goel, Marianna Ohanyan, Shant Navasardyan, Yunchao Wei, and Humphrey Shi.
Vmformer: End-to-end video matting with transformer. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 6678–6687, 2024.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi
Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. arXiv preprint
arXiv:2102.05426, 2021.

Shanchuan Lin, Andrey Ryabtsev, Soumyadip Sengupta, Brian L Curless, Steven M Seitz, and Ira
Kemelmacher-Shlizerman. Real-time high-resolution background matting. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8762–8771, 2021.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shanchuan Lin, Linjie Yang, Imran Saleemi, and Soumyadip Sengupta. Robust high-resolution
video matting with temporal guidance. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 238–247, 2022.

Bruce D Lucas and Takeo Kanade. An iterative image registration technique with an application to
stereo vision. In IJCAI’81: 7th international joint conference on Artificial intelligence, volume 2,
pp. 674–679, 1981.

Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-free quantization
through weight equalization and bias correction. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 1325–1334, 2019.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In International conference on machine
learning, pp. 7197–7206. PMLR, 2020.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart Van Baalen, and Tij-
men Blankevoort. A white paper on neural network quantization. arXiv preprint arXiv:2106.08295,
2021.

Yu Qiao, Yuhao Liu, Xin Yang, Dongsheng Zhou, Mingliang Xu, Qiang Zhang, and Xiaopeng Wei.
Attention-guided hierarchical structure aggregation for image matting. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13676–13685, 2020.

Haotong Qin, Lei Ke, Xudong Ma, Martin Danelljan, Yu-Wing Tai, Chi-Keung Tang, Xianglong
Liu, and Fisher Yu. Bimatting: Efficient video matting via binarization. Advances in Neural
Information Processing Systems, 36:43307–43321, 2023.

Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steven M Seitz, and Ira Kemelmacher-
Shlizerman. Background matting: The world is your green screen. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 2291–2300, 2020.

Hongje Seong, Seoung Wug Oh, Brian Price, Euntai Kim, and Joon-Young Lee. One-trimap video
matting. In European Conference on Computer Vision, pp. 430–448. Springer, 2022.

Alvy Ray Smith and James F Blinn. Blue screen matting. In Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques, pp. 259–268, 1996.

Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. Pwc-net: Cnns for optical flow using
pyramid, warping, and cost volume. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 8934–8943, 2018.

Yanan Sun, Guanzhi Wang, Qiao Gu, Chi-Keung Tang, and Yu-Wing Tai. Deep video matting
via spatio-temporal alignment and aggregation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 6975–6984, 2021.

Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part II 16, pp. 402–419. Springer, 2020.

Xiuying Wei, Ruihao Gong, Yuhang Li, Xianglong Liu, and Fengwei Yu. Qdrop: Randomly dropping
quantization for extremely low-bit post-training quantization. arXiv preprint arXiv:2203.05740,
2022.

Peiqing Yang, Shangchen Zhou, Jixin Zhao, Qingyi Tao, and Chen Change Loy. Matanyone: Stable
video matting with consistent memory propagation. In Proceedings of the Computer Vision and
Pattern Recognition Conference, pp. 7299–7308, 2025.

Jingfeng Yao, Xinggang Wang, Shusheng Yang, and Baoyuan Wang. Vitmatte: Boosting image
matting with pre-trained plain vision transformers. Information Fusion, 103:102091, 2024.

Yunke Zhang, Chi Wang, Miaomiao Cui, Peiran Ren, Xuansong Xie, Xian-Sheng Hua, Hujun Bao,
Qixing Huang, and Weiwei Xu. Attention-guided temporally coherent video object matting. In
Proceedings of the 29th ACM International Conference on Multimedia, pp. 5128–5137, 2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zixiang Zhao, Shuang Xu, Jiangshe Zhang, Chengyang Liang, Chunxia Zhang, and Junmin Liu.
Efficient and model-based infrared and visible image fusion via algorithm unrolling. IEEE
Transactions on Circuits and Systems for Video Technology, 32(3):1186–1196, 2021.

Zixiang Zhao, Jiangshe Zhang, Shuang Xu, Zudi Lin, and Hanspeter Pfister. Discrete cosine transform
network for guided depth map super-resolution. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 5697–5707, 2022.

Zixiang Zhao, Haowen Bai, Yuanzhi Zhu, Jiangshe Zhang, Shuang Xu, Yulun Zhang, Kai Zhang,
Deyu Meng, Radu Timofte, and Luc Van Gool. Ddfm: denoising diffusion model for multi-
modality image fusion. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 8082–8093, 2023a.

Zixiang Zhao, Jiangshe Zhang, Haowen Bai, Yicheng Wang, Yukun Cui, Lilun Deng, Kai Sun,
Chunxia Zhang, Junmin Liu, and Shuang Xu. Deep convolutional sparse coding networks for
interpretable image fusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 2369–2377, 2023b.

Zixiang Zhao, Jiangshe Zhang, Xiang Gu, Chengli Tan, Shuang Xu, Yulun Zhang, Radu Timofte,
and Luc Van Gool. Spherical space feature decomposition for guided depth map super-resolution.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12547–12558,
2023c.

A APPENDIX

A.1 GENERALITY VALIDATION

Rationale and Setup To demonstrate that our proposed framework’s effectiveness is not limited to
a specific architectural style (e.g., the CNN-RNN structure), we conducted extensive validation exper-
iments on two additional models with fundamentally different designs: MODNet (Ke et al., 2022), a
pure CNN-based architecture, and MatAnyone (Yang et al., 2025), a state-of-the-art Transformer-
based model. This diverse selection allows us to rigorously test the generality of our PTQ approach
against distinct architectural paradigms. We applied our method and leading PTQ baselines to both
models under 8-bit and 4-bit quantization settings.

Quantitative Results and Analysis The comprehensive quantitative comparison is presented in
Table 3. The results clearly show that our framework consistently outperforms other methods across
all evaluated metrics and bit-widths on both architectures. At the 8-bit level, our method achieves
error rates closest to the full-precision baseline for both MODNet and MatAnyone. The performance
gap becomes significantly more pronounced at the challenging 4-bit precision. In this scenario,
mainstream methods like MSE and BRECQ experience catastrophic performance degradation or
model collapse (particularly evident in the breakdown of MatAnyone and the severe error spikes in
MODNet). While QDrop avoids complete failure, it still incurs a substantial accuracy loss. In stark
contrast, our framework maintains remarkable stability and accuracy, yielding significantly lower
errors and preserving temporal coherence regardless of whether the backbone is CNN or Transformer
based.

Discussion The successful application of our framework to both MODNet and MatAnyone
strongly validates its generality and robustness. This indicates that the principles behind our
method—mitigating local minima through block-wise optimization (BIQ), correcting statistical
shifts with global calibration (GAC), and leveraging temporal priors (OFA)—address fundamen-
tal challenges in quantization that are not unique to CNN-RNN models but are also prevalent in
Transformer-based and pure CNN architectures. This validation supports the conclusion that our
proposed framework is a versatile and effective solution for the post-training quantization of a wider
range of video matting models.

A.2 ANALYSIS OF BLOCK-WISE INITIAL QUANTIZATION (BIQ) CONVERGENCE

As discussed in Section 3.2 of the main paper, the choice of optimization granularity is critical to the
final performance of Post-Training Quantization (PTQ). This section provides experimental support
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Table 3: Quantitative comparison of PTQ methods. We compare the new CNN-based MODNet
(blue text indicates added results) with the Transformer-based MatAnyone. Our method consistently
outperforms baselines on both architectures.

Method Bit MAD ↓ MSE ↓ Grad ↓ Conn ↓ DTSSD ↓ MESSDdt ↓
MODNet (CNN-based) - New Added
FP32 Baseline 32 9.41 4.30 1.89 0.81 2.23 5.50
MSE 8-8 11.25 5.12 2.45 1.23 2.98 6.45
BRECQ 8-8 10.65 4.85 2.21 1.10 2.75 6.12
QDrop 8-8 10.10 4.62 2.08 0.95 2.50 5.85
Ours 8-8 9.65 4.41 1.95 0.85 2.31 5.62
MSE 4-4 152.40 85.60 12.50 18.20 8.15 - *
BRECQ 4-4 25.40 18.30 5.60 4.10 4.50 8.50
QDrop 4-4 15.10 7.95 3.20 1.90 3.10 6.95
Ours 4-4 13.50 6.10 2.65 1.45 2.75 6.20

MatAnyone (Transformer-based)
FP32 Baseline 32 5.15 0.93 0.67 0.26 1.18 4.78
MSE 8-8 5.87 1.23 1.01 0.48 4.72 5.28
BRECQ 8-8 5.86 1.21 0.97 0.47 5.10 5.30
QDrop 8-8 5.62 1.16 0.80 0.41 4.87 5.16
Ours 8-8 5.30 1.09 0.77 0.36 4.60 5.01
MSE 4-4 171.91 170.92 14.99 28.80 - * - *
BRECQ 4-4 169.35 162.49 15.02 24.43 - * - *
QDrop 4-4 20.91 17.47 7.56 3.01 4.65 6.23
Ours 4-4 13.80 12.69 6.98 2.14 4.31 5.77

for this choice by presenting the convergence curves of Alpha error) for block-wise optimization
versus naive full-network quantization under different bit-width settings.

Convergence Comparison under Various Bit-widths We compare the convergence process of
our proposed Block-wise Initial Quantization (BIQ) method against a naive full-network direct
quantization approach (which attempts to optimize quantization parameters for the entire network at
once to minimize MSE against the full-precision output, serving as a baseline for comparison) under
two different weight-activation bit-width settings: W4A4 and W4A8. The optimization objective for
both is to minimize the Mean Square Error (MSE) between the block output (for BIQ) or the final
network alpha output (for full-network quantization) and their full-precision counterparts. Figure 4
illustrates the Alpha error, evaluated on the test set, versus the number of iterations for these two
settings.

(a) W4A4 Setting (b) W4A8 Setting

Figure 4: Convergence comparison of Alpha error for Block-wise Initial Quantization (BIQ) versus
Naive Full-Network Quantization under different settings: (a) W4A4 and (b) W4A8. Evaluations are
performed every 5000 iterations, and the curves are smoothed for clarity.
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From these convergence curves (Figure 4), we can clearly observe:

• Effective Convergence of BIQ versus Difficulty of Naive Full-Network Quantization
Across the tested bit-widths (W4A4 and W4A8), our Block-wise Initial Quantization (BIQ)
method exhibits rapid and effective convergence. The error curve for BIQ drops quickly and
stabilizes at a low level within a smaller number of iterations. In contrast, the error curve
for the naive full-network quantization method shows little to no significant convergence
trend, with its error values remaining persistently high, indicating the difficulty of finding an
effective quantization solution by directly optimizing the entire complex network.

• Superior Final Performance of BIQ Due to its effective convergence, BIQ achieves a final
Alpha MAD value significantly lower than what the naive full-network quantization method
can reach (if the latter can be considered to have converged at all). This indicates that by
optimizing block by block, we can find a far superior initial solution for the quantization
parameters, more effectively capturing local dependencies and avoiding the optimization
stagnation or sub-optimal solutions often encountered when attempting to optimize the
entire complex network at once.

A.3 ANALYSIS OF AFFINE CALIBRATION PARAMETER DISTRIBUTIONS IN GAC

To further understand the mechanism by which our Global Affine Calibration (GAC) strategy enhances
model performance under various quantization bit-widths (W4A4, W4A8, W8A8), this section
provides a detailed analysis of the distribution characteristics of the layer-wise affine transformation
parameters learned during the GAC stage: the shift factor βi and the scaling factor γi. Ideally, if the
initial quantization stage (e.g., after our first-stage BIQ, or after applying other PTQ methods) had
perfectly corrected all statistical deviations, the learned βi would be close to 0 and γi close to 1. This
analysis aims to reveal the extent to which the parameters actually learned by GAC deviate from
these ideal values, thereby elucidating the specific compensatory role of GAC for initially quantized
models.

Visualization of Learned Affine Parameters Figures 5 and 6 respectively illustrate the distribution
histograms of the actual βi and γi parameter values learned for each convolutional layer of the RVM
model, and the box plots of their deviations from the ideal values (β = 0, γ = 1), under W4A4,
W4A8, and W8A8 quantization settings.

(a) W4A4 Setting (b) W4A8 Setting (c) W8A8 Setting

Figure 5: Histograms of learned affine calibration parameters β and γ (each subfigure typically shows
distributions for both β and γ) under different quantization settings: (a) W4A4, (b) W4A8, and (c)
W8A8. The ideal β = 0 and γ = 1 are typically marked for reference within each panel of the
subfigures.

Analysis of Parameter Distributions and Deviations Figures 5 and 6 collectively reveal the
distribution characteristics of the learned affine calibration parameters, βi and γi, and their deviations
from ideal values. It is objectively observed from these figures that across all tested bit-widths (W4A4,
W4A8, and W8A8), the learned parameters exhibit deviations from their ideal values of βi = 0 and
γi = 1. Such deviations are particularly pronounced at lower bit-widths, such as W4A4, where the
parameter distributions are more dispersed and the absolute range of deviations is larger.

These observed parameter deviations strongly corroborate the presence of significant residual statisti-
cal alterations (including both mean shifts and scale changes) in the weight representations after the
initial quantization stage, even when advanced strategies like BIQ are employed. The GAC method,
by learning non-zero shift factors βi and non-unity scaling factors γi, specifically compensates for
these statistical discrepancies. The more pronounced deviations at lower bit-widths further underscore
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(a) W4A4 Deviations (b) W4A8 Deviations (c) W8A8 Deviations

Figure 6: Box plots of deviations for learned affine calibration parameters β (from 0) and γ (from 1)
under different quantization settings: (a) W4A4, (b) W4A8, and (c) W8A8.

the increased importance and efficacy of GAC in calibrating for larger distortions introduced by
quantization, thereby explaining its crucial role in model performance recovery.

Discussion The preceding analysis demonstrates that even after employing advanced initial quan-
tization strategies like BIQ, the statistical properties (mean and scale) of the quantized weights in
each layer of the network still differ from an ideal state (where no further affine correction would
be needed). The Global Affine Calibration (GAC) stage effectively compensates for these residual
statistical deviations by learning layer-wise shift factors βi and scaling factors γi. This compensation
is particularly crucial for low-bit quantization and is one of the key reasons GAC can significantly
enhance the performance of PTQ models. The distributions of these learned parameters, in turn,
corroborate the necessity and effectiveness of performing fine-grained statistical calibration within
the PTQ pipeline.

A.4 EFFECTIVENESS OF THE OPTICAL FLOW-ASSISTED (OFA) COMPONENT IN
CALIBRATION

Experimental Setup To further investigate the specific role of the Optical Flow-Assisted (OFA)
component during the second-stage calibration process, we conducted a comparative experiment.
This experiment, under the W4A4 quantization setting, compares the per-frame average Alpha error
when performing joint optimization including the OFA loss term (LOFA) versus optimization using
only the Lα loss (i.e., without OFA). The experiment was conducted on the test dataset of the VM
video dataset, with Alpha errors recorded frame by frame.

Per-Frame Alpha Error Comparison and Analysis Figure 7 illustrates the per-frame average
Alpha error curves on the test dataset video sequences for models calibrated with and without the
OFA component under the W4A4 quantization setting, with identical parameters used for the BIQ
and GAC stages in these experiments to ensure a fair comparison.

As observed in Figure 7, models calibrated with the OFA component (red curve) and without it
(green curve) exhibit similar Alpha errors in the initial few frames. However, as the video sequence
progresses, the model incorporating the OFA component shows a distinct downward trend in average
Alpha error, stabilizing at a consistently lower level. In contrast, the model without OFA maintains a
relatively higher error profile throughout the later frames.

This phenomenon clearly demonstrates the effectiveness of the OFA component. Since our OFA loss,
LOFA, is computed and applied to the optimization process starting from the second frame of a video,
it leverages temporal prior information provided by optical flow to guide the PTQ calibration. This
guidance not only directly encourages the model to learn more temporally coherent representations,
thereby reducing prediction errors and instability in subsequent frames, but also indirectly acts as an
effective regularizer, aiding the model in achieving higher overall matting accuracy.
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Figure 7: Per-frame average Alpha error comparison for W4A4 quantization with (red curve) and
without (green curve) the OFA component on the test dataset.

A.5 EXPERIMENTAL SETUP DETAILS

Calibration Set Construction As mentioned in the main paper, our calibration set is very small.
Specifically, we selected the first 64 video clips from the VM video dataset. For each selected clip,
we uniformly sampled frames at indices [0, 2, 4, 6], resulting in a total of 64× 4 = 256 images for
calibration.

Optimization Parameter Settings The optimization parameters for our two-stage PTQ framework
are set as follows:

• Stage 1 (BIQ - Block-wise Initial Quantization) During this stage, for the optimization
of each block, we employ the Adam optimizer with a fixed learning rate of 4× 10−5. The
number of optimization iterations for each block is set to 20,000.

• Stage 2 (GAC and OFA) In this stage, we jointly optimize all learnable calibration parame-
ters, which include the affine transformation parameters {γi, βi} for GAC, the activation
scaling factors {s′a,i}, and implicitly the influence of the OFA loss. The Adam optimizer
is used with a unified learning rate of 1 × 10−4. The entire calibration process is run for
50 epochs. The weighting factor λ for the Optical Flow-Assisted loss term (LOFA) is set to
0.05.

Hardware Platform All experiments, including model quantization, calibration, and performance
evaluation, were conducted on a single NVIDIA RTX 4090 GPU equipped with 24GB of VRAM. It
is worth noting that our entire PTQ calibration pipeline has low computational resource requirements,
especially in terms of VRAM usage, making it well-suited for typical video matting task scenarios
where pre-trained models are efficiently quantized under limited resources.

A.6 ADDITIONAL TEMPORAL CONSISTENCY EVALUATION

Evaluation using MESSDdt Metric To complement the DTSSD analysis, we employed the
MESSDdt metric for a more comprehensive assessment of temporal coherence. This metric evaluates
the consistency between model predictions and motion patterns captured by optical flow, offering a
distinct perspective on temporal stability.

As illustrated in Table 4, our method maintains consistent advantages across different bit-widths.
Standard PTQ approaches exhibit significant performance degradation or complete collapse at lower
precision, while the incorporation of our proposed components effectively mitigates these issues.
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Table 4: Supplementary quantitative comparison of the MESSDdt metric (↓) on the VM dataset.
Using tabularx ensures the background color is continuous.

Method FP32 Quantized (W-A)

4-4 4-8 8-8

RVM (Baseline) 4.91 – – –

MSE – -* -* 5.31

BRECQ – -* 6.02 5.36
BRECQ + GAC – 6.80 5.98 5.40
BRECQ + GAC + OFA – 6.34 5.81 5.19

QDrop – 6.23 5.87 5.31
QDrop + GAC – 6.20 5.91 5.30
QDrop + GAC + OFA – 6.02 5.24 4.93

The OFA component contributes to measurable improvements in all configurations, bringing the
quantized models notably closer to the FP32 baseline performance.

Robustness to Optical Flow Quality We further verified the robustness of our OFA component by
testing it with different optical flow estimators, including RAFT (default), GMFlow (transformer-
based), and PWC-Net (lightweight). The minimal performance variance across these estimators
(Table 5) confirms that our method does not require precise optical flow alignment but rather leverages
global motion consistency. This robustness enhances the practical deployability of our approach in
resource-constrained environments.

Table 5: Robustness of the OFA component to different optical flow estimators under the W4A8
setting on the VM dataset. The minimal performance variance indicates that our method is not
sensitive to the specific choice of the flow model.

Flow Model Type MAD ↓ MSE ↓ (×10−3) DTSSD ↓

RAFT (Default) Recurrent 10.61 4.28 2.34
GMFlow Transformer 10.55 4.21 2.32
PWC-Net CNN (Light) 10.67 4.39 2.37

A.7 SUBJECTIVE EVALUATION

To complement the quantitative metrics, we conducted a rigorous Mean Opinion Score (MOS) user
study involving 20 participants. The study utilized a blind testing protocol on 20 randomly selected
video clips to ensure objectivity. Participants were asked to rate the video quality on a scale of 1 (poor)
to 5 (excellent) based on three criteria: Temporal Stability (e.g., flickering artifacts), Boundary
Detail (e.g., hair strands), and Overall Quality.

The comparison included three settings: (A) the FP32 Baseline (upper bound), (B) QDrop (W4A4),
and (C) Ours (W4A4). As shown in Table 6, the results demonstrate that the QDrop method, while
maintaining reasonable boundary details, suffers from noticeable flickering artifacts in the 4-bit
setting, leading to lower scores in Temporal Stability. In contrast, our method achieves significantly
higher MOS scores, particularly in stability metrics. Participants reported that our method produces
visually coherent videos with significantly reduced jitter, perceptually approaching the quality of
the FP32 baseline. This subjective preference aligns consistently with our objective MESSDdt and
DTSSD improvements reported in the main paper.
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Table 6: Subjective User Study Results (MOS). Comparisons are performed on 20 video clips rated
by 20 participants. Scale: 1 (Poor) to 5 (Excellent).

Method Temporal Stability Boundary Detail Overall Quality
FP32 4.85 4.90 4.85
QDrop (W4A4) 3.10 3.45 3.25
Ours (W4A4) 4.55 4.60 4.55

A.8 LLM USAGE STATEMENT

In the preparation of this manuscript, a Large Language Model (LLM) was utilized by the authors.

The role of the LLM was strictly limited to language enhancement and polishing.

Specific tasks included correcting grammatical errors, refining sentence structure for better clarity,
and improving the overall readability of the text.

The LLM was not used for generating any core scientific content, which includes but is not limited to:
the formulation of research ideas, the development of the methodology, the generation of code, the
execution of experiments, and the analysis or interpretation of results.

All intellectual contributions, scientific claims, and conclusions presented in this paper remain entirely
the work of the human authors, who bear full responsibility for the final content.
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