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Abstract
N:M sparsity stands as a progressively impor-
tant tool for DNN compression, achieving prac-
tical speedups by stipulating at most N non-zero
components within M sequential weights. Unfor-
tunately, most existing works identify the N:M
sparse mask through dense backward propaga-
tion to update all weights, which incurs exorbi-
tant training costs. In this paper, we introduce
BAME, a method that maintains consistent spar-
sity throughout the N:M sparse training process.
BAME perpetually keeps both sparse forward and
backward propagation, while iteratively perform-
ing weight pruning-and-regrowing within des-
ignated weight blocks to tailor the N:M mask.
These blocks are selected through a joint assess-
ment based on accumulated mask oscillation fre-
quency and expected loss reduction of mask adap-
tation, thereby ensuring stable and efficient iden-
tification of the optimal N:M mask. Our em-
pirical results substantiate the effectiveness of
BAME, illustrating it performs comparably to or
better than previous works that fully maintain-
ing dense backward propagation during training.
For instance, BAME attains a 72.0% top-1 ac-
curacy while training a 1:16 sparse ResNet-50
on ImageNet, eclipsing SR-STE by 0.5%, de-
spite achieving 2.37× training FLOPs reduction.
Code is released at https://github.com/
BAME-xmu/BAME.

1. Introduction
In recent years, the vision community has precipitously bol-
stered the performance of Deep Neural Networks (DNNs)
across various tasks, including image classification (He
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et al., 2016), object detection (He et al., 2017a), and se-
mantic segmentation (Girshick et al., 2014), etc. These
progressions are chiefly driven by an augmented parameter
burden and an increasingly onerous computational cost. Re-
grettably, this tendency presents significant impediments for
the deployment of DNNs on resource-constrained edge de-
vices like smartphones and various Internet of Things (IoT)
apparatuses. Consequently, there has been a proliferation
of interest in model compression research (Hubara et al.,
2016; Howard et al., 2017; Lin et al., 2020), with the explicit
objective of reducing the model’s computation and parame-
ter complexity whilst preserving comparable performance
to the original model, thereby alleviating the deployment
tribulations experienced with DNNs.

Among these techniques, network sparsity has proven many
successes (Han et al., 2015; LeCun et al., 1989; Luo et al.,
2017) by zeroizing weights to yield lightweight, sparse net-
works at different granularity levels, from fine to coarse.
Fine-grained sparsity (unstructured sparsity) (LeCun et al.,
1989; Ding et al., 2019) removes individual weights and
is demonstrated to well retain performance even at high
sparsity rates. Regrettably, the deployment of such fine-
grained sparse networks onto mainstream hardware systems
becomes exceptionally challenging, given the irregular ma-
trix patterns created by sparse weights. In contrast, coarse-
grained sparsity, otherwise known as structured sparsity,
(He et al., 2017b; Lin et al., 2020) procures substantial accel-
eration, purging whole convolution filters in the process (Liu
et al., 2019; Lin et al., 2020). Nevertheless, structured spar-
sity can experience severe performance degradation, espe-
cially under high sparsity conditions. Recent developments
indicate N:M sparsity as an auspicious avenue towards ef-
fectively balancing the dual requirements of acceleration
and performance retention (Zhou et al., 2021; Pool & Yu,
2021). By imposing a restriction of, at most, N non-zero
elements within M sequential weights throughout the input
channel dimension, N:M sparsity can substantially enhance
the performance of structured sparsity, while concurrently
assuring swift inference, ably facilitated by the N:M sparse
tensor core (Nvidia, 2020).

The crux of maintaining the performance of N:M sparse
networks lies in identifying the optimal N:M sparsity mask.
To achieve this, prevalent methodologies involve updating
all weights during training to determine the most effective
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Figure 1: Framework of BAME. It iteratively performs weight pruning-and-regrowing through Loss-Aware Mask adaption
(LMA) and Oscillation-aware Block Freezing (OBF), which leads to stable and efficient location for the optimal N:M mask.

N:M mask, adopting a straight-through estimator to approx-
imate the gradients of the pruned weights (Zhou et al., 2021;
Zhang et al., 2023b) or learning the importance criteria for
all weights (Zhang et al., 2022). Despite their efficacy, the
computation of dense gradients invariably imposes a sub-
stantial training overhead. Notably, the reduction of training
costs has been a focal research point within the sparsity
comunity in recent years (Liu et al., 2021; Evci et al., 2020;
Dettmers & Zettlemoyer, 2019). With the ever-growing size
of cutting-edge models, the significant computational de-
mands and energy consumption of training sparse networks
are escalating critical environmental, ethical, and financial
concerns. Consequently, the development of efficient and
scalable N:M sparse training methods is paramount, poten-
tially even more urgent, to support the widespread accessi-
bility and democratization of DNNs.

In this paper, we present BAME as a way of maintaining
consistent sparsity in both forward and backward propaga-
tion throughout the N:M sparse training process. As shown
in Figure 1, BAME escapes from dense weight’s update
through block-aware N:M mask evolution. It specifically
executes weight pruning-and-regrowing within each consec-
utive M weights in order to adapt the sparse mask. Such
mask evolution occurs solely when the detrimental effects
on loss caused by pruning a certain weight is outweighed
by the gain in loss from restoring another already pruned
weight. Concurrently, we selectively adapt the mask of N:M
blocks, as some blocks are experimentally observed to ex-
hibit frequent oscillations on their masks during training,
leading to unstables loss landscape. To this end, we employ
exponential moving averaging (EMA) to accumulate the in-
cidence of mask fluctuations for each block, choosing those
with fewer fluctuations for mask evolution to ensure stable
optimization for the N:M sparse network during training.
In this manner, BAME can stably optimize the N:M mask
while conducting N:M sparse training in a dense-backward-

free efficient manner.

We conduct extensive experiments on validating the effec-
tiveness and efficacy of BAME for N:M sparse training. The
results show that BAME is able to get state-of-the-art per-
formance when training N:M sparse networks across a wide
range of sparse pattern, datasets, and prevailing DNNs, even
with much fewer training FLOPs compared with existing
work. Illustratively, BAME attains a 72.0% top-1 accu-
racy while training a 1:16 sparse ResNet-50 on ImageNet,
eclipsing SR-STE (Zhou et al., 2021) by 0.5%, while using
far less training FLOPs. Our work provides fresh insights
in N:M sparse training without dense weight updates and
we anticipate that BAME will not only equip practitioners
with a robust training tool but also lay the groundwork for
subsequent explorations into the training efficiency of N:M
sparsity.

2. Related Work
2.1. Network Sparsity

By removing redundant weights to eliminate the parame-
ter and FLOPs burden, network sparsity has emerged as a
fervent area of research over the last decade (LeCun et al.,
1989; Han et al., 2015; Louizos et al., 2017). Traditional ap-
proaches can broadly be classified into two categories based
on their pruning granularity: unstructured and structured
sparsity. The former involves the elimination of individ-
ual weights at any location within the network, achieving
sparsity at a fine-grained level (Han et al., 2015; Lee et al.,
2019; Ding et al., 2019). In essence, unstructured sparsity
can rival the performance of their dense counterparts even
at exceedingly high sparsity ratios, such as 90% (Mostafa
& Wang, 2019). Nonetheless, the generated sparse weight
tensors generally precludes acceleration on standard hard-
ware platforms unless the sparsity ratio reaches or exceeds
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95% (Wang). Conversely, structured sparsity achieves no-
table acceleration by extensively removing entire weight
rows or convolution filters (Luo & Wu, 2020; Lin et al.,
2020). Regrettably, structured sparsity often leads to sub-
stantial performance degradation at sparsity levels exceed-
ing 50%, attributed to the constraints imposed on sparsity
flexibility. Diverging from conventional sparsity granulari-
ties, this paper delves into N:M sparsity that removes weight
in an mid-level granularity and has garnered significant re-
search interest in recent years (Zhou et al., 2021; Sun et al.,
2021; Pool & Yu, 2021).

2.2. N:M Sparsity

The recent development of N:M sparsity upholds the conser-
vation of N-out-of-M consecutive weights in DNNs (Nvidia,
2020; Pool & Yu, 2021; Sun et al., 2021; Zhou et al., 2021;
Chmiel et al., 2021; Hubara et al., 2016; Zhang et al., 2022).
Supported by the NVIDIA Ampere Core (Ronny Krashin-
sky, 2020), N:M sparsity fosters superior storage and com-
putational efficiency, establishing an immaculate harmony
between model efficiency and precision, outdoing both un-
structured and structured sparsity. To illustrate, 2:4 spar-
sity can realize 2× speedups on an NVIDIA A100 GPU,
while unstructured sparsity might further decelerate the
inference speed at identical levels of sparsity. As trail-
blazing work, ASP (Nvidia, 2020) employs a traditional
tri-phase workflow encompassing model pre-training, high-
magnitude weight extraction (Han et al., 2015), and net-
work fine-tuning. (Zhou et al., 2021) subsequently proposed
to train N:M sparse network from scratch by introducing
the Sparse-refined Straight-Through Estimator (SR-STE).
More specifically, N-out-of-M weights of higher magni-
tudes are selected in each forward pass, whileall weights
are updated during the backward phase, utilizing the STE
estimator, paired with a uniquely designed sparse penalty
term. LBC (Zhang et al., 2022) further recasts N:M sparsity
as a combinatorial problem, learning the optimal mask for
each N:M block. MaxQ (Xiang et al., 2024) utilizes a multi-
axis query to generate soft N:M masks during training to
further improve the performance. Despite their effectiveness
in preserving the performance of sparse networks, most ex-
isting works require dense backward propagation to update
all weights to discover the optimal N:M mask, leading to
massive training burden and memory cost. Our proposed
BAME in this paper diverges from existing N:M methods as
it performs both sparse forward and backward propagation
during the entire training process, substantially alleviating
the training cost.

2.3. Sparse Training

Sparse training, which dynamically adjusts the sparse masks
throughout the training process, has recently emerged as
a promising solution to enhance the training efficiency of

network sparsity (Hoefler et al., 2021; Evci et al., 2020;
Han et al., 2015; Liu et al., 2021). The most represen-
tative method RigL (Evci et al., 2020) prunes weights of
smaller magnitudes during inference and subsequently re-
grows the same quantity of weights based on their gradient
values throughout backward propagation. Sparse Momen-
tum (Dettmers & Zettlemoyer, 2019) employs the mean
momentum magnitude of each layer as a benchmark for
redistributing parameters. (Kusupati et al., 2020) proffer
layer-wise learnable thresholds strategizing the reallocation
of parameters across layers. Moreover, (Liu et al., 2021)
proposed to gradually increase the sparsity level during
training to further enhance the performance of sparse net-
works. While these approaches predominantly concentrate
on boosting unstructured sparsity, our endeavor in this paper
differs by targeting the training of N:M sparse networks,
innovatively designing a block-aware selection mechanism
for pruning and reviving N:M sparse weights.

3. Methodology
3.1. Background

We first recap basic preliminaries of N:M sparsity. For
simplicity, we take the weights from a specific layer within
DNNs for illustration. N:M sparsity forces at most N out of
M consecutive weights in the weight row to have non-zero
values. The weights can be therefore grouped into K blocks
where each block contains M consecutive weights, denoted
as W ∈ RK×M . And then, N:M sparsity can be formulated
as multiplying W with a binary mask B ∈ RK×M , with
the following objectives:

min
W,B

L(W ⊙B; D) s.t. ∥Bk,:∥0 = N, (1)

where k = 1, 2, ...,K, ⊙ is the point-wise element-wise
multiplication, L(·) denotes training loss function and D
represents the observed training dataset, respectively. The
zero elements in B indicate the removal of corresponding
weights in the network, and vice versa.

Challenge of N:M sparse training. The crux of optimiz-
ing Equation (1) falls into locating high-quality masks that
correctly preserve important weights. As a pioneer work,
ASP (Nvidia, 2020) chooses to mask out weights that have
lower magnitudes, intuitively reducing the output derivation
between dense pre-trained weights and N:M sparse weights.
Nevertheless, the pre-training phase unavoidably carries
huge training burden. In the literature, a more popular way
to obtain the sparse mask is performing training-time weight
selection by updating all weights (Zhou et al., 2021; Zhang
et al., 2022; Fang et al., 2022; Zhang et al., 2023b). Partic-
ularly, the straight-through-estimator (STE) (Bengio et al.,
2013) is leveraged to calculate the gradient of all weights,
since the currently removed weights always receive no gradi-
ent as their corresponding multiplied masks are 0s. Formally,
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the gradients of W are derived as

∂L
∂W

=
∂L

∂(W ⊙B)
⊙B ≈ ∂L

∂(W ⊙B)
⊙ 1. (2)

In this vein, all weights can be updated during the training
process. By dynamically selecting weights with higher mag-
nitude, such N:M sparse training can effectively boost the
model performance, even without reliance on pre-trained
weights. Despite recent efforts to further enhance N:M
sparse training through additional norm constraints on
pruned weights (Zhou et al., 2021) or gradual sparsity (Fang
et al., 2022), one significant concern remains that dense
back-propagation and weight updates continue to incur sub-
stantial resource consumption, posing challenges to scenar-
ios with limited resources.

In this paper, we address the above hindrance of training
inefficiency by proposing Block-Aware Mask Evolution
(BAME), a method that ensures consistent sparsity through-
out the forward and backward propagation phases of the
N:M sparse training process. The unique contribution of
BAME encompasses loss-aware mask adaption (LMA) that
prune-and-revive weights to effectively decrease the train-
ing loss, and oscillation-aware block selection (OBS), limit-
ing mask modifications within blocks demonstrating high-
frequency mask oscillations, thus stabilizing the N:M train-
ing process. We introduce these two components as follows.

3.2. Loss-aware Mask Adaption

Owing to the great benefit of training cost reduction, adapt-
ing the sparse mask during training while escaping from
dense gradient calculation has been a hot topic within tra-
ditional unstructured sparsity literature (Evci et al., 2020;
Dettmers & Zettlemoyer, 2019; Liu et al., 2021; Jayakumar
et al., 2020). The central philosophy of these methods in-
volves performing a global pruning and revival based on
instantaneous gradient information every few training itera-
tions. Specifically, several of the weights with the highest
gradients among all pruned weights are restored and the
same number of weights with the lowest magnitude among
all retained weights are pruned, therefore reducing the loss
to the fastest extent.

Regrettably, prior methodologies for globally altering the
sparse topology are unsuitable within the context of N:M
sparsity. Following a fixed sparsity budget for each N:M
block, pruning-and-reviving of weights can only be car-
ried out in each independent N:M block. This presents
substantial risks for the mask adaptation: The gradients
of the weights in the same block are likely to have minor
differences due to the continuous input received, as is the
magnitude of the weights. Hence, directly applying tradi-
tional sparse methods can have high possibility of resulting
in the recovery of weights yielding less loss benefit com-
pared to the disruption caused by weight pruning, even if

the pruned weights have the smallest magnitude within the
N:M block.

To address this challenge, we introduce loss-aware mask
adaption (LMA) that ensures weight pruning-and-reviving
always lead to loss decrease during training. LMA performs
static sparse training in both forward and backward prop-
agation, while only calculating dense gradient to perform
mask adaption every ∆T iteration. Here we use a specific
N:M block Wk ∈ RM to illustrate the mask adaption proce-
dure. Considering a currently preserved weight Wk,i where
Bk,i = 1, the loss change, denoted as ∆L(Wk,i), upon
its removal can be approximately derived using first-order
Taylor expansion (Molchanov et al., 2017) as:

∆L(Wk,i)

=|L(W ⊙B; D, Bk,i = 0)− L(W ⊙B; D, Bk,i = 1)|

≈|L(W ⊙B; D, Bk,i = 1)− ∂L
∂(W ⊙B)k,i

(Wk,i − 0)

+R1(Bk,i = 0)− L(W ⊙B; D, Bk,i = 1)|.
(3)

If we ignore the first-order remainder R1(Bk,i = 0), then:

∆L(Wk,i) ≈ | ∂L
∂(W ⊙B)k,i

Wk,i|. (4)

Similarly, if we consider reviving a currently removed
weight Wk,j back, the loss change ∆L(Wk,j) = 0 can
be derived as:

∆L(Wk,j)

=|L(W ⊙B; D, Bk,j = 1)− L(W ⊙B; D, Bk,j = 0)|
≈|L(W ⊙B; D, Bk,i = 0)

− ∂L
∂(W ⊙B)k,j

(
0− (0− η

∂L
∂(W ⊙B)k,j

)

)
+R1(Bk,i = 1)− L(W ⊙B; D, Bk,i = 0)|

≈η

(
∂L

∂(W ⊙B)k,j

)2

,

(5)

where η is the current learning rate. Based on the preced-
ing derivation, we can articulate the following conclusions.
On one hand, Eq. (4) tells that for the preserved weights,
pruning those with comparably minor ∆L(Wk,i) ensures
the loss does not undergo notable alterations. This per-
spective concurs with traditional network sparsity knowl-
edge (Molchanov et al., 2017; Zhang et al., 2023a). Con-
versely, considering the presently pruned weights, their re-
vival will invariably benefit the minimization of loss as
observed in the derivation of Eq. (5). Simultaneously, it
bears mentioning that restoring weights with significantly
larger ∆L(Wk,i) will induce the most substantial degree
of loss mitigation. Therefore, at each mask adaption cycle,
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Figure 2: Sparse Architecture Divergence (SAD) of N:M blocks during training N:M sparse ResNet-50 on ImageNet. The
majority of blocks remain under minimal mask variation, yet a minority experience frequent mask oscillations.

we first calculate the loss-aware metric ∆L(Wk,:) of all
weights in an N:M block using Eq. (4) and Eq. (5). Then,
we adapt the mask of weights as follows:

B̄k,m =

{
0, if ∆L(Wk,j) < Top(∆L(Wk,:),M - N),
1, otherwise,

(6)
where m = 1, 2, ...,M and B̄ is the updated mask. Such
mask adaptation perceptively prune-and-revive weights by
looking at the effects imparted on the loss, conducting an
inclusive ranking within each N:M block. Paradoxically,
preceding arts that mandates the pruning of lowest magni-
tude weights while refurbishing those with highest gradi-
ents (Evci et al., 2020; Zhang et al., 2023a), although jus-
tified when executed across the entire weight matrix, may
potentially be harmful for N:M sparsity with limited amount
of weights in each block. To explain, the increment to the
loss prompted by restored weights could indeed be consider-
ably less than the disturbance to the loss distribution induced
by pruned weights. Hence, our proposed LMA effectively
realizes loss-aware optimization of sparse typologies.

It is also noteworthy that LMA necessitates the computation
of dense gradients only intermittently, every ∆T iterations,
while primarily conducting truly sparse training and weight
updates at other times. This starkly contrasts previous N:M
sparse training methods (Zhou et al., 2021; Fang et al., 2022;
Zhang et al., 2023b), which obligate the calculation and stor-
age of full gradients at each stage of optimization, culminat-
ing in a significantly greater training impedance relative to
LMA.

3.3. Oscillation-aware Block Freezing

Other than LMA which enables efficient mask adaption in-
ner each N:M block, we further stabilize the N:M sparse
training process by oscillation-aware block freezing (OBF).
The impetus behind OBF stems from our observations of
the high-frequency mask fluctuation for each block across
different LMA cycles. In particular, we employ the Sparse
Architecture Divergence (SAD) (Zhou et al., 2021) to cal-

Algorithm 1: BAME for N:M Sparse Training.
Require : Weights W; Initial and final iterations for

mask adaption ti and tf ; Update interval ∆T.
Output : Sparse weights W̄

1 for t ∈ [ti, . . . , tf ] do
2 if t % ∆T == 0 then
3 Calculate ∆L(W) via Eq. (4) and Eq. (5)
4 Obtain the adapted mask B̄ via Eq. (6)

// Loss-aware mask adaption
5 Get the restricted mask B via Eq. (9)

// Oscillation-aware
freezing

6 end
7 W̄ = W ⊙B // Apply N:M mask
8 Sparse Forward and backward propagation
9 end

culate mask fluctuation at c-th and c+ 1-th LMA cycle as
follows:

SAD(Bc−1
k ,Bc

k) =

M∑
m=1

|Bc−1
k,m −Bc

k,m|, (7)

where Bc
k denote the k-th block’s mask at c-th LMA cy-

cle. In Figure 2, we show the accumulated SAD score of
different N:M blocks during N:M sparse training. The ob-
servation reveals a significantly higher frequency of mask
alterations occurring in a certain number of blocks com-
pared to others. On reflecting upon the primary intent of
LMA, the apex aim during the LMA process constitutes the
pruning of weights of lesser magnitude, making way for
the revival of a more significant one, thereby pinpointing an
enhanced position while ensuring consistent training there-
after. Nevertheless, some blocks endure recurrent deviations,
alternately zeroing the weights, unquestionably inducing os-
cillations in loss, and thereby impeding network training.
Consequently, we harness the capabilities of Exponential
Moving Average (EMA) to accumulate the episodes of mask
perturbations across each block, electing those exhibiting
lesser fluctuations for mask evolution, thereby ensuring sta-

5



BAME: Block-Aware Mask Evolution for Efficient N:M Sparse Training

Table 1: Results for sparsifying ResNet-32 and MobileNet-V2 on CIFAR-10.

Model Method N:M Top-1 Epochs FLOPs FLOPs
Pattern Accuracy (%) (Train) (Train) (Test)

ResNet-32 Baseline - 94.52 300 1×(3.2e16) 1×(1.3e9)
ResNet-32 ASP 2:4 94.68 600 1.5× 0.51×
ResNet-32 SR-STE 2:4 94.52 300 0.83× 0.51×
ResNet-32 LBC 2:4 94.81 300 0.72× 0.51×
ResNet-32 BAME(ours) 2:4 94.99 300 0.63× 0.51×
ResNet-32 SR-STE 1:4 94.52 300 0.74× 0.26×
ResNet-32 Bi-Mask 1:4 94.43 300 0.49× 0.26×
ResNet-32 BAME(ours) 1:4 94.71 300 0.39× 0.26×
ResNet-32 SR-STE 1:16 92.92 300 0.67× 0.11×
ResNet-32 Bi-Mask 1:16 92.77 300 0.37× 0.11×
ResNet-32 BAME(ours) 1:16 93.15 300 0.29× 0.11×
MobileNet-V2 Baseline - 94.55 300 1×(1.4e17) 1×(4.8e7)
MobileNet-V2 SR-STE 1:16 93.14 300 0.67× 0.11×
MobileNet-V2 Bi-Mask 1:16 92.48 300 0.37× 0.11×
MobileNet-V2 BAME(ours) 1:16 93.32 300 0.29× 0.11×

bilized optimization for the N:M sparse network during the
course of training. Concretely, we devise a vector O ∈ RK ,
equivalent in magnitude to the count of blocks, devised for
logging the frequency of mask alterations, as

Oc
k = γ Oc−1

k + (1− γ) SAD(Bc−1
k ,Bc

k), (8)

where γ is the momentum of EMA updating. Then, we
restrict a β proportion of N:M blocks with the highest oscil-
lation frequency from being updated by LMA as:

Bc
k,m =

{
Bc−1

k,m, if Oc
k > Top(Oc, ⌊β · k⌋),

B̄c
k,m, otherwise.

(9)

Furthermore, within the mask adaptation selection of LMA,
the occurrence of gradients is sporadic, implying the
prospect of a particularly extraordinary gradient for a speci-
fied weight at a given stage. This could conceivably prompt
an incorrect pruning of a substantial weight, thereby precip-
itating a noteworthy effect on network performance. Conse-
quently, we confine LMA to transpire solely within weight
blocks of lesser magnitudes to circumvent such inadvertent
erroneous mask adaptations.

Bc
k,m =


Bc−1

k,m, if Oc
k > Top(Oc, ⌊β · k⌋)

and ||Wc
k||2 > Top(Ŵc, ⌊α · k⌋),

B̄c
k,m, otherwise,

(10)
where Ŵc

k = ||Wc
k||2, k = 1, 2, ...,K. For the implemen-

tation of BAME, we follow (Jayakumar et al., 2020) to
perform a three-step sparse training pipline, with Ti and
Tf evenly divides the training schedule. In particular, we
first employ gradual pruning (Zhu & Gupta, 2017) to set the

non-zeros parameters budget linearly decreased from M to
the targeted N of each block in the early Ti iterations. Then,
we perform BAME to find the best N:M mask from Ti to
Tf . At last, we set the masks all freeze and conduct static
training for the N:M sparse network within the remained
iterations. The workflow for performing BAME for N:M
sparse training is outlined in Alg. 1. It should be noted
that although BAME effectively reduces the overhead of
N:M sparse training, the sparse weights during backpropa-
gation may not maintain N:M sparsity due to the transpose
operation, which introduces specific hardware implemen-
tation challenges. To address this issue, we observe that
BAME can be effectively integrated with bidirectional N:M
masks (Zhang et al., 2023b) to ensure N:M sparsity through-
out backpropagation; i.e., we impose N:M sparsity on the
backward masks of BAME based on the magnitudes of the
corresponding weights. We experimentally elaborate this in
the subsequent sections.

4. Experiment
4.1. Experimental Settings

Datasets and Networks. We validate the effectiveness
of BAME by using it to train N:M sparse networks on
image classification tasks on the CIFAR-10 (Krizhevsky
et al., 2009) and ImageNet-1K datasets (Deng et al., 2009).
For the networks, we sparsify ResNet-32 (He et al., 2016),
MobileNet-V2 on CIFAR-10 dataset, and ResNet-18 (He
et al., 2016), ResNet-50 (He et al., 2016), DeiT-small on
ImageNet-1K dataset.

Implementation Details. We train N:M sparse networks
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Table 2: Results for sparsifying ResNet-50 and DeiT-small on ImageNet. † means we apply the bi-directional masks (Zhang
et al., 2023b) for backward propagation of BAME.

Model Method N:M Top-1 Epochs FLOPs FLOPs
Pattern Accuracy (%) (Train) (Train) (Test)

ResNet-50 Baseline - 77.1 120 1×(3.2e18) 1×(8.2e9)
ResNet-50 ASP 2:4 76.8 200 1.24× 0.51×
ResNet-50 SR-STE 2:4 77.0 120 0.83× 0.51×
ResNet-50 LBC 2:4 77.2 120 0.72× 0.51×
ResNet-32 Bi-Mask 2:4 77.4 120 0.66× 0.51×
ResNet-32 MaxQ 2:4 77.6 120 0.91× 0.51×
ResNet-50 BAME(ours)† 2:4 77.4 120 0.59× 0.51×
ResNet-50 BAME(ours) 2:4 77.4 120 0.63× 0.51×
ResNet-50 SR-STE 1:4 75.3 120 0.74× 0.26×
ResNet-50 Bi-Mask 1:4 75.6 120 0.49× 0.26×
ResNet-50 BAME(ours) 1:4 76.1 120 0.39× 0.26×
ResNet-50 SR-STE 1:16 71.5 120 0.69× 0.11×
ResNet-50 Bi-Mask 1:16 71.5 120 0.37× 0.11×
ResNet-50 BAME(ours) 1:16 72.0 120 0.29× 0.11×
DeiT-small Baseline - 79.8 300 1×(8.9e18) 1x(9.2e9)
DeiT-small SR-STE 2:4 79.6 300 0.83× 0.11×
DeiT-small Bi-Mask 2:4 79.4 300 0.72× 0.11×
DeiT-small BAME(ours) 2:4 79.7 300 0.63× 0.11×

from scratch via the Stochastic Gradient Descent (SGD)
optimizer, paired with a momentum of 0.9 and a batch size
of 256. The initial learning rate is set to 0.1 and gradually
decayed based on the cosine annealing scheduler. Following
previous works, we train all networks for 300 epochs on
CIFAR-10, with a weight decay of 0.005. On ImageNet,
120 epochs are given for ResNet and 300 epochs for DeiT-
small. For the implementation of BAME, we set the LMA
update interval ∆T = 100 and 0.5 for both α and β in OBF.
ALL experiments are implemented based on PyTorch and
executed on NVIDIA Tesla A100 GPUs.

Performance Metrics and Baselines. We juxtapose BAME
with several state-of-the-art N:M sparsity methods, includ-
ing ASP (Nvidia, 2020), SR-STE (Zhou et al., 2021),
LBC (Zhang et al., 2022), Bi-Mask (Zhang et al., 2023b).
We experiment with a wide range of N:M patterns for com-
parison, including 2:4, 1:4, and 1:16. We report the Top-1 ac-
curacy, the training/inference float-point operations (FLOPs)
and parameter burden of N:M sparse networks.

4.2. Image Classification

CIFAR-10. We first evaluate the efficacy of BAME for
training sparse ResNet-32 and MobileNet-V2 on the CIFAR-
10 dataset, which includes 50,000 training images and
10,000 validation images within 10 classes. Tab 1 show-
cases the performance comparison under different N:M pat-
terns. BAME achieves state-of-the-art accuracy at all sce-

narios, even utilizing far fewer training FLOPs and param-
eters compared with other methods. For instance, BAME
achieves 94.71% top-1 accuracy when training 1:4 sparse
ResNet-32, surpassing the recent baseline Bi-Mask that also
pursues efficient backward propagation by 0.28%. More-
over, even compared with SR-STE which conducts dense
gradient calculation training, BAME still achieves better
performance retention for all N:M patterns even with sparse
backward propagation. For example, when training 1:16
sparse MobileNet-V2, BAME yields 93.32 top-1 accuracy,
surpassing SR-STE by 0.18% while only using 0.29% train-
ing FLOPs (0.67% for SR-STE).

ImageNet. For the large-scale ImageNet-1K dataset that
contains over 1.2 million images for training and 50,000 im-
ages for validation in 1,000 categories, we first present the
quantitative results for training sparse ResNet with depths of
18 and 50, along with DeiT-small in Table 2. Again, BAME
substantially enlarges the performance of existing methods,
with the minimum training FLOPs by efficient weight prun-
ing and growing. For instance, it surpasses SR-STE by
0.5% Top-1 accuracy when training 1:4 sparse ResNet-50
(76.1% for BAME and 75.3% for SR-STE), while consumes
far fewer training FLOPs (0.39× for BAME and 0.74× for
SR-STE). Although BAME’s performance is slightly infe-
rior to MaxQ by 0.2 Top-1 accuracy, it achieves a more
than 1.54-fold reduction in training overhead. Moreover,
when introducing sparsity constraints into backpropagation,
BAME† still maintains notable performance advantages
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Figure 3: Ablation studies on the update schedule.

compared with Bi-Mask, while readily leveraging N:M
sparse tensor cores during training. It is also worth mention-
ing that BAME holds its advantages when training sparse
DeiT-small compared with other methods, demonstrating
its scalability for other types of model structures beyond
convolution neural networks.

4.3. Performance Analysis

In this section, we provide the performance analysis of
BAME, with all experiments conducted on training 1:16
ResNet-32 on CIFAR-10.

Hyper-parameters. We first investigate the influence of
hyper-parameters within BAME, including the two restric-
tion factors α and β, and the updating interval ∆T . As
shown in Fig.3, the best performance is obtained with
∆T = 100, α = 0.5, β = 0.5. To analyze, smaller α and
β, larger ϵ all lead to an insufficient procedure for mask ex-
ploration during the training schedule. Setting these hyper-
parameters in the contrast direction, also resulted in poor
performance, which fits into our claim that high frequency
of mask oscillations can unavoidably harm the training sta-
bility and lead to sub-optimal results. Nevertheless, it serves
as a promising directions to automatically perform N:M
sparse training without hyper-parameter choosen.

Training Schedule. Further, we analyze the training sched-
ule of BAME, i.e, ti and tf for stooping the gradual pruning
and performing mask adaption. Tab. 3 delineates the quanti-
tative results. Intuitively, establishing a larger ti indicates
an increase in training iterations for pre-training with a grad-
ual attainment of the desired sparsity level. Though this
consequently induces a significant training cost, neglecting
gradual pruning simultaneously results in a considerable
performance reduction. To explain, the randomly-initialized
weights require a certain degree of pre-training to initiate
an effective importance selection, which is validated in tra-
ditional sparsity work (Liu et al., 2021; Jayakumar et al.,
2020). Regarding the mask adaptation schedule, prema-
turely halting BAME leads to a performance downturn due
to inadequate identification of the optimal mask. In stark

Table 3: Ablation studies on the training schedule.

ti tf Top-1 Accuracy (%) FLOPs (Train)

0 100 91.87 0.07×
0 200 92.57 0.07×
0 300 92.22 0.07×

100 300 92.81 0.29×
200 300 93.05 0.41×
100 200 93.15 0.29×

Table 4: Ablation study on LMA and OBF.

Method Top-1 Accuracy (%)

Stastic 90.03
RigL 92.01
LMA 92.98

LMA+OBF 93.15

contrast, prolonging BAME until the termination of train-
ing, that is, designating tf to the final iteration, results in
an even more precipitous performance degradation. To ex-
plain, the freshly grown weights, initialized to zeros as per
Alg. 1, mandate substantial training following restoration to
enhance the performance of the sparse network.

Mask Adaption. At last, we investigate the effectiveness
of our mask adaption methods including LMA and OBF.
We set static training as the baseline, which means the bi-
nary masks are randomly initialized and kept frozen during
the entire sparse training procedure. In addition, we run
RigL (Evci et al., 2020), a representative method for tradi-
tion network sparse training that take weight magnitude and
gradient for pruning and reviving, respectively. As shown
in Tab. 4, both LMA and OBF contributes to the overall or
sparse training performance.

5. Conclusion
N:M sparsity has become an increasingly crucial DNN com-
pression tool, delivering functional speed ups by imposing a
maximum of N non-zero constituents within M consecutive
weights. We introduce BAME, a method that enhances the
efficiency of the contemporary N:M sparsity methods while
preserving the model’s performance. BAME’s fundamental
principle involves carrying out loss-aware mask adaptation
to prune and revitalize weights within specific N:M blocks,
whilst maintaining the stability of frequently-oscillating
blocks. BAME surpasses existing methods in sparsifying
mainstream networks across various vision tasks, all while
greatly reducing the training FLOPs and the parameter strain
by keeping both sparse forward and backward propagation
through training. Hopefully, BAME will not only provide
practitioners with a robust N:M sparse training instrument,
but also set the groundwork for further investigations into
efficient N:M sparsity.
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