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ABSTRACT

The goal of de novo protein design is to leverage natural proteins to design new
ones. Deep generative models of protein structure and sequence are the two domi-
nant de novo design paradigms. Structure-based models can produce highly novel
proteins but are constrained by data to produce proteins with a narrow range of
topologies. Sequence-based design models produce more natural samples over a
wider range of topologies, but with reduced novelty. Here, we propose a structure-
based synthetic data augmentation approach to combine the benefits of structure
and sequence in generative protein language models. We generated and character-
ized 240,830 de novo backbone structures and used these backbones to generate
45 million sequences for data augmentation. Models trained with structure-based
synthetic data augmentation generate a shifted distribution of proteins that are
more likely to express successfully in E. coli. We release the trained models as
well as our complete synthetic dataset, BackboneRef.

1 INTRODUCTION

Deep generative models of proteins seek to generate new and novel proteins with desired functions
through efficient exploration of a large design space. To design proteins with novel functionality,
models must balance exploring new areas of design space, satisfying constraints learned from natural
proteins, and maintaining the breadth of sequence, structure, and function seen in nature.

Deep generative models of proteins can be divided into structure-based and sequence-based ap-
proaches. Structure-based models excel at generating functional proteins with no homology to any
natural sequence, and their generations are often highly stable (Watson et al., 2023; Ingraham et al.,
2023). However, structure-based models are constrained by sparse and biased training data (Berman
et al., 2000), consisting of static snapshots of protein structures. As a result, they have been shown
to omit entire classes of proteins and structural elements from their generations, particularly disor-
dered regions (Alamdari et al., 2023). In contrast, sequence-based models can utilize a much larger
amount and diversity of training data and correspondingly sample distributions that better maintain
the breadth of functions found in nature (Madani et al., 2023; Alamdari et al., 2023). However, they
struggle to generate proteins that are both functional and truly novel. Recent efforts to combine the
benefits of both approaches have focused on co-generation modeling strategies that utilize both se-
quence and structural information (Wang et al., 2024a; Hayes et al., 2025; Qu et al., 2024; Campbell
et al., 2024; Wang et al., 2024b; Chu et al., 2024; Lu et al., 2024).

In this work, we propose a synthetic data augmentation approach to bridge the complementary ben-
efits of protein sequence and structure information in deep generative models of proteins (Fig. 1A).
We first used a structure-based generative model to sample 240,830 backbones unconditionally and
characterized their novelty, diversity, and quality in order to evaluate their suitability for data aug-
mentation (Fig. 1B-C). We performed fixed-backbone sequence design on filtered subsets of these
backbones to generate a series of structure-based synthetic datasets, and then trained protein lan-
guage models on mixtures of natural and synthetic sequence data by combining UniRef50 (Suzek
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Figure 1: BackboneRef enables structure-based synthetic data augmentation for protein lan-
guage models. (A) Pipeline for synthetic data augmentation and model training. Sequences of
natural proteins (grey) and BackboneRef structure-based synthetic sequences (blue) are integrated
into a combined dataset to train protein language models. Generated sequences are evaluated both in
silico and in vitro. (B) BackboneRef includes 240,830 de novo designed backbones and 45,553,550
fixed-backbone designed protein sequences. (C) Characterization of the quality, novelty, and diver-
sity of BackboneRef proteins at the structure and sequence levels.

et al., 2015) with each synthetic dataset. Models trained with structure-based synthetic data aug-
mentation were slightly worse at modeling natural sequences. However, they generate a shifted
distribution of proteins that are more likely to express successfully in E. coli. We release our syn-
thetic dataset, called BackboneRef (BBR), including the original backbones, designed sequences,
and predicted structures. Our findings demonstrate that structure-based synthetic data augmentation
can be used to shift the output distribution of protein language models in desirable ways, providing
a highly effective addition to protein engineering workflows.

2 RESULTS

2.1 BACKBONEREF: A STRUCTURE-BASED SYNTHETIC PROTEIN DATASET

We hypothesized that structure-based synthetic data augmentation could combine the complemen-
tary benefits of protein structure and sequence information into sequence-only protein language
models (Fig. 1A). To this end, we created a large-scale dataset of 240,830 synthetic backbone struc-
tures – to our knowledge, the largest set of generated structures to date – by sampling backbones
unconditionally from RFdiffusion (Watson et al., 2023) (Fig. 1B). Structures were sampled accord-
ing to the length distribution of UniRef50 (UniProt Consortium, 2025) to recapitulate the lengths of
natural proteins but with a minimum length of 40 and maximum length of 512 for computational
efficiency. Secondary-structure characterization revealed an enrichment of helical elements, versus
disordered and β-stranded regions, in the synthetic backbones relative to natural structures (Fig. S1),
consistent with prior reports (Lu et al., 2025; Alamdari et al., 2023; Lane, 2023).

We performed fixed-backbone sequence design for all 240,830 synthetic backbones, sampling 10
sequences per backbone at temperature 0.1 using ProteinMPNN (Dauparas et al., 2022) to produce
c.a. 2.4 million sequences, which we use to characterize the dataset (Fig. 1B-C). Structures were
predicted for all resulting sequences with OmegaFold to evaluate individual backbone quality via
self-consistency RMSD (scRMSD) (Fig. 2A). 53.0% of the backbones exhibited average scRMSD
below 2.0 (Fig. 2B). We then chose the sequence and predicted structure with the lowest scRMSD
for each backbone to characterize the novelty and diversity of BackboneRef proteins.
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Figure 2: BackboneRef structures are designable and novel. (A) Workflow for generation, analy-
sis, and filtering of BackboneRef synthetic structures and sequences. (B) Empirical CDF (ECDF) of
average scRMSD per BackboneRef (BBR) backbone over 10 designed sequences (temperature 0.1)
and OmegaFold-predicted structures, with the scRMSD computed between the original backbone
and each predicted structure. (C) Scatterplot of cluster size (x-axis) vs. number of PDB members
(y-axis) for each inferred structural cluster in the “BBRef + PDB” dataset (n=105,506 clusters).
Each cluster is colored by whether it contains both natural PDB and synthetic BackboneRef sam-
ples (grey) or all synthetic BackboneRef samples (blue). (D) Distribution of maximum TM-score
(y-axis), computed between each backbone’s lowest scRMSD predicted structure searched against
the AFDB/UniProt database using Foldseek, versus backbone length (x-axis).

To characterize the novelty of BackboneRef as a whole, we assessed the extent to which Back-
boneRef structures include folds not present in natural structures from the PDB (Berman et al.,
2000). We clustered the lowest scRMSD predicted structures with the PDB using Foldseek (van
Kempen et al., 2024) (Fig. 2C; Table S1). While 99.0% of clusters contained exclusively synthetic
or exclusively natural structures, the 1.0% of mixed-membership clusters included 27.8% of syn-
thetic structures. Nevertheless, the 240,830 BackboneRef synthetic backbones yielded 84,156 novel
clusters with 277,699 structures (Table S1), indicating that generative models trained on the PDB
can still produce large numbers of distinct, novel structures. To quantify whether BackboneRef sam-
ples were saturating in diversity, we conducted a rarefaction analysis. We randomly sub-sampled
the combined BackboneRef and PDB dataset at different frequencies, performing one analysis by
sub-sampling PDB and BackboneRef samples and one analysis only resampling BackboneRef struc-
tures. We then computed the number of distinct structural clusters present in each subsample derived
from the original Foldseek clustering(Fig. S2). Cluster diversity did not saturate in either curve, sug-
gesting that scaling BackboneRef could lead to additional novel structures.

We also evaluated the novelty of individual BackboneRef structures by using Foldseek to find the
closest structural match in the ‘AFDB/UniProt’ database (Varadi et al., 2024), which comprises
AlphaFold2 (Jumper et al., 2021) predictions of every protein in UniProt (UniProt Consortium,
2025) (Fig. 2D). 57.3% of synthetic BackboneRef structures had a maximum TM-score less than 0.5
to any natural structure (Fig. 2D), consistent with the observation that 62.7% of synthetic structures
were in BackboneRef-only clusters (Fig. 2C). Together, these results suggest that BackboneRef
synthetic structures are designable, diverse, and novel.

2.2 AUGMENTING PROTEIN LANGUAGE MODELS WITH BACKBONEREF

Having characterized the quality and novelty of BackboneRef ’s synthetic backbones, we next sought
to utilize BackboneRef to augment sequence-only protein language models with structure-based
synthetic data (Fig. 1A). While we evaluated backbones using sequences designed at T = 0.1
following the convention in structure-based protein design, for augmentation, we aimed to select a
temperature for fixed-backbone sequence design that balanced sequence diversity and quality. To
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choose this temperature, we designed sequences for 5,000 randomly-selected backbones at T =
{0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1} and evaluated the designability of the structures predicted from those
sequences. We observed a steep increase in scRMSD between T = 0.2 and T = 0.3 (Fig. S3).
Therefore, we selected T = 0.2 as the temperature for augmentation and designed 185 sequences per
backbone at T = 0.2, yielding an additional 45,553,550 synthetic sequences. Duplicate sequences
were filtered out and resampled so that the number of sequences per backbone was roughly equal.

To evaluate the effect of synthetic data from BackboneRef on protein language model training, we
filtered BackboneRef for quality and novelty to assess how these attributes affected downstream
model performance. For quality filtering, we selected backbones with average scRMSD below 2Å,
retaining 127,633 backbones (BBR-sc). For novelty filtering, we included backbones with a maxi-
mum TM-score to natural proteins of at most 0.5, retaining 138,044 backbones (BBR-novel).

We then quantified the distribution-level divergence from natural proteins for each set of associated
synthetic sequences. We used the Fréchet ProtBert distance (FPD) (Alamdari et al., 2023), the earth-
mover’s distance between ProtBert (Elnaggar et al., 2022) embeddings for the different sequence
sets, to quantify this divergence. A lower FPD indicates closer distributional similarity. Compared to
the unfiltered dataset, filtering for novelty reduced FPD (Table 1) while filtering for self-consistency
increased FPD.

Table 1: Distributional divergence of BackboneRef sequences relative to natural protein se-
quences, measured by Fréchet ProtBert Distance (FPD) to UniRef50 (lower is more similar).

Dataset FPD

BBR-unfiltered 4.78
BBR-novel 4.34
BBR-sc 5.01

We trained 170M-parameter autoregressive protein language models on UniRef50 (UR50) aug-
mented by 10 million sequences from BackboneRef-unfiltered (BBR), BackboneRef-novel (BBR-
novel), or BackboneRef-sc (BBR-sc), (Table 2). We used a recent hybrid transformer-state space
model architecture, Jamba (Lieber et al., 2024). We trained baseline models on UniRef50 alone and
on UniRef90 with sampling by UniRef50 cluster, roughly equivalent to augmenting UniRef50 with
natural sequences. Note that UniRef90 has roughly 2.5x more sequences than the BackboneRef-
augmented datasets.

Table 2: Cross-entropy (CE) and FPD for protein language models trained on various datasets.
The CE is computed on held-out UniRef50 sequences. The FPD is between held-out UniRef50
sequences and unconditional generations from the model trained on the listed dataset.

Training dataset CE FPD

UR90 2.44 0.70
UR50 2.45 0.74

UR50 + BBR-unfiltered 2.46 1.04
UR50 + BBR-novel 2.46 1.00
UR50 + BBR-sc 2.46 0.97

Structure-based synthetic data augmentation resulted in only slightly worse cross-entropy on the
UniRef50 validation set, indicating that these models still learn the natural sequence distribution
(Table 2). However, the FPD was much higher for sequences generated from models trained using
synthetic data augmentation (Table 2). The model trained on data filtered for novelty (BBR-novel)
resulted in the highest generation FPD. This model and the unfiltered synthetic data model (BBR-
unfiltered) produced higher FPD than the self-consistency filtered dataset. We note that the FPD
of generations was much lower than the FPD of the datasets themselves (Table 1). The observed
differences in generation FPD suggest that structure-based synthetic data augmentation can result in
a distribution shift in the generated sequences.
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2.3 DATA AUGMENTATION WITH BACKBONEREF IMPROVES IN VITRO EXPRESSION RATES

A BExpression success rate by model 393 residues 185 residues

pLDDT 38.7
e-value 4E-4

pLDDT 49.0
e-value 3E-6

473 residues 187 residues 119 residues

pLDDT 28.3
e-value 8E-4

pLDDT 72.2
e-value 2E-24

pLDDT 41.0
e-value 9E-6

Figure 3: Training on synthetic data from BackboneRef improves in vitro expression rates of
designed proteins. (A) In vitro expression rates for generations from models trained on a synthet-
ically augmented dataset (U50+BBR, UR50+BBR-novel, blue) versus on only natural sequences
(UR90, grey). (B) Predicted structures and metrics for select successfully-expressed proteins from
the U50+BBR model. e-values were determined via Foldseek query against AFDB-UniProt.

Finally, we experimentally validated the effects of structure-based synthetic data augmentation on
the in vitro expressibility of generated sequences. We selected 29 samples from each of the UniRef90
and UR50+BBR-novel models for in vitro validation. These sequences were 60-1500 residues long
and without predicted signal peptides, mitochondrial transit peptides, or transmembrane helices; no
filtering based on predicted structural properties was done. Generations were expressed in two E.
coli strains each (BL21-AI, a derivative of the BL21 line, and BLR(DE3)); a protein was considered
to be expressed successfully if expression in at least one strain was detected at the correct molecular
weight via SDS-PAGE. Generations from the model trained on the UR50 + BBR-novel dataset were
more likely to express (15/29; UR50+BBR) relative to generations from the UniRef90 model (8/29;
UR90), a 1.875 fold increase (Fig. 3A). Select proteins generated by the UR50+BBR model that
expressed successfully in E. coli are visualized in Figure 3B.

3 DISCUSSION

This work demonstrates that structure-based synthetic data augmentation can shift protein language
model generations towards desirable traits. By training on novel, high-quality synthetic data, we
induce protein language models to generate distributions that are further from the distribution of
natural sequences (higher FPD scores) while increasing the expression rate from 27.6% to 51.7%.

The output distributions of generative models are determined by their inductive biases and training
data. For proteins, training data consists of amino-acid sequences and structural coordinates. While
structures are richer than sequence, sequencing data available for training is more abundant. Pre-
vious approaches for combining information from sequences and structures include repurposing a
structure prediction module (Lu et al., 2025; Lisanza et al., 2024), designing a model architecture
that can use both (Hayes et al., 2025), or predicting structures from sequence (Huguet et al., 2024).

In contrast to prior approaches, we use sequences derived from a structure-based generation pipeline
to augment sequence-only generative models. Our structure-based synthetic protein dataset, Back-
boneRef, is the largest and most systematic sampling of sequences from a structure-based generative
model. Data augmentation using BackboneRef effectively transfers information from the PDB dur-
ing training while maintaining the simplicity of sequence-based generative modeling.

In summary, we present an open-source and experimentally-validated pipeline for combining in-
formation from sequence and structure databases into a protein language model. We achieve these
results with relatively small models trained on modest compute. BackboneRef-novel contains just
138,044 backbones with an average of 74 sequences per backbone. Our rarefaction analysis in-
dicates that we have not exhausted all possible novel and unique synthetic backbones; scaling the
augmentation dataset and the model could lead to increased diversity and quality of generations. We
hope that this work illuminates a new avenue to improve protein design.
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A APPENDIX

SUPPLEMENTARY METHODS

BACKBONEREF GENERATION AND CHARACTERIZATION

Synthetic backbone generation We used RFdiffusion (checkpoint “Base ckpt”) Watson et al.
(2023) for all backbone generations. In order to increase applicability of analyses comparing back-
bones with natural sequences, we sampled the length distribution of sequences in UniRef50 (January
2024). We generated proteins with minimum length 40 and maximum length 512 for computational
efficiency.

Secondary structure analysis For all secondary structure analyses, we predicted 3-class (loops,
helices, and strands) type assignment using DSSP (Kabsch & Sander, 1983). We performed this
analysis directly on the backbones, rather than on the sequence-designed and folded structures. For
visualization of percentage strandedness and helicity for each backbone we averaged the count of
the given annotation class over sequence.

Self-consistency analysis For each backbone, we used ProteinMPNN (Dauparas et al., 2022) at
temperature 0.1 to design 10 sequences per backbone. We then used OmegaFold (Wu et al., 2022)
to predict a structure for each sequence, and then computed the scRMSD between the Cα positions
of the original backbone and the predicted structures.

We also separately conducted fixed-backbone sequence design with temperatures 0.2, 0.3, 0.4, 0.6,
0.8, and 1.0, designing ten sequences per backbone per temperature prior to structure prediction
using OmegaFold. scRMSD was then computed between each backbone’s predicted structures at
the the various temperatures and the original backbone.

Foldseek novelty search Rather than using Foldseek’s (van Kempen et al., 2024) ‘easy-search’
directly on backbones in Cα mode, we used the lowest scRMSD structure from our self-consistency
analysis and used Foldseek to query these structures against the AlphaFold/UniProt database. We
report the maximum TM-score returned per query; this represents the closest structural match to the
query structure.

Foldseek clustering To perform our clustering analysis, we again selected the best scRMSD struc-
ture of 10 candidates. Using Foldseek, these structures were then clustered along with all structures
from the PDB (209,850 structures). For PDB files with multiple chains, we selected the first one.

MODEL TRAINING WITH STRUCTURE-BASED SYNTHETIC DATA AUGMENTATION

Pretraining data preparation We first generated an initial set of 185 sequences per backbone
at temperature 0.2, producing a dataset with 44,553,550 sequences. To create the BBR-unfiltered
dataset, we randomly selected 42 sequences per backbone at temperature 0.2, yielding 10,114,860
sequences, removed exact duplicates, and then subsampled randomly to produce a dataset of 10M
sequences. To create the BBR-sc dataset, we removed any backbones with average scRMSD score
greater than 2Å, leaving 127,633 backbones. We randomly selected 80 sequences per backbone at
temperature 0.2, removed exact duplicates, and then subsampled randomly to produce a dataset of
10M sequences. To create the BBR-novel dataset, we removed any backbones with maximum TM-
score to any structure in the PDB larger than 0.5, leaving 138,044 backbones. We randomly sampled
74 sequences per backbone at temperature 0.2, removed exact duplicates, and then subsampled
randomly to produce a dataset of 10M sequences.

Model training For all experiments, we used a 170M parameter Jamba (Lieber et al., 2024) ar-
chitecture and trained with an autoregressive objective. Specifically, the model has 24 layers; every
eighth layer is a transformer module, with the remainder being Mamba modules (Gu & Dao, 2023).
Every other Mamba module uses mixture of experts with 16 experts instead of a dense layer. The
model dimension is 256, with intermediate layer widths of 1024 inside each transformer block. All
training runs used 8 NVIDIA A100 or 8 NVIDIA H100 GPUs. We used an inverse square root
scheduler with linear warmup of 10,000 steps, max learning rate of 4e-4, and no weight decay. We
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used the Adam optimizer with betas (0.9, 0.999). All models were trained for 76k steps on 8 H100
or A100 GPUs with adaptive batch sizes where every batch had at most 360k tokens per GPU.

We constructed combined natural-synthetic datasets by taking the union of a fixed training split of
UniRef50 from January 2024 (63,662,039 sequences) to each of the synthetic datasets described in
the “Pretraining data preparation” section. This produced training datasets of ∼73M sequences each.
We used the same training and testing splits for each experiment. We also trained baseline models
using UniRef50 and UniRef90 (184,520,055 sequences), with sampling by UniRef50 clusters. For
the UniRef90 model, one randomly-chosen member per UniRef50 cluster was seen per epoch.

MODEL EVALUATION

Fréchet protein distance (FPD) To estimate the divergence between distributions of protein se-
quences, we sampled 1024 sequences from each distribution, embedded them with the ProtBert (El-
naggar et al., 2022) model, and computed the earth mover’s distance

∥µ− µ′∥2 + Tr
(
Σ+ Σ′ − 2(ΣΣ′)

1
2

)
(1)

where µ and µ′ are average vectors in the ProtBert embedding space and Σ and Σ′ are covariance
matrices for the two sets of embeddings. Tr refers to the trace of this matrix.

In vitro characterization of unconditional generations Starting from 200 generations each from
the UR50 + BBR-novel and UR90 models (400 total), we selected 29 sequences from each model for
expression and further experimental characterization. Sequences were filtered out from the original
set if they were < 60 amino acids or > 1500 amino acids. We also filtered out sequences predicted
to have a signal peptide, mitochondrial transit peptide, or a transmembrane helix. Lastly, sequences
were also filtered out if they exhibited a GRAVY score > 0, an instability index > 70, or if the pI
was more than ±2 units of the buffer pH. These metrics were calculated using ProtParam (Walker,
2005). After filtering, there were 47 UR50+BBR sequences and 66 UR90 sequences remaining. We
randomly selected 29 from each set. These sequences were then expressed in two E. coli strains
(BL21-AI, a derivative of BL21, and BLR(DE3)). Protein abundance was quantified using SDS-
PAGE, and a protein was considered successfully expressed if any protein was detected at the correct
molecular weight by SDS-PAGE in the yield from any of the three strains.
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SUPPLEMENTARY FIGURES
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Figure S1: Structural diffusion models preferentially generate helical structures. (A) His-
tograms of percentage of residues called as stranded (x-axis) or helical (y-axis) for (A) n = 30, 000
generated synthetic backbones from BackboneRef and (B) n = 30, 000 randomly-selected struc-
tures for sequences in UniRef50, with structures downloaded from AlphaFold-DB.

Table S1: Numbers of clusters and structures for inferred clusters of different compositions.

Cluster composition Number clusters (% clusters) Number structures (% structures)

PDB only 21,350 (20.2%) 172,981 (38.4%)
PDB + BBRef 1,035 (1.0%) 103,656 (23.0%)
BBRef only 83,121 (78.8%) 174,043 (38.6%)
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Figure S2: Rarefaction analysis of inferred structural clusters from Foldseek. Foldseek was
used to cluster a dataset comprised of structures downloaded from the PDB concatenated to lowest
scRMSD predicted structures from BBR. Structures were resampled at varying frequency (either
across the whole dataset, grey, or only resampling BackboneRef samples, blue), and the number
of distinct Foldseek clusters was computed. Note that we do not recompute clusters at different
frequencies and instead resample the initial set of inferred Foldseek clusters.
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Figure S3: Average percentage of designable samples from BackboneRef by temperature, with
the percentage of designable BackboneRef samples computed as those with average scRMSD < 2Å
over 10 predicted structures at a given temperature.
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Figure S4: pLDDT distributions of OmegaFold-predicted structures for unconditional genera-
tions from models trained with U50+BBR-novel (n=29, blue) and without (n=29, grey) synthetic
data augmentation.
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