
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RESIDUAL STREAM ANALYSIS WITH MULTI-LAYER
SAES

Anonymous authors
Paper under double-blind review

ABSTRACT

Sparse autoencoders (SAEs) are a promising approach to interpreting the internal
representations of transformer language models. However, SAEs are usually trained
separately on each transformer layer, making it difficult to use them to study how
information flows across layers. To solve this problem, we introduce the multi-layer
SAE (MLSAE): a single SAE trained on the residual stream activation vectors from
every transformer layer. Given that the residual stream is understood to preserve
information across layers, we expected MLSAE latents to ‘switch on’ at a token
position and remain active at later layers. Interestingly, we find that individual
latents are often active at a single layer for a given token or prompt, but the layer at
which an individual latent is active may differ for different tokens or prompts. We
quantify these phenomena by defining a distribution over layers and considering
its variance. We find that the variance of the distributions of latent activations
over layers is about two orders of magnitude greater when aggregating over tokens
compared with a single token. For larger underlying models, the degree to which
latents are active at multiple layers increases, which is consistent with the fact
that the residual stream activation vectors at adjacent layers become more similar.
Finally, we relax the assumption that the residual stream basis is the same at every
layer by applying pre-trained tuned-lens transformations, but our findings remain
qualitatively similar. Our results represent a new approach to understanding how
representations change as they flow through transformers. We release our code to
train and analyze MLSAEs in the Supplementary Material.

1 INTRODUCTION

Sparse autoencoders (SAEs) learn interpretable directions or ‘features’ in the representation spaces
of language models (Elhage et al., 2022; Cunningham et al., 2023; Bricken et al., 2023). Typically,
SAEs are trained on the activation vectors from a single model layer (Gao et al., 2024; Templeton
et al., 2024; Lieberum et al., 2024). This approach illuminates the representations within a layer.
However, Olah (2024); Templeton et al. (2024) believe that models may encode meaningful concepts
by simultaneous activations in multiple layers, which SAEs trained at a single layer do not address.
Furthermore, it is not straightforward to automatically identify correspondences between features
from SAEs trained at different layers, which may complicate circuit analysis (e.g. He et al., 2024).

To solve this problem, we take inspiration from the residual stream perspective, which states that
transformers (Vaswani et al., 2017) selectively write information to and read information from token
positions with self-attention and MLP layers (Elhage et al., 2021; Ferrando et al., 2024). The results
of subsequent circuit analyses, like the explanation of the indirect object identification task presented
by Wang et al. (2022), support this viewpoint and cause us to expect the activation vectors at adjacent
layers in the residual stream to be relatively similar (Lad et al., 2024).

To capture the structure shared between layers in the residual stream, we introduce the multi-layer
SAE (MLSAE): a single SAE trained on the residual stream activation vectors from every layer of
a transformer language model. Importantly, the autoencoder itself has a single hidden layer – it is
multi-layer only in the sense that it is trained on activations from multiple layers of the underlying
transformer. In particular, we consider the activation vectors from each layer as separate training
examples, which is equivalent to training a single SAE at each layer individually but with the
parameters tied across layers. We briefly discuss alternative methods in Section 5.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Relative Layer

M
ea

n
C

os
in

e
Si

m
ila

ri
ty

Pythia-70m Pythia-160m
Pythia-410m Pythia-1b
Pythia-1.4b Pythia-2.8b

Figure 1: The mean cosine similarities between the residual stream activation vectors at adjacent
layers of transformers, over 10 million tokens from the test set. To compare transformers with
different numbers of layers, we divide the lower of each pair of adjacent layers by the number of
pairs. This ‘relative layer’ is the x-axis of the plot. We subtract the dataset mean from the activation
vectors at each layer before computing cosine similarities to control for changes in the norm between
layers (Heimersheim & Turner, 2023), which we demonstrate in Figure 4.

We show that multi-layer SAEs achieve comparable reconstruction error and downstream loss to
single-layer SAEs while allowing us to directly identify and analyze features that are active at multiple
layers (Section 4.1). When aggregating over a large sample of tokens, we find that individual latents
are likely to be active at multiple layers, and this measure increases with the number of latents.
However, for a single token, latent activations are more likely to be isolated to a single layer. For
larger underlying transformers, we show that the residual stream activation vectors at adjacent layers
are more similar and that the degree to which latents are active at multiple layers increases.

Finally, we relax the assumption that the residual stream basis is the same at every layer by applying
pre-trained tuned-lens transformations to activation vectors before passing them to the encoder.
Surprisingly, this does not obviously increase the extent of multi-layer latent activations.

2 RELATED WORK

A sparse code represents many signals, such as sensory inputs, by simultaneously activating a
relatively small number of elements, such as neurons (Olshausen & Field, 1996; Bell & Sejnowski,
1997). Sparse dictionary learning (SDL) approximates each input vector by a linear combination
of a relatively small number of learned basis vectors. The learned basis is usually overcomplete: it
has a greater dimension than the inputs. Independent Component Analysis (ICA) achieves this aim
by maximizing the statistical independence of the learned basis vectors by iterative optimization or
training (Bell & Sejnowski, 1995; 1997; Hyvärinen & Oja, 2000; Le et al., 2011). Sparse autoencoders
(SAEs) can be understood as ICA with the addition of a noise model optimized by gradient descent
(Lee et al., 2006; Ng, 2011; Makhzani & Frey, 2014)

The activations of language models have been hypothesized to be a dense, compressed version
of a sparse, expanded representation space (Elhage et al., 2021; 2022). Under this view, there
are interpretable directions in the dense representation spaces corresponding to distinct semantic
concepts, whereas their basis vectors (neurons) are ‘polysemantic’ (Park et al., 2023). It has been
shown theoretically (Wright & Ma, 2022) and empirically (Elhage et al., 2022; Sharkey et al., 2022;
Whittington et al., 2023) that SDL recovers ground-truth features in toy models, and that learned
dictionary elements are more interpretable than the basis vectors of language models (Cunningham
et al., 2023; Bricken et al., 2023) or dense embeddings (O’Neill et al., 2024). Notably, features are
not necessarily linear (Wattenberg & Viégas, 2024; Engels et al., 2024; Hernandez et al., 2024).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

0

5

L
ay

er

Pythia-70m

0

11

L
ay

er

Pythia-160m

0

23

L
ay

er

Pythia-410m

0

15

Latent

L
ay

er

Pythia-1b

Figure 2: Heatmaps of the distributions of latent activations over layers when aggregating over 10
million tokens from the test set. Here, we plot the distributions for MLSAEs trained on Pythia models
with an expansion factor of R = 64 and sparsity k = 32. The latents are sorted in ascending order of
the expected value of the layer index (Equation 10).

0

5

L
ay

er

Pythia-70m

0

11

L
ay

er

Pythia-160m

0

23

L
ay

er

Pythia-410m

0

15

Latent

L
ay

er

Pythia-1b

Figure 3: Heatmaps of the distributions of latent activations over layers for a single example prompt.
Here, we plot the distributions for MLSAEs trained on Pythia models with an expansion factor of
R = 64 and sparsity k = 32. The example prompt is “When John and Mary went to the store, John
gave” (Wang et al., 2022). We exclude latents with maximum activation below 1× 10−3 and sort
latents in ascending order of the expected value of the layer index (Equation 10).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The standard SAE architecture is a single hidden layer with a ReLU activation function and an L1

sparsity penalty in the training loss (Bricken et al., 2023), but various activation functions (Makhzani
& Frey, 2014; Konda et al., 2015; Rajamanoharan et al., 2024b;a) and objectives (Braun et al., 2024)
have been proposed. The prevailing approach is to train an SAE on the activation vectors from a
single transformer layer, except for Kissane et al. (2024), who concatenate the outputs of multiple
attention heads in a single layer, and Yun et al. (2021), who learn an undercomplete basis for the
residual stream at multiple layers, albeit by iterative optimization instead of with an autoencoder.

Mechanistic interpretability research often attempts to identify circuits: computational subgraphs
of neural networks that implement specific behaviors (Olah et al., 2020; Wang et al., 2022; Conmy
et al., 2023; Dunefsky et al., 2024; García-Carrasco et al., 2024; Marks et al., 2024). Representing
networks in terms of SAE latents may help to improve circuit discovery (He et al., 2024; O’Neill
& Bui, 2024), and these latents can be used to construct steering vectors (Subramani et al., 2022;
Templeton et al., 2024; Makelov, 2024), but it is unclear whether SAEs outperform baselines for
causal analysis (Chaudhary & Geiger, 2024; Huang et al., 2024). Importantly, SAEs can be scaled
up to the activations of large language models, where we expect the number of distinct semantic
concepts to be extremely large (Templeton et al., 2024; Gao et al., 2024; Lieberum et al., 2024).

The ‘logit lens’ is a method to interpret directions in the residual stream by projecting them onto
the vocabulary space to elicit token predictions, i.e., multiplying them by the unembedding matrix
(nostalgebraist, 2020). However, the residual stream basis is not fixed, so Belrose et al. (2023)
introduce the ‘tuned lens’ approach, where a linear transformation is learned for each layer in the
residual stream. The objective is to minimize the KL divergence between the probability distribution
over tokens generated by the transformed activations and the ‘true’ distribution of the model. This
approach draws on the perspective of iterative inference (Jastrzębski et al., 2018).

The key difference between previous work (Bricken et al., 2023; Cunningham et al., 2023; Templeton
et al., 2024; Gao et al., 2024) and our work is that we introduce the multi-layer SAE, i.e., we train a
single SAE at all layers of the residual stream.

3 METHODS

The key idea with a multi-layer SAE is to train a single SAE on the residual stream activation vectors
from every layer. In particular, we consider the activations at each layer to be different training
examples. Hence, for residual stream activation vectors of model dimension d, the inputs to the
multi-layer SAE also have dimension d. For nT tokens and nL layers, we train the multi-layer SAE
on nTnL activation vectors. We use the terms ‘SAE feature’ and ‘latent’ interchangeably.

3.1 SETUP

We train MLSAEs on GPT-style language models from the Pythia suite (Biderman et al., 2023).
We are primarily interested in the computation performed by self-attention and MLP layers on
intermediate representations (Valeriani et al., 2023). Hence, we take the residual stream activation
vectors after a given transformer block has been applied, excluding the input embeddings before the
first block and taking the last-layer activations before the final layer norm.

We use a k-sparse autoencoder (Makhzani & Frey, 2014; Gao et al., 2024), which directly controls
the sparsity of the latent space by introducing a TopK activation function that keeps only the k largest
latents. The k largest latents are almost always positive for k ≪ d, but we follow Gao et al. (2024)
in applying a ReLU activation function to guarantee non-negativity. This setup effectively fixes the
sparsity (L0 norm) of the latents at k per activation vector (layer and token) throughout training. For
input vectors x ∈ Rd and latent vectors h ∈ Rn, the encoder and decoder are defined by:

h = ReLU(TopK(Wencx− bpre)) (1)
x̂ = Wdech+ bpre (2)

where Wenc ∈ Rd×n, Wdec ∈ Rn×d, and bpre ∈ Rd. We constrain the pre-encoder bias bpre to be the
negative of the post-decoder bias, following Bricken et al. (2023); Gao et al. (2024), and standardize
activation vectors to zero mean and unit variance before passing them to the encoder.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 TRAINING

We use the fraction of variance unexplained (FVU) as the reconstruction error:

FVU(x, x̂) =
∥x− x̂∥22
Var(x)

(3)

Here, Var is the variance, treating x as a random vector, where the randomness is induced by
randomizing the token, producing different activation vectors. We chose the FVU because the input
vectors from different layers may have different magnitudes; choosing the mean squared error (MSE)
would encourage the autoencoder to prioritize minimizing the reconstruction errors of the layers with
the greatest magnitudes.

A potential issue when training SAEs is the occurrence of ‘dead’ latents, i.e., latent dimensions that
are almost always zero. With a k-sparse autoencoder, this means latent dimensions that almost never
appear among the k largest latent activations. We follow Bricken et al. (2023); Cunningham et al.
(2023) by considering a latent ‘dead’ if it is not activated within the last 10 million tokens during
training. In the multi-layer setting, a latent may be activated by the input vectors from any layer.

Gao et al. (2024, Appendix A.2) propose an auxiliary loss term to minimize the occurrence of dead
latents. This AuxK term models the MSE reconstruction error using the kaux largest dead latents:

AuxK(x, x̂) = ∥e− ê∥22 (4)

Here, e = x− x̂ is the reconstruction error of the main model, and ê is its reconstruction using the
top-kaux dead latents. Let Dead be an ‘activation function’ that keeps only the dead latents. Then:

hdead = ReLU(TopKaux(Dead(Wencx− bpre))) (5)
ê = Wdechdead + bpre (6)

The full loss is the FVU plus the auxiliary loss term, multiplied by a small coefficient α:

L = FVU(x, x̂) + α ·AuxK(x, x̂) (7)

Following Gao et al. (2024), we choose kaux as a power of 2 close to d/2 and α = 1/32.

Our hyperparameters are the expansion factor R = n/d, the ratio of the number of latents to the model
dimension, and the sparsity k, the number of largest latents to keep in the TopK activation function.
We choose expansion factors as powers of 2 between 1 and 256, yielding autoencoders with between
512 and 131072 latents for Pythia-70m, and k as powers of 2 between 16 and 512 (Appendix B).

The computational expense of training a single multi-layer SAE on nL layers of the residual stream
is approximately the same as training nL single-layer SAEs on the same number of tokens. We ran
most experiments on a single NVIDIA GeForce RTX 3090 GPU for between 12 and 24 hours; we ran
the largest experiments (e.g., with Pythia-1b or an expansion factor of R = 256) on a single NVIDIA
A100 80GB GPU for up to three days.

The implementation is based on Gao et al. (2023); Belrose (2024); see Appendix A for details.

3.3 TUNED LENS

In the tuned lens method, an affine transformation is learned from the output space of layer ℓ to the
output space of the final layer, called the translator for layer ℓ (Belrose et al., 2023). With our setup,
we want to transform the residual stream activation vectors at each layer into more similar bases
before passing them to the encoder and invert that transformation after the decoder.

Importantly, the authors note that their implementation1 uses a residual connection:

x′ = x+ (Wlensx+ blens) (8)

Here, x is the input vector to the encoder, and x′ is the transformed input vector. This parameterization
ensures that L2 regularization (weight decay) pushes the transformation towards the identity matrix
instead of zero. Hence, to invert the transformation, we need:

x̂ = (I+Wlens)
−1(x̂′ − blens) (9)

1https://github.com/AlignmentResearch/tuned-lens, file: tuned_lens/nn/lenses.py

5

https://github.com/AlignmentResearch/tuned-lens/blob/550644a07ed193007d006797b1ffe15d0a5c0cd2/tuned_lens/nn/lenses.py#L306-L311

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Model Pythia-70m Pythia-160m Pythia-410m Pythia-1b GPT-2 small

FVU 0.097 0.106 0.081 0.095 0.093
MSE 0.103 0.105 0.113 0.455 5.782
L1 Norm 66 76 85 110 197
Delta CE Loss 0.565 0.432 0.414 0.404 0.759
KL Divergence 1.621 · 103 1.217 · 103 1.105 · 103 1.057 · 103 1.023 · 103

(a) Without tuned lens

Model Pythia-70m Pythia-160m Pythia-410m

FVU 0.030 0.088 0.073
MSE 0.838 0.404 0.133
L1 Norm 61 90 80
Delta CE Loss 0.274 −0.080 0.827
KL Divergence 2.718 · 103 1.962 · 103 1.448 · 103

(b) With tuned lens

Table 1: The mean reconstruction error and downstream loss metrics for MLSAEs trained on Pythia
models with an expansion factor of R = 64 and sparsity k = 32, over 1 million tokens from the test
set. We provide further details in Appendix B.

In Eq. 9, x̂′ is the transformed output vector of the decoder, x̂ is the output vector, Wlens ∈ Rd×d, and
blens ∈ Rd. With our setup, x′ and x̂′ replace the input and output vectors that we pass to the encoder
and use to compute the loss. Notably, we use the transformed vectors to compute reconstruction
errors (Figure 12). We compute the inverse (I+Wlens)

−1 for each layer once at the start of training.

We use pre-trained tuned lenses provided by the authors of Belrose et al. (2023). Notably, these did
not include Pythia-1b at the time of writing.2

4 RESULTS

4.1 EVALUATION

The key advantage of a multi-layer SAE is to be able to study how information flows across layers in
the residual stream. However, this approach is only useful if the MLSAE performs comparably to
single-layer SAEs. The FVU reconstruction error in the loss (Section 3.2) is a proxy for the degree to
which an SAE explains the behavior of the underlying model. Hence, we also measure the increase
in the cross-entropy loss when the residual stream activations at a given layer are replaced by their
reconstruction, following Braun et al. (2024); Gao et al. (2024); Lieberum et al. (2024).

Table 1 summarizes the evaluation results for MLSAEs trained on Pythia models with our default
hyperparameters. The FVU, delta cross-entropy (CE) loss, and KL divergence remain consistent
across model sizes. In most cases, applying tuned-lens transformations decreases the FVU and delta
CE loss but not the KL divergence (see Section 4.4 and Figure 12). We provide results for other
hyperparameters and breakdowns by the layer of the input activation vectors in Appendix B.

4.2 REPRESENTATION DRIFT

Guided by the residual stream perspective (Elhage et al., 2021; Ferrando et al., 2024), we expected
dense activation vectors to be relatively similar across layers. As an approximate measure of the
degree to which information is preserved in the residual stream, we computed the cosine similarities
between the activation vectors at adjacent layers, similarly to Lad et al. (2024, Appendix A).

2https://huggingface.co/spaces/AlignmentResearch/tuned-lens

6

https://huggingface.co/spaces/AlignmentResearch/tuned-lens

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

100

200

Relative Layer

M
ea

n
L

2
N

or
m

Pythia-70m Pythia-160m
Pythia-410m Pythia-1b
Pythia-1.4b Pythia-2.8b

Figure 4: The mean L2 norm of the residual stream activation vectors at every layer, over 10 million
tokens from the test set. To compare transformers with different numbers of layers, we divide the
layer index ℓ by the number of layers nL. This ‘relative layer’ is the x-axis of the plot.

A similarity of one means that the information represented at a token position is unchanged by the
intervening residual block, whereas a similarity of zero means the activation vectors on either side of
the block are orthogonal. We had expected changes in the residual stream to become smaller as the
model size increased, and we confirmed that the mean cosine similarities increased as the model size
increased (Figure 1).

Given that the residual stream activation vectors are relatively similar between adjacent layers, we
expected to find many MLSAE latents active at multiple layers. We confirmed this prediction over
a large sample of 10 million tokens from the test set (Figure 2). Interestingly, we found that for
individual prompts, a much greater proportion of latents are active at only a single layer (Figure 3).

Following Heimersheim & Turner (2023), we verified that the mean L2 norm of the activation vectors
increases across layers, which prompted us to center the vectors at each layer before computing the
similarities between them (Figure 4).

4.3 LATENT DISTRIBUTIONS OVER LAYERS

Given a dataset and MLSAE, each combination of a token and latent produces a distribution of
activations over layers. We want to understand the degree to which the variance of that distribution
depends on the token versus the latent to quantify the intuition gleaned from Figures 2 and 3.

Consider the layer index L, token T , and latent index J to be random variables. We take P (J) to be
a uniform discrete distribution, P (T | J) to be a uniform discrete distribution over tokens for which
the latent is active (at any layer), and L to be sampled from a conditional distribution proportional to
the total latent activation at that layer, aggregating over tokens:

P (L = ℓ | T = t, J = j) =
hj(xt,ℓ)∑
ℓ′ hj(xt,ℓ′)

(10)

Here, xt,ℓ is the dense residual stream activation vector at token t and layer ℓ, while hj(xt,ℓ) is the
activation of the j-th MLSAE latent at that token and layer.

We order latents in all heatmaps using the expected value of the layer index for a single latent
E[L | J = j]. The variance of the distribution over layers measures the degree to which a latent is
active at a single layer (in which case, it is zero) versus multiple layers (in which case, it is positive).
We are interested in the following variances of the distribution over layers:

• Var[L | J = j, T = t], for a single latent and token

• Var[L | J = j], for a single latent, aggregating over tokens

• Var[L], aggregating over both latents and tokens

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pythia-70m

Pythia-160m

Pythia-410m

Pythia-1b

GPT2-small

Variance for one latent, aggregating over tokens, as a proportion of the total variance over all latents

Standard
Tuned lens

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12

Pythia-70m

Pythia-160m

Pythia-410m

Pythia-1b

GPT2-small

Variance for one token and latent as a proportion of the total variance for that latent

Standard
Tuned lens

Figure 5: The fraction of the total variance explained by individual latents and the fraction of the
variance for an individual latent explained by individual tokens (Equations 11 and 12) for MLSAEs
with an expansion factor of R = 64 and sparsity k = 32, over 10 million tokens from the test set.
Importantly, the absence of bars for tuned-lens MLSAEs trained on Pythia-1b and GPT-2 small
indicates the absence of results, not that the values are zero.

These quantities are related by the law of total variance (see Appendix E.1). For the moment, we note
that the variance of the distribution over layers naturally depends on the number of layers nL. Hence,
to compare different models, we look at ratios between these variances:

Variance for one latent, aggregating over tokens,
as a proportion of the total variance over all latents =

E[Var(L | J)]
Var(L)

(11)

Variance for one token and latent as a
proportion of the total variance for that latent =

E[Var(L | J, T)]
E[Var(L | J)] (12)

The former measures the degree to which latents are active at multiple layers when aggregating over
tokens, and the latter compares this to the case for a single token.

The degree to which latents are active at multiple layers when aggregating over tokens is relatively
large, between 54 and 86%, and increases uniformly with the model size for fixed hyperparameters
(Figure 5). This measure quantifies the observation that, in the aggregate heatmaps (Figure 2), the
distributions of latent activations over layers become more ‘spread out’ as the model size increases.
Conversely, we find that the fraction of the variance for an individual latent explained by individual
tokens is very small, about 1%. This quantifies the observation that, in the single-prompt heatmaps
(Figure 3), the distributions over layers are much less ‘spread out’ than in the aggregate heatmaps.

4.4 TUNED LENS

Thus far, we have assumed that the residual stream basis is the same at every layer. We relaxed this
assumption by applying pre-trained tuned-lens transformations to the residual stream activations
at each layer before the encoder (Section 3.3). We had expected that these transformations would
increase the degree to which latents were active at multiple layers because they translate the activations
at every layer into a basis more similar to the basis of the output layer. The aggregate and single-
prompt heatmaps (Figures 6 and 7) indicate a modest increase in the degree to which latents are
active at multiple layers compared with the standard approach.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0

5

L
ay

er

Pythia-70m with tuned lens

0

11

L
ay

er

Pythia-160m with tuned lens

0

23

Latent

L
ay

er

Pythia-410m with tuned lens

Figure 6: Heatmaps of the distributions of latent activations over layers when aggregating over 10
million tokens from the test set. Here, we plot the distributions for tuned-lens MLSAEs trained on
Pythia models with an expansion factor of R = 64 and sparsity k = 32. For standard MLSAEs, see
Figure 2. We note that a pre-trained tuned lens was not available for Pythia-1b (Section 3.3).

0

5

L
ay

er

Pythia-70m with tuned lens

0

11

L
ay

er

Pythia-160m with tuned lens

0

23

Latent

L
ay

er

Pythia-410m with tuned lens

Figure 7: Heatmaps of the distributions of latent activations over layers for a single example prompt.
Here, we plot the distributions for tuned-lens MLSAEs trained on Pythia models with an expansion
factor of R = 64 and sparsity k = 32. The example prompt is “When John and Mary went to the
store, John gave” (Wang et al., 2022). For standard MLSAEs, see Figure 3. We note that a pre-trained
tuned lens was not available for Pythia-1b (Section 3.3).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

The variance ratios in Figures 5 and 22 clarify that the tuned-lens approach decreases the degree
to which latents are active at multiple layers when aggregating over tokens. This ratio remains
approximately constant as the expansion factor increases (between 37% and 41%). Conversely, the
variances for a single token relative to a single latent are larger, i.e., the single-prompt heatmaps are
more ‘spread out’ compared with the standard approach, except for Pythia-410m.

5 DISCUSSION

We considered the activation vectors from different layers as different training examples, so we
passed nLnT vectors of length d to the autoencoder, where nT is the number of tokens, nL is the
number of layers, and d is the dimension of the residual stream. This approach might be called a
‘data-stacked’ MLSAE. An alternative would be a ‘feature-stacked’ MLSAE, i.e., to concatenate the
activation vectors from different layers into a single vector of dimension nLd. This alternative might
be better suited to capturing the notion of ‘cross-layer superposition,’ which we take to mean a small
number of simultaneously active sparse features at multiple layers encoding a single meaningful
concept (Olah, 2024; Templeton et al., 2024).

We began by pursuing the feature-stacked approach but discarded it. The essential issue is that a single
set of sparse features describes the residual stream activations at every layer, which makes it difficult
to understand how information flows through a transformer. For example, it would not be possible
to plot the activations of sparse features across layers. Moreover, to compute this set of features,
one must first compute the activations at every layer, which makes it more difficult to evaluate
performance by traditional measures like single-layer reconstruction errors. Finally, the information
encoded at one token position may differ substantially between layers due to self-attention. In the
early layers, the representation is likely to primarily encode the input token and position embedding,
whereas in the later layers, the representation may encode more complex properties of the surrounding
context. It is not immediately apparent that jointly encoding this information by a single SAE is
sensible. Instead, one might wish to separately capture the different information present at a token
position across layers, which is allowed with our data-stacked approach.

6 CONCLUSION

We introduced the multi-layer SAE (MLSAE), where we train a single SAE on the activations at
every layer of the residual stream. This allowed us to study both how information is represented
within a single transformer layer and how information flows through the residual stream.

We confirmed that residual stream activations are relatively similar across layers by looking at cosine
similarities before considering the distributions of latent activations over layers. When aggregating
over a large sample of ten million tokens, we observed that most latents were active at multiple
layers, but for a single prompt, most latent activations were isolated to a single layer. To quantify
these observations, we computed the fraction of the total variance explained by individual latents
and the fraction of the variance for an individual latent explained by individual tokens. This analysis
confirmed that the degree to which latents are active at multiple layers when aggregating over tokens
was large, increasing with the model size and expansion factor, and that the fraction of the variance
explained by individual tokens was small.

Understanding how representations change as they flow through transformers is critical to identifying
meaningful circuits, which is a core task of mechanistic interpretability. Despite the utility of
the residual stream perspective, our results demonstrate that representation drift, and perhaps the
increasing magnitude of changes to the residual stream across layers, is a significant obstacle to
identifying meaningful computational variables with SAEs. Nevertheless, we argue that an approach
such as the MLSAE, which considers the representations at multiple layers in parallel, is necessary
for future methods that seek to interpret the internal computations of transformer language models.

REFERENCES

Anthony J. Bell and Terrence J. Sejnowski. An Information-Maximization Approach to Blind
Separation and Blind Deconvolution. Neural Computation, 7(6):1129–1159, November 1995.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ISSN 0899-7667. doi: 10.1162/neco.1995.7.6.1129. URL https://ieeexplore.ieee.org/ab
stract/document/6796129. Conference Name: Neural Computation.

Anthony J. Bell and Terrence J. Sejnowski. The “independent components” of natural scenes
are edge filters. Vision Research, 37(23):3327–3338, December 1997. ISSN 0042-6989. doi:
10.1016/S0042-6989(97)00121-1. URL https://www.sciencedirect.com/science/articl
e/pii/S0042698997001211.

Nora Belrose. EleutherAI/sae, May 2024. URL https://github.com/EleutherAI/sae.

Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney, Stella
Biderman, and Jacob Steinhardt. Eliciting Latent Predictions from Transformers with the Tuned
Lens, November 2023. URL http://arxiv.org/abs/2303.08112. arXiv:2303.08112 [cs].

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien,
Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, Usvsn Sai Prashanth, Edward Raff,
Aviya Skowron, Lintang Sutawika, and Oskar Van Der Wal. Pythia: A Suite for Analyzing
Large Language Models Across Training and Scaling. In Proceedings of the 40th International
Conference on Machine Learning, pp. 2397–2430. PMLR, July 2023. URL https://proceedi
ngs.mlr.press/v202/biderman23a.html. ISSN: 2640-3498.

Dan Braun, Jordan Taylor, Nicholas Goldowsky-Dill, and Lee Sharkey. Identifying Functionally
Important Features with End-to-End Sparse Dictionary Learning, May 2024. URL http://arxiv.
org/abs/2405.12241. arXiv:2405.12241 [cs].

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, and Amanda Askell. Towards Monosemanticity: Decomposing
Language Models With Dictionary Learning, 2023. URL https://transformer-circuits.pu
b/2023/monosemantic-features.

Maheep Chaudhary and Atticus Geiger. Evaluating Open-Source Sparse Autoencoders on Disentan-
gling Factual Knowledge in GPT-2 Small, September 2024. URL http://arxiv.org/abs/2409
.04478. arXiv:2409.04478 [cs].

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià Garriga-
Alonso. Towards Automated Circuit Discovery for Mechanistic Interpretability. Advances in
Neural Information Processing Systems, 36:16318–16352, December 2023. URL https://proc
eedings.neurips.cc/paper_files/paper/2023/hash/34e1dbe95d34d7ebaf99b9bcaeb5b
2be-Abstract-Conference.html.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse Au-
toencoders Find Highly Interpretable Features in Language Models, October 2023. URL
http://arxiv.org/abs/2309.08600. arXiv:2309.08600 [cs].

Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders Find Interpretable LLM Feature
Circuits, June 2024. URL http://arxiv.org/abs/2406.11944. arXiv:2406.11944 [cs].

Nelson Elhage, Neel Nanda, Catherine Olsson, T. Henighan, N. Joseph, B. Mann, A. Askell, Y. Bai,
A. Chen, and T. Conerly. A Mathematical Framework for Transformer Circuits, 2021. URL
https://transformer-circuits.pub/2021/framework/index.html.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,
Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy Models of Super-
position, September 2022. URL http://arxiv.org/abs/2209.10652. arXiv:2209.10652
[cs].

Joshua Engels, Isaac Liao, Eric J. Michaud, Wes Gurnee, and Max Tegmark. Not All Language Model
Features Are Linear, May 2024. URL http://arxiv.org/abs/2405.14860. arXiv:2405.14860
[cs].

Javier Ferrando, Gabriele Sarti, Arianna Bisazza, and Marta R. Costa-jussà. A Primer on the Inner
Workings of Transformer-based Language Models, May 2024. URL http://arxiv.org/abs/24
05.00208. arXiv:2405.00208 [cs].

11

https://ieeexplore.ieee.org/abstract/document/6796129
https://ieeexplore.ieee.org/abstract/document/6796129
https://www.sciencedirect.com/science/article/pii/S0042698997001211
https://www.sciencedirect.com/science/article/pii/S0042698997001211
https://github.com/EleutherAI/sae
http://arxiv.org/abs/2303.08112
https://proceedings.mlr.press/v202/biderman23a.html
https://proceedings.mlr.press/v202/biderman23a.html
http://arxiv.org/abs/2405.12241
http://arxiv.org/abs/2405.12241
https://transformer-circuits.pub/2023/monosemantic-features
https://transformer-circuits.pub/2023/monosemantic-features
http://arxiv.org/abs/2409.04478
http://arxiv.org/abs/2409.04478
https://proceedings.neurips.cc/paper_files/paper/2023/hash/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Abstract-Conference.html
http://arxiv.org/abs/2309.08600
http://arxiv.org/abs/2406.11944
https://transformer-circuits.pub/2021/framework/index.html
http://arxiv.org/abs/2209.10652
http://arxiv.org/abs/2405.14860
http://arxiv.org/abs/2405.00208
http://arxiv.org/abs/2405.00208

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The
Pile: An 800GB Dataset of Diverse Text for Language Modeling, December 2020. URL http:
//arxiv.org/abs/2101.00027. arXiv:2101.00027 [cs].

Leo Gao, Tom Dupré la Tour, and Jeffrey Wu. openai/sparse_autoencoder, December 2023. URL
https://github.com/openai/sparse_autoencoder.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders, June 2024. URL http:
//arxiv.org/abs/2406.04093. arXiv:2406.04093 [cs].

Jorge García-Carrasco, Alejandro Maté, and Juan Carlos Trujillo. How does GPT-2 Predict
Acronyms? Extracting and Understanding a Circuit via Mechanistic Interpretability. In Proceed-
ings of The 27th International Conference on Artificial Intelligence and Statistics, pp. 3322–3330.
PMLR, April 2024. URL https://proceedings.mlr.press/v238/garcia-carrasco24a.h
tml. ISSN: 2640-3498.

Zhengfu He, Xuyang Ge, Qiong Tang, Tianxiang Sun, Qinyuan Cheng, and Xipeng Qiu. Dictionary
Learning Improves Patch-Free Circuit Discovery in Mechanistic Interpretability: A Case Study
on Othello-GPT, February 2024. URL http://arxiv.org/abs/2402.12201. arXiv:2402.12201
[cs].

Stefan Heimersheim and Alex Turner. Residual stream norms grow exponentially over the forward
pass, May 2023. URL https://www.alignmentforum.org/posts/8mizBCm3dyc432nK8/res
idual-stream-norms-grow-exponentially-over-the-forward.

Evan Hernandez, Arnab Sen Sharma, Tal Haklay, Kevin Meng, Martin Wattenberg, Jacob Andreas,
Yonatan Belinkov, and David Bau. Linearity of Relation Decoding in Transformer Language
Models, February 2024. URL http://arxiv.org/abs/2308.09124. arXiv:2308.09124 [cs].

Jing Huang, Zhengxuan Wu, Christopher Potts, Mor Geva, and Atticus Geiger. RAVEL: Evaluating
Interpretability Methods on Disentangling Language Model Representations, August 2024. URL
http://arxiv.org/abs/2402.17700. arXiv:2402.17700 [cs].

A. Hyvärinen and E. Oja. Independent component analysis: algorithms and applications. Neural
Networks, 13(4):411–430, June 2000. ISSN 0893-6080. doi: 10.1016/S0893-6080(00)00026-5.
URL https://www.sciencedirect.com/science/article/pii/S0893608000000265.

Stanisław Jastrzębski, Devansh Arpit, Nicolas Ballas, Vikas Verma, Tong Che, and Yoshua Bengio.
Residual Connections Encourage Iterative Inference, March 2018. URL http://arxiv.org/ab
s/1710.04773. arXiv:1710.04773 [cs].

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, January 2017.
URL http://arxiv.org/abs/1412.6980. arXiv:1412.6980 [cs].

Connor Kissane, Robert Krzyzanowski, Joseph Isaac Bloom, Arthur Conmy, and Neel Nanda.
Interpreting Attention Layer Outputs with Sparse Autoencoders. June 2024. URL https:
//openreview.net/forum?id=fewUBDwjji.

Kishore Konda, Roland Memisevic, and David Krueger. Zero-bias autoencoders and the benefits of
co-adapting features, April 2015. URL http://arxiv.org/abs/1402.3337. arXiv:1402.3337
[cs, stat].

Vedang Lad, Wes Gurnee, and Max Tegmark. The Remarkable Robustness of LLMs: Stages of
Inference?, June 2024. URL http://arxiv.org/abs/2406.19384. arXiv:2406.19384 [cs].

Quoc Le, Alexandre Karpenko, Jiquan Ngiam, and Andrew Ng. ICA with Reconstruction Cost for
Efficient Overcomplete Feature Learning. In Advances in Neural Information Processing Systems,
volume 24. Curran Associates, Inc., 2011. URL https://proceedings.neurips.cc/paper/2
011/hash/233509073ed3432027d48b1a83f5fbd2-Abstract.html.

12

http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027
https://github.com/openai/sparse_autoencoder
http://arxiv.org/abs/2406.04093
http://arxiv.org/abs/2406.04093
https://proceedings.mlr.press/v238/garcia-carrasco24a.html
https://proceedings.mlr.press/v238/garcia-carrasco24a.html
http://arxiv.org/abs/2402.12201
https://www.alignmentforum.org/posts/8mizBCm3dyc432nK8/residual-stream-norms-grow-exponentially-over-the-forward
https://www.alignmentforum.org/posts/8mizBCm3dyc432nK8/residual-stream-norms-grow-exponentially-over-the-forward
http://arxiv.org/abs/2308.09124
http://arxiv.org/abs/2402.17700
https://www.sciencedirect.com/science/article/pii/S0893608000000265
http://arxiv.org/abs/1710.04773
http://arxiv.org/abs/1710.04773
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=fewUBDwjji
https://openreview.net/forum?id=fewUBDwjji
http://arxiv.org/abs/1402.3337
http://arxiv.org/abs/2406.19384
https://proceedings.neurips.cc/paper/2011/hash/233509073ed3432027d48b1a83f5fbd2-Abstract.html
https://proceedings.neurips.cc/paper/2011/hash/233509073ed3432027d48b1a83f5fbd2-Abstract.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Ng. Efficient sparse coding algorithms.
In Advances in Neural Information Processing Systems, volume 19. MIT Press, 2006. URL
https://proceedings.neurips.cc/paper_files/paper/2006/hash/2d71b2ae158c7c591
2cc0bbde2bb9d95-Abstract.html.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma Scope: Open Sparse
Autoencoders Everywhere All At Once on Gemma 2, August 2024. URL http://arxiv.org/ab
s/2408.05147. arXiv:2408.05147 [cs].

Aleksandar Makelov. Sparse Autoencoders Match Supervised Features for Model Steering on the
IOI Task. June 2024. URL https://openreview.net/forum?id=JdrVuEQih5.

Alireza Makhzani and Brendan Frey. k-Sparse Autoencoders, March 2014. URL http://arxiv.or
g/abs/1312.5663. arXiv:1312.5663 [cs].

Samuel Marks, Can Rager, Eric J. Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
Sparse Feature Circuits: Discovering and Editing Interpretable Causal Graphs in Language Models,
March 2024. URL http://arxiv.org/abs/2403.19647. arXiv:2403.19647 [cs].

Andrew Ng. Sparse autoencoder, 2011. URL https://graphics.stanford.edu/courses/cs23
3-21-spring/ReferencedPapers/SAE.pdf.

nostalgebraist. Interpreting GPT: the logit lens, August 2020. URL https://www.lesswrong.com/
posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens.

Chris Olah. The Next Five Hurdles, July 2024. URL https://transformer-circuits.pub/2024
/july-update/index.html#hurdles.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom In: An Introduction to Circuits. Distill, 5(3), March 2020. ISSN 2476-0757. doi: 10.23915
/distill.00024.001. URL https://distill.pub/2020/circuits/zoom-in.

Bruno A. Olshausen and David J. Field. Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature, 381(6583):607–609, June 1996. ISSN 1476-
4687. doi: 10.1038/381607a0. URL https://www.nature.com/articles/381607a0. Publisher:
Nature Publishing Group.

Charles O’Neill and Thang Bui. Sparse Autoencoders Enable Scalable and Reliable Circuit Iden-
tification in Language Models, May 2024. URL http://arxiv.org/abs/2405.12522.
arXiv:2405.12522 [cs].

Charles O’Neill, Christine Ye, Kartheik Iyer, and John F. Wu. Disentangling Dense Embed-
dings with Sparse Autoencoders, August 2024. URL http://arxiv.org/abs/2408.00657.
arXiv:2408.00657 [cs].

Kiho Park, Yo Joong Choe, and Victor Veitch. The Linear Representation Hypothesis and the
Geometry of Large Language Models, November 2023. URL http://arxiv.org/abs/2311.0
3658. arXiv:2311.03658 [cs, stat].

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
Models are Unsupervised Multitask Learners, 2019. URL https://cdn.openai.com/better-l
anguage-models/language_models_are_unsupervised_multitask_learners.pdf.

Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, Janos
Kramar, Rohin Shah, and Neel Nanda. Improving Sparse Decomposition of Language Model
Activations with Gated Sparse Autoencoders. June 2024a. URL https://openreview.net/for
um?id=Ppj5KvzU8Q.

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, János
Kramár, and Neel Nanda. Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU
Sparse Autoencoders, July 2024b. URL http://arxiv.org/abs/2407.14435. arXiv:2407.14435
[cs].

13

https://proceedings.neurips.cc/paper_files/paper/2006/hash/2d71b2ae158c7c5912cc0bbde2bb9d95-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2006/hash/2d71b2ae158c7c5912cc0bbde2bb9d95-Abstract.html
http://arxiv.org/abs/2408.05147
http://arxiv.org/abs/2408.05147
https://openreview.net/forum?id=JdrVuEQih5
http://arxiv.org/abs/1312.5663
http://arxiv.org/abs/1312.5663
http://arxiv.org/abs/2403.19647
https://graphics.stanford.edu/courses/cs233-21-spring/ReferencedPapers/SAE.pdf
https://graphics.stanford.edu/courses/cs233-21-spring/ReferencedPapers/SAE.pdf
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://transformer-circuits.pub/2024/july-update/index.html#hurdles
https://transformer-circuits.pub/2024/july-update/index.html#hurdles
https://distill.pub/2020/circuits/zoom-in
https://www.nature.com/articles/381607a0
http://arxiv.org/abs/2405.12522
http://arxiv.org/abs/2408.00657
http://arxiv.org/abs/2311.03658
http://arxiv.org/abs/2311.03658
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://openreview.net/forum?id=Ppj5KvzU8Q
https://openreview.net/forum?id=Ppj5KvzU8Q
http://arxiv.org/abs/2407.14435

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Lee Sharkey, Dan Braun, and Beren Millidge. Taking features out of superposition with sparse
autoencoders, December 2022. URL https://www.alignmentforum.org/posts/z6QQJbtpkEA
X3Aojj/interim-research-report-taking-features-out-of-superposition.

Nishant Subramani, Nivedita Suresh, and Matthew Peters. Extracting Latent Steering Vectors from
Pretrained Language Models. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.),
Findings of the Association for Computational Linguistics: ACL 2022, pp. 566–581, Dublin, Ireland,
May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-acl.48.
URL https://aclanthology.org/2022.findings-acl.48.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen, Adam
Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L. Turner,
Callum McDougall, Monte MacDiarmid, Alex Tamkin, Esin Durmus, Tristan Hume, Francesco
Mosconi, C. Daniel Freeman, Theodore R. Sumers, Edward Rees, Joshua Batson, Adam Jermyn,
Shan Carter, Chris Olah, and Tom Henighan. Scaling Monosemanticity: Extracting Interpretable
Features from Claude 3 Sonnet, May 2024. URL https://transformer-circuits.pub/2024
/scaling-monosemanticity/index.html.

Lucrezia Valeriani, Diego Doimo, Francesca Cuturello, Alessandro Laio, Alessio Ansuini, and
Alberto Cazzaniga. The geometry of hidden representations of large transformer models. Advances
in Neural Information Processing Systems, 36:51234–51252, December 2023. URL https:
//proceedings.neurips.cc/paper_files/paper/2023/hash/a0e66093d7168b40246af1c
ddc025daa-Abstract-Conference.html.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is All you Need. In Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://papers.nips.cc
/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 small, November 2022.
URL http://arxiv.org/abs/2211.00593. arXiv:2211.00593 [cs].

Martin Wattenberg and Fernanda Viégas. Relational Composition in Neural Networks: A Survey and
Call to Action. June 2024. URL https://openreview.net/forum?id=zzCEiUIPk9.

James C. R. Whittington, Will Dorrell, Surya Ganguli, and Timothy E. J. Behrens. Disentanglement
with Biological Constraints: A Theory of Functional Cell Types, March 2023. URL http:
//arxiv.org/abs/2210.01768. arXiv:2210.01768 [cs, q-bio].

John Wright and Yi Ma. High-Dimensional Data Analysis with Low-Dimensional Models: Principles,
Computation, and Applications. Cambridge University Press, 1 edition, January 2022. ISBN
978-1-108-77930-2 978-1-108-48973-7. doi: 10.1017/9781108779302. URL https://www.camb
ridge.org/highereducation/product/9781108779302/book.

Zeyu Yun, Yubei Chen, Bruno Olshausen, and Yann LeCun. Transformer visualization via dictionary
learning: contextualized embedding as a linear superposition of transformer factors. In Eneko
Agirre, Marianna Apidianaki, and Ivan Vulić (eds.), Proceedings of Deep Learning Inside Out
(DeeLIO): The 2nd Workshop on Knowledge Extraction and Integration for Deep Learning
Architectures, pp. 1–10, Online, June 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.deelio-1.1. URL https://aclanthology.org/2021.deelio-1.1.

14

https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://aclanthology.org/2022.findings-acl.48
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/a0e66093d7168b40246af1cddc025daa-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/a0e66093d7168b40246af1cddc025daa-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/a0e66093d7168b40246af1cddc025daa-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://arxiv.org/abs/2211.00593
https://openreview.net/forum?id=zzCEiUIPk9
http://arxiv.org/abs/2210.01768
http://arxiv.org/abs/2210.01768
https://www.cambridge.org/highereducation/product/9781108779302/book
https://www.cambridge.org/highereducation/product/9781108779302/book
https://aclanthology.org/2021.deelio-1.1

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A TRAINING

We train each autoencoder on 1 billion tokens from the Pile (Gao et al., 2020), excluding the
copyrighted Books3 dataset,3 for a single epoch. Specifically, we concatenate a batch of 1024 text
samples with the end-of-sentence token, tokenize the concatenated text, and divide the output into
sequences of 2048 tokens, discarding the final incomplete sequence. We use an effective batch size
of 131072 tokens (64 sequences) for all experiments.

We do not compute activation vectors and cache them to disk before training, which minimizes
storage overhead at the expense of repeated computation. We construct a batch of activation vectors to
input to the autoencoder by performing the forward pass of the underlying transformer for a sequence
of tokens, collecting the residual stream activation vectors at every layer, and stacking them together.
Following Lieberum et al. (2024), we exclude activation vectors corresponding to special tokens
(end-of-sentence, beginning-of-sentence, and padding). Hence, each batch has an equal number of
activation vectors from each layer, which is the number of non-special tokens.

Following the optimization guidelines in Bricken et al. (2023); Gao et al. (2024), we initialize the
pre-encoder bias bpre to the geometric median of the first training batch; we initialize the decoder
weight matrix Wdec to the transpose of the encoder Wenc; we scale the decoder weight vectors to unit
norm at initialization and after each training step; and we remove the component of the gradient of
the decoder weight matrix parallel to its weight vectors after each training step.

We use the Adam optimizer (Kingma & Ba, 2017) with the default β parameters, a constant learning
rate of 1× 10−4, and ϵ = 6.25× 10−10. Unlike Gao et al. (2024), we do not use gradient clipping or
weight averaging, and we use FP16 mixed precision to reduce memory use.

B EVALUATION

B.1 RECONSTRUCTION ERROR AND SPARSITY

While we use the FVU instead of MSE as the reconstruction error in the training loss, we record both
metrics for the inputs from each transformer layer and the mean over all layers (Figure 8). The L0

norm of the latents is fixed at k per activation vector (layer and token), but we record the L1 norm
(Figure 9). We report the values of these metrics over one million tokens from the test set.

For Pythia-70m, the FVU at each layer is comparable to Marks et al. (2024, p. 21), who trained
separate SAEs with n = 32768 and L0 norms between 54 and 108, as well as Cunningham et al.
(2023, p. 13). For Pythia-160m, the FVU is similar to Gao et al. (2024), who report the normalized
MSE on layer 8 of GPT-2 small.

B.2 DOWNSTREAM LOSS

In addition to the increase in cross-entropy (CE) loss, we record the Kullback-Leibler (KL) divergence
between probability distributions when the residual stream activations at a given layer are replaced by
their reconstruction (Section 4.1). We report the values of these metrics over one million tokens from
the test set (Figure 10). The increase in cross-entropy loss is comparable to Marks et al. (2024, p. 21)
for Pythia-70m, Gao et al. (2024, p. 5) and Braun et al. (2024) for GPT-2 small, and Lieberum et al.
(2024, p. 7-8) for layer 20 of Gemma 2 2B and 9B.

B.3 GPT-2 SMALL

We predominantly study GPT-style models from the Pythia suite (Section 3.1). While we do not
expect our results to depend strongly on the underlying transformer architecture, we additionally
trained an MLSAE on GPT-2 small (Radford et al., 2019) with our default hyperparameters, i.e., an
expansion factor of R = 64 and sparsity k = 32.

We include quantitative results for GPT-2 small in Table 1, Figure 5, Table 2, and Figure 18; we
include heatmaps of the distributions of latent activations over layers in Figures 13 and 14, which are
qualitatively similar to Pythia models. We note that GPT-2 small is similar in size to Pythia-160m.

3https://huggingface.co/datasets/monology/pile-uncopyrighted

15

https://huggingface.co/datasets/monology/pile-uncopyrighted

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

10−3

10−2

10−1

FV
U

Sparsity k = 32 Expansion Factor R = 64

100 101 102

10−3

10−1

Expansion Factor R

M
SE

101 102 103

Sparsity k

Layer 0
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Mean

(a) Pythia-70m

10−1.5

10−1

10−0.5

FV
U

Sparsity k = 32 Expansion Factor R = 64

100 101 102

10−2

10−1

100

Expansion Factor R

M
SE

101 102 103

Sparsity k

Layer 0
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Mean

(b) Pythia-160m

Figure 8: With fixed sparsity k = 32, the FVU and MSE generally decrease as the expansion factor
R increases. For inputs from the last layer, they increase for the largest expansion factors, which we
attribute to fluctuations in the percentage of dead latents (Figure 11). With fixed expansion factor
R = 64, the FVU and MSE decrease as the sparsity k increases. While all inputs are standardized
before passing them to the encoder, the decoder outputs are rescaled afterward. Hence, the MSE
increases across layers because it is not divided by the variance of the inputs.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

100 101 102

60

70

80

90

100

Expansion Factor R

L
1

no
rm

Sparsity k = 32

101 102 103

102

103

Sparsity k

Expansion Factor R = 64

Layer 0
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Mean

(a) Pythia-70m

100 101 102
60

80

100

120

Expansion Factor R

L
1

no
rm

Sparsity k = 32

101 102 103

102

103

Sparsity k

Expansion Factor R = 64

Layer 0
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Mean

(b) Pythia-160m

Figure 9: With fixed sparsity k = 32, the L1 norm per token (the sum of absolute activations)
generally decreases as the expansion factor R increases. With fixed expansion factor R = 64, the L1

norm increases as the sparsity k increases. Recall that the L0 norm per token (the count of non-zero
activations) is fixed at k.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

10−2

100

D
el

ta
C

E
lo

ss
Sparsity k = 32 Expansion Factor R = 64

100 101 102
102

103

104

Expansion Factor R

K
L

di
ve

rg
en

ce

101 102 103

Sparsity k

Layer 0
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Mean

(a) Pythia-70m

10−1

100

D
el

ta
C

E
lo

ss

Sparsity k = 32 Expansion Factor R = 64

100 101 102
102

103

104

Expansion Factor R

K
L

di
ve

rg
en

ce

101 102 103

Sparsity k

Layer 0
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Mean

(b) Pythia-160m

Figure 10: With fixed sparsity k = 32, the delta CE loss and KL divergence generally decrease as the
expansion factor increases, except for inputs from the last layer. With fixed expansion factor R = 64,
both metrics decrease as the sparsity k increases, similarly to the FVU and MSE (Figure 8).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0

0.05

0.1

0.15

L
ay

er
5

FV
U

0

0.02

0.04

0.06

A
ux

ili
ar

y
L

os
s

R = 1

R = 2

R = 4

R = 8

R = 16

R = 32

R = 64

R = 128

R = 256

0 2× 108 4× 108 6× 108 8× 108 1× 109
0

5%

10%

Number of Tokens nT

D
ea

d
L

at
en

ts

Figure 11: An illustration of the FVU for inputs from the last layer, compared to the auxiliary loss
and percentage of dead latents, for MLSAEs trained on Pythia-70m with fixed sparsity k = 32. An
increase in dead latents correlates with a decrease in the auxiliary loss and an increase in the FVU at
the last layer. We attribute this to the increased scale of the inputs because the auxiliary loss depends
on the MSE (Figure 8). The auxiliary loss is multiplied by its coefficient α = 1/32 in the training loss.

B.4 SINGLE-LAYER SAES

While we compare the performance of our multi-layer SAEs to single-layer SAEs from the literature
in Appendix B.1 and B.2, we also trained multiple single-layer SAEs on Pythia-70m and 160m,
leaving the remainder of the experimental setup unchanged, with our default hyperparameters.

Predictably, we find that a single-layer SAE trained on data from a given layer performs best on test
data from the same layer (Figures 15 and 16). A multi-layer SAE trained on data from every layer
performs comparably to the corresponding single-layer SAE, and more consistently across test data
from different layers. Interestingly, applying the corresponding tuned-lens transformation to the input
activations from each layer during training and evaluation degrades the performance of single-layer
SAEs on test data from different layers of Pythia-70m, unlike multi-layer SAEs (Figure 12).

Importantly, the results for the last layer are excluded from these figures. This is because we take
the residual stream activation vectors after a given layer has been applied (Section 3.1), such that
the last-layer activations represent the next-token predictions of the model only and not intermediate
computational variables. Hence, we expect these activations to have a significantly different structure
to the preceding layers, which could distort our comparisons across layers.

C LATENT COSINE SIMILARITIES

Sharkey et al. (2022) define the Mean Max Cosine Similarity (MMCS) between a learned dictionary
X and a ground-truth dictionary X ′. There is no ground-truth dictionary for language models, so a
larger learned dictionary or the k nearest neighbors to each dictionary element are commonly used.

MMCS(X,X ′) =
1

|X|
∑
x∈X

max
x′∈X′

cos sim(x,x′) (13)

The MMCS serves as a proxy measure for ‘feature splitting’ (Bricken et al., 2023; Braun et al., 2024):
as the number of features increases, we expect the decoder weight vectors to be more similar to their
nearest neighbors. We compute the MMCS with k = 1 after training, finding it decreases slightly as
the model size increases with fixed hyperparameters (Table 2).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

10−2

10−1
FV

U

Sparsity k = 32 Expansion Factor R = 64

10−1

100

M
SE

60

70

80

L
1

no
rm

102

103

0

2

4

D
el

ta
C

E
lo

ss

0

1

100 101 102
102

103

104

Expansion Factor R

K
L

di
ve

rg
en

ce

101 102 103

Sparsity k

Pythia-70m Pythia-70m with tuned lens

Figure 12: For Pythia-70m, applying tuned-lens transformations decreases the mean FVU and delta
cross-entropy loss but not the KL divergence. Importantly, we compute reconstruction errors before
applying the inverse transformation and downstream loss metrics afterward (Section 3.3). Unlike
Figure 10, we use a linear scale for the delta cross-entropy loss because, surprisingly, it is negative
for tuned-lens MLSAEs with a large expansion factor R or sparsity k.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0

11

Latent

L
ay

er

GPT-2 small

Figure 13: Heatmaps of the distributions of latent activations over layers when aggregating over 10
million tokens from the test set. Here, we plot the distributions for MLSAEs trained on GPT-2 small
with an expansion factor of R = 64. We provide further details in Figure 2.

0

11

Latent

L
ay

er

GPT-2 small

Figure 14: Heatmaps of the distributions of latent activations over layers for a single example prompt.
Here, we plot the distributions for MLSAEs trained on GPT-2 small with an expansion factor of
R = 64. The example prompt is “When John and Mary went to the store, John gave” (Wang et al.,
2022). We provide further details in Figure 3.

0

1

2

3

4

0.067 0.380 0.634 0.660 0.676

0.296 0.101 0.473 0.576 0.645

0.653 0.427 0.102 0.439 0.609

0.709 0.582 0.338 0.091 0.474

0.865 0.778 0.570 0.404 0.136

Si
ng

le
-L

ay
er

SA
E

s

FVU

0.182 1.302 4.466 4.282 3.666

0.872 0.254 2.305 3.159 3.010

1.511 0.882 0.542 1.873 2.563

2.560 1.715 1.369 0.499 1.662

3.713 2.826 2.986 1.647 0.369

Delta Cross-Entropy Loss

0 1 2 3 4

0.069 0.112 0.121 0.104 0.137

Test Layer

M
L

SA
E

0 1 2 3 4

0.161 0.230 0.644 0.502 0.432

Test Layer

Figure 15: The FVU reconstruction error and delta cross-entropy loss for single-layer SAEs trained
on each layer of Pythia-70m, compared with a single multi-layer SAE trained on every layer. The
colormap ranges between 0 and 1 for the FVU heatmap and between 0 and 5 for the loss heatmap.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0

1

2

3

4

5

6

7

8

9

10

Si
ng

le
-L

ay
er

SA
E

s

FVU Delta Cross-Entropy Loss

0 1 2 3 4 5 6 7 8 9 10
Test Layer

M
L

SA
E

0 1 2 3 4 5 6 7 8 9 10
Test Layer

Figure 16: The FVU reconstruction error and delta cross-entropy loss for single-layer SAEs trained
on each layer of Pythia-160m, compared with a single multi-layer SAE trained on every layer. We
omit the numeric values for brevity, but the colormap ranges between 0 and 1 for the FVU heatmap
and between 0 and 5 for the loss heatmap, following Figure 15.

0

1

2

3

4

0.068 0.402 0.650 0.706 0.704

0.301 0.105 0.492 0.631 0.681

0.647 0.437 0.110 0.492 0.639

0.709 0.592 0.359 0.094 0.483

0.867 0.797 0.593 0.409 0.138

Si
ng

le
-L

ay
er

SA
E

s

FVU

0.181 1.307 6.568 7.844 5.712

1.421 0.250 5.769 5.935 4.763

5.282 1.071 0.602 2.194 3.230

7.667 5.666 2.705 0.513 1.707

8.728 7.838 5.736 1.934 0.396

Delta Cross-Entropy Loss

0 1 2 3 4

0.031 0.014 0.017 0.022 0.036

Test Layer

M
L

SA
E

0 1 2 3 4

−1.677 −0.473

−1.677

0.052 1.180 0.177

−0.473
Test Layer

Figure 17: The FVU reconstruction error and delta cross-entropy loss for single-layer SAEs trained
on each layer of Pythia-70m compared with a single multi-layer SAE trained on every layer, applying
tuned-lens transformations during training and evaluation (Section 3.3). The colormap ranges between
0 and 1 for the FVU heatmap and between 0 and 5 for the loss heatmap, following Figure 15. Notably,
the cross-entropy loss decreases for some tuned-lens MLSAEs (Figure 12).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Model Mean Std. Dev.

Pythia-70m 0.275 0.0843
Pythia-160m 0.250 0.0928
Pythia-410m 0.221 0.0868
Pythia-1b 0.201 0.0989
GPT-2 small 0.258 0.0703

(a) Without tuned lens

Model Mean Std. Dev.

Pythia-70m 0.261 0.0763
Pythia-160m 0.206 0.0734
Pythia-410m 0.216 0.0864

(b) With tuned lens

Table 2: The mean and standard deviation of the maximum cosine similarity between decoder weight
vectors for MLSAEs with an expansion factor of R = 64 and sparsity k = 32.

100 101 102
0.1

0.15

0.2

0.25

0.3

Expansion Factor R

M
ea

n
M

ax
C

os
in

e
Si

m
ila

ri
ty

Sparsity k = 32

101 102 103

Sparsity k

Expansion Factor R = 64

Pythia-70m Pythia-70m with tuned lens
Pythia-160m Pythia-160m with tuned lens
Pythia-410m Pythia-410m with tuned lens
Pythia-1b GPT-2 small

Figure 18: The Mean Max Cosine Similarity between decoder weight vectors for standard and
tuned-lens MLSAEs. The MMCS increases as the expansion factor R increases and decreases as the
sparsity k increases. Applying tuned-lens transformations tends to slightly decrease the MMCS.

A potential issue when training multi-layer SAEs is that one could learn multiple versions of ‘the
same’ latent that are active at different layers. In this case, we would expect to find pairs of latents
with large cosine similarities between their decoder weight vectors but different observed distributions
of activations over layers (Section 4.3). We investigated this possibility by comparing the pairwise
cosine similarities between decoder weight vectors for trained MLSAEs to reference distributions.

As a negative control, we generated an equal number (the number of latents n) of normal independently
and identically distributed (i.i.d.) vectors x ∼ N (0, I) of the same length (the model dimension d).
In this case, the pairwise cosine similarities follow a normal distribution cos sim(x,x′) ∼ N (0, 1/d).
As a positive control, we generated a smaller number of normal i.i.d. vectors (the number of latents
n divided by the number of layers nL), copied the vectors nL times, and added noise ∼ N (0, 1) to
each copy. In this case, we expect an additional frequency peak for large, positive cosine similarities.

Figure 19 shows that the distributions of pairwise cosine similarities for decoder weight vectors are
slightly heavier-tailed and right-shifted compared with the negative control, i.e., a pair of MLSAE
latents are slightly more likely to have high cosine similarity than a pair of i.i.d. normal vectors.
However, the number of pairs with large, positive cosine similarities is small compared to the positive
control, which has a second peak around 0.5 (not visible).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0

2

4

·107

Fr
eq

ue
nc

y

Pythia-70m

0

0.5

1

·108 Pythia-160m

−0.2 −0.1 0 0.1 0.2
0

1

2

·108

Cosine Similarity

Fr
eq

ue
nc

y

Pythia-410m

−0.2 −0.1 0 0.1 0.2
0

0.5

1

1.5

·109

Cosine Similarity

Pythia-1b

Decoder weight vectors
Paired normal i.i.d. vectors plus noise
Normal i.i.d. vectors

Figure 19: Histograms of the frequencies of pairwise cosine similarities between decoder weight
vectors, compared to an equal number of normal i.i.d. vectors of the same length, and nL copies
of a smaller number of normal i.i.d. vectors with added noise. Here, we report the frequencies for
MLSAEs trained on Pythia models with an expansion factor of R = 64 and sparsity k = 32.

D NORMALIZING LATENT ACTIVATIONS

In the aggregate and single-prompt heatmaps such as Figures 2 and 3, we plot the distributions of
latent activations over layers, taken to be proportional to the total activations when aggregating over
tokens (Eq. 10). We chose to normalize the latent activations in this way to visually compare the
aggregate and single-prompt heatmaps, as well as individual latents within a heatmap, which is
beneficial due to the wide range of activation counts and totals across latents.

Normalizing the activations discards the relative frequencies and magnitudes of activations for
different latents, so we reproduce Figures 2 and 3 with the un-normalized totals of latent activations
in Figures 20 and 21. We use power-law normalization for the colormaps, i.e., y = xγ where γ = 1/4
to account for the wide range of values; all other heatmaps have linear colormaps. As with all other
single-prompt heatmaps, we exclude latents from Figure 21 that never activate. The qualitative results
are similar to Figures 2 and 3.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0

5

L
ay

er

Pythia-70m

0

11

L
ay

er

Pythia-160m

0

23

L
ay

er

Pythia-410m

0

15

Latent

L
ay

er

Pythia-1b

Figure 20: Heatmaps of the total latent activations over layers when aggregating over 10 million
tokens from the test set. Here, we plot the totals for MLSAEs trained on Pythia models with an
expansion factor of R = 64 and sparsity k = 32. We provide further details in Figure 2. The
colormaps use power-law normalization with γ = 1/4.

0

5

L
ay

er

Pythia-70m

0

11

L
ay

er

Pythia-160m

0

23

L
ay

er

Pythia-410m

0

15

Latent

L
ay

er

Pythia-1b

Figure 21: Heatmaps of the total latent activations over layers for a single example prompt. Here, we
plot the totals for MLSAEs with an expansion factor of R = 64 and sparsity k = 32. The example
prompt is “When John and Mary went to the store, John gave” (Wang et al., 2022). We provide
further details in Figure 3. The colormaps use power-law normalization with γ = 1/4.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

10−0.5

100

E[
V
a
r(
L
|J
)]

V
a
r(
L
)

Sparsity k = 32 Expansion Factor R = 64

100 101 102

10−2

10−1

Expansion Factor R

E[
V
a
r(
L
|J
,T

)]
E[
V
ar
(L

|J
)]

101 102 103

Sparsity k

Pythia-70m Pythia-70m with tuned lens
Pythia-160m Pythia-160m with tuned lens
Pythia-410m Pythia-410m with tuned lens
Pythia-1b GPT-2 small

Figure 22: The fraction of the total variance explained by individual latents and the fraction of the
variance for an individual latent explained by individual tokens (Eqs. 11 and 12). Here, we plot the
variance ratios for standard and tuned-lens MLSAEs over 10 million tokens from the test set.

E MEASURES OF LATENTS ACTIVE AT MULTIPLE LAYERS

E.1 VARIANCE OF THE LAYER INDEX

Recall that we consider the layer L, token T , and latent index J as random variables (Section 4.3).
For a single latent, we have, by the law of total variance:

Var [L] = E[Var [L | T]] + Var [E[L | T]] (14)

We are interested in the first two terms:

• Var [L] is the variance of the distribution over layers, aggregating over tokens;

• E[Var [L | T]] is the mean variance of the distributions over layers for each token; and

• Var [E[L | T]] is the variance of the mean layers for each token.

Aggregating over latents, we have:

E[Var [L | J]] = E[Var [L | T, J]] + E[Var [E[L | T, J] | J]] (15)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

Pythia-70m

Pythia-160m

Pythia-410m

Pythia-1b

GPT2-small

Mean Active Layers / Total Layers

Standard
Tuned lens

(a) Varying the model with an expansion factor of R = 64 and sparsity k = 32

100 101 102
0

0.2

0.4

0.6

0.8

1

Expansion Factor R

M
ea

n
A

ct
iv

e
L

ay
er

s
To

ta
lL

ay
er

s

Sparsity k = 32

101 102 103

Sparsity k

Expansion Factor R = 64

Pythia-70m Pythia-70m with tuned lens
Pythia-160m Pythia-160m with tuned lens
Pythia-410m Pythia-410m with tuned lens
Pythia-1b GPT-2 small

(b) Varying the expansion factor R with sparsity k = 32 and k with R = 64

Figure 23: The mean number of layers at which latents have a count of non-zero activations above
a threshold, divided by the total layers for the model, over 10 million tokens from the test set. The
threshold is 10 thousand tokens (0.1%). As in Figure 5, the absence of bars for tuned-lens MLSAEs
trained on Pythia-1b and GPT-2 small indicates the absence of results, not that the values are zero.

E.2 NUMBER OF LAYERS ABOVE A THRESHOLD

The count of layers at which a latent is active does not necessarily positively correlate with the
variance of the layer index considered in Section 4.3. For example, the variance of 0 and 5 (two
distinct values) is greater than the variance of 2, 3, and 4 (three distinct values). Strictly speaking, the
layer index is ordinal data, but we implicitly treat it as interval data by taking the arithmetic mean
and variance. We chose this approach because we expected latents to be active over a contiguous
range of layers, which is validated by the normalized heatmaps (e.g., Figures 2 and 3).

For comparison, we computed the number of layers at which each latent has a count of non-zero
activations above a threshold (the ‘active layers’), divided by the total number of model layers nL.
We selected a threshold count of 10k tokens (0.1% of a sample of 10M tokens). When aggregating
over latents, the relative mean active layers decreases as the model size increases for Pythia models
(Figure 23a) and as the number of latents increases relative to the model dimension (Figure 23b).
Importantly, this measure depends strongly on the choice of threshold.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pythia-70m

Pythia-160m

Pythia-410m

Pythia-1b

GPT2-small

Mean Entropy / lnnL

Standard
Tuned lens

(a) Varying the model with an expansion factor of R = 64 and sparsity k = 32

100 101 102
0.4

0.6

0.8

Expansion Factor R

M
ea

n
E

nt
ro

py
ln

n
L

Sparsity k = 32

101 102 103

Sparsity k

Expansion Factor R = 64

Pythia-70m Pythia-70m with tuned lens
Pythia-160m Pythia-160m with tuned lens
Pythia-410m Pythia-410m with tuned lens
Pythia-1b GPT-2 small

(b) Varying the expansion factor R with sparsity k = 32 and k with R = 64

Figure 24: The mean entropy of the observed discrete distributions of latent activations over layers
(Eq. 10) divided by the maximum entropy of lnnL, over 10 million tokens from the test set. As in
Figure 5, the absence of bars for tuned-lens MLSAEs trained on Pythia-1b and GPT-2 small indicates
the absence of results, not that the values are zero.

E.3 ENTROPY

A further measure of the degree to which a latent is active at multiple layers is the statistical
distance between the observed discrete distribution of activations over layers (Eq. 10) and a reference
distribution. At one extreme is a Dirac distribution with probability mass 1 for a single layer index
and 0 elsewhere, in which case the latent is active at a single layer. The other extreme is the discrete
uniform distribution U(0, nL), in which case the latent is equally active at every layer. Hence, the
entropy of the observed distribution must range between 0 and lnnL. This measure is agnostic with
respect to the numeric values of the layer indices and their order.

We computed the entropy of the observed distributions of activations over layers and took the mean
over latents, dividing it by lnnL to compare models with different numbers of layers. The normalized
mean entropy increases slightly as the model size increases for Pythia models (Figure 24a), like the
variance of the layer index (Section 4.3). However, it decreases as the number of latents increases
relative to the model dimension, similarly to the mean active layers (Figure 24b).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

F ADDITIONAL HEATMAPS

For completeness, we include equivalent aggregate and single-prompt heatmaps to Figures 2 and 3
for different models and combinations of hyperparameters:

• Varying R for Pythia-70m and k = 32 (Figures 25 and 26)
• Varying k for Pythia-70m and R = 64 (Figures 27 and 28)
• Varying R for Pythia-160m and k = 32 (Figures 29 and 30)
• Varying k for Pythia-160m and R = 64 (Figures 31 and 32)
• Varying R for Pythia-70m with tuned lens and k = 32 (Figures 35 and 35)
• Varying k for Pythia-70m with tuned lens and R = 64 (Figures 35 and 36)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

0
1
2
3
4
5

L
ay

er

R = 1

0
1
2
3
4
5

L
ay

er

R = 2

0
1
2
3
4
5

L
ay

er

R = 4

0
1
2
3
4
5

L
ay

er

R = 8

0
1
2
3
4
5

L
ay

er

R = 16

0
1
2
3
4
5

L
ay

er

R = 32

0
1
2
3
4
5

L
ay

er

R = 64

0
1
2
3
4
5

L
ay

er

R = 128

0
1
2
3
4
5

Latent

L
ay

er

R = 256

Figure 25: Heatmaps of the distributions of latent activations over layers when aggregating over 10
million tokens from the test set. Here, we plot the distributions for MLSAEs trained on Pythia-70m
with sparsity k = 32. We provide further details in Figure 2.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

0
1
2
3
4
5

L
ay

er

R = 1

0
1
2
3
4
5

L
ay

er

R = 2

0
1
2
3
4
5

L
ay

er

R = 4

0
1
2
3
4
5

L
ay

er

R = 8

0
1
2
3
4
5

L
ay

er

R = 16

0
1
2
3
4
5

L
ay

er

R = 32

0
1
2
3
4
5

L
ay

er

R = 64

0
1
2
3
4
5

L
ay

er

R = 128

0
1
2
3
4
5

Latent

L
ay

er

R = 256

Figure 26: Heatmaps of the distributions of latent activations over layers for a single example prompt.
Here, we plot the distributions for MLSAEs trained on Pythia-70m with sparsity k = 32. The
example prompt is “When John and Mary went to the store, John gave” (Wang et al., 2022). We
provide further details in Figure 3.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

0
1
2
3
4
5

L
ay

er
k = 16

0
1
2
3
4
5

L
ay

er

k = 32

0
1
2
3
4
5

L
ay

er

k = 64

0
1
2
3
4
5

L
ay

er

k = 128

0
1
2
3
4
5

L
ay

er

k = 256

0
1
2
3
4
5

Latent

L
ay

er

k = 512

Figure 27: Heatmaps of the distributions of latent activations over layers when aggregating over 10
million tokens from the test set. Here, we plot the distributions for MLSAEs trained on Pythia-70m
with an expansion factor of R = 64. We provide further details in Figure 2.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

0
1
2
3
4
5

L
ay

er
k = 16

0
1
2
3
4
5

L
ay

er

k = 32

0
1
2
3
4
5

L
ay

er

k = 64

0
1
2
3
4
5

L
ay

er

k = 128

0
1
2
3
4
5

L
ay

er

k = 256

0
1
2
3
4
5

Latent

L
ay

er

k = 512

Figure 28: Heatmaps of the distributions of latent activations over layers for a single example prompt.
Here, we plot the distributions for MLSAEs trained on Pythia-70m with an expansion factor of
R = 64. The example prompt is “When John and Mary went to the store, John gave” (Wang et al.,
2022). We provide further details in Figure 3.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

0

11

L
ay

er

R = 1

0

11

L
ay

er

R = 2

0

11

L
ay

er

R = 4

0

11

L
ay

er

R = 8

0

11

L
ay

er

R = 16

0

11

L
ay

er

R = 32

0

11

L
ay

er

R = 64

0

11

L
ay

er

R = 128

0

11

Latent

L
ay

er

R = 256

Figure 29: Heatmaps of the distributions of latent activations over layers when aggregating over 10
million tokens from the test set. Here, we plot the distributions for MLSAEs trained on Pythia-160m
with sparsity k = 32. We provide further details in Figure 2.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

0

11

L
ay

er

R = 1

0

11

L
ay

er

R = 2

0

11

L
ay

er

R = 4

0

11

L
ay

er

R = 8

0

11

L
ay

er

R = 16

0

11

L
ay

er

R = 32

0

11

L
ay

er

R = 64

0

11

L
ay

er

R = 128

0

11

Latent

L
ay

er

R = 256

Figure 30: Heatmaps of the distributions of latent activations over layers for a single example prompt.
Here, we plot the distributions for MLSAEs trained on Pythia-160m with sparsity k = 32. The
example prompt is “When John and Mary went to the store, John gave” (Wang et al., 2022). We
provide further details in Figure 3.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

0

11

L
ay

er
k = 16

0

11

L
ay

er

k = 32

0

11

L
ay

er

k = 64

0

11

L
ay

er

k = 128

0

11

L
ay

er

k = 256

0

11

Latent

L
ay

er

k = 512

Figure 31: Heatmaps of the distributions of latent activations over layers when aggregating over 10
million tokens from the test set. Here, we plot the distributions for MLSAEs trained on Pythia-160m
with an expansion factor of R = 64. We provide further details in Figure 2.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

0

11
L

ay
er

k = 16

0

11

L
ay

er

k = 32

0

11

L
ay

er

k = 64

0

11

L
ay

er

k = 128

0

11

L
ay

er

k = 256

0

11

Latent

L
ay

er

k = 512

Figure 32: Heatmaps of the distributions of latent activations over layers for a single example prompt.
Here, we plot the distributions for MLSAEs trained on Pythia-160m with an expansion factor of
R = 64. The example prompt is “When John and Mary went to the store, John gave” (Wang et al.,
2022). We provide further details in Figure 3.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

0
1
2
3
4
5

L
ay

er

R = 1

0
1
2
3
4
5

L
ay

er

R = 2

0
1
2
3
4
5

L
ay

er

R = 4

0
1
2
3
4
5

L
ay

er

R = 8

0
1
2
3
4
5

L
ay

er

R = 16

0
1
2
3
4
5

L
ay

er

R = 32

0
1
2
3
4
5

L
ay

er

R = 64

0
1
2
3
4
5

L
ay

er

R = 128

0
1
2
3
4
5

Latent

L
ay

er

R = 256

Figure 33: Heatmaps of the distributions of latent activations over layers when aggregating over 10
million tokens from the test set. Here, we plot the distributions for tuned-lens MLSAEs trained on
Pythia-70m with sparsity k = 32. We provide further details in Figure 2.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

0
1
2
3
4
5

L
ay

er

R = 1

0
1
2
3
4
5

L
ay

er

R = 2

0
1
2
3
4
5

L
ay

er

R = 4

0
1
2
3
4
5

L
ay

er

R = 8

0
1
2
3
4
5

L
ay

er

R = 16

0
1
2
3
4
5

L
ay

er

R = 32

0
1
2
3
4
5

L
ay

er

R = 64

0
1
2
3
4
5

L
ay

er

R = 128

0
1
2
3
4
5

Latent

L
ay

er

R = 256

Figure 34: Heatmaps of the distributions of latent activations over layers for a single example prompt.
Here, we plot the distributions for tuned-lens MLSAEs trained on Pythia-70m with sparsity k = 32.
The example prompt is “When John and Mary went to the store, John gave” (Wang et al., 2022). We
provide further details in Figure 3.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

0
1
2
3
4
5

L
ay

er
k = 16

0
1
2
3
4
5

L
ay

er

k = 32

0
1
2
3
4
5

L
ay

er

k = 64

0
1
2
3
4
5

L
ay

er

k = 128

0
1
2
3
4
5

L
ay

er

k = 256

0
1
2
3
4
5

Latent

L
ay

er

k = 512

Figure 35: Heatmaps of the distributions of latent activations over layers when aggregating over 10
million tokens from the test set. Here, we plot the distributions for tuned-lens MLSAEs trained on
Pythia-70m with an expansion factor of R = 64. We provide further details in Figure 2.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

0
1
2
3
4
5

L
ay

er
k = 16

0
1
2
3
4
5

L
ay

er

k = 32

0
1
2
3
4
5

L
ay

er

k = 64

0
1
2
3
4
5

L
ay

er

k = 128

0
1
2
3
4
5

L
ay

er

k = 256

0
1
2
3
4
5

Latent

L
ay

er

k = 512

Figure 36: Heatmaps of the distributions of latent activations over layers for a single example prompt.
Here, we plot the distributions for tuned-lens MLSAEs trained on Pythia-70m with an expansion
factor of R = 64. The example prompt is “When John and Mary went to the store, John gave” (Wang
et al., 2022). We provide further details in Figure 3.

41

	Introduction
	Related work
	Methods
	Setup
	Training
	Tuned lens

	Results
	Evaluation
	Representation drift
	Latent distributions over layers
	Tuned lens

	Discussion
	Conclusion
	Training
	Evaluation
	Reconstruction error and sparsity
	Downstream loss
	GPT-2 small
	Single-layer SAEs

	Latent cosine similarities
	Normalizing latent activations
	Measures of latents active at multiple layers
	Variance of the layer index
	Number of layers above a threshold
	Entropy

	Additional heatmaps

