
DeepLayout: Learning Neural Representations of Circuit Placement Layout

Yuxiang Zhao 1 2 Zhuomin Chai 1 3 Xun Jiang 1 Qiang Xu 2 4 Runsheng Wang 1 5 6 Yibo Lin 1 5 6

Abstract

Recent advancements have integrated various
deep-learning methodologies into physical de-
sign, aiming for workflows acceleration and sur-
passes human-devised solutions. However, prior
research has primarily concentrated on develop-
ing task-specific networks, which necessitate a
significant investment of time to construct large,
specialized datasets, and the unintended isolation
of models across different tasks. In this paper, we
introduce DeepLayout, the first general represen-
tation learning framework specifically designed
for backend circuit design. To address the dis-
tinct characteristics of post-placement circuits, in-
cluding topological connectivity and geometric
distribution, we propose a hybrid encoding ar-
chitecture that integrates GNN with spatial trans-
formers. Additionally, the framework includes a
flexible decoder module that accommodates a va-
riety of task types, supporting multiple hierarchi-
cal outputs such as nets and layouts. To mitigate
the high annotation costs associated with layout
data, we introduce a mask-based self-supervised
learning approach designed explicitly for layout
representation. This strategy involves a carefully
devised masking approach tailored to layout fea-
tures, precise reconstruction guidance, and most
critically—two key supervised learning tasks. We
conduct extensive experiments on large-scale in-
dustrial datasets, demonstrating that DeepLayout
surpasses state-of-the-art (SOTA) methods spe-
cialized for individual tasks on two crucial layout
quality assessment benchmarks. The experiment
results underscore the framework’s robust capa-
bility to learn the intrinsic properties of circuits.

1Peking University 2National Technology Innovation Center for
EDA 3Wuhan University 4The Chinese University of Hong Kong
5Institute of Electronic Design Automation, Wuxi, China 6Beijing
Advanced Innovation Center for Integrated Circuits . Correspon-
dence to: Yibo Lin <yibolin@pku.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Modern chip design has become extremely complex due
to the continuous advancement of manufacturing technol-
ogy and the ever-increasing scale of circuits (e.g. TPU,
GPU). Recently, advanced AI methods have been widely
employed across various stages of circuit design, signifi-
cantly enhancing both automation and intelligence (DSO.ai,
2020; JedAI, 2022). In the back-end (physical design) do-
main, researchers have successfully leveraged AI for tasks
such as macro placement (Mirhoseini et al., 2020; Chen
et al., 2023; Lai et al., 2023; 2022), parameter tuning (Luo
et al., 2024; Hsiao et al., 2024; Geng et al., 2023), and lay-
out hotspot detection(Shao et al., 2024; Geng et al., 2022),
thereby accelerating design cycles and, in certain instances,
achieving performance that surpasses human-devised solu-
tions.

Fig. 1 shows chip design flow. To reduce reliance on time-
intensive EDA tools, the aforementioned methods construct
task-specific datasets and train corresponding circuit repre-
sentation models to enable efficient assessment of circuit
performance. Constructing such large-scale, specialized,
and labeled datasets requires extensive domain expertise
and significant human resources. However, some raw cir-
cuit designs can be acquired from these sources: (1) open-

Placement

Signal
Routing

Timing
Closure

RoutingFabricate

FloorplanNetlistRTL

Back-end design

Front-end design Back-end design

Figure 1. The chip design flow is primarily divided into front-end
functional/logic design and back-end physical design. Compared
to front-end design, the back-end phase is significantly more time-
consuming. The finalized chip layout is sent to the foundry for
fabrication.

1

DeepLayout: Learning Neural Representations of Circuit Placement Layout

Encoder

Restore
Masked-Part
Information

Easy-calculated
Layout

Supervision
Signals

Downstream
Tasks

Graph
Mask

Congestion
Wire Length

DRC
Violation

…

Placement
Data

Target Tasks
Data

DeepLayout
Latent

Representation.

Self-supervised
Pre-training

Transfer to
Applications

Netlist

Fine-tuning

Netlist

Figure 2. Illustration of the DeepLayout paradigm for circuit layout
representation. This paradigm enables self-supervised pre-training
on placement-only datasets and applies the learned representations
to multiple applications.

source repositories (e.g., GitHub), (2) intermediate design
parameter configurations, and (3) legacy design databases.
These unlabeled circuit data can potentially be leveraged
using self-supervised learning techniques—demonstrated to
be highly effective in the image (He et al., 2022b) and text
(Devlin et al., 2018)—to extract strong and general repre-
sentations. Motivated by these considerations, we pose a
key question: Can we harness massive collections of raw
circuit data to deeply uncover intrinsic circuit properties
thereby yielding a general model that generalizes across a
broad spectrum of downstream tasks?

In recent years, some research has focused on applying cir-
cuit representation learning to front-end (logic) design by
transforming circuits into AIG (And-Inverter Graph) struc-
tures and leveraging unsupervised or contrastive learning
strategies to uncover latent relationships between circuit
functionality and logic (Li et al., 2022; Shi et al., 2023;
2024; Wang et al., 2022b). However, these methods exhibit
significant limitations when extended to back-end circuit
representation tasks. As circuit logic functionality is not
strongly correlated with circuit performance, existing ap-
proaches often fail to adequately emphasize the extraction
of physical attributes relevant to PPA (Power, Performance,
Area), thus limiting their applicability to back-end design
scenarios.

To address these challenges, we propose a layout-oriented
masked autoencoder, called DeepLayout, for back-end self-
supervised representation learning. Fig. 2 illustrate the
DeepLayout framework. We model the post-placement
circuit as a heterogeneous graph enriched with geometric
information, employing node and net as two distinct node
types to capture the circuit’s hierarchical structure. Com-
pared with masking strategies for images or generic graphs,
a layout-oriented masked autoencoder must satisfy three
key requirements. Firstly, both geometric and topological
information are vital in post-placement circuits. For exam-
ple, nodes that are topologically adjacent may be widely
separated in physical space. Therefore, we develop a refined

network that progressively captures geometric and topologi-
cal relationships, providing the rich feature representations
essential for downstream tasks at both node and layout lev-
els. Secondly, unlike front-end representation emphasizing
functional attributes, back-end design primarily targets ge-
ometric characteristics rather than functional behavior. As
a result, simply masking irrelevant nodes at random and
restoring node-category attributes is inadequate. We adopt
a size-adaptive masking approach based on grid units to
ensure that masked grid regions retain consistent macro-
scopic attributes, such as cell density. Thirdly, to foster
synergy between local and global feature reconstruction,
we go beyond restoring the masked nodes’ coordinates by
incorporating additional routing-related features to enhance
the network’s representational capacity. Specifically, we
introduce an easy-calculated intermediate routing feature
(RPA), enabling the encoder to capture and exploit routing
information and thus mitigate potential biases caused by
particular routing algorithms.

Our contributions are as follows:

• We are the first to propose a general circuit represen-
tation framework for placement layout learning, en-
abling fine-grained feature learning from unlabeled
data through novel mask strategies and self-supervised
tasks.

• We propose a hybrid encoder that jointly models topo-
logical connectivity and geometric layouts via hetero-
geneous GNNs and spatial attention mechanisms. The
pre-trained encoder demonstrates remarkable transfer-
ability across diverse downstream tasks.

• We conduct extensive experiments on industrial-scale
benchmarks, demonstrating DeepLayout’s superiority
over SOTA methods in congestion prediction and post-
routing wirelength estimation.

2. Preliminary
2.1. Masked-based Representation Pre-training

There has been a longstanding desire to achieve a deeper
data understanding without relying on human-annotated
labels. Masked-based representation pre-training, a self-
supervised learning paradigm, addresses this challenge by
employing a process of Masking and Restoration.

In this approach, certain portions of the data are masked,
and the model is trained to restore the missing parts based
on the visible ones. By learning to predict these hidden
components, the model can develop more meaningful and
generalizable representations, enhancing its ability to per-
form well on downstream tasks. This concept underpins
many state-of-the-art models across a variety of domains,

2

DeepLayout: Learning Neural Representations of Circuit Placement Layout

2
1

5
6

3 4

a

b

c

Net a

Net c

(a) (b)

1

5

2

6

3 4Net b

Cell Node

Cell-cell edge

Net Node

Cell-net edge

Figure 3. Illustration of circuit heterogeneous graph. (a) Original
circuit netlist with cells and connecting nets. (b) Correspond-
ing heterogeneous graph, where cells and nets are represented as
distinct node types, connected by cell-cell and cell-net edges to
capture both structural and hierarchical information.

such as BERT (Devlin et al., 2018), where masked words
or tokens are predicted, and Masked Autoencoders (MAE)
(He et al., 2022b), which mask image patches and train
the model to restore them. The pre-trained models can
thereby be fine-tuned for specific tasks, such as classifica-
tion, segmentation, or object detection, yielding superior
results. This masked-based pre-training paradigm is partic-
ularly well-suited for scenarios where obtaining negative
samples is challenging, such as in circuit representation. It
enables the model to approximate the underlying data distri-
bution and learn intrinsic data features without the need for
explicit labels, thus making it a powerful tool for enhancing
representation learning in these contexts.

2.2. Circuit representation learning

Circuit representation learning has recently emerged as a
pivotal research direction for enabling machine learning-
driven analysis and optimization of electronic circuits (Chen
et al., 2024). In the realm of front-end design, the repre-
sentation of circuits commonly involves the utilization of
the synthesized netlist to depict the internal configuration
of the circuit. The concept introduced in a study by Wang
et al. (2022b) aimed to investigate netlist representation,
proposing a contrastive learning framework that allows the
network to comprehend both the structural elements and
embedding functionality of netlists. Subsequently, Deep-
Gate (Li et al., 2022) approached this issue from a different
angle by developing neural representations of logic gates,
incorporating signal probability supervision to account for
both the structural characteristics and logical operations of
circuits for various downstream applications. Building upon
this work, a subsequent study by Shi et al. (2023) sought
to overcome the limitations of its precursor by implement-
ing a more direct supervision strategy utilizing pair-wise
differences in truth tables, thereby enhancing the ability to
capture circuit functionality more effectively. However, as
the logical functionality of a circuit is not closely tied to per-
formance, these function-oriented front-end representation
approaches are not applicable in back-end circuits.

3. DeepLayout
Achieving effective pre-training requires careful consider-
ation of two critical factors: the learning strategy and the
supervision signal. For now, few studies attempt to apply
mask-style self-supervised representation learning methods
to circuits after placement. We attribute this to two primary
challenges: (i) the difficulty in selecting suitable objects to
mask (e.g., nodes? modules?), and (ii) it is challenging to
simply use the original input information as the restoration
target that is commonly done in vision tasks.

Considering this, our DeepLayout introduces a novel frame-
work that paves the way for the achievement of mask-based
self-supervised circuit representation pre-training. The or-
ganization is as follows: Section 3.1 introduces a graph data
structure used to represent post-placement circuits. Sec-
tion 3.2 and Section 3.3 discuss the masking strategy and
the two pre-trained supervision tasks. Section 3.4 presents
the network architecture design.

3.1. Circuit Heterogeneous Graph

Graph Structure. We start by modeling the circuit netlist
as a graph. Fig. 3(a) represents the circuit’s logical con-
nectivity through cells (i.e., AND/OR gates or flip-flops)
and nets (connecting cell terminals). We represent each
cell as a node v ∈ V in the graph, while edges encode
predefined physical or interconnect relationships between
connected cells. To address the inherent hierarchy of cir-
cuit blocks (e.g., arithmetic units), we introduce virtual net
nodes u ∈ U that aggregate connectivity patterns within
sub-circuits. This dual-node formulation transforms into
a heterogeneous graph (Fig. 3(b)) that explicitly preserves
both structural connectivity and functional hierarchy. To
this end, we maintain three critical circuit properties— in-
cluding signal propagation paths, fanout/fanin relationships,
and block-level abstraction.

Graph Feature. We formally define the heterogeneous
graph G = {V,U,E,Xv, Xu}, where E represent edges
that encode cell-to-cell direct dependencies and cell-to-net
membership. The feature matrices Xv and Xu contain cell
and net features. Xv including cell size and spatial coor-
dinates, which jointly govern routing related PPA learning.
Xu storing the connected pins degree and net span on each
axis. Here, nv and nu denote the total cells and nets in the
design. Tab. 1 shows the graph features in detail. Notably,
we omit edge features to avoid over-engineering connectiv-
ity patterns. Unlike prior works (Yang et al., 2022; Wang
et al., 2022a) that relied on handcrafted features like local
cell density or pin density, We pose DeepLayout operates
directly on the circuit’s native structural and geometric at-
tributes. This benefits DeepLayout by eliminating tedious
task-specific preprocessing, enabling a unified circuit repre-
sentation adaptable to diverse physical design downstream

3

DeepLayout: Learning Neural Representations of Circuit Placement Layout

𝑑𝑥

𝑑𝑦

𝐻

𝑊

MASK

MASK

MASK Masked cell node

Cell node with shape

Heterogeneous

Graph

Masked

Graph

(a) Layout Splitting (b) Masked cells Select (c) Topology guided

restoration

… … Cell-cell Connection

Cell-net Connection

Figure 4. The pipeline of layout-oriented masking strategy. Cell-to-net heterogeneous relation also retained but are hidden in figure for
simplify.

Table 1. The features utilized in circuit heterogeneous graph.

Node Type Feature Definition

v (cell)
Cell

h Cell Height
w Cell Width
pn Number of pins

Geometric x Cell coordinate in X asix
y Cell coordinate in Y asix

u (net)
Connections d Net degree

Span hu Net span in Y asix
wu Net span in X asix

tasks.

3.2. Layout-oriented Masking

Fig. 4 depicts the masking strategy in DeepLayout. We
systematically demonstrate this through modular decompo-
sition, as outlined below.

Layout Splitting is inspired by He et al. (2022b). Since
circuit layouts can be represented as images, we are in
line with this philosophy by partitioning the layout into
a set number of non-overlapping grids {g}, treating all
cells within the same grid as an independent masked entity
(Fig. 4(a)). Specifically, we pre-define the single grid size
as dx × dy and the layout plane, with dimensions W ×H ,
is split into W

dx
× H

dy
grids, denoted as {gi,j}. Each cell

ck(ck = v, v ∈ V) is then aligned to a corresponding grid
gi,j based on its coordinates (xk, yk).

gi,j =
{
ck | ⌊xk/dx⌋ = i, ⌊yk/dy⌋ = j

}
, (1)

where i, j represent the grid indices (1 ≤ i ≤ W
dx
, 1 ≤ j ≤

H
dy
), and ⌊x⌋ symbolizes the floor function of coordinate

x. Unlike the fixed patch numbers in image-based models
like ViT (Dosovitskiy et al., 2020), DeepLayout employs a
variable number of grids for each design. This offers two
distinct advantages: (i) it accommodates a wide range of
floorplan sizes, from small modules to full-scale SoCs, and
(ii) it guarantees a relatively uniform distribution of cells

Algorithm 1 Layout-oriented Masking Algorithm.
Input: Heterogeneous graph G, input layout size W ×H ,

pre-defined mask ratio γ, grid size dx× dy.
Output: Masked graph and corresponding processed fea-

tures.
1 Extract the coordinates (x, y) of each cell node in the graph
2 Partition the layout of size W ×H into grid set {g} using

fixed grid size dx, dy
3 Align each cell to the corresponding grid according to its

coordinates (x, y);
4 Count the number of non-empty grids N and compute the

number of grids to be masked Nm = N × γ
5 Randomly select the grids to be masked: {gm} ←

RANDOM ({g}, Nm);
6 Initialize the set of masked cell node indices: Im = ∅
7 for i = 1→ Nm do
8 for each cell ∈ the current grid gi do
9 Add the cell index to Im: Im ← Im ∪ {index}

10 Extract the cell node ck features Xv of the graph G, ck =
v, v ∈ V

11 Copy cell features Xprocessed
v ← Xv

12 for each index vi ∈ Im do
13 Padding cell node coordinates x, y to 0 Set Xprocessed

vi ←
[0, 0, h, w, p]

14 Replace the original features of the graph G with the pro-
cessed features Xprocessed

v

within each grid, maintaining consistent physical charac-
teristics from a global layout perspective. We empirically
set the grid size dx, dy to correspond to 30 routing track
lengths. In some corner cases where standard cells span
across multiple grid boundaries, we assign them to the grid
where they have the largest coverage area.

Masked Grid Selection Unlike image masking methods
that permit arbitrary patch selection across the entire can-
vas, the post-layout floorplan includes vacant regions devoid
of cells, necessitating the selection of masked grids exclu-
sively from non-empty candidates (gi,j ̸= ∅). We designate
the selected candidates as masked grids {gmi,j}, with the

4

DeepLayout: Learning Neural Representations of Circuit Placement Layout

Task #2 Routing Process Prediction

P
la

c
em

e
n
t

L
a
y
o
u
t

R
o
u
ti

n
g

P
ro

b
ab

il
it

y

A
lg

o
ri

th
m

2D

Decoder

1D

Decoder

Task #1 Cell Coordinate Reconstruction

…

Heterogenous

GNN

Multi-Scale

Geometric

Attention

Scale 1×

2
× 4
× 8
×

Encoder

𝑋𝑢

𝑋𝑣 𝑂𝑣

𝑂𝑢

𝑂𝑣

N
o
rm

a
li

z
ed

C
o
o
rd

in
at

e
s

Masked

Graph

ℒ𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒
#1

ℒ𝑟𝑜𝑢𝑡𝑖𝑛𝑔
#2

Figure 5. Overview of the DeepLayout pre-training pipeline. DeepLayout encodes a masked heterogeneous graph using multi-scale
geometric attention and heterogeneous GNNs at increasing spatial resolutions [1×, 2×, 4×, 8×]. It is trained via two objectives: cell
coordinate reconstruction and routing process prediction, optimized by L#1

coordinate and L#2
routing.

remainder classified as visible grids {gvi,j}. We hold the
hyperparameter γ to balance between these two subsets.
Thus, visible and masked cells are aggregated by combin-
ing cells from {gmi,j} and {gvi,j}, respectively, formalized
as: {cvk} =

⋃
i,j g

v
i,j and {cmk } =

⋃
i,j g

m
i,j . The graph G is

subsequently updated by replacing cell node features with
processed features {Xprocessed

ck
}. For cells in masked grids{

cmk

}
, the coordinate values (xk, yk) are padded to 0 while

retaining the original size and property features [h,w, p].

Xprocessed
vk

=

[0, 0, h, w, p] if ck ∈
{
cmk

}
,

Xvk if ck /∈
{
cmk

}
.

(2)

Mask ratio γ is typically determined empirically. We can
cast the previous unsupervised pre-training works (Zhu et al.,
2022; Li et al., 2022) as a special case of DeepLayout,
where the γ is fixed at 0 to enable autoregressive learning.
In practice, we found that setting γ to 50% yields optimal
pre-training performance, which contrasts with the higher
75% mask ratio commonly used in MAE. We hypothesize
that this difference arises due to the nature of the data. Im-
ages tend to exhibit a high level of information redundancy.
In contrast, circuits contain rich information among sub-
circuits.

Restoration Guidance is another crucial aspect to consider.
Typically, circuits exhibit weaker global correlations than
images. This makes it particularly challenging for the net-
work to accurately reconstruct masked regions from the vis-
ible parts—akin to attempting to restore a QR code without
any prior knowledge. To address this, we preserve the origi-
nal topological connections between masked cells (v −→ v)
and cells-to-nets (v −→ u) to aid in the restoration process.
Fig. 4(c) illustrates masked graph with topological connec-
tions. From a physical design standpoint, this approach
is analogous to the incremental placement or Engineering
Change Order (ECO) process, where local modifications are
made while maintaining the overall circuit design integrity.

3.3. Pre-training Supervision Signal

The supervision signal plays a critical role in determining
the knowledge acquired during pre-training. Fig. 5 illus-
trates the pre-training framework of DeepLayout, which in-
corporates two carefully designed tasks to exploit the unique
properties of post-layout circuits: #1 Cell coordinate re-
construction: recover masked cell coordinates. #2 Routing
process prediction: modeling interconnect behavior.

Task #1 Cell Coordinate Reconstruction. Placed cell
coordinates provide essential geometric constraints for phys-
ical design’s downstream tasks. We implement a coordinate
reconstruction objective through a single-layer multilayer
perceptron (MLP) that predicts normalized coordinates of
masked grid nodes. Formally, for each masked node {cmk },
the MLP generates predicted coordinates P̂ = {p̂k|k =
1, 2, ...,K}, while the ground-truth normalized coordinates
are denoted as P = {pk|k = 1, 2, ...,K}. The reconstruc-
tion loss is computed using the mean squared error (MSE)
between P̂ and P as formulated below:

L#1
coordinate =

1

K

∑
pk∈P

∥pk − p̂k∥22 (3)

Task #2 Routing Process Prediction. Compared to
cross-stage evaluation from the placement, routing is time-
intensive yet provides more accurate performance metrics,
especially for timing and power consumption. However,
directly training a machine learning model to mimic the
routing process is highly challenging. To address this, we
guide the model to learn an intermediate routing represen-
tation that captures essential aspects of the routing process.
Specifically, we use a computationally efficient Routing
Probability Algorithm (RPA) as the supervision signal. This
algorithm estimates the probability of routing paths within
the net bounding box of a sub-circuit, defined as follows:

5

DeepLayout: Learning Neural Representations of Circuit Placement Layout

(a) (b)

 → 𝑢

 →

Figure 6. Encoder’s geometric and topological module: (a) Multi-scale Geometric Attention (MSGA), (b) Heterogeneous GNN (HGNN).

RPAu(x, y) = (
1

xh
u − xl

u

+
1

yhu − ylu
). (4)

where xu, yu represents the cell or pin positions within
the net u, and xh

u = maxxu, x
l
u = minxu, y

h
u =

max yu, y
l
u = min yu denotes the net bounding box. And

RPAu(x, y) outside the region [xl
u, x

h
u, y

l
u, y

h
u] set to 0. The

total routing probability across the layout is then computed
as:

RPA =
∑

0<x<W,0<y<H,u∈U

RPAu(x, y). (5)

where W,H is corresponds to the layout size and RPA ∈
RW×H . This RPA is similar to the algorithm introduced
in Spindler & Johannes (2007). The objective is defined
as minimizing the MSE between the ˆRPA among masked
nodes and the ground-truth RPA, formulated as:

L#2
routing =

1

Nm

Nm∑
i=1

∥∥∥RPAi − ˆRPAi

∥∥∥2
2

(6)

where Nm denotes the number of masked grids. We sum-
marize the benefits of using RPA in twofold: (i) it allows
routing related features to be derived solely from placement
information, without the need for additional labels, thereby
simplifying computation; and (ii) it helps the model general-
ize better and reduces bias caused by the label randomness
inherent in heuristic routing algorithms.

Overall Loss. To this end, the overall loss function for
DeepLayout’s self-supervised pre-training is formulated by
integrating the two component losses:

L = L#1
coordinate + L

#2
routing (7)

Throughout the pre-training phase, we iteratively minimize
the loss until the model attains numerical convergence.

3.4. Layout Representation Network

We instantiate DeepLayout network, with an asymmetric
architecture consisting of a task-agnostic encoder and task-
specific decoders. This flexible architecture ensures unified
pre-training during the physical design stage and facilitates

application across multiple downstream tasks. We introduce
each component as follows:

Encoder. The encoder is designed as cascaded architecture,
as shown in Fig. 5(a), which alternately stacked geometric
and topological modules. It operates on all graph’s nodes
and encodes each node’s feature into the latent space. Dur-
ing both pre-training and fine-tuning, the encoder’s archi-
tecture remains unchanged. A detailed description of each
module is in the following parts.

• Multi-scale Geometric Attention (MSGA) captures spa-
tial relationships between standard cells in geometric
space by combining local and global perspectives, as
illustrated in Fig. 5(b). In the local perspective, we
aggregate multi-scale sparse convolution features from
2D-mapped cells. In the global perspective, to address
the computational complexity O(n2d) of native trans-
former attention mechanisms (where n is often large in
circuits), MSGA reduces complexity by decomposing
global attention into two independent parts, inspired
by He et al. (2022a). The MSGA module operates
exclusively on the standard cell features Xv ∈ Rnv×d

of graph G, where d is the feature dimension.

The first part of global attention is generated by apply-
ing a Multi-Layer Perceptron (MLP) to linearly project
Xv, producing key (K1) and value (V1) vectors. To
address the inefficiency of directly using the native
projected query from Xv in attention calculations, we
introduce a learnable proxy query P ∈ Rp×d, where
p (the length of P) is much smaller than nv. The first
attention matrix A1 is computed using P and K1, and
the hidden feature H1 is obtained by multiplying V1

with A1, K1 ∈ Rnv×d, V1 ∈ Rnv×d. The formulation
for the first attention is as follows:

K1, V1 = MLPK(Xv),MLPV (Xv), (8a)

A1 = Softmax(K1P
T), A1 ∈ Rnv×p, (8b)

H1 = AT
1 V1, H1 ∈ Rnv×p×d, (8c)

Next, we aggregate multi-scale local features by map-
ping the hidden feature H1 to a 2D plane using the

6

DeepLayout: Learning Neural Representations of Circuit Placement Layout

scale parameter s, as outlined in line 3 of Section 3.2.
This produces the scale-mapped feature H̃1, where s
aligns with the grid size dx× dy from the layout parti-
tioning algorithm. The feature dimensions w̃ × h̃ are
calculated as w̃ = W

s×dx and h̃ = H
s×dy , with W and H

representing the layout size. The encoder employs four
MSGA modules with scales s progressively increasing
as [1×, 2×, 4×, 8×] to capture a broader range of lo-
cal features. Sparse convolutions are then applied to
extract local features H̃2, which are remapped back to
the original sequence order as H2, based on the indices
of Xv , formulated as follows:

H̃1 = ALIGN(H1, s), H̃1 ∈ Rw̃×h̃×p×d (9a)

H̃2 = Scatter conv(H̃1), H̃2 ∈ Rw̃×h̃×p×d (9b)

H2 = REMAP(H̃2), H2 ∈ Rnv×p×d (9c)

Finally, in the second part of global attention, the in-
put and hidden feature H2 generate the query Q, key
K2, value V2, with linear projection. Given matrices
Q,Q ∈ Rnv×d, the output O of MSGA module can be
calculated:

A2 = Softmax(H2Q
T), A2 ∈ Rnv×p, (10a)

O = AT
2 V2, O ∈ Rnv×d (10b)

The overall computation complexity is reduced from
O(n2d) to O(npd). The extracted cell features in
MSGA are fed into the subsequent module for further
extraction of topological relationships.

• Heterogeneous GNN (HGNN) aggregates node features
Xv and Xu in the topological space, as illustrated in
Fig. 5(c). The input graph G includes all nodes V and
U , with V ’s features derived from the output of the pre-
ceding MSGA module and U ’s features sourced from
either the raw input data or the output of the previous
HGNN module. We aggregate topological features in
three sub-steps, beginning with the transformation of
cell and net outputs into hidden representations via two
separate single-layer MLP networks.

hv = MLPv(Ov), hu = MLPu(Ou) or MLPu(Xu)
(11)

where Ov and Ou represent the outputs of the previous
MSGA and HGNN modules, respectively. We set the
dimension of hv across the encoder’s four modules
to {32, 64, 128, 256} and set hv’s dimension remains
128. The heterogeneous graph message passing layer

Table 2. Pre-training and downstream learning parameters, Pred
and Esti are abbreviation of Prediction and Estimation.

Tasks Lr Epoch Weight Decay Decoder
Pre-training 4e-3 100 1e-2 U-Net + MLP

Congestion Pred. 3e-4 50 1e-4 U-Net
Wirelength Esti. 4e-4 50 0 MLP

iteratively aggregates topological information, updat-
ing cell and net representations. The final cell and net
features are generated through MLPs. For example,
in cell-to-cell (v → v) aggregation within V , the core
mechanism of graph message propagation is described
by the following formula:

m(k)
v = AGGREGATE(k)

({
h
(k−1)
i : i ∈ N (v)

})
,

(12a)

h(k)
v = σ

(
W (k) ·m(k)

v + b(k)
)
, (12b)

Ov = MLPv(h
(k)
v). (12c)

where h
(k−1)
i is the hidden feature of the cell or net

from the (k − 1) layer. AGGREGATE(k) is the func-
tion that aggregates neighboring node features N (v),
resulting in the aggregated message m

(k)
v at layer k.

The node features are updated using a weight matrix
W (k) , bias b(k) and activation function σ. Cell-to-net
(v −→ u) message propagation is as the same.

After pre-training, the encoder can serve as a powerful neu-
ral extractor, providing comprehensive high-level circuit
representations to decoders for various downstream tasks.

Decoder. The decoder configurations used for both pre-
training and fine-tuning are presented in Tab. 2. During
fine-tuning, we explore two decoder configurations in our
case study, each designed for a specific predictive objective:
1D-regression, 2D-regression.

4. Experiments
4.1. Experimental Setting

We conduct experiments on CircuitNet (Chai et al., 2022;
2023), a large-scale public dataset of IC designs for real-
world industrial applications. The CircuitNet-N28 (28nm)
version comprises over 10,241 samples from 6 RTL de-
signs, including 54 synthesized netlists with variations in
macros, frequencies, and back-end flow settings. In our ex-
perimental setup, the pre-training set contains four designs
(RISCY-a, RISCY-b, RISCY-FPU-a, RISCY-FPU-b), total-
ing over 6,000 samples that only utilize the raw input data

7

DeepLayout: Learning Neural Representations of Circuit Placement Layout

Table 3. A comparative analysis of DeepLayout with existing methodologies in congestion prediction.

Method 5 samples 10 samples 20 samples
Pearson MAE RMSE SSIM Pearson MAE RMSE SSIM Pearson MAE RMSE SSIM

GPDL 0.2679 0.2418 0.2476 0.2926 0.2663 0.1061 0.1117 0.5193 0.3174 0.0662 0.0724 0.6601
CircuitGNN 0.2978 0.0166 0.0520 0.7395 0.2155 0.0128 0.0397 0.7681 0.2374 0.0127 0.0392 0.7693
CircuitPoint 0.2783 0.1061 0.1148 0.0943 0.3000 0.0951 0.1056 0.0899 0.1910 0.1059 0.1161 0.0514
Deeplayout 0.4270 0.0146 0.0379 0.7718 0.4383 0.0130 0.0360 0.7820 0.4418 0.0121 0.0349 0.7909

Table 4. A comparative analysis of DeepLayout with existing methodologies in post-routing wirelength estimation.

Method 5 samples 10 samples 20 samples
Pearson MAE RMSE Pearson MAE RMSE Pearson MAE RMSE

Net2 0.1155 0.1441 0.1849 0.3141 0.1424 0.1766 0.2578 0.1441 0.1793
CircuitGNN 0.3683 0.1323 0.1722 0.3691 0.1371 0.1730 0.3691 0.1319 0.1727
DeepLayout 0.3704 0.1305 0.1695 0.3806 0.1290 0.1689 0.3961 0.1270 0.1682

Gpdl w/o pre-train DeepLayout Ground Truth

Figure 7. Visualization results of congestion prediction.

to represent a large corpus of unlabeled samples. The fine-
tuning and test sets each introduce two additional designs,
zero-riscy-a and zero-riscy-b. Specifically, the fine-tuning
set comprises a small amount of labeled data—configured
as 5, 10, or 20 samples—while the test set contains 100
samples. This test set is used to evaluate quality predictions
for these two additional designs under various parameter
configurations.

4.2. Downstream Tasks

DeepLayout is pre-trained on our proposed layout-oriented
masking strategy. Predictions from these tasks facilitate
targeted early optimizations during the placement stage,
thereby reducing dependency on time-intensive EDA tools
throughout the design process. Notably, these tasks focus on
assessing circuit quality after routing, presenting significant
challenges in practical applications.

Congestion Prediction. Routing congestion poses a thorny
problem in the design process. Addressing this issue early
in the placement stage effectively reduces redundant un-
routability and minimizes the need for complex routing
iterations, and ML methods are widely used to predict con-
gestion throughout the process.

We comprehensively compare the SOTA baseline methods
with diverse methods, including image-based, graph-based,
point-based machine-learning methods. Compared methods
are: 1) Gpdl (Liu et al., 2021), a fully convolutional model

treating layouts as multi-channel images; 2) CircuitGNN
(Yang et al., 2022), which integrates geometric information
into graphs via a graph neural network; and 3) CircuitPoint
(Zou et al., 2023), which uses sparse convolution to perceive
spatial relationships, treating standard cells as a point cloud.

Figure 8. The impact of different mask ratios on congestion pre-
diction.

Figure 9. The impact of different mask ratios on post-routing wire-
length estimation.

Tab. 3 presents a comparative analysis of DeepLayout and
other three prediction methods across different data scales.
DeepLayout demonstrates significant performance dispari-
ties among the evaluated methods. Fig. 7 shows the exam-
ples of congestion prediction results. Deeplayout demon-
strates systematic dominance, achieving the highest Pearson

8

DeepLayout: Learning Neural Representations of Circuit Placement Layout

scores (0.4270–0.4418), lowest RMSE (0.0349–0.0379),
and best structural fidelity (SSIM: 0.7718–0.7909) across
all configurations.

Post-routing Wirelength Estimation. Wirelength esti-
mation is a longstanding challenge in the design process,
where traditional algorithms often rely on the simpler half-
perimeter wirelength (HPWL) metric. However, the more
accurate post-routing wirelength, which better models net
behavior, remains difficult to estimate effectively.

We comprehensively compare the SOTA baseline methods
with diverse methods. Compared methods are: Enhance-
ments to the comparative method Net2(Xie et al., 2020)
and improvements to CircuitGNN (Yang et al., 2022) by
integrating topological and geometric edges, which enabled
more accurate post-routing wirelength estimation.

Tab. 4 evaluates DeepLayout and other post-routing wire-
length estimation methods. DeepLayout demonstrates sys-
tematic superiority across all metrics, achieving the highest
Pearson scores (0.3704–0.3961) and the lowest error rates
(MAE: 0.127–0.1305; RMSE: 0.1682–0.1695), with perfor-
mance improving consistently as dataset size increases.

Analysis of Mask Ratio. In this section, we analyze the im-
pact of mask ratio on the performance of downstream tasks.
We select three different mask ratios—20%, 50%, and 80%
—to pretrain the DeepLayout framework, followed by fine-
tuning on two downstream tasks. As shown in the line
graphs in Fig. 8 and Fig. 9, a 50% mask ratio consistently
yields the best performance for both routing congestion and
wire length estimation, across varying numbers of finetuning
samples. This result suggests that circuit layouts exhibit sig-
nificant differences from images, and therefore, selecting a
relatively lower mask ratio leads to more optimal outcomes.

5. Conclusion
In this paper, we present DeepLayout, the first circuit repre-
sentation learning framework tailored for backend design,
addressing critical limitations in prior approaches that rely
on task-specific models and costly annotated datasets. By
integrating a hybrid graph neural network (GNN) and spa-
tial Transformer architecture, our framework effectively
captures the topological and geometric characteristics of
post-placement circuits while enabling flexible multi-task
outputs through a modular decoder design. To overcome la-
beling bottlenecks, we introduce a self-supervised learning
strategy incorporating layout-aware masking mechanisms
and dual supervision objectives. Extensive evaluations on
industrial-scale benchmarks demonstrate DeepLayout’s su-
periority over specialized state-of-the-art methods in two
layout quality assessment tasks, validating its ability to learn
intrinsic circuit properties robustly. DeepLayout paves the
way for a promising new direction in layout pre-training.

Acknowledgments
This work was supported in part by the National Key Re-
search and Development Program of China under Grant
2021ZD0114702; in part by the Natural Science Foundation
of Beijing, China, under Grant Z230002; in part by the Na-
tional Science Foundation of China under Grant 62034007;
and in part by the 111 Project under Grant B18001; in part
by the Hong Kong Research Grants Council (RGC) under
Grant No. 14212422 and 14202824.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

9

DeepLayout: Learning Neural Representations of Circuit Placement Layout

References
Chai, Z., Zhao, Y., Lin, Y., Liu, W., Wang, R., and Huang, R.

Circuitnet: An open-source dataset for machine learning
applications in electronic design automation (eda). SCI-
ENCE CHINA Information Sciences, September 2022.

Chai, Z., Zhao, Y., Liu, W., Lin, Y., Wang, R., and Huang, R.
Circuitnet: An open-source dataset for machine learning
in vlsi cad applications with improved domain-specific
evaluation metric and learning strategies. IEEE TCAD,
2023.

Chen, L., Chen, Y., Chu, Z., Fang, W., Ho, T.-Y., Huang, Y.,
Khan, S., Li, M., Li, X., Liang, Y., Lin, Y., Liu, J., Liu,
Y., Luo, G., Shi, Z., Sun, G., Tsaras, D., Wang, R., Wang,
Z., Wei, X., Xie, Z., Xu, Q., Xue, C., Young, E. F. Y.,
Yu, B., Yuan, M., Zhang, H., Zhang, Z., Zhao, Y., Zhen,
H.-L., Zheng, Z., Zhu, B., Zhu, K., and Zou, S. Large
circuit models: opportunities and challenges. SCIENCE
CHINA Information Sciences, 67(10):200402–, 2024.
doi: https://doi.org/10.1007/s11432-024-4155-7.
URL http://www.sciengine.com/
publisher/ScienceChinaPress/journal/
SCIENCECHINAInformationSciences/67/
10/10.1007/s11432-024-4155-7.

Chen, Y., Mai, J., Gao, X., Zhang, M., and Lin, Y. Macro-
rank: Ranking macro placement solutions leveraging
translation equivariancy. In Proceedings of the 28th Asia
and South Pacific Design Automation Conference, ASP-
DAC ’23, pp. 258–263, New York, NY, USA, 2023. Asso-
ciation for Computing Machinery. ISBN 9781450397834.
doi: 10.1145/3566097.3567899. URL https://doi.
org/10.1145/3566097.3567899.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

DSO.ai. DSO.ai. https://www.synopsys.com/
zh-cn/ai/ai-powered-eda/dso-ai.html,
2020.

Geng, H., Yang, H., Zhang, L., Yang, F., Zeng, X., and
Yu, B. Hotspot detection via attention-based deep layout
metric learning. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 41(8):2685–
2698, 2022. doi: 10.1109/TCAD.2021.3112637.

Geng, H., Chen, T., Ma, Y., Zhu, B., and Yu, B. Ptpt:
Physical design tool parameter tuning via multi-objective
bayesian optimization. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 42(1):
178–189, 2023. doi: 10.1109/TCAD.2022.3167858.

He, C., Li, R., Li, S., and Zhang, L. Voxel set transformer:
A set-to-set approach to 3d object detection from point
clouds. In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 8407–8417,
2022a. doi: 10.1109/CVPR52688.2022.00823.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick,
R. Masked autoencoders are scalable vision learners. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022b.

Hsiao, H.-H., Lu, Y.-C., Vanna-Iampikul, P., and Lim, S. K.
Fasttuner: Transferable physical design parameter opti-
mization using fast reinforcement learning. Proceedings
of the 2024 International Symposium on Physical Design,
2024. URL https://api.semanticscholar.
org/CorpusID:268389401.

JedAI. JedAI. https://www.cadence.
com/zh_TW/home/solutions/
cadence-jedai-solution.html, 2022.

Lai, Y., Mu, Y., and Luo, P. Maskplace: Fast chip placement
via reinforced visual representation learning. Advances
in Neural Information Processing Systems, 35:24019–
24030, 2022.

Lai, Y., Liu, J., Tang, Z., Wang, B., Hao, J., and Luo, P.
Chipformer: transferable chip placement via offline deci-
sion transformer. In Proceedings of the 40th International
Conference on Machine Learning, ICML’23. JMLR.org,
2023.

Li, M., Khan, S., Shi, Z., Wang, N., Yu, H., and Xu, Q.
Deepgate: Learning neural representations of logic gates.
In Proceedings of the 59th ACM/IEEE Design Automation
Conference, pp. 667–672, 2022.

Liu, S., Sun, Q., Liao, P., Lin, Y., and Yu, B. Global place-
ment with deep learning-enabled explicit routability opti-
mization. In 2021 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 1821–1824. IEEE,
2021.

Luo, D., Sun, Q., Xu, Q., Chen, T., and Geng, H. Attention-
based eda tool parameter explorer: From hybrid parame-
ters to multi-qor metrics. In 2024 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pp. 1–6,
2024. doi: 10.23919/DATE58400.2024.10546562.

10

http://www.sciengine.com/publisher/Science China Press/journal/SCIENCE CHINA Information Sciences/67/10/10.1007/s11432-024-4155-7
http://www.sciengine.com/publisher/Science China Press/journal/SCIENCE CHINA Information Sciences/67/10/10.1007/s11432-024-4155-7
http://www.sciengine.com/publisher/Science China Press/journal/SCIENCE CHINA Information Sciences/67/10/10.1007/s11432-024-4155-7
http://www.sciengine.com/publisher/Science China Press/journal/SCIENCE CHINA Information Sciences/67/10/10.1007/s11432-024-4155-7
https://doi.org/10.1145/3566097.3567899
https://doi.org/10.1145/3566097.3567899
https://www.synopsys.com/zh-cn/ai/ai-powered-eda/dso-ai.html
https://www.synopsys.com/zh-cn/ai/ai-powered-eda/dso-ai.html
https://api.semanticscholar.org/CorpusID:268389401
https://api.semanticscholar.org/CorpusID:268389401
https://www.cadence.com/zh_TW/home/solutions/cadence-jedai-solution.html
https://www.cadence.com/zh_TW/home/solutions/cadence-jedai-solution.html
https://www.cadence.com/zh_TW/home/solutions/cadence-jedai-solution.html

DeepLayout: Learning Neural Representations of Circuit Placement Layout

Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J., Songhori,
E., Wang, S., Lee, Y.-J., Johnson, E., Pathak, O., Bae,
S., Nazi, A., Pak, J., Tong, A., Srinivasa, K., Hang, W.,
Tuncer, E., Babu, A., Le, Q. V., Laudon, J., Ho, R., Car-
penter, R., and Dean, J. Chip placement with deep rein-
forcement learning. arXiv preprint arXiv: 2004.10746,
2020.

Shao, H.-C., Chen, G.-Y., Lin, Y.-H., Lin, C.-W., Fang, S.-Y.,
Tsai, P.-Y., and Liu, Y.-H. Lithohod: A litho simulator-
powered framework for ic layout hotspot detection. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, pp. 1–1, 2024. doi: 10.1109/TCAD.
2024.3463539.

Shi, Z., Pan, H., Khan, S., Li, M., Liu, Y., Huang, J.,
Zhen, H.-L., Yuan, M., Chu, Z., and Xu, Q. Deepgate2:
Functionality-aware circuit representation learning. In
2023 IEEE/ACM International Conference on Computer
Aided Design (ICCAD), pp. 1–9. IEEE, 2023.

Shi, Z., Zheng, Z., Khan, S., Zhong, J., Li, M., and Xu,
Q. Deepgate3: Towards scalable circuit representation
learning. arXiv preprint arXiv: 2407.11095, 2024.

Spindler, P. and Johannes, F. M. Fast and accurate rout-
ing demand estimation for efficient routability-driven
placement. In 2007 Design, Automation & Test in Eu-
rope Conference & Exhibition, pp. 1–6, 2007. doi:
10.1109/DATE.2007.364463.

Wang, B., Shen, G., Li, D., Hao, J., Liu, W., Huang, Y.,
Wu, H., Lin, Y., Chen, G., and Heng, P. A. Lhnn: Lattice
hypergraph neural network for vlsi congestion prediction.
In Proceedings of the 59th ACM/IEEE Design Automation
Conference, pp. 1297–1302, 2022a.

Wang, Z., Bai, C., He, Z., Zhang, G., Xu, Q., Ho, T.-Y., Yu,
B., and Huang, Y. Functionality matters in netlist repre-
sentation learning. In Proceedings of the 59th ACM/IEEE
Design Automation Conference, pp. 61–66, 2022b.

Xie, Z., Liang, R., Xu, X., Hu, J., Duan, Y., and Chen,
Y. Net2: A graph attention network method customized
for pre-placement net length estimation. Asia and South
Pacific Design Automation Conference, 2020. doi: 10.
1145/3394885.3431562.

Yang, Z., Li, D., Zhang, Y., Zhang, Z., Song, G., Hao,
J., et al. Versatile multi-stage graph neural network for
circuit representation. Advances in Neural Information
Processing Systems, 35:20313–20324, 2022.

Zhu, K., Chen, H., Turner, W. J., Kokai, G. F., Wei, P.-H.,
Pan, D. Z., and Ren, H. Tag: Learning circuit spatial
embedding from layouts. In 2022 IEEE/ACM Interna-
tional Conference On Computer Aided Design (ICCAD),
pp. 1–9, 2022.

Zou, J., Wang, X., Guo, J., Liu, W., Zhang, Q., and Huang,
C. Circuit as set of points. ArXiv, abs/2310.17418,
2023. URL https://api.semanticscholar.
org/CorpusID:264491018.

11

https://api.semanticscholar.org/CorpusID:264491018
https://api.semanticscholar.org/CorpusID:264491018

