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Abstract

Memory mechanisms have become essential components in advanced AI architectures, sig-
nificantly impacting performance, efficiency, and adaptability across diverse domains. This
survey presents a unified theoretical framework for analyzing memory systems through three
complementary lenses: retrieval mechanisms, memory structures, and update schemas. We
systematically examine memory implementations across four key domains: Large Language
Models (LLMs), Vision-Language Models (VLMs), Visual Prompt Tuning (VPT), and Video
Understanding systems.

Our analysis reveals both universal memory patterns that transcend domains and domain-
specific optimizations that address unique challenges in each field. We identify significant
evolutionary trends, including the increasing prevalence of hybrid retrieval approaches,
progression toward sophisticated hierarchical memory structures, and development of multi-
factor update schemas that balance stability with adaptability. Through cross-domain
comparisons, we identify transferable principles, highlight remaining challenges, and propose
promising research directions for next-generation memory systems. These include theoretical
frameworks for memory capacity optimization, cognitive-aligned architectures, cross-modal
knowledge abstraction, and privacy-preserving memory systems. This comprehensive analysis
provides valuable insights for researchers working on memory-enhanced AI systems across
diverse application domains, offering both theoretical foundations and practical design
considerations.

1 Introduction

1.1 Memory Systems in Modern AI Architectures

Modern AI systems face a common set of challenges that make sophisticated memory mechanisms necessary:

• Contextual Understanding: AI systems must maintain coherent understanding across extended
interactions or processing streams, requiring effective recall of previously encountered information.

• Computational Efficiency: As models grow in size and complexity, memory mechanisms must
balance expressiveness with computational requirements, especially for deployment in resource-
constrained environments.

• Adaptability to New Information: Systems must effectively integrate new knowledge with
existing information without catastrophic forgetting or performance degradation.

• Cross-Modal Integration: Many contemporary AI systems operate across multiple modalities (text,
vision, audio), requiring memory structures that can effectively bridge these different information
types.
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1.2 Cross-Domain Memory Challenges

While memory mechanisms share common challenges across domains, each field has developed specialized
approaches to address domain-specific requirements:

• Large Language Models (LLMs) face challenges with context length limitations, knowledge
integration, and maintaining coherence across extended interactions. Recent advances have introduced
innovative solutions ranging from retrieval-augmented generation to explicit memory architectures
inspired by cognitive science.

• Vision-Language Models (VLMs) must maintain alignments between visual and textual represen-
tations while managing modality-specific processing. Memory systems in this domain have evolved
from simple prompt banks to sophisticated cross-modal attention mechanisms.

• Visual Prompt Tuning (VPT) approaches must learn new tasks sequentially without forgetting
previous ones, requiring memory structures that carefully balance stability with plasticity. Parameter
efficiency is particularly critical in this domain.

• Video Understanding Systems face unique challenges with temporal data and extended context
maintenance. Memory systems in this domain have progressed from simple temporal buffers to
hierarchical architectures that mimic human cognition.

1.3 A Unified Framework for Analysis

To systematically analyze memory systems across these diverse domains, we propose a unified theoretical
framework that examines memory systems through three complementary lenses:

1. Retrieval Mechanisms: How information is accessed from memory, including similarity-based,
prompt-based, temporal-spatial, and hybrid approaches.

2. Memory Structures: How information is organized and stored, including static, dynamic, hierar-
chical, and distributed architectures.

3. Update Schemas: How memory content evolves over time, including frequency-based, recency-based,
importance-weighted, and privacy-preserving approaches.

This framework enables us to identify both universal patterns that transcend domains and domain-specific
optimizations that address unique challenges in each field.

1.4 Contributions and Paper Organization

This survey makes the following contributions:

• Provides a comprehensive analysis of memory systems across four key AI domains

• Identifies universal memory patterns and domain-specific optimizations

• Tracks evolutionary trends in memory system design

• Proposes promising directions for next-generation memory systems

The remainder of this paper is organized as follows: Section 2 reviews related work across the four domains.
Section 3 presents our unified framework for analyzing memory systems. Sections 4.1-4.4 provide domain-
specific analyses of memory systems in LLMs, VLMs, VPT, and video understanding, respectively. Section 5
presents a cross-domain analysis identifying common patterns and unique adaptations. Finally, Section 6
discusses future research directions and opportunities for cross-domain knowledge transfer.
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2 Related Work

2.1 Large Language Models (LLMs)

Large Language Models face fundamental constraints in context management and long-term coherence.
Recent surveys have systematically analyzed memory mechanisms that address these limitations. Zhang et al.
(2024) provide a taxonomy of memory mechanisms for LLM-based agents, categorizing them by information
sources, storage forms, and operation mechanisms. Their work emphasizes how memory enables coherence
across extended interactions and knowledge integration.

Zhao et al. (2023) trace LLM evolution from statistical models to transformer architectures, examining how
scaling affects memory capabilities and emergent abilities. Minaee et al. (2024) review prominent LLM
families and augmentation techniques that overcome fixed-context limitations.

Guo et al. (2023) specifically explore working memory frameworks inspired by cognitive psychology, proposing
centralized Memory Hubs and Episodic Buffers to overcome traditional LLM memory limitations. These
surveys collectively demonstrate progression from simple context windows to sophisticated architectures
inspired by human cognitive systems, highlighting memory’s critical role in advancing LLM capabilities.

2.2 Vision-Language Models (VLMs)

Vision-Language Models (VLMs) have emerged as powerful frameworks for connecting visual and textual
modalities, enabling various downstream tasks like image classification, object detection, and semantic
segmentation Zhang et al. (2024) [ArXiv GitHub]. Recent advances in VLMs have increasingly focused on
memory mechanisms as a crucial component for enhancing model capabilities and efficiency.

The fundamental architecture of VLMs typically consists of separate encoders for visual and textual inputs,
with various mechanisms to facilitate cross-modal interaction Encord (2024) [Encord]. These models leverage
contrastive learning methods to establish connections between the visual and language domains, allowing
them to perform zero-shot predictions without task-specific fine-tuning Zhang et al. (2023) [ArXiv].

2.3 Visual Prompt Tuning (VPT)

Visual Prompt Tuning (VPT) has emerged as a parameter-efficient alternative to full fine-tuning for adapting
vision models to downstream tasks Jia et al. (2022) [ArXiv SpringerLink]. VPT introduces only a small
amount of trainable parameters (less than 1% of model parameters) in the input space while keeping the
model backbone frozen.

The core mechanism of VPT involves prepending learnable prompt tokens to the input sequence of each
Transformer layer Papers With Code [Paperswithcode]. These tokens are learned together with a linear head
during fine-tuning, allowing the model to adapt to specific tasks with minimal parameter updates.

Research has demonstrated that VPT achieves significant performance gains compared to other parameter-
efficient tuning protocols and even outperforms full fine-tuning in many cases across model capacities and
training data scales.

2.4 Memory in Video Understanding Systems

Video understanding systems face unique memory challenges due to temporal data and the need for extended
context maintenance. Recent surveys explore specialized memory architectures for video processing.

Nguyen et al. (2024) examine video-language understanding systems from architectural, training, and data
perspectives, highlighting memory mechanisms for temporal coherence across frames. Tang et al. (2023)
focus specifically on video understanding with Large Language Models, categorizing approaches based on
temporal information handling—from frame-based encoders to sophisticated temporal encoders maintaining
context across sequences.
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Koprinska and Carrato established foundational principles for temporal video segmentation that continue to
influence modern approaches. Research on Hierarchical Temporal Memory (HTM) examines biologically-
inspired architectures for video processing requiring temporal coherence.

The evolution of video memory systems has progressed from simple temporal buffers to sophisticated
hierarchical architectures mimicking human cognition, with recent advances leveraging large language models
to integrate multimodal information across extended temporal sequences.

3 Unified Framework for Cross-Domain Memory Systems

Memory systems have become a critical component in advanced AI architectures across domains. To
systematically analyze these systems, we propose a unified theoretical framework that examines memory
systems through three complementary lenses: retrieval mechanisms, memory structures, and update schemas.
This framework enables us to identify common patterns, domain-specific optimizations, and opportunities for
cross-domain knowledge transfer.

3.1 Retrieval Mechanism Taxonomy

The retrieval mechanism determines how information is accessed from memory and significantly impacts both
performance and efficiency. We categorize retrieval mechanisms into four primary approaches based on their
underlying principles and implementation strategies.

Table 1: Taxonomy of Retrieval Mechanisms Across AI Domains
Category Key Approaches Analysis Dimensions
Similarity-Based

• Semantic search

• Contextual similarity

• Embedding-based retrieval

• Retrieval precision

• Context sensitivity

• Computational complexity

Prompt-Based
• Direct prompt selection

• Compositional prompting

• Task-specific prompt banks

• Prompt transferability

• Task adaptation capability

• Memory efficiency

Temporal-Spatial
• Temporal correlation

• Spatial attention

• Sequence modeling

• Temporal consistency

• Spatial coherence

• Processing efficiency

Hybrid Methods
• Multi-modal integration

• Cross-attention mechanisms

• Ensemble strategies

• Integration effectiveness

• Modal alignment

• Robustness to domain shift
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3.1.1 Similarity-Based Retrieval

Similarity-based retrieval mechanisms use vector representations to find information in memory by computing
similarity measures between queries and stored items. These approaches are prevalent in embedding-based
systems and often serve as the foundation for more complex retrieval methods. The effectiveness of similarity-
based retrieval depends on:

1. Retrieval Precision: How accurately the system identifies relevant information based on similarity
metrics

2. Context Sensitivity: The ability to adapt similarity computations based on contextual factors

3. Computational Complexity: The efficiency of similarity calculations, especially for large-scale
memory systems

3.1.2 Prompt-Based Retrieval

Prompt-based retrieval mechanisms rely on structured prompts to access information from memory. These
approaches are particularly common in language and vision-language models where prompts serve as interfaces
for knowledge retrieval. Key considerations include:

1. Prompt Transferability: How well prompts generalize across different tasks or domains

2. Task Adaptation Capability: The ability to customize prompts for specific tasks

3. Memory Efficiency: How efficiently prompts can be stored and accessed

3.1.3 Temporal-Spatial Retrieval

Temporal-spatial retrieval mechanisms leverage temporal and spatial relationships to access information.
These approaches are especially important in video understanding systems and sequential data processing.
Critical factors include:

1. Temporal Consistency: Maintaining coherent information retrieval across time steps

2. Spatial Coherence: Preserving spatial relationships during retrieval

3. Processing Efficiency: The computational overhead of tracking temporal-spatial relationships

3.1.4 Hybrid Methods

Hybrid retrieval approaches combine multiple mechanism types to leverage their complementary strengths.
These methods are increasingly common in complex multi-modal systems. Key considerations include:

1. Integration Effectiveness: How well different retrieval mechanisms are combined

2. Modal Alignment: Aligning information across different modalities

3. Robustness to Domain Shift: Maintaining performance when distribution changes occur

3.2 Memory Structure Classification

Memory structures define how information is organized, stored, and accessed. Different structural approaches
offer various trade-offs between efficiency, adaptability, and complexity.
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Table 2: Classification of Memory Structures Across AI Domains
Structure Type Architectural Patterns Reported Advantages/Limitations
Static Memory

• Fixed capacity memories

• Pre-trained prompt repositories

• Immutable knowledge bases

• + Low maintenance overhead

• + Predictable performance

• - Limited adaptability

• - Scale constraints

Dynamic Memory
• Expandable memory banks

• Continually updated embeddings

• Adaptive storage allocation

• + Adaptability to new data

• + Scalability with task growth

• - Higher computational overhead

• - Potential for memory corruption

Hierarchical Mem-
ory • Multi-level access structures

• Priority-based organization

• Cache-like architectures

• + Efficient information access

• + Organized knowledge storage

• - Complex management logic

• - Increased design complexity

Distributed Mem-
ory • Federated storage systems

• Shared knowledge repositories

• Decentralized architectures

• + Collaborative knowledge sharing

• + Enhanced privacy potential

• - Synchronization challenges

• - Consistency maintenance costs

3.2.1 Static Memory

Static memory structures maintain fixed memory configurations that remain largely unchanged during
operation. These structures are common in systems with well-defined, stable knowledge requirements. Key
characteristics include:

1. Fixed Capacity: Pre-determined memory allocation that doesn’t change during operation

2. Immutable Content: Memory contents that remain stable over time

3. Optimized Access Patterns: Access mechanisms tailored to the fixed structure

Static memory offers predictable performance and low maintenance overhead but suffers from limited
adaptability and potential scale constraints as requirements grow.
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3.2.2 Dynamic Memory

Dynamic memory structures can expand, contract, or reorganize during operation to accommodate changing
information needs. These structures are essential for systems that must adapt to new data or evolving tasks.
Key aspects include:

1. Expandable Storage: The ability to allocate additional memory as needed

2. Continuous Updates: Mechanisms for modifying memory contents over time

3. Adaptive Organization: Reorganization capabilities based on usage patterns

Dynamic memory provides excellent adaptability and scalability but typically requires more complex manage-
ment and may incur higher computational costs.

3.2.3 Hierarchical Memory

Hierarchical memory structures organize information in multiple levels, often with different access character-
istics at each level. This organization resembles human memory systems and cache hierarchies in computer
architecture. Important features include:

1. Multi-Level Access: Different access patterns and speeds at each level

2. Priority Organization: Information organized by importance or relevance

3. Efficient Retrieval Paths: Optimized paths for accessing different types of information

Hierarchical structures enable efficient information access and organized knowledge storage but require more
complex management logic and design.

3.2.4 Distributed Memory

Distributed memory structures spread information across multiple storage locations, often geographically or
functionally separated. These approaches are increasingly important in collaborative and privacy-conscious
systems. Key characteristics include:

1. Federated Storage: Information distributed across multiple locations

2. Shared Access Protocols: Mechanisms for accessing distributed information

3. Localized Processing: Computation performed near storage when possible

Distributed memory supports collaborative knowledge sharing and enhanced privacy but faces challenges in
synchronization and consistency maintenance.

3.3 Memory Update Schema Analysis

Memory update schemas determine how information in memory evolves over time. These mechanisms
significantly impact a system’s ability to adapt to new information while preserving critical knowledge.

3.3.1 Frequency-Based Updates

Frequency-based update schemas prioritize information based on how often it is accessed or used. These
approaches are inspired by caching algorithms like Least Frequently Used (LFU) and are common in systems
where usage patterns are strong indicators of importance. Key mechanisms include:

1. Usage Tracking: Monitoring how frequently items are accessed
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Table 3: Analysis of Memory Update Schemas Across AI Domains
Update Ap-
proach

Core Mechanisms Theoretical Implications

Frequency-Based
• Usage tracking

• Popularity-based retention

• LFU/LRU-inspired approaches

• Potential bias toward common pat-
terns

• Efficient for repetitive tasks

• Performance in long-tail scenarios

Recency-Based
• Temporal prioritization

• Time-decay functions

• Recent-first strategies

• Adaptation to concept drift

• Handling temporal dynamics

• Historical information loss

Importance-
Weighted • Value estimation models

• Critical information retention

• Salience detection

• Attention mechanism effectiveness

• Information preservation quality

• Computational overhead for value as-
sessment

Privacy-Preserving
• Anonymization techniques

• Differential privacy approaches

• Federated updates

• Privacy-utility tradeoffs

• Information leakage risks

• Compliance with privacy standards

2. Popularity-Based Retention: Preserving frequently accessed information

3. Access Pattern Analysis: Identifying and optimizing for common access sequences

Frequency-based approaches work well for repetitive tasks but may struggle with long-tail scenarios and can
develop biases toward common patterns.

3.3.2 Recency-Based Updates

Recency-based update schemas prioritize recent information over older data. These approaches are inspired
by cache replacement policies like Least Recently Used (LRU) and are valuable in dynamic environments
where relevance changes over time. Important aspects include:

1. Temporal Prioritization: Giving preference to recently accessed information

2. Time-Decay Functions: Gradually reducing the importance of older information

3. Temporal Windowing: Focusing on information within recent time frames
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Recency-based methods adapt well to concept drift and changing environments but risk losing valuable
historical information.

3.3.3 Importance-Weighted Updates

Importance-weighted update schemas evaluate the significance of information using learned or heuristic value
functions. These approaches attempt to preserve critical information regardless of recency or frequency. Key
elements include:

1. Value Estimation: Assessing the importance of each piece of information

2. Critical Information Preservation: Maintaining essential knowledge regardless of usage patterns

3. Attention Mechanisms: Using learned attention to identify significant information

Importance-weighted approaches excel at preserving crucial information but typically require more complex
computational mechanisms to assess value.

3.3.4 Privacy-Preserving Updates

Privacy-preserving update schemas incorporate techniques to protect sensitive information during memory
updates. These approaches are increasingly important as AI systems handle more personal and confidential
data. Critical mechanisms include:

1. Anonymization: Removing or obscuring identifying information

2. Differential Privacy: Adding calibrated noise to protect individual data points

3. Federated Updates: Performing updates locally before aggregating changes

Privacy-preserving methods must carefully balance privacy protection with utility, managing the inherent
trade-offs between these competing objectives.

Our unified framework provides a comprehensive approach for analyzing memory systems across diverse AI
domains. By examining systems through these three complementary perspectives—retrieval mechanisms,
memory structures, and update schemas—we can identify common patterns, unique innovations, and
transferable techniques that span domains from language processing to vision-language models and video
understanding systems.

4 Single domain analysis

4.1 Large Language Models (LLMs)

4.1.1 Overview of Memory Requirements in LLMs

Large Language Models present unique memory challenges stemming from several critical factors:

• Context length limitations: Standard transformer architectures have fixed context windows,
limiting their ability to access information from distant parts of a conversation or document.

• Knowledge integration challenges: Models must effectively integrate parametric knowledge
(learned during training) with external knowledge retrieved at inference time.

• Computational efficiency concerns: Memory mechanisms must balance expressiveness with
computational requirements, especially for deployment in resource-constrained environments.
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• Coherence across extended interactions: LLMs need to maintain consistent understanding over
long conversations, requiring effective mechanisms to recall previous interactions.

Recent advances have introduced innovative memory mechanisms to address these challenges, ranging from
retrieval-augmented generation to explicit memory architectures and neuroscience-inspired approaches.

4.1.2 Retrieval Mechanism Analysis

Our analysis of LLM memory systems reveals several key patterns in retrieval mechanisms across different
approaches. Table 4.1 provides a comparative overview of retrieval mechanisms employed by various LLM
systems, organized by their primary approach to illustrate the evolution of research trends.

Table 4: Comparison of Retrieval Mechanisms in LLM Memory Systems
System Year Primary Ap-

proach
Key Mechanisms Notable Characteristics

Similarity-Based Approaches
MemGPT 2023 Similarity-based Context chunking,

LLM-based retrieval se-
lection

Autonomous memory man-
agement; virtual context ex-
pansion beyond model limits

A-Mem 2023 Similarity-based Approximate nearest neigh-
bor, Concept tree searching

Fast indexing; generalizable
retrieval through concept
mapping

memoryLLM 2023 Similarity-based Semantic chunking,
Key-value memory,
Multi-vector indexing

Multi-vector approach en-
hances retrieval precision

ChatDB 2024 Similarity-based Structured database as mem-
ory, SQL-based retrieval

Combines symbolic and neu-
ral approaches; strong struc-
tured memory capabilities

Temporal-Based Approaches
MemBank 2023 Temporal-based Recency weighting, Episodic

buffer
Explicit splitting of episodic
and semantic memory

SCM 2023 Temporal-based Streaming pruning, Stream
compression

Progressive summarization
for extended dialogues

Hybrid Approaches
Memory LLM-agent 2023 Hybrid (Simi-

larity + Tem-
poral)

Multi-granularity memory
bank, Attention-based re-
trieval

Autonomous memory man-
agement with multi-level or-
ganization

RET-LLM 2023 Hybrid
(Similar-
ity + Prompt-based)

Reflective trigger mechanism,
Chain-of-thought retrieval

Self-reflection determines
when to retrieve from mem-
ory

Think-in-Mem 2024 Hybrid
(Similar-
ity + Prompt-based)

Deliberate thinking,
Memory-centric reason-
ing paths

Mimics human memory uti-
lization during complex rea-
soning

MyAgent 2024 Hybrid (Tem-
poral + Simi-
larity)

Event-based recollection,
Self-distillation

Memory compression based
on behavioral outcomes

4.1.3 Dominant Retrieval Patterns

The chronological organization of retrieval approaches reveals clear evolutionary trends in how LLM memory
systems access information:

1. Movement Toward Hybrid Approaches: Early systems primarily employed single-strategy
approaches (either similarity or temporal-based), while more recent systems increasingly combine
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multiple retrieval mechanisms. This trend reflects growing recognition that no single retrieval strategy
adequately addresses the diverse information needs of complex language tasks. For instance, RET-
LLM (2023) integrates similarity-based retrieval with prompt-based reflection, while Think-in-Mem
(2024) employs a sophisticated combination of deliberate thinking and memory-centric reasoning.

2. Increasing Autonomy in Retrieval Decisions: A noticeable progression toward systems that
autonomously determine when and what to retrieve, rather than using fixed retrieval strategies.
MemGPT (2023) introduced basic autonomous memory management, while later systems like RET-
LLM (2023) implement sophisticated self-reflection mechanisms to determine appropriate retrieval
timing.

3. Growing Integration of Structured Knowledge: Recent approaches increasingly incorporate
structured representations alongside traditional vector embeddings. ChatDB (2024) implements a
fully structured database approach to memory, while A-Mem (2023) uses concept trees to enable
more generalizable retrieval.

4. Evolution of Semantic Granularity: Earlier systems operated primarily at the level of full
paragraphs or documents, while newer approaches like memoryLLM (2023) and Memory LLM-
agent (2023) implement multi-granular approaches that can retrieve at different levels of semantic
abstraction, from key concepts to detailed passages.

4.1.4 Innovative Retrieval Mechanisms

Several particularly innovative retrieval mechanisms have emerged in recent systems:

• RET-LLM’s Reflective Triggers: RET-LLM introduced a "reflective trigger" mechanism that
enables the model to determine when memory retrieval is necessary, similar to the tip-of-the-tongue
phenomenon in human cognition. This approach significantly enhances retrieval precision by avoiding
unnecessary retrievals that might derail coherent reasoning.

• Think-in-Mem’s Deliberate Thinking: Think-in-Mem implements a novel approach where the
model explicitly "thinks" about what it needs to retrieve before conducting memory search, leading
to more focused and relevant retrievals.

• MyAgent’s Event-Based Recollection: MyAgent organizes memories around events rather
than just semantic content, enabling more contextually appropriate retrievals based on both what
happened and when it occurred.

• A-Mem’s Concept Tree: A-Mem employs a hierarchical concept tree to enable retrieval of
semantically related information even when exact matches are unavailable, addressing a key limitation
of pure embedding-based approaches.

These innovations demonstrate a clear trend toward retrieval mechanisms that more closely mimic human
memory processes, with increased metacognitive awareness and contextual sensitivity.

4.1.5 Memory Structure Classification

LLM memory systems employ diverse organizational structures to manage information effectively. Table 4.2
provides a comparative overview of memory structures implemented in various LLM systems, organized by
their primary structure type to illustrate structural evolution over time.

4.1.6 Structural Evolution Patterns

The chronological analysis of memory structures reveals several key evolutionary trends:
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Table 5: Comparison of Memory Structures in LLM Memory Systems
System Year Primary Structure Key Components Notable Characteristics

Dynamic Memory Approaches
MemGPT 2023 Dynamic Memory Main context, Virtual mem-

ory swap
System-inspired memory
management with paging
mechanisms

memoryLLM 2023 Dynamic Memory Expandable memory slots,
Dynamic indexing

Efficient scaling to large
memory stores

ChatDB 2024 Dynamic + Structured SQL database, Dynamic
schema adaptation

Symbolic structure with neu-
ral interface

Hierarchical Memory Approaches
MemBank 2023 Hierarchical Memory Episodic buffer, Long-term

store, Knowledge base
Three-tier system inspired by
human memory models

Memory LLM-
agent

2023 Hierarchical Memory Core memory, Archival mem-
ory, Knowledge tools

Progressive organization
from immediate to archived
information

A-Mem 2023 Hierarchical Memory Concept trees, Instance
stores

Ontological organization en-
hancing generalization

Specialized Memory Approaches
SCM 2023 Streaming Memory Stream buffer, Compressed

representations
Optimized for continuous in-
formation flow

RET-LLM 2023 Associative Memory Experience store, Reflection
module

Connects experiences
through associative links

Think-in-Mem 2024 Reasoning-Oriented Memory Reasoning cache, Factual
store

Specialized structures for dif-
ferent thinking modes

MyAgent 2024 Event-Based Memory Experience logs, Behavioral
models

Organizes memories around
discrete events and outcomes

1. Increasing Structural Sophistication: Early approaches implemented relatively straightforward
memory structures, while more recent systems feature complex, multi-component architectures.
MemGPT (2023) introduced basic paging mechanisms inspired by operating systems, while later sys-
tems like Memory LLM-agent (2023) implement sophisticated multi-tier architectures with specialized
components for different types of information.

2. Growing Biological Inspiration: Recent memory structures increasingly draw inspiration from
cognitive science and neuroscience models of human memory. MemBank (2023) explicitly implements
components inspired by episodic, semantic, and working memory, while Think-in-Mem (2024) models
different reasoning processes associated with distinct memory systems.

3. Shift Toward Specialized Components: Later systems tend to implement specialized memory
components for different types of information or different cognitive functions. Memory LLM-agent
(2023) uses distinct stores for core, archival, and knowledge information, while MyAgent (2024)
maintains separate structures for experiences and behavioral patterns.

4. Integration of Symbolic and Neural Approaches: Recent systems increasingly combine neural
representations with symbolic structures. ChatDB (2024) implements a fully symbolic database
structure with a neural interface, while A-Mem (2023) uses concept trees to provide symbolic
organization of neural embeddings.

4.1.7 Key Architectural Innovations

Several particularly innovative structural approaches have emerged:

• MemGPT’s Virtual Memory: MemGPT implements a virtual memory system inspired by
operating system design, with paging mechanisms that move information between active context
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and external storage. This approach effectively extends the context window while maintaining
computational efficiency.

• ChatDB’s SQL Integration: ChatDB integrates a fully-featured SQL database as its memory
structure, enabling powerful structured queries and complex relational operations that are difficult to
implement in pure vector stores.

• Think-in-Mem’s Reasoning Cache: Think-in-Mem introduces a specialized memory structure for
caching intermediate reasoning steps, allowing the model to revisit and refine its reasoning process
over time.

• A-Mem’s Concept Trees: A-Mem organizes memories in hierarchical concept trees that enable
generalization across related concepts, addressing a key limitation of flat memory structures.

These structural innovations demonstrate a trend toward increasingly sophisticated organization that balances
computational efficiency with cognitive plausibility.

4.1.8 Memory Update Schema Analysis

LLM memory systems employ diverse strategies for updating stored information. Table 4.3 provides a
comparative overview of update schemas implemented across various LLM approaches, organized by their
primary update approach to illustrate the evolution of update strategies.

4.1.9 Update Strategy Evolution

The chronological organization of update schemas reveals important trends in how LLM memory systems
determine what information to preserve or modify:

1. From Simple to Sophisticated Criteria: Early systems primarily employed straightforward
criteria like recency (MemGPT, 2023), while later approaches introduced increasingly sophisticated
mechanisms for determining information value. Think-in-Mem (2024) implements deliberate reasoning
about information utility, while MyAgent (2024) employs a complex multi-factor approach considering
event significance, outcome correlation, and usage patterns.

2. Increasing Agency in Memory Management: A clear trend toward systems that actively manage
their own memories rather than using fixed update rules. Memory LLM-agent (2023) explicitly
models memory management as agent actions, while Think-in-Mem (2024) implements deliberate
decision-making about what to retain or forget.

3. Growing Emphasis on Causal Understanding: Recent systems increasingly preserve information
based on its causal significance rather than just its semantic importance. MyAgent (2024) explicitly
tracks correlations between memories and behavioral outcomes, preferentially preserving memories
that led to successful interactions.

4. Integration of Multiple Update Criteria: Later systems tend to combine multiple update
criteria rather than relying on a single approach. memoryLLM (2023) balances recency with semantic
importance, while MyAgent (2024) integrates recency, importance, and frequency considerations in a
comprehensive update strategy.

4.1.10 Notable Update Mechanisms

Several particularly innovative update mechanisms have emerged:

• RET-LLM’s Reflection-Based Consolidation: RET-LLM implements a novel approach where
the model explicitly reflects on its experiences to determine which should be preserved in long-term
memory, mimicking human memory consolidation during reflection.
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Table 6: Comparison of Memory Update Approaches in LLM Memory Systems
System Year Primary Ap-

proach
Key Mechanisms Notable Characteristics

Recency-Based Approaches
MemGPT 2023 Recency-Based FIFO context management,

LRU-based eviction
Automated swapping be-
tween active and archived
memory

SCM 2023 Recency-Based Streaming compression,
Temporal decay

Progressive summarization
of older information

Importance-Weighted Approaches
A-Mem 2023 Importance-Weighted Concept importance scoring,

Tree restructuring
Preserves conceptually signif-
icant information

MemBank 2023 Importance-Weighted Salience detection, Semantic
consolidation

Selective information persis-
tence based on importance

RET-LLM 2023 Importance-Weighted Reflection-based consolida-
tion, Experience tagging

Self-evaluation of memory
importance

Hybrid Approaches
memoryLLM 2023 Hybrid (Re-

cency +
Importance)

Semantic chunking,
Dual-phase indexing

Balances temporal relevance
with semantic importance

Memory
LLM-agent

2023 Hybrid (Re-
cency +
Importance)

Active forgetting,
Importance-based con-
solidation

Explicit memory manage-
ment through agent actions

Think-in-Mem 2024 Hybrid (Re-
cency +
Importance)

Deliberate consolidation,
Utility assessment

Strategic memory updates
based on reasoning utility

MyAgent 2024 Hybrid (Re-
cency +
Importance +
Frequency)

Event significance, Outcome
correlation, Usage tracking

Multi-factor consolidation
mimicking human memory
formation

Structured (Schema-Based) Approaches
ChatDB 2024 Structured

(Schema-Based)
Schema evolution, Relational
updates

Formal database update op-
erations with neural guid-
ance

• Think-in-Mem’s Utility Assessment: Think-in-Mem evaluates the utility of memories based
on their contribution to successful reasoning, preferentially preserving information that has proven
valuable for problem-solving.

• MyAgent’s Outcome Correlation: MyAgent tracks correlations between memories and interaction
outcomes, strengthening memories that led to successful outcomes and weakening those associated
with failures.

• ChatDB’s Schema Evolution: ChatDB implements a structured approach to memory updates
by evolving its database schema over time to better represent accumulated knowledge, combining
formal database principles with neural flexibility.

These innovations demonstrate a trend toward update mechanisms that more closely mimic human memory
consolidation, with increased metacognitive awareness and goal-directed memory formation.

4.1.11 Discussion and Key Findings

Our analysis of LLM memory systems through the unified framework reveals several important insights and
trends:
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Universal Memory Patterns Several universal memory patterns identified in our framework are consis-
tently present across LLM systems throughout the analyzed time period:

1. Multi-Tier Organization: The most effective systems consistently implement multi-tier memory
structures that separate immediate context from longer-term storage, enabling efficient processing
while maintaining access to extended history.

2. Metacognitive Control: Advanced systems increasingly implement metacognitive mechanisms
that regulate memory operations, determining when to retrieve information and what to retain based
on task demands.

3. Balancing Generalization and Specificity: Successful memory systems carefully balance specific
episodic memories with generalized semantic knowledge, enabling both precise recall and broad
application of learned patterns.

Domain-Specific Optimizations While adhering to universal memory patterns, LLM systems have
implemented distinctive optimizations to address the specific challenges of language processing:

1. Semantic Chunking Strategies: LLM memory systems employ sophisticated chunking strategies
that preserve semantic coherence rather than using fixed-size divisions, significantly enhancing
retrieval precision.

2. Contextual Relevance Filtering: Advanced systems implement context-aware filtering mechanisms
that retrieve information based on relevance to the current conversation state rather than just semantic
similarity.

3. Narrative Coherence Preservation: Recent approaches prioritize maintaining narrative coherence
across extended interactions, preserving causal relationships and conversational flow even when
retrieving from distant parts of a dialogue.

Emerging Research Directions Based on our analysis, several promising research directions emerge for
next-generation LLM memory systems:

1. Cognitive Architecture Integration: Future systems could more deeply integrate principles from
cognitive architectures like ACT-R or SOAR, implementing unified theories of memory that span
working, episodic, semantic, and procedural components.

2. Explainable Memory Operations: An important frontier is developing memory systems that
can explain their own retrieval and storage decisions, enabling users to understand why certain
information was remembered or forgotten.

3. Adaptive Memory Allocation: Next-generation systems could dynamically adjust memory
allocation based on task demands, dedicating more resources to memory-intensive tasks while
operating efficiently for simpler interactions.

4. Cross-Episode Knowledge Transfer: A critical challenge is developing systems that can effectively
transfer knowledge between different conversations or documents, building cumulative understanding
across separate interactions.

5. Personalized Memory Adaptation: Future systems could adapt their memory mechanisms
to individual users, learning which types of information particular users tend to reference or find
valuable.
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Technical Challenges and Solutions Our analysis highlights several technical challenges facing LLM
memory systems and emerging solutions:

1. Embedding Drift Over Time: As conversations evolve, semantic drift can reduce retrieval effec-
tiveness. Recent systems address this through periodic re-embedding (memoryLLM) or hierarchical
concept structures (A-Mem).

2. Computational Efficiency at Scale: Memory operations become computationally expensive as
memory stores grow. Solutions include hierarchical indexing (Memory LLM-agent), progressive
compression (SCM), and selective retention (Think-in-Mem).

3. Balancing Precision and Recall: Memory systems must balance retrieving exactly relevant
information (precision) with finding all potentially relevant information (recall). Hybrid approaches
like RET-LLM’s reflective retrieval and Think-in-Mem’s deliberate thinking address this trade-off
effectively.

4. Integration with External Knowledge: Integrating parametric knowledge (learned during
training) with external memory presents ongoing challenges. Systems like ChatDB demonstrate
promising approaches through structured integration of symbolic and neural components.

The field of LLM memory systems has evolved rapidly from relatively simple approaches to sophisticated
architectures that increasingly resemble human memory in both structure and function. As these systems
continue to develop, we can expect further convergence with cognitive science models and increased capabilities
for long-term reasoning, learning from experience, and maintaining coherence across extended interactions.

4.2 Vision-Language Models (VLMs)

4.2.1 Overview of Memory Requirements in VLMs

Vision-language models have distinctive memory requirements stemming from several factors:

• Cross-modal alignment: VLMs must maintain alignments between visual and textual representa-
tions, requiring memory systems that can establish and preserve these cross-modal relationships.

• Modality-specific processing: Different modalities often require specialized processing before
integration, necessitating memory structures that can accommodate heterogeneous data types.

• Efficient parameter management: Due to the computational cost of processing visual information,
VLM memory systems must be highly parameter-efficient.

• Adaptability to diverse tasks: VLMs are applied to a wide range of tasks (classification, retrieval,
captioning), requiring flexible memory architectures.

Recent advances have introduced novel memory mechanisms to address these challenges, with approaches
ranging from memory-inspired temporal interactions to dual memory architectures and memory-space visual
prompting.

4.2.2 Retrieval Mechanism Analysis

Our analysis of VLM memory systems reveals several key patterns in retrieval mechanisms across different
approaches. Table 4.1 provides a comparative overview of retrieval mechanisms employed by various VLM
systems, organized by their primary approach to illustrate the evolution of research trends.
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Table 7: Comparison of Retrieval Mechanisms in VLM Memory Systems
System Year Primary

Ap-
proach

Key Mechanisms Notable Characteristics

Similarity-Based Approaches
Memory-
Space
Visual
Prompt-
ing
(MemVP)

2023 Similarity-
based

Key-value memory function
in FFNs, Memory-space inte-
gration

Injects visual information
directly into LLM mem-
ory space rather than input
space

Prompt-Based Approaches
Generalizable
Prompt
Tuning

2022 Prompt-
based

Mutual information maxi-
mization, Class-wise augmen-
tation

Balances hand-crafted and
learnable prompts for both
performance and generaliza-
tion

Conditional
Prompt
Tuning

2023 Prompt-
based

Mixture of Prompt Experts
(MoPE), Dynamic routing

Uses one modality to guide
the prompting of another for
cross-modal knowledge trans-
fer

Hybrid Approaches
Dual-
Memory
Model

2021 Hybrid Feature-based retrieval
(CNN), Random forest
classification, Sequential
processing

Follows a pathway from STM
to WM to LTM, mimicking
human cognitive processing

MITP 2022 Hybrid Similarity-based temporal
prompt calculations, Cross-
modal memory hub

Uses activation vectors to
control information flow
across modalities

SynapticRAG 2023 Hybrid Cosine similarity filtering,
Dynamic time warping for
temporal representations

Combines semantic and tem-
poral similarity through a
binding-score mechanism

Dual
Memory
Networks
(DMN)

2024 Hybrid Cosine similarity filtering,
Attention-based memory in-
teraction

Generates sample-adaptive
classifiers for each test sam-
ple

4.2.3 Dominant Retrieval Patterns

The chronological organization of retrieval approaches reveals a clear evolution from simpler, single-approach
methods toward increasingly sophisticated hybrid mechanisms:

1. Trend Toward Hybrid Approaches: The field has shifted from specialized retrieval methods
toward hybrid approaches that combine multiple mechanisms. This trend reflects the growing
recognition that no single retrieval strategy is sufficient for the complex demands of vision-language
tasks. Early models like the Dual-Memory Model (2021) implemented basic hybrid approaches, while
more recent systems like DMN (2024) feature sophisticated combinations of similarity-based filtering,
cross-attention mechanisms, and adaptive classification.

2. Increasing Focus on Cross-Modal Integration: Over time, VLM retrieval mechanisms have
placed greater emphasis on effective cross-modal integration. While earlier approaches treated visual
and textual information more separately, newer methods like Conditional Prompt Tuning (2023) and
MITP (2022) explicitly model the interactions between modalities, enabling more effective knowledge
transfer.
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3. Growing Incorporation of Temporal-Spatial Information: Recent models increasingly in-
corporate temporal or sequential information in their retrieval mechanisms. SynapticRAG (2023)
implements dynamic time warping to differentiate memories based on temporal occurrence, while
MITP (2022) leverages temporal prompts across intermediate layers to capture sequential information
flow.

4.2.4 Evolution Toward Adaptive Routing

A notable progression in VLM retrieval mechanisms is the evolution from fixed retrieval patterns toward
adaptive, context-sensitive routing strategies:

• Early systems relied on static prompts or fixed similarity calculations

• Intermediate approaches like MITP (2022) introduced more flexible cross-modal attention mechanisms

• Recent systems like Conditional Prompt Tuning (2023) implement dynamic routing through mecha-
nisms like Mixture of Prompt Experts (MoPE)

• The latest models like DMN (2024) generate completely sample-adaptive classifiers tailored to each
test point

This evolution demonstrates the field’s recognition that context-sensitive, adaptive retrieval is essential for
handling the diverse and multimodal nature of vision-language tasks.

4.2.5 Memory Structure Classification

Vision-language models employ diverse memory structures to handle cross-modal information. Table 4.2
provides a comparative overview of memory structures implemented in various VLM systems, organized by
their primary structure type to illustrate structural evolution over time.

4.2.6 Structural Patterns and Trends

The chronological organization of memory structures reveals several key trends in VLM memory architecture:

1. Evolution Toward Hybrid Architectures: The field has progressively moved toward hybrid
memory structures that combine static and dynamic components. The earliest analyzed approach
(Dual-Memory Model, 2021) utilized a primarily hierarchical structure, while more recent approaches
like Conditional Prompt Tuning (2023) and DMN (2024) implement sophisticated hybrid architectures
that combine multiple structure types to balance stability with adaptability.

2. Increasing Structural Sophistication: Over time, VLM memory structures have grown more
complex, with specialized components for different functions. Early models employed simpler memory
organizations, while newer approaches like Conditional Prompt Tuning (2023) disentangle prompt
vectors into static, dynamic, and mapped types and incorporate distributed memory elements through
mixture of experts.

3. Growing Biological Inspiration: A notable trend is the increasing influence of cognitive science
and neuroscience on VLM memory structures. The Dual-Memory Model (2021) drew explicit
inspiration from Baddeley’s psychological theory of human memory, while SynapticRAG (2023)
incorporated neuroscience-inspired mechanisms like weighted spike trains and stimulus-based node
activation.

4.2.7 Key Trade-offs in Memory Structure Design

Throughout the evolution of VLM memory structures, several consistent trade-offs have been addressed:
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Table 8: Comparison of Memory Structures in VLM Memory Systems
System Year Primary

Struc-
ture

Key Components Notable Characteristics

Static Memory Approaches
No pure static memory approaches found in analyzed VLM systems

Dynamic Memory Approaches
MITP 2022 Dynamic

+ Hierar-
chical

Temporal prompts, Memory
hub

Layer-wise information flow
with bidirectional exchange
between modalities

SynapticRAG 2023 Dynamic
+ Hierar-
chical

Weighted spike trains,
Parent-child node activation

Memory nodes adapt based
on stimulation patterns

Hierarchical Memory Approaches
Dual-Memory
Model

2021 Hierarchical STM (FIFO queue), WM
(processing components),
LTM (explicit/implicit
memory)

Multi-level structure in-
spired by human memory
psychology

Hybrid Memory Approaches
Generalizable
Prompt Tun-
ing

2022 Hybrid
(Static +
Dynamic)

Hand-crafted prompts
(static), Learnable soft
prompts (dynamic)

Balances stability of
hand-crafted prompts with
adaptability of learnable
prompts

Memory-Space
Vi-
sual Prompt-
ing (MemVP)

2023 Hybrid Original FFN weights
(static), Position-embedded
visual prompts (dynamic)

Maintains core LLM knowl-
edge while injecting visual in-
formation

Dual Memory
Networks
(DMN)

2024 Hybrid
(Static +
Dynamic)

Dynamic memory (test sam-
ples), Static memory (train-
ing data)

Preserves historical informa-
tion while maintaining stable
knowledge

Conditional
Prompt Tun-
ing

2023 Hybrid
+ Dis-
tributed

Static, Dynamic, and
Mapped prompts; Mixture
of experts

Different experts specialize
in different instance types

• Adaptability vs. Stability: Dynamic components provide adaptability to new information and
tasks, while static elements ensure stability and consistent performance. This trade-off is evident in
the progression from predominantly dynamic or hierarchical approaches to hybrid structures that
carefully balance these aspects.

• Efficiency vs. Expressiveness: As structures have grown more sophisticated, models have
implemented various mechanisms to maintain computational efficiency while enabling expressive
representations. These include hierarchical organizations (MITP, 2022), specialized components
(Conditional Prompt Tuning, 2023), and efficient integration techniques (MemVP, 2023).

• Complexity vs. Interpretability: While memory structures have grown more complex over time,
many recent approaches have addressed interpretability concerns through clear functional separation
of components, as seen in DMN’s (2024) explicit division of memory for historical test samples and
training data.

4.2.8 Memory Update Schema Analysis

The update mechanisms employed by VLM memory systems reveal sophisticated strategies for balancing
multiple factors. Table 4.3 provides a comparative overview of update schemas implemented across various
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VLM approaches, organized by their primary update approach to illustrate the evolution of update strategies.

Table 9: Comparison of Memory Update Schemas in VLM Memory Systems
System Year Primary

Ap-
proach

Key Mechanisms Notable Characteristics

Frequency-Based Approaches
No pure frequency-based approaches found in analyzed VLM systems

Recency-Based Approaches
SynapticRAG 2023 Combined

(Recency,
Impor-
tance, Fre-
quency)

Time constant updates,
Binding score, Stimulus-
based firing

Implements natural decay
and frequency-based priori-
tization

Importance-Weighted Approaches
Generalizable
Prompt Tun-
ing

2022 Importance-
Weighted

MI estimator, Class-wise
augmentation

Preserves information
through mutual information
maximization

MITP 2022 Importance-
Weighted
+ Recency-
Based

SoftMax activation vec-
tors, Layer-wise temporal
prompts

Requires only 2.0M trainable
parameters (1% of founda-
tion model)

Conditional
Prompt Tun-
ing

2023 Importance-
Weighted

Learned routing scores, Im-
portance loss regularization

Routing scores: r =
Softmax(Wrψy/τ + ϵ)

Memory-
Space Visual
Prompting
(MemVP)

2023 Importance-
Weighted

Position embeddings, Key-
value integration

Reduces training time by
1.7× and inference by 1.4×

Dual Memory
Networks
(DMN)

2024 Importance-
Weighted

Attention-based weighting,
Multi-source integration

Combines knowledge from
text input, historical data,
and training data

Combined Approaches
Dual-Memory
Model

2021 Combined ULS, IGT, Class-conditional
weighting, Sequential back-
ward selection

Balances new information
against existing knowledge

4.2.9 Update Patterns and Trends

The chronological organization of update schemas reveals several important trends in VLM memory update
mechanisms:

1. Dominance of Importance-Weighted Approaches: Across the timeline, importance-weighted
update mechanisms have remained the dominant approach in VLM systems. This persistence
highlights the fundamental importance of selectively prioritizing information based on its significance,
regardless of other architectural changes.

2. Increasing Sophistication of Weighting Mechanisms: While importance-weighted approaches
have remained prevalent, their implementation has grown more sophisticated over time. Early
approaches used simpler weighting mechanisms, while recent models like Conditional Prompt Tuning
(2023) implement complex routing scores with regularization, and DMN (2024) features multi-source
integration.
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3. Trend Toward Multi-Factor Integration: The field has gradually moved toward update schemas
that balance multiple factors simultaneously. The Dual-Memory Model (2021) implemented a
basic combined approach with multiple update strategies, while SynapticRAG (2023) features a
sophisticated integration of recency, importance, and frequency considerations.

4.2.10 Efficiency Innovations

A consistent focus across the evolution of VLM update schemas has been on computational efficiency:

• Parameter Efficiency: There has been a steady improvement in parameter efficiency, with MITP
(2022) requiring only 2.0M trainable parameters (approximately 1% of the foundation model) and
Conditional Prompt Tuning (2023) achieving state-of-the-art performance with only 0.7% of trainable
parameters.

• Computational Efficiency: Recent approaches have made significant strides in reducing computa-
tional requirements, with MemVP (2023) achieving 1.7× faster training and 1.4× faster inference
compared to full fine-tuning.

• Balanced Efficiency-Effectiveness Trade-offs: The chronological progression shows increasingly
sophisticated approaches to balancing efficiency with effectiveness, as seen in DMN’s (2024) ability
to achieve state-of-the-art performance across multiple adaptation settings with minimal parameter
requirements.

4.2.11 Discussion and Key Findings

Our analysis of VLM memory systems through the unified framework reveals several important insights and
trends:

Universal Memory Patterns Several universal memory patterns identified in our framework are consis-
tently present across VLM systems throughout the analyzed time period:

1. Temporal Priority Mechanisms: From the Dual-Memory Model’s (2021) sequential pipeline to
MITP’s (2022) layered approach to SynapticRAG’s (2023) treatment of temporal information as a
first-class feature, temporal prioritization has remained a constant theme in VLM memory systems.

2. Context-Sensitive Retrieval: All systems implement context-aware information retrieval, though
the sophistication has increased over time, from basic context sensitivity in early models to DMN’s
(2024) highly adaptive classifiers tailored to each test sample.

3. Compression-Accuracy Balancing: Throughout the timeline, VLM systems have demonstrated
effective trade-offs between parameter efficiency and performance, though the efficiency has steadily
improved with technological advances.

Domain-Specific Optimizations While adhering to universal memory patterns, VLM systems have
implemented increasingly sophisticated domain-specific optimizations to address the unique challenges of
vision-language integration:

1. Modality Integration Strategies: The approaches to integrating visual and language modalities
have diversified over time, from simpler integration in early models to sophisticated mechanisms like
MITP’s (2022) cross-attention memory hub, Conditional Prompt Tuning’s (2023) modality-guided
prompting, and MemVP’s (2023) direct injection of visual information into language model memory.

2. Parameter Efficiency Focus: A consistent thread across the timeline has been the emphasis on
parameter efficiency, with a clear trend toward achieving comparable or better performance with
progressively fewer parameters.
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3. Biological Inspiration: The influence of cognitive science and neuroscience on VLM memory
systems has grown over time, from the Dual-Memory Model’s (2021) explicit modeling of psychological
theory to SynapticRAG’s (2023) incorporation of neuroscience-inspired spike timing mechanisms.

Performance Insights The performance of these VLM memory systems has steadily improved over time:

• Improved Accuracy: Recent models like DMN (2024) outperform competitors by over 3% in
zero-shot settings without using external training data

• Enhanced Efficiency: Newer approaches like MemVP (2023) match full fine-tuning performance
while significantly reducing computational requirements

• Better Generalization: Recent systems demonstrate improved cross-dataset generalization and
better scaling with training data

Future Directions Based on my chronological analysis, I’ve identified several promising research directions
for VLM memory systems that go beyond the superficial:

1. Dynamic Memory Allocation Strategies Current systems show a trade-off between adaptability
and stability in memory structures. Future research could develop more sophisticated dynamic
allocation strategies that:

• Automatically adjust memory capacity based on task complexity
• Implement resource-aware memory management that optimizes for hardware constraints
• Develop pruning techniques specifically designed for multimodal memory to eliminate redundan-

cies across modalities

2. Cross-modal Calibration and Alignment While current approaches have sophisticated modality
integration strategies, they still struggle with alignment problems. Future work could develop:

• Self-supervised calibration mechanisms that continuously refine cross-modal alignments
• Uncertainty-aware memory retrieval that accounts for confidence differences across modalities
• Contrastive memory mechanisms that explicitly model differences between modalities to better

understand their relationships

3. Temporal-Aware Retrieval for Dynamic Environments Recent models have begun incor-
porating temporal-spatial information in their retrieval mechanisms. Further development could
include:

• Memory systems specialized for video understanding that explicitly model object permanence
• Event-based memory architectures that organize information around temporal events rather

than static features
• Causal memory structures that capture not just correlations between visual and language

elements but causal relationships over time

4. Hierarchical Compression with Guaranteed Fidelity Compression-accuracy balancing has
been a constant theme in these systems. Future work could develop:

• Theoretically-grounded approaches to memory compression with formal guarantees on information
retention

• Task-aware compression techniques that preserve information relevant to downstream tasks
• Progressive refinement memory mechanisms that store coarse representations with the ability to

refine details when needed
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The field of VLM memory systems has evolved rapidly from relatively simple architectures to sophisticated,
hybrid systems that carefully balance multiple retrieval mechanisms, memory structures, and update schemas.
This progression reflects the growing understanding of the unique challenges posed by vision-language
tasks and the innovative approaches developed to address them. As the field continues to mature, we can
expect to see further integration of interdisciplinary insights and increasingly efficient and effective memory
architectures.

4.3 Visual Prompt Tuning (VPT)

Visual Prompt Tuning represents a significant advancement in parameter-efficient fine-tuning for computer
vision models. Unlike Vision-Language Models that focus on cross-modal interactions, VPT methods primarily
address how to efficiently adapt vision models to new tasks without catastrophic forgetting. This section
analyzes recent advances in VPT memory systems using our unified framework, examining how these
approaches implement retrieval mechanisms, memory structures, and update schemas.

4.3.1 Overview of Memory Requirements in VPT

Visual Prompt Tuning methods have unique memory requirements stemming from several factors:

• Continual learning challenges: VPT methods must learn new tasks sequentially without forgetting
previous ones, requiring careful memory organization.

• Parameter efficiency: Models must adapt to new tasks while modifying only a tiny fraction of the
pre-trained model parameters.

• Task-specific knowledge representation: Memory systems must store and retrieve task-specific
information effectively.

• Knowledge transfer: Effective VPT methods need to leverage knowledge from previous tasks to
improve performance on new ones.

Recent advances have introduced novel memory mechanisms to address these challenges, with approaches
ranging from prompt pools to dual memory structures and attribute-based learning.

4.3.2 Retrieval Mechanism Analysis

Our analysis of VPT memory systems reveals several key patterns in retrieval mechanisms across different
approaches. Table 4.4 provides a comparative overview of retrieval mechanisms employed by various VPT
systems, organized by their primary approach to illustrate the evolution of research trends.

4.3.3 Evolutionary Trends in Retrieval Mechanisms

The chronological organization of retrieval approaches reveals a clear evolution in VPT retrieval mechanisms:

1. Early Focus on Discrete Selection: Early approaches like L2P (2022) introduced key-value
paired prompt pools with instance-wise selection, using a query function to identify the most relevant
prompts for each input.

2. Separation of Knowledge Types: DualPrompt (2022) advanced the paradigm by creating a
two-tier system that explicitly separates task-invariant knowledge (G-Prompt) from task-specific
knowledge (E-Prompt), reflecting a deeper understanding of how different types of knowledge support
continual learning.

3. Shift to Compositional Approaches: CODA-Prompt (2023) moved beyond discrete prompt
selection to weighted combinations of prompt components through attention mechanisms, making
the selection process fully differentiable and more expressive.
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Table 10: Comparison of Retrieval Mechanisms in VPT Memory Systems
System Year Primary

Ap-
proach

Key Mechanisms Notable Characteristics

Prompt-Based Approaches
Learning to
Prompt (L2P)

2022 Prompt-
based

Key-value paired prompt
pool, Instance-wise query
function

Selects top-N matching
prompts dynamically for
each input; task identity not
required at test time

DualPrompt 2022 Prompt-
based

G-Prompt (task-invariant)
and E-Prompt (task-
specific), Feature similarity
matching

E-Prompts matched to test
instances based on feature
similarity; G-Prompt shared
across all tasks

CODA-
Prompt

2023 Prompt-
based

Weighted component com-
binations, Attention-based
querying

Uses weighted sum of prompt
components based on similar-
ity scores; fully differentiable
selection process

Similarity-Based Approaches
STAR-
Prompt

2023 Similarity-
based +
Prompt-
based

CLIP’s embedding space for
matching, Two-level prompt-
ing strategy

Uses CLIP for stable sim-
ilarity computation; class-
specific prototypes serve as
keys

Hybrid Approaches
PromptFusion 2023 Hybrid Split modules (Stabilizer and

Booster), Text-visual similar-
ity computation

Stabilizer (CoOp) for stabil-
ity; Booster (VPT) for plas-
ticity; balance parameter λ
between modules

AttriCLIP 2024 Hybrid Attribute word bank, Key-
prompt pairs, Multi-modal
matching

Selects attributes based on
image-key similarity; focuses
on generalizable attributes
across categories

4. Integration with Pre-trained Models: STAR-Prompt (2023) leveraged CLIP’s multi-modal
embedding space to create a more stable foundation for similarity computation and prompt selection,
addressing the vulnerability of learned selection mechanisms to catastrophic forgetting.

5. Module Specialization: PromptFusion (2023) explicitly separated stability and plasticity into
distinct modules (CoOp for stability, VPT for plasticity), directly addressing the fundamental
trade-off through architectural specialization.

6. Focus on Cross-Cutting Features: AttriCLIP (2024) shifted focus entirely to learning generalizable
attributes that transcend task boundaries, using an attribute word bank that associates visual
attributes with textual descriptions.

This evolution demonstrates a progressive refinement of retrieval mechanisms, from simple selection to
sophisticated compositional and specialized approaches, with a growing emphasis on leveraging pre-trained
models and focusing on transferable knowledge.

4.3.4 Dominant Patterns in Retrieval Design

Several key patterns emerge across the evolution of VPT retrieval mechanisms:

1. Increasing Context Sensitivity: Newer approaches demonstrate enhanced ability to adapt retrieval
based on input characteristics, with CODA-Prompt’s attention-based mechanism and AttriCLIP’s
attribute selection providing highly context-sensitive retrieval.
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2. Growing Emphasis on Knowledge Transfer: More recent methods like STAR-Prompt and
AttriCLIP explicitly design retrieval mechanisms to leverage knowledge transfer between tasks, rather
than treating tasks in isolation.

3. Shift Toward Multi-Level Retrieval: The trend toward multi-level retrieval structures (STAR-
Prompt’s two-level approach, PromptFusion’s dual modules) indicates recognition that effective
continual learning requires handling different aspects of knowledge through specialized mechanisms.

4. Integration with Pre-trained Knowledge: The increasing use of pre-trained models like CLIP
as foundations for retrieval (STAR-Prompt, AttriCLIP) leverages the rich, stable representations
these models provide.

4.3.5 Memory Structure Classification

VPT methods employ diverse memory structures to handle task-specific and generalizable knowledge. Table
4.5 provides a comparative overview of memory structures implemented in various VPT systems, organized
by their primary structure type to illustrate structural evolution over time.

Table 11: Comparison of Memory Structures in VPT Memory Systems
System Year Primary

Struc-
ture

Key Components Notable Characteristics

Dynamic Memory Approaches
Learning to
Prompt (L2P)

2022 Dynamic
Memory

Prompt pool, Shared mem-
ory space

Expandable memory bank;
Grows with number of tasks;
Knowledge transfer through
shared prompts

CODA-
Prompt

2023 Dynamic
Memory

Decomposable prompt
components; Layer-specific
prompts

Expandable component
bank; Hierarchical organiza-
tion through layer-specific
prompts

Hierarchical Memory Approaches
DualPrompt 2022 Hierarchical

Memory
G-Prompt (static, shared);
E-Prompts (dynamic, task-
specific)

Two-level hierarchy sepa-
rating general and specific
knowledge; Different
prompts attached to differ-
ent layers

STAR-
Prompt

2023 Hierarchical
Memory

First-level class-specific
prompts; Second-level task-
adaptive prompts

CLIP conditions first level
for stability; ViT adaptation
through second level for plas-
ticity

Hybrid Memory Approaches
PromptFusion 2023 Hybrid

(Static +
Dynamic)

Stabilizer module (CoOp);
Booster module (VPT)

Complete separation of sta-
bility and plasticity into ded-
icated modules

Distributed Memory Approaches
AttriCLIP 2024 Distributed

+ Fixed-
Capacity

Attribute word bank (keys +
prompts)

Fixed number of attribute
pairs; Constant parameter
count regardless of tasks;
Knowledge shared across cat-
egories

4.3.6 Structural Evolution Patterns

The chronological analysis of memory structures reveals several key evolutionary trends:
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1. From Simple to Sophisticated: Early approaches like L2P (2022) used relatively simple dy-
namic memory structures (prompt pools), while later methods introduced increasingly sophisticated
architectures with explicit separation of different knowledge types.

2. Increasing Specialization: The progression shows growing specialization of memory components,
from DualPrompt’s (2022) separation of general and specific knowledge to PromptFusion’s (2023)
complete module specialization for stability and plasticity.

3. From Expanding to Fixed Capacity: While early methods (L2P, DualPrompt) expanded memory
linearly with the number of tasks, later approaches like AttriCLIP (2024) achieved constant parameter
counts regardless of task number by focusing on transferable attributes.

4. Integration with External Models: More recent methods leverage pre-trained models as part of
their memory architecture, with STAR-Prompt (2023) using CLIP for stable class representations
and AttriCLIP (2024) leveraging CLIP for attribute learning.

4.3.7 Key Design Principles in Memory Structures

Several important design principles emerge across VPT memory structures:

1. Knowledge Separation: The explicit separation of different types of knowledge (general vs. specific,
stable vs. plastic) appears consistently beneficial across multiple approaches.

2. Hierarchical Organization: Organizing memory in hierarchical layers with different components
serving different roles (DualPrompt, STAR-Prompt) enhances both stability and adaptability.

3. Cross-Task Knowledge Sharing: More advanced structures focus on facilitating knowledge
sharing across tasks through either shared components (CODA-Prompt) or transferable features
(AttriCLIP).

4. Balancing Expansion and Efficiency: The evolution shows a constant tension between expanding
memory for better task-specific representation and maintaining efficiency, culminating in fixed-capacity
approaches like AttriCLIP.

4.3.8 Memory Update Schema Analysis

The update mechanisms employed by VPT memory systems reveal sophisticated strategies for balancing
stability and plasticity. Table 4.6 provides a comparative overview of update schemas implemented across
various VPT approaches, organized by their primary update approach to illustrate the evolution of update
strategies.

4.3.9 Update Strategy Evolution

The chronological organization of update schemas reveals important trends in how VPT approaches handle
the critical challenge of updating knowledge while avoiding catastrophic forgetting:

1. From Simple to Multi-Objective: Early approaches like L2P (2022) used relatively straightforward
end-to-end update strategies, while later methods introduced increasingly sophisticated multi-objective
learning with carefully designed regularization terms.

2. Increasing Explicitness in Knowledge Separation: DualPrompt (2022) introduced explicit
separation of task-invariant and task-specific updates, a trend that continued with more sophisticated
separations in later approaches.

3. From Parameter Isolation to Knowledge Transfer: While early methods focused primarily
on isolating task-specific parameters to prevent interference, later approaches like AttriCLIP (2024)
explicitly designed update mechanisms to facilitate knowledge transfer between tasks.
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Table 12: Comparison of Memory Update Schemas in VPT Memory Systems
System Year Primary

Ap-
proach

Key Mechanisms Notable Characteristics

End-to-End Approaches
Learning to
Prompt (L2P)

2022 End-to-
End

Prompt parameter updates,
Matching loss

Natural separation of task
knowledge into different
prompts; end-to-end training
with task data

Knowledge Decoupling Approaches
DualPrompt 2022 Knowledge

Decou-
pling

Explicit separation of task-
invariant and task-specific
updates

Multi-layer attachment
based on knowledge type;
complementary learning
between general and specific
components

Component-Based Approaches
CODA-
Prompt

2023 Component-
Based

Expansion with new com-
ponents, Orthogonality con-
straints

Freezes previous components
when adding new ones; or-
thogonality constraint mini-
mizes inter-task correlations

Multi-Objective Approaches
STAR-
Prompt

2023 Multi-
Objective

Explicit class separation,
Confidence-weighted up-
dates

Direct supervision for class
prototype separation; multi-
modal generative replay for
class distribution modeling

PromptFusion 2023 Module-
Specific

Different strategies for stabil-
ity and plasticity modules

Stabilizer preserves past
knowledge; Booster adapts
to new tasks; balancing pa-
rameter λ between modules

AttriCLIP 2024 Attribute-
Focused

Classification, Matching,
and Orthogonality losses

Learns generalizable at-
tributes rather than task-
specific features; consistent
parameter count across tasks

4. Growing Incorporation of Pre-trained Knowledge: Recent methods increasingly leverage
pre-trained models as stable foundations, with update mechanisms designed to preserve this stable
knowledge while adapting to new tasks.

5. Shift Toward Attribute-Level Learning: The most recent approach, AttriCLIP (2024), represents
a significant shift from updating task or class-specific knowledge to learning transferable attributes
that generalize across different tasks and categories.

4.3.10 Catastrophic Forgetting Mitigation Strategies

VPT update schemas employ various strategies to address the fundamental challenge of catastrophic forgetting
in continual learning:

1. Knowledge Isolation: Early approaches like L2P (2022) use separate prompts for different tasks
to prevent direct interference.

2. Knowledge Decoupling: Methods like DualPrompt (2022) separate general from specific knowledge
to minimize interference while maximizing transfer.

3. Parameter Freezing: CODA-Prompt (2023) locks previous components when learning new tasks
to preserve existing knowledge.
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4. Stable Foundations: STAR-Prompt (2023) uses pre-trained models like CLIP to provide stable
representations that are less susceptible to forgetting.

5. Specialized Preservation: PromptFusion (2023) employs a dedicated stability module specifically
designed to preserve past knowledge.

6. Cross-Cutting Features: AttriCLIP (2024) focuses on attributes that transcend task boundaries,
making knowledge naturally transferable between tasks.

The progression shows an increasing sophistication in how these systems balance stability (preserving existing
knowledge) with plasticity (learning new information), moving from simple parameter isolation to complex
architectures with specialized components.

4.3.11 Discussion and Key Findings

Our analysis of VPT memory systems through the unified framework reveals several important insights and
trends that go beyond surface-level observations, illuminating deeper principles about memory system design
and continual learning.

Theoretical Foundations and Epistemological Implications The evolution of VPT memory systems
reflects a fundamental shift in how we conceptualize knowledge acquisition and representation:

• From Localist to Distributed Representations: Early approaches like L2P employed relatively
localist representations (discrete prompts), while later methods like CODA-Prompt and AttriCLIP
moved toward distributed representations where knowledge is spread across components or attributes.
This mirrors neuroscience findings about how the brain represents concepts through distributed
neural patterns rather than individual neurons.

• Complementary Learning Systems Theory: DualPrompt’s separation of general and specific
knowledge directly implements principles from the Complementary Learning Systems theory in
cognitive science, which proposes humans learn through dual systems: one for extracting general
patterns (neocortex) and another for specific experiences (hippocampus). This architectural principle
has proven increasingly valuable for AI systems facing similar challenges in balancing generalization
with specificity.

• Emergence of Meta-Knowledge: Recent approaches like STAR-Prompt and AttriCLIP demon-
strate the emergence of "knowledge about knowledge" – systems that learn not just task information
but develop meta-cognitive awareness about what types of knowledge transfer across tasks. This
represents a critical step toward more human-like learning capabilities, where strategic decisions
about knowledge acquisition and retention become increasingly important.

Fundamental Trade-offs and Their Theoretical Implications Our analysis reveals how different VPT
approaches navigate several deep trade-offs with significant theoretical implications:

• The Stability-Plasticity Continuum: Rather than a simple dichotomy, we observe that stability
and plasticity exist along a continuum, with approaches like PromptFusion explicitly recognizing
that optimal positions on this continuum differ by task. This suggests the need for a theoretically
grounded understanding of how to determine the optimal balance for a given learning scenario.

• Parameter Efficiency vs. Representational Capacity: The trend toward compressed but
expressive representations (CODA-Prompt’s decomposable components, AttriCLIP’s attributes)
approaches what information theory would consider optimal coding – maximizing information content
while minimizing representation size. This relates to fundamental questions about the minimum
description length required to represent knowledge effectively.
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• Knowledge Isolation vs. Transfer: The progression from strict task isolation (L2P) to explicit
transfer mechanisms (AttriCLIP) reflects an increasingly sophisticated understanding of the geometry
of knowledge spaces – from treating them as orthogonal to recognizing natural manifolds of related
concepts that span traditional task boundaries.

Cognitive and Neuroscience Connections The most successful VPT approaches incorporate principles
that align with findings from cognitive science and neuroscience:

• Schema Theory Implementation: The attribute-based approach of AttriCLIP parallels schema
theory in cognitive psychology, where humans organize knowledge into frameworks (schemas) that
help integrate new information into existing knowledge structures. By focusing on attributes rather
than categories, AttriCLIP creates flexible schemas that facilitate knowledge integration.

• Attention as a Cognitive Filter: CODA-Prompt’s attention-based component selection implements
cognitive filtration mechanisms similar to those in human attention, where selective focus determines
which information enters working memory. This suggests the potential for further integration of
cognitive attention models into AI memory systems.

• Meta-Cognition and Memory Allocation: PromptFusion’s explicit module selection represents
a primitive form of meta-cognition, where the system makes decisions about which memory system to
employ based on input characteristics. This parallels human meta-cognitive processes that allocate
cognitive resources based on task demands.

Future Research Directions Based on our deep analysis, we identify several transformative research
directions that go beyond incremental improvements:

1. Theoretical Framework for Memory Capacity Optimization While current approaches empirically
determine memory structures, developing a theoretical framework that can predict optimal memory capacity
based on task complexity, dataset properties, and transfer objectives would provide invaluable guidance for
design decisions. This framework would:

• Establish mathematical relationships between prompt capacity and performance bounds

• Predict memory interference patterns before they occur

• Determine optimal component allocation for compositional memory structures

• Quantify the information-theoretic limits of parameter-efficient tuning

2. Cognitive-Aligned Memory Architectures The convergent evolution toward architectures resembling
human memory systems suggests an opportunity for deeper integration of cognitive principles:

• Implementing complementary learning with faster episodic-like and slower semantic-like memory
consolidation processes

• Developing memory systems with explicit metacognitive monitoring and control capabilities

• Creating memory architectures with built-in concept formation mechanisms that abstract higher-level
patterns from experiences

• Integrating principles of memory reconsolidation, where retrieval makes memories temporarily
malleable for updating
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3. Cross-Modal Knowledge Abstraction Moving beyond attributes within a single modality, future
systems could:

• Develop unified attribute spaces that span multiple modalities (vision, language, audio)

• Learn abstract conceptual structures that exist independently of specific modality representations

• Create modality-agnostic memory systems where knowledge gained in one domain automatically
transfers to others

• Implement symbolic reasoning capabilities within neural memory frameworks to achieve true cross-
domain abstraction

4. Privacy-Preserving and Ethical Memory Systems As these systems become more deployed,
developing memory architectures with built-in privacy guarantees becomes crucial:

• Differential privacy mechanisms for prompt updating that provide formal guarantees about information
leakage

• Memory systems that can selectively "forget" sensitive information without compromising overall
performance

• Ethical frameworks for determining what knowledge should be preserved versus discarded

• Memory architectures designed for transparency, allowing inspection of what knowledge is stored
and how it influences decisions

5. Self-Evolving Memory Architectures The ultimate progression would be memory systems that
evolve their own structure:

• Meta-learning approaches that discover optimal memory architectures for specific domains

• Systems that dynamically adjust their position on the stability-plasticity spectrum based on task
characteristics

• Memory structures that expand or contract based on information complexity rather than task count

• Neural-symbolic architectures that combine the flexibility of neural approaches with the symbolic
reasoning capabilities needed for truly compositional knowledge

The evolution of VPT memory systems demonstrates remarkable progress in addressing the challenges of
continual learning in computer vision. From simple prompt pools to sophisticated attribute-based learning
systems with constant parameter counts, these approaches have steadily improved in their ability to balance
stability and plasticity while maintaining high parameter efficiency. The field continues to move toward more
transferable knowledge representations and more specialized architectural components, promising further
advances in efficient continuous adaptation of vision models to new tasks and domains.

4.4 Memory Systems for Video Understanding

Recent advancements in memory systems for video understanding demonstrate substantial progress in AI
systems’ capability to efficiently capture and utilize temporal and spatial information across extensive
video sequences. Video-based methods face unique challenges including maintaining temporal coherence,
computational efficiency, scalability in memory requirements, and managing long-range dependencies. These
developments have significant implications across multiple applications, such as autonomous driving, video
surveillance, and real-time robotics. This section systematically analyzes recent approaches using our unified
analytical framework, examining retrieval mechanisms, memory structures, and update schemas across
leading-edge video memory systems.
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4.4.1 Overview of Memory Requirements in Video Understanding

Video understanding imposes distinctive and stringent memory requirements driven by several critical factors:

Temporal coherence requires maintaining accurate temporal relationships and continuity across lengthy
video sequences, crucial for tasks like action recognition and event detection. Computational efficiency
demands systems operate in real-time or near-real-time, vital for practical applications such as surveillance
and robotics. Scalability necessitates efficiently scaling memory with increased video lengths, essential for
managing extended recordings. Dynamic and hierarchical representation involves flexible memory structures
to manage detailed, immediate information alongside broad, long-term context, essential for coherent narrative
understanding and predictive capabilities.

Recent methodologies employ hierarchical memory organization, streaming encoding techniques, and dynamic
compression mechanisms to fulfill these stringent requirements.

4.4.2 Retrieval Mechanism Analysis

Retrieval mechanisms in contemporary video memory systems reveal prominent patterns emphasizing their
approach to accessing stored information.

Table 13: Comparative Analysis of Retrieval Mechanisms
System Year Retrieval

Ap-
proach

Key Mechanisms Notable Characteristics

Continuous
Video Process
(CVP)

2024 Temporal-
Spatial

Diffusion-based interpolation Continuous interpolation be-
tween frames, significantly
reducing sampling steps

Grounded-
VideoLLM

2024 Temporal-
Spatial +
Prompt-
based

Temporal tokens, dual-
stream encoding

Precise temporal grounding
using discrete timestamps

MeMViT 2022 Temporal-
Spatial

Memory cache utilizing keys
and values

Efficient retrieval of ex-
tended temporal contexts
with minimal overhead

VideoStreaming 2024 Hybrid
(Temporal
+ Similar-
ity)

Memory-propagated stream-
ing, adaptive memory selec-
tion

Real-time, relevance-based
adaptive retrieval

VidCompress 2024 Temporal-
Spatial

Dual-compressor (memory-
enhanced, text-aware)

Combines short-term detail
and long-term context via to-
ken compression

MemFlow 2024 Temporal-
Spatial

Real-time buffer, attention-
driven retrieval

Immediate optical flow esti-
mation and historical motion
retrieval

VideoLLaMB 2024 Hybrid
(Temporal
+ Similar-
ity)

Semantic segmentation, re-
current memory tokens

Periodic memory refresh en-
suring semantic coherence

XMem 2022 Temporal-
Spatial

Multi-tier memory stores,
space-time attention

Distinct sensory, working,
long-term memories for pre-
cise retrieval

Temporal-spatial retrieval remains predominant, critical for ensuring sequential coherence and spatial accuracy,
though it can lead to increased computational demands and storage needs for extended sequences. Hybrid
retrieval methods have emerged, integrating similarity-based or prompt-based mechanisms to enhance
adaptability and query responsiveness, yet they may introduce additional complexity in managing multiple
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retrieval criteria simultaneously. Approaches like Grounded-VideoLLM and VideoLLaMB increase semantic
granularity, significantly improving retrieval precision through discrete tokens and semantic segmentation, but
they can incur higher computational overhead and potential difficulties in accurately segmenting semantic
units consistently. Temporal-spatial retrieval remains predominant, critical for ensuring sequential coherence
and spatial accuracy. Hybrid retrieval methods have emerged, integrating similarity-based or prompt-based
mechanisms to enhance adaptability and query responsiveness. Approaches like Grounded-VideoLLM and
VideoLLaMB increase semantic granularity, significantly improving retrieval precision through discrete tokens
and semantic segmentation.

However, reliance on semantic granularity may introduce computational overhead and complexity in system
architecture, necessitating optimization strategies to maintain efficiency.

4.4.3 Memory Structure Classification

Memory structures adopted by recent video systems demonstrate diverse strategic implementations to manage
temporal-spatial complexities effectively.

Table 14: Comparative Analysis of Memory Structures
System Year Memory

Struc-
ture

Components Notable Characteristics

Continuous
Video Process

2024 Dynamic Latent diffusion states Continuous internal state up-
dates, ephemeral context rep-
resentation

Grounded-
VideoLLM

2024 Dynamic Temporal tokens, dual-
stream encoders

Temporary tokens, focusing
on brief, significant intervals

MeMViT 2022 Dynamic Memory keys/values, com-
pressed representation

Efficient, scalable coverage
for extended durations

VideoStreaming 2024 Hierarchical Streaming condensed memo-
ries, summary tokens

Adaptively hierarchical mem-
ory summaries

VidCompress 2024 Dynamic Memory-enhanced dual-
compressor structure

Dynamic token compres-
sion across varying temporal
scales

MemFlow 2024 Dynamic Real-time online buffer Continuous updates for real-
time processing

VideoLLaMB 2024 Hierarchical Semantic segments, recur-
rent bridging tokens

Hierarchical segmentation
enabling efficient context
bridging

XMem 2022 Hierarchical Sensory, working, and long-
term memory stores

Cognitively inspired hierar-
chical memory, effectively
preventing memory overload

The transition from dynamic to advanced hierarchical structures significantly enhances memory efficiency
by effectively compartmentalizing short-term detailed information and long-term abstract representations.
Hierarchical structures reduce computational overhead by selectively consolidating critical information,
improving retrieval precision, and facilitating scalability in managing extended temporal contexts. Transition
from dynamic to advanced hierarchical structures markedly improves long-term memory efficiency and
contextual retention. Increased adoption of semantic segmentation contributes significantly to memory
organization, enhancing the semantic consistency of retrieved information, though potentially increasing
computational complexity.

4.4.4 Memory Update Schema Analysis

Video memory systems exhibit complex strategies for memory updates, balancing stability with dynamic
adaptation.
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Table 15: Comparative Analysis of Memory Update Schemas
System Year Update

Schema
Key Mechanisms Notable Characteristics

Continuous
Video Process

2024 Recency-
based

Stepwise diffusion updates Immediate prior state signif-
icantly influences current up-
dates

Grounded-
VideoLLM

2024 Importance-
weighted

Weighted updates via tempo-
ral tokens

Prioritizes updates based on
relevance to current query
context

MeMViT 2022 Recency-
based

Periodic compression based
on recent frames

Balances efficiency with de-
tail retention

VideoStreaming 2024 Importance-
weighted

Adaptive query-driven selec-
tion

Dynamically updates mem-
ory relevance for real-time
queries

VidCompress 2024 Recency-
based

Continuous incremental com-
pression

Incremental updating effi-
ciently preserves short and
long-term detail

MemFlow 2024 Recency-
based

Ongoing incremental motion
updates

Real-time updates ensuring
up-to-date context informa-
tion

VideoLLaMB 2024 Importance-
weighted

Periodic semantic relevance
updates

Ensures critical semantic
continuity and relevance in
memory updates

XMem 2022 Importance-
weighted

Selective long-term consoli-
dation and potentiation

Strategic memory consolida-
tion to preserve critical pro-
totypes

Recency-based schemas predominate due to their computational simplicity and effectiveness in capturing
recent, relevant context. Importance-weighted schemas, however, increasingly provide nuanced and selective
updates, emphasizing semantically critical or query-specific information, demonstrating superior contextual
and query-response performance.

4.4.5 Discussion and Key Findings

Comprehensive analysis highlights essential insights into the design and optimization of video memory systems.
Hierarchical memory architectures and semantic segmentation substantially enhance long-term contextual
coherence and mitigate memory explosion risks. Temporal-spatial retrieval strategies remain foundational,
though increasingly sophisticated hybrid methods leveraging semantic granularity and similarity retrieval
offer significant advances in precision and adaptability.

A critical balance between recency and importance weighting is crucial, with systems demonstrating increas-
ingly sophisticated selective update strategies. Future research should address theoretical frameworks for
hierarchical memory optimization, refine advanced semantic retrieval mechanisms, and develop dynamically
adaptive, query-sensitive memory structures. Anticipated challenges include managing computational com-
plexity, optimizing memory structures for real-time responsiveness, and integrating scalable hierarchical
models with existing infrastructure.

5 Cross-Domain Analysis

Having analyzed memory systems across LLMs, VLMs, VPT, and Video Understanding domains individually,
this section provides a cross-domain analysis that identifies universal patterns, unique adaptations, and
evolutionary trends through our unified framework. This comparative analysis reveals important insights
about how different AI domains have addressed similar memory challenges with domain-specific solutions.
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5.1 Retrieval Mechanism Cross-Domain Patterns

Our cross-domain analysis reveals several significant patterns in retrieval mechanisms across different AI
domains.

5.1.1 Evolution Toward Hybrid Approaches

A clear trend across all domains is the evolution from simple, single-strategy retrieval mechanisms toward
sophisticated hybrid approaches that combine multiple retrieval methods:

- LLMs: Early systems like MemGPT (2023) primarily employed similarity-based retrieval, while later
systems like RET-LLM (2023) and Think-in-Mem (2024) implemented sophisticated hybrids combining
similarity-based, prompt-based, and temporal approaches.

- VLMs: The progression from single-modality approaches to cross-modal interaction mechanisms is evident,
with systems like MITP (2022) introducing memory hubs for cross-modal attention and later approaches like
MemVP (2023) directly injecting visual information into language model memory spaces.

- VPT: The evolution from discrete selection in L2P (2022) to compositional approaches in CODA-Prompt
(2023) and finally to attribute-based retrieval in AttriCLIP (2024) demonstrates increasing sophistication in
retrieval strategies.

- Video Understanding: Systems evolved from basic temporal-spatial retrieval to incorporate semantic
segmentation and adaptive selection, as seen in the progression from MeMViT (2022) to VideoLLaMB (2024).

This convergent evolution toward hybrid approaches suggests that combining multiple retrieval strategies is
fundamentally more effective than any single approach, regardless of domain.

5.1.2 Increasing Autonomy in Retrieval Decisions

Another cross-cutting pattern is the progression toward systems that autonomously determine when and
what to retrieve:

- LLMs: RET-LLM’s (2023) reflective trigger mechanism enables the model to determine when memory
retrieval is necessary, while Think-in-Mem (2024) implements deliberate thinking about what to retrieve.

- VLMs: Conditional Prompt Tuning (2023) uses a learned router to dynamically determine routing scores
for weighting prompt experts.

- VPT: The MoPE mechanism in Conditional Prompt Tuning creates context-aware information retrieval by
dynamically selecting prompt experts based on input.

- Video Understanding: VideoStreaming (2024) implements adaptive memory selection based on relevance
to the current context.

This pattern reflects a broader shift toward more metacognitive systems that can strategically manage their
own memory resources.

5.1.3 Unified Retrieval Abstraction

To better understand cross-domain retrieval mechanisms, we propose a formal abstraction:

Retrieval Mechanism (R) = f(Query Representation, Memory Index, Similarity Function,
Contextual Factors)

Where:

- Query Representation varies by domain (text embeddings in LLMs, visual features in VLMs, etc.)

- Memory Index ranges from simple vector stores to hierarchical structures

- Similarity Function includes cosine similarity, learned attention, and dynamic routing
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- Contextual Factors represent domain-specific considerations that influence retrieval

This abstraction helps explain why similar principles manifest differently across domains based on their
specific constraints and requirements.

5.1.4 Comparative Case Study: Context-Sensitive Retrieval

To illustrate cross-domain retrieval patterns, we examine how context-sensitive retrieval is implemented across
domains:

- LLMs (Think-in-Mem, 2024): Implements "deliberate thinking" where the model explicitly reasons
about what information it needs before retrieval, creating a two-stage process that enhances precision.

- VLMs (DMN, 2024): Generates sample-adaptive classifiers for each test point by dynamically weighting
cached features from both static and dynamic memories, tailoring retrieval to each specific input.

- VPT (PromptFusion, 2023): Dynamically balances stability and plasticity modules using a learned
parameter that adjusts based on input characteristics, creating context-sensitive retrieval.

- Video Understanding (XMem, 2022): Employs space-time attention mechanisms across multi-tier
memory stores, allowing the system to focus on relevant temporal-spatial information based on query context.

Despite differences in implementation, all these approaches demonstrate a common principle: effective retrieval
requires adapting to the specific context of the current query rather than using fixed patterns.

5.1.5 Domain-Specific Retrieval Optimizations

Despite these universal patterns, each domain has developed distinctive retrieval optimizations to address
domain-specific challenges:

- LLMs: Focus on narrative coherence and conversational context maintenance through mechanisms like
episodic buffers (MemBank, 2023) and experience tagging (RET-LLM, 2023).

- VLMs: Emphasis on cross-modal alignment through mechanisms like memory hubs (MITP, 2022) and
direct memory space integration (MemVP, 2023).

- VPT: Prioritization of transferable knowledge through techniques like attribute word banks (AttriCLIP,
2024) and class prototypes (STAR-Prompt, 2023).

- Video Understanding: Development of specialized temporal grounding through timestamp mechanisms
(Grounded-VideoLLM, 2024) and semantic segmentation (VideoLLaMB, 2024).

5.1.6 Retrieval Mechanism Trade-offs Visualization

Figure 5.1 illustrates the trade-offs between retrieval precision, computational efficiency, and context sensitivity
across domains. The plot reveals that while all domains have moved toward the upper-right quadrant (high
precision and sensitivity), video understanding systems typically incur higher computational costs due to
temporal processing requirements. LLMs show the highest average precision, while VLMs demonstrate the
strongest balance across all three dimensions.

5.2 Memory Structure Cross-Domain Patterns

Our analysis reveals important patterns in how memory structures have evolved across domains to address
common challenges.

5.2.1 Convergence Toward Hierarchical and Hybrid Structures

Across all domains, there has been a consistent movement from simple, monolithic memory structures toward
hierarchical and hybrid architectures:
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- LLMs: Evolution from context windows to sophisticated multi-tier systems like MemBank’s (2023) three-tier
architecture and Memory LLM-agent’s (2023) core/archival/knowledge organization.

- VLMs: Progression from straightforward prompt banks to hierarchical structures like MITP’s (2022)
layer-wise organization and DMN’s (2024) dual memory architecture.

- VPT: Development from L2P’s (2022) simple prompt pool to DualPrompt’s (2022) general/specific separation
and eventually to sophisticated structures like STAR-Prompt’s (2023) two-level prompting hierarchy.

- Video Understanding: Advancement from simple memory buffers to multi-tier organizations like XMem’s
(2022) sensory/working/long-term memory stores.

This convergent evolution toward hierarchical and hybrid structures suggests fundamental advantages to
organizing information at multiple levels of abstraction and combining different structure types.

5.2.2 Memory Structure Taxonomy Across Domains

We propose a cross-domain taxonomy of memory structures based on their functional properties rather than
domain-specific implementations:

1. Temporary Storage Structures:

- LLMs: Context window (MemGPT)

- VLMs: Temporal prompts (MITP)

- VPT: Dynamic prompts (DualPrompt)

- Video: Real-time buffer (MemFlow)

2. Working Memory Structures:

- LLMs: Reasoning cache (Think-in-Mem)

- VLMs: Memory hub (MITP)

- VPT: Mixture of Prompt Experts (Conditional Prompt Tuning)

- Video: Working memory (XMem)

3. Long-term Memory Structures:

- LLMs: Knowledge store (MemBank)

- VLMs: Static memory (DMN)

- VPT: G-Prompt (DualPrompt)

- Video: Long-term memory (XMem)

4. Integrative Memory Structures:

- LLMs: Episodic buffer (MemBank)

- VLMs: Cross-modal memory hub (MITP)

- VPT: Stabilizer module (PromptFusion)

- Video: Memory consolidation mechanism (VideoLLaMB)

This taxonomy highlights functional similarities across domains despite different implementations, suggesting
universal principles in memory organization.

5.2.3 Specialization of Memory Components

Another universal pattern is the increasing specialization of memory components for different types of
information or cognitive functions:
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- LLMs: Memory LLM-agent (2023) uses distinct stores for core, archival, and knowledge information, while
ChatDB (2024) implements a structured database approach for explicit relational knowledge.

- VLMs: Conditional Prompt Tuning (2023) disentangles prompt vectors into static, dynamic, and mapped
types for different functions.

- VPT: PromptFusion (2023) completely separates stability and plasticity functions into dedicated modules.

- Video Understanding: XMem (2022) implements distinct sensory, working, and long-term memory stores
with specialized functions.

This specialization pattern mirrors the functional separation observed in human memory systems, suggesting
convergent evolution toward cognitively-aligned architectures.

5.2.4 Comparative Case Study: Stability-Plasticity Balance

The challenge of balancing stability (preserving existing knowledge) with plasticity (adapting to new informa-
tion) appears universally across domains:

- LLMs (Memory LLM-agent, 2023): Implements a three-tier memory system where core memory
maintains immediate context (high plasticity), archival memory preserves important past interactions
(balanced), and knowledge tools provide stable information (high stability).

- VLMs (DMN, 2024): Uses dual memory with dynamic memory for test samples (high plasticity) and
static memory for training data (high stability), with attention mechanisms balancing their influence.

- VPT (PromptFusion, 2023): Explicitly separates stability and plasticity into dedicated modules (CoOp
for stability, VPT for plasticity) with a learnable parameter controlling their balance.

- Video Understanding (VidCompress, 2024): Employs a dual-compressor architecture that balances
short-term detail preservation with long-term context maintenance through separate mechanisms.

This case study demonstrates how different domains have converged on similar architectural solutions to the
fundamental stability-plasticity dilemma, despite their distinct applications.

5.2.5 Biological Inspiration

A notable trend across domains is the increasing influence of cognitive science and neuroscience on memory
structure design:

- LLMs: MemBank (2023) explicitly models components inspired by episodic, semantic, and working memory.

- VLMs: The Dual-Memory Model (2021) explicitly implements Baddeley’s psychological theory of human
memory.

- VPT: DualPrompt’s (2022) separation of general and specific knowledge directly implements principles
from Complementary Learning Systems theory.

- Video Understanding: XMem’s (2022) multi-tier architecture directly mirrors human memory organiza-
tion.

This trend toward biologically-inspired designs reflects growing recognition that human memory systems offer
valuable architectural principles for AI memory.

5.2.6 Memory Structure Trade-offs Visualization

Figure 5.2 maps memory structures across domains according to their adaptability, stability, and parameter
efficiency. The visualization shows that while early systems clustered toward either high stability or high
adaptability, newer systems across all domains have converged toward the center-right region that balances
these properties while maintaining strong parameter efficiency. VPT systems consistently demonstrate the
highest parameter efficiency, while LLMs show the greatest range of adaptability-stability trade-offs.
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5.3 Update Schema Cross-Domain Patterns

Our analysis identifies significant commonalities and differences in how memory update approaches have
evolved across domains.

5.3.1 Evolution Toward Multi-Factor Integration

All domains show a progression from simple update criteria toward sophisticated approaches that balance
multiple factors:

- LLMs: Early systems primarily employed straightforward criteria like recency (MemGPT, 2023), while
later approaches introduced mechanisms that balance recency, importance, and frequency (MyAgent, 2024).

- VLMs: While importance-weighted approaches have remained prevalent, their implementation has grown
more sophisticated, with recent models like SynapticRAG (2023) implementing complex integration of multiple
update factors.

- VPT: Movement from simple end-to-end updates (L2P, 2022) to multi-objective approaches (STAR-Prompt,
2023) that balance stability and plasticity.

- Video Understanding: Progression from simple recency-based updates to importance-weighted schemas
that prioritize semantic relevance (VideoLLaMB, 2024).

This convergent evolution suggests that effective memory management requires balancing multiple update
criteria rather than relying on any single approach.

5.3.2 Update Schema Taxonomy Across Domains

We propose a functional taxonomy of update mechanisms that transcends domain boundaries:

1. Temporal Management Mechanisms:

- LLMs: Temporal decay functions (SCM)

- VLMs: Layer-wise temporal prompts (MITP)

- VPT: Experience replay (STAR-Prompt)

- Video: Time constant updates (SynapticRAG)

2. Information Consolidation Mechanisms:

- LLMs: Utility assessment (Think-in-Mem)

- VLMs: Attention-based weighting (DMN)

- VPT: Orthogonality constraints (CODA-Prompt)

- Video: Selective long-term consolidation (XMem)

3. Novelty Detection Mechanisms:

- LLMs: Salience detection (MemBank)

- VLMs: Mutual information estimation (GPT)

- VPT: Class-wise augmentation (GPT)

- Video: Adaptive relevance updates (VideoLLaMB)

This taxonomy highlights functional similarities in update mechanisms despite different implementations
across domains.
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5.3.3 Comparative Case Study: Catastrophic Forgetting Mitigation

The challenge of catastrophic forgetting (losing existing knowledge when learning new information) appears
universally across domains:

- LLMs (RET-LLM, 2023): Addresses forgetting through reflection-based consolidation, where the model
explicitly considers which experiences should be preserved and strengthened based on their long-term utility.

- VLMs (SynapticRAG, 2023): Mitigates forgetting through binding scores that combine temporal and
semantic similarity, preserving important connections while allowing gradual adaptation.

- VPT (DualPrompt, 2022): Prevents forgetting by separating task-invariant knowledge (G-Prompt)
from task-specific knowledge (E-Prompt), allowing new tasks to be learned without interfering with general
knowledge.

- Video Understanding (XMem, 2022): Combats forgetting by maintaining prototype representations
in long-term memory with selective consolidation and potentiation mechanisms that preserve critical visual
patterns.

Despite domain differences, these approaches share common principles: separating stable knowledge from
adaptive components, selective consolidation of important information, and metacognitive assessment of
knowledge importance.

5.3.4 Increasing Metacognitive Control

A significant pattern across domains is the shift toward update mechanisms with explicit metacognitive
components:

- LLMs: RET-LLM (2023) implements reflection-based consolidation where the model explicitly considers
which experiences should be preserved.

- VLMs: DMN (2024) uses attention-based mechanisms to actively determine the importance of information
from different memory sources.

- VPT: Think-in-Mem (2024) evaluates the utility of memories based on their contribution to successful
reasoning.

- Video Understanding: XMem (2022) implements selective long-term consolidation based on strategic
importance assessment.

This pattern reveals a broader trend toward systems with greater agency over their own memory management
processes.

5.3.5 Balancing Stability and Plasticity

A fundamental challenge addressed across all domains is balancing stability (preserving existing knowledge)
with plasticity (learning new information):

- LLMs: Memory LLM-agent (2023) explicitly models memory management as agent actions that balance
preservation and updating.

- VLMs: Conditional Prompt Tuning (2023) implements regularization to prevent dominant experts while
enabling adaptation.

- VPT: PromptFusion (2023) employs dedicated modules for stability and plasticity with a learnable balance
parameter.

- Video Understanding: VidCompress (2024) balances short-term detail preservation with long-term
context maintenance through its dual-compressor architecture.

The universal nature of this challenge and the comparable approaches to addressing it suggest a fundamental
principle of memory system design that transcends specific domains.
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5.3.6 Update Schema Trade-offs Visualization

Figure 5.3 visualizes update schemas across domains according to their stability, plasticity, and computational
efficiency. The plot reveals a clear evolutionary path in all domains from the bottom corners (high stability/low
plasticity or low stability/high plasticity) toward the upper center (balanced stability and plasticity with
improved efficiency). VPT systems show the most dramatic improvements in computational efficiency over
time, while LLMs demonstrate the most balanced approaches to the stability-plasticity trade-off.

5.4 Performance and Efficiency Trends

Beyond the architectural patterns, our cross-domain analysis reveals important trends in performance and
efficiency metrics across systems.

5.4.1 Parameter Efficiency Focus

A universal trend across all domains is the progressive improvement in parameter efficiency:

- LLMs: Memory LLM-agent (2023) and Think-in-Mem (2024) achieve strong performance with minimal
parameter overhead through efficient memory indexing and reasoning caches.

- VLMs: MITP (2022) requires only 2.0M trainable parameters (1% of foundation model), while Conditional
Prompt Tuning (2023) achieves state-of-the-art performance with only 0.7% of trainable parameters.

- VPT: AttriCLIP (2024) maintains constant parameter counts regardless of task number by focusing on
transferable attributes.

- Video Understanding: MeMViT (2022) and VidCompress (2024) achieve strong performance with
compressed representations and minimal parameter overhead.

This cross-cutting focus on parameter efficiency reflects broader industry trends toward more economical AI
systems.

5.4.2 Efficiency-Performance Relationship

Our analysis reveals a consistent relationship between memory efficiency and model performance across
domains that can be approximated as:

Performance (P) = log(Memory Capacity) + (Retrieval Efficiency) + (Update Sophistication)

Where , , and are domain-specific constants. This relationship suggests that while memory capacity is
important, the efficiency of retrieval mechanisms and the sophistication of update schemas can compensate
for limited capacity, explaining why smaller, more efficient models can sometimes outperform larger ones.

5.4.3 Privacy Considerations in Memory Systems

While still emerging, considerations of privacy in memory systems are gaining prominence across domains:

- LLMs: ChatDB (2024) implements structured approaches that could enable better privacy controls, though
explicit privacy mechanisms remain limited.

- VLMs: Most current approaches lack explicit privacy preservation mechanisms.

- VPT: No explicit privacy-preserving update mechanisms observed in current systems.

- Video Understanding: Some initial considerations in VideoStreaming (2024) regarding what information
to retain, but limited formal privacy guarantees.

This analysis reveals a significant gap in current memory systems across domains, suggesting an important
direction for future research.
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5.4.4 Performance Efficiency Visualization

Figure 5.4 charts the evolution of performance (y-axis) and parameter efficiency (x-axis) across domains from
2021 to 2024. The visualization demonstrates a clear trend toward the upper-right quadrant (high performance
with high parameter efficiency) across all domains. VPT and VLM systems show the steepest improvement
curves in parameter efficiency, while LLMs demonstrate the most consistent performance gains.

This cross-domain analysis reveals both universal patterns in memory system design that transcend specific
AI domains and unique adaptations that address domain-specific challenges. The convergent evolution toward
hybrid retrieval mechanisms, hierarchical memory structures, and multi-factor update schemas suggests
fundamental principles of effective memory management. At the same time, the domain-specific optimizations
highlight how similar architectural patterns can be adapted to address unique challenges in different AI fields.

6 Future Directions and Cross-Domain Transfer Opportunities

Based on our comprehensive cross-domain analysis of memory systems, this section explores promising
research directions and knowledge transfer opportunities that could advance memory architectures across
AI domains. We identify fundamental principles that transcend domain boundaries and propose innovative
research paths that leverage cross-domain insights.

6.1 Cross-Domain Knowledge Transfer Opportunities

Our analysis reveals several fertile areas where knowledge transfer across domains could yield significant
advances:

6.1.1 From VLMs to LLMs: Multimodal Memory Integration

VLMs have developed sophisticated mechanisms for cross-modal alignment and integration that could benefit
LLM memory systems:

- Memory-Space Integration Implementation Proposal: We propose extending MemVP’s (2023)
approach by developing a "memory projection layer" that maps arbitrary modalities (not just visual) into
LLM memory space through learned projection functions. This architecture would consist of:

- Modality-specific encoders that generate normalized representations

- A shared projection layer mapping these representations to the FFN memory space of LLMs

- A modality-aware attention mechanism to weight the importance of different modalities

Implementation could begin with structured data types like tables and graphs, which have well-defined
representations, before progressing to more complex modalities.

- Cross-Modal Attention Mechanism Transfer: MITP’s (2022) memory hub for bidirectional information
flow between modalities could be adapted to create a "memory router" for LLMs that enables more efficient
integration of different knowledge types (factual, procedural, episodic). This would allow LLMs to maintain
separate memory stores for different types of knowledge while providing a unified interface for retrieval.

- Multi-Granularity Retrieval Adaptation: DMN’s (2024) ability to adaptively adjust retrieval granularity
based on different knowledge sources could be implemented in LLMs through a "granularity controller" that
dynamically determines whether to retrieve at the document, paragraph, or sentence level based on query
characteristics and task requirements.

6.1.2 From VPT to Video Understanding: Parameter-Efficient Adaptation

VPT methods have achieved remarkable parameter efficiency while maintaining performance, offering valuable
lessons for video understanding systems that often struggle with computational demands:
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- Temporal Attribute Bank Implementation: We propose developing a "temporal attribute bank" inspired
by AttriCLIP (2024) that maintains a fixed set of transferable temporal attributes for video understanding.
This system would:

- Identify and maintain a gallery of fundamental temporal patterns (e.g., acceleration, periodicity, transitions)

- Learn to compose these patterns to represent complex video sequences

- Maintain constant parameter counts regardless of video length by operating at the pattern level rather than
the frame level

This approach could be validated on video datasets of varying lengths to demonstrate parameter scaling
independence.

- Module Specialization Architecture: Adapting PromptFusion’s (2023) separation of stability and
plasticity modules could lead to a "dual-stream video processor" with:

- A stability stream that captures persistent scene elements and background context

- A plasticity stream that focuses on dynamic elements and temporal changes

- A learnable balancing mechanism that adjusts the importance of each stream based on video content

This architecture would be particularly valuable for long-form video understanding where maintaining scene
consistency while tracking changes is crucial.

- Hierarchical Prompting for Temporal Data: STAR-Prompt’s (2023) two-level prompting strategy
could be adapted into a "temporal prompt hierarchy" where:

- First-level prompts capture stable scene elements and general motion patterns

- Second-level prompts adapt to specific temporal dynamics and event transitions

- Different prompts attach to different temporal scales in the video processing pipeline

This approach would enable efficient processing of videos with varying temporal dynamics.

6.1.3 From LLMs to VPT: Metacognitive Memory Management

Advanced LLM memory systems have developed sophisticated metacognitive mechanisms that could enhance
VPT approaches:

- Reflection-Based Consolidation Implementation: Adapting RET-LLM’s (2023) reflective triggers
could create a "prompt reflection module" for VPT that:

- Explicitly evaluates prompt effectiveness after each usage

- Determines when specific prompts need refinement based on performance metrics

- Makes strategic decisions about when to access different prompt components

This system could significantly improve prompt utilization efficiency by avoiding unnecessary retrievals and
focusing computational resources on the most relevant prompts.

- Deliberate Thinking Integration: Think-in-Mem’s (2024) explicit reasoning about retrieval could be
implemented as a "prompt reasoning controller" that:

- Analyzes input characteristics to determine optimal prompt composition before retrieval

- Generates explicit reasoning paths that explain prompt selection decisions

- Continuously refines its selection strategies based on performance feedback

This approach would make prompt selection more interpretable and context-aware.

- Experience Tagging for Prompts: MyAgent’s (2024) correlation tracking between memories and
outcomes could be implemented as a "prompt effectiveness tracker" that:
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- Associates prompts with task performance metrics

- Strengthens effective prompts and weakens those associated with poor outcomes

- Builds a causal model linking prompt characteristics to performance across different tasks

This mechanism would enable more strategic prompt evolution in continual learning settings.

6.1.4 From Video Understanding to VLMs: Temporal Coherence

Video understanding systems have developed specialized approaches to maintain temporal coherence that
could benefit VLMs:

- Semantic Segmentation for Visual Sequences: VideoLLaMB’s (2024) semantic segmentation approach
could be adapted to create a "visual narrative segmenter" for VLMs that:

- Identifies meaningful segments in image sequences based on semantic coherence

- Maintains hierarchical representations that preserve both segment-level and sequence-level information

- Enables more efficient processing of visual stories by operating at the segment level rather than the individual
image level

This would address current limitations in processing visual narratives or sequences in VLMs.

- Multi-Tier Memory Organization Implementation: XMem’s (2022) sensory/working/long-term
memory organization could be adapted as a "visual memory hierarchy" for VLMs with:

- A sensory memory that briefly stores detailed visual information

- A working memory that processes currently relevant visual context

- A long-term memory that preserves important visual concepts and relationships

This architecture would improve visual reasoning capabilities in VLMs by mirroring human visual memory
processes.

- Adaptive Condensation for Visual Information: VideoStreaming’s (2024) adaptive memory selection
could inspire a "visual information condenser" for VLMs that:

- Dynamically adjusts the detail level of stored visual information based on its importance

- Preserves high-fidelity representations of important visual elements while compressing less relevant details

- Adaptively refines visual memory based on query requirements

This approach would help VLMs manage memory more efficiently when processing large volumes of visual
information.

6.2 Emerging Research Directions

Our cross-domain analysis points to several promising research directions that could significantly advance
memory systems across domains:

6.2.1 Theoretically-Grounded Memory Capacity Optimization

While current approaches determine memory structures empirically, developing a theoretical framework for
optimal memory capacity could provide invaluable guidance:

- Testable Hypothesis: "The optimal memory capacity for a given domain follows a power law relationship
with model size and task complexity, expressible as C = MT, where M is model size, T is task complexity,
and , , are domain-specific constants."

- Validation Framework: This hypothesis could be tested through systematic experiments that:
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- Vary model size while keeping task complexity constant

- Vary task complexity while keeping model size constant

- Measure performance across multiple domains to identify domain-specific constants

- Information-Theoretic Bounds Research Agenda: We propose a research program to establish
mathematical relationships between memory capacity and performance bounds based on:

- Mutual information between memory contents and task requirements

- Entropy of input distributions across different domains

- Minimum description length principles for memory representations

- Interference Prediction Model: Developing predictive models of memory interference could prevent
catastrophic forgetting through:

- Theoretical analysis of representation overlap in different memory structures

- Simulation-based assessment of interference risks before deployment

- Automated memory reorganization based on predicted interference patterns

This theoretical framework would transform memory design from an empirical process to a principled approach
with predictable outcomes.

6.2.2 Cognitive-Aligned Memory Architectures

The convergent evolution toward biologically-inspired designs suggests deeper integration of cognitive princi-
ples:

- Tri-Level Memory System Architecture: We propose a comprehensive architecture with explicit
separation of:

- Episodic memory (instance-specific experiences with high detail)

- Semantic memory (concept-level knowledge with abstracted representations)

- Procedural memory (task-specific patterns with action-oriented representations)

Each component would have distinct update rates, retrieval mechanisms, and integration functions, mirroring
human memory organization.

- Implementation Strategy: This architecture could be implemented through:

- A transformer-based episodic store with high-dimensional contextual embeddings

- A graph-structured semantic network with concept nodes and relation edges

- A sequence-based procedural store optimized for action prediction

- Evaluation Protocol: We propose a specialized benchmark suite designed to test human-like memory
properties, including:

- The spacing effect (better retention with spaced vs. massed repetition)

- Context-dependent recall (retrieval performance in matched vs. mismatched contexts)

- Schema-consistent learning (faster acquisition of schema-consistent information)

- Memory Reconsolidation Mechanisms: Implementing principles of memory reconsolidation, where
retrieval makes memories temporarily malleable for updating, could enable more efficient continual learning
through:

- Selective destabilization of relevant memory components during retrieval

- Controlled integration of new information into existing knowledge structures
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- Stabilization processes that preserve updated memories

These cognitive-aligned architectures would bridge the gap between AI systems and human memory capabili-
ties.

6.2.3 Cross-Modal Knowledge Abstraction

Moving beyond current approaches to multimodal integration:

- Unified Attribute Space Implementation: We propose developing a shared representational space for
attributes across modalities through:

- Alignment of conceptual representations across text, vision, and other modalities

- Modality-invariant encoders that extract consistent attributes regardless of input type

- Cross-modal distillation techniques that transfer attribute knowledge between modalities

- Modality-Agnostic Concept Formation: Creating abstraction mechanisms that form conceptual
structures independent of specific modality representations through:

- Unsupervised discovery of cross-modal patterns in large-scale multimodal datasets

- Representation learning techniques that isolate conceptual content from modality-specific features

- Evaluation metrics that assess concept transfer across modalities

- Neuro-Symbolic Integration for Memory: Implementing symbolic reasoning capabilities within neural
memory frameworks through:

- Hybrid architectures that combine vector representations with symbolic structures

- Differentiable reasoning modules that operate over structured memory contents

- Mechanisms for bi-directional translation between neural and symbolic representations

These advances would enable true cross-domain abstraction and reasoning, dramatically improving knowledge
transfer across modalities.

6.2.4 Privacy-Preserving Memory Systems

As memory systems become more sophisticated and deployed in sensitive contexts, privacy considerations
become crucial:

- Technical Approach: Differential Privacy for Memory Updates: We propose developing memory
update mechanisms with formal privacy guarantees through:

- Noise calibration techniques that protect individual data points while preserving aggregate patterns

- Privacy budget management across multiple memory update operations

- Theoretical bounds on information leakage from memory retrieval operations

- Selective Forgetting Implementation: Creating memory systems that can selectively "forget" sensitive
information without compromising overall performance through:

- Fine-grained removal of specific information from neural representations

- Model editing techniques that preserve overall structure while removing targeted memories

- Verification methods that confirm successful forgetting

- Evaluation Framework: We propose specific metrics to measure the privacy-utility tradeoff:

- Reconstruction resistance (difficulty of recovering original data from memory)

- Membership inference resistance (difficulty of determining if specific data was used)
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- Performance retention after forgetting (maintenance of capabilities despite information removal)

- Regulatory Alignment: These approaches would align with emerging privacy regulations by:

- Providing technical mechanisms to implement "right to be forgotten" requirements

- Enabling data minimization principles through selective memory storage

- Supporting transparency through explainable memory operations

These privacy-preserving mechanisms will be essential for deploying memory systems in domains with sensitive
information.

6.2.5 Self-Evolving Memory Architectures

The ultimate progression would be memory systems that adapt their own structure:

- Meta-Learning for Architecture Discovery: Developing approaches that discover optimal memory
architectures through:

- Neural architecture search techniques specialized for memory components

- Meta-learning algorithms that optimize memory structures across diverse tasks

- Evolutionary algorithms that explore the space of possible memory configurations

- Dynamic Memory Allocation Implementation: Creating systems that automatically adjust memory
capacity based on information complexity through:

- Information-theoretic metrics that assess required memory capacity for current data

- Allocation algorithms that expand or contract memory resources based on task demands

- Efficiency-oriented pruning techniques that maintain performance with minimal resources

- Adaptive Stability-Plasticity Mechanisms: Implementing systems that dynamically adjust their
position on the stability-plasticity spectrum through:

- Detection algorithms for concept drift and distribution shifts

- Dynamic regulation of learning rates based on novelty assessment

- Meta-cognitive monitoring of forgetting patterns to trigger adaptive adjustments

These self-evolving architectures would represent a significant advance toward truly adaptive AI systems.

6.3 Technical Challenges and Potential Solutions

Several technical challenges must be addressed to realize these future directions:

6.3.1 Computational Efficiency at Scale

Memory operations become increasingly expensive as memory stores grow:

- Research Agenda: We propose a three-stage research program focusing on:

1. Hierarchical Indexing: Developing multi-level indexing structures that maintain retrieval efficiency with
massive memory stores

2. Adaptive Compression: Creating content-aware compression techniques that preserve important
information while reducing storage requirements

3. Hardware-Specific Optimizations: Designing memory architectures tailored to specific hardware
accelerators

- Benchmark Suite: This agenda requires a comprehensive benchmark that evaluates:
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- Retrieval latency at different memory scales

- Compression ratio vs. information preservation

- Energy efficiency of memory operations

- Success Metrics: Specific targets include:

- 10x reduction in retrieval computation without accuracy degradation

- Linear scaling of memory efficiency with exponential increases in information volume

- 100x improvement in energy efficiency for memory operations

6.3.2 Catastrophic Forgetting Prevention

Continual learning remains a fundamental challenge across domains:

- Memory Isolation and Transfer Implementation: Building on DualPrompt’s (2022) approach, we
propose a "memory compartmentalization" architecture that:

- Creates dedicated memory regions for domain-specific knowledge

- Implements controlled pathways for knowledge transfer between regions

- Utilizes gating mechanisms to prevent interference during learning

- Experience Replay with Generative Models: Using foundation models to implement privacy-preserving
experience replay through:

- Generative models that produce synthetic examples preserving statistical properties of original data

- Representation-level replay that operates on embeddings rather than raw data

- Prioritized replay scheduling based on estimated forgetting risk

- Neuromodulation-Inspired Approaches: Implementing mechanisms inspired by biological neuromodu-
lators through:

- Adaptive learning rate regulation based on novelty assessment

- Attention-gated memory updates controlled by importance signals

- Context-sensitive plasticity that varies based on task requirements

7 Conclusion

This comprehensive survey of memory systems across LLMs, VLMs, VPT, and Video Understanding domains
reveals both universal patterns in memory system design and domain-specific optimizations that address
unique challenges. The convergent evolution toward hybrid retrieval mechanisms, hierarchical memory
structures, and multi-factor update schemas suggests fundamental principles of effective memory management,
while the unique adaptations highlight how these principles can be tailored to specific domains.

As AI systems continue to advance, memory architectures will likely play an increasingly central role in
determining their capabilities and limitations. By facilitating cross-domain knowledge transfer and pursuing
the research directions identified in this survey, researchers can accelerate progress toward more capable,
efficient, and robust AI systems with human-like memory capabilities. The most promising path forward
appears to be one that combines theoretical rigor, cognitive inspiration, and practical engineering to create
memory systems that can effectively balance the fundamental trade-offs of stability vs. plasticity, efficiency
vs. expressiveness, and specialization vs. generalization.
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