
Sliding Window and Pseudo-labeling techniques for
Cellular Segmentation

Truong N.Bui1, Nam T.Nguyen2, Tuyen T.Dam3, Hanh T.Le4, Anh K.N.Nguyen5,
Minh H.Nguyen6, Kien T.Le7, Duong H.Le8, Anh C.H.Nguyen9, Anh N.Nguyen10, Duong H.Nguyen11

Train4Ever
Viettel Group, Hanoi, Vietnam

{truongbn21, namnt542, tuyendt233, hanhlt874, anhnkn5,
minhnh426, kienlt277, duonglh98, anhnch29, anhnn9910, duongnh3411}@viettel.com.vn

Abstract

Cell segmentation is a fundamental task in biomedical image analysis, which
involves the identification and separation of individual cells from microscopy
images. Large-size images and unannotated data are two canailing problems
degrading the performance in cell segmentation. Regarding these issues, we
propose sliding window and pseudo-labeling techniques by conducting several
experiments on different neural architectures. Following this approach, our method
achieves a significant performance improvement and a final result of 0.8097 F1
score on the tuning set and 0.6379 F1 score on the test set of Weakly Supervised
Cell Segmentation in Multi-modality Microscopy challenge hosted at NeurIPS
2022.

1 Introduction

Cell segmentation is crucial for biomedical research. Cells provide structure and function for all
living things and are considered the smallest form of life. A lot of diseases or disorders such as
meningitis, malaria, diabetes, a type of cancer, cystic fibrosis, or Alzheimer’s disease are caused by
problems at a cell or molecular level. Physical damage such as a burn or broken bone also causes
damage at the cell level. By understanding the cell activities and mechanisms, cell biologists can
determine the issue and are able to find effective treatment. The first step in understanding cells is
to detect and localize the contour of each cell instance. But manual cell segmentation is costly and
labor-consuming. Accurate instance segmentation of these cells with the help of computer vision
could lead to new and effective discoveries to treat the millions of people with there above disorders.

In this competition, cell segmentation consists of two main problems: the limited amount of annotated
images and image size variation. Hence, our approach has two main techniques to directly tackle
these problems and can be summarized as follow:

• We apply the sliding-window method to divide large images into smaller patches which
helps maintain the original resolution and enhance the model’s performance.

• We implemented pseudo-labeling on unlabelled images for data enrichment.

• We also conducted experiments measuring the performances of different approaches includ-
ing anchor-free and anchor-based models on this cell segmentation dataset.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



2 Method

2.1 Sliding Window

One of the main problems we need to handle in this competition is the variety of image sizes.
Considering the tuning set, the image sizes vary from the largest 10496 x 8415 to the smallest 591 x
447. Downsizing the large images to a fixed smaller size decreases the image resolution, causing the
model performance to fall remarkably. Thus, we apply the sliding-window method, i.e., dividing a
large image into smaller patches.

The sliding window technique helps maintain the original resolution of the images. However, it still
has two drawbacks:

• The inference time is longer and increases quadratically with the length of the image edge.
Nevertheless, since the tolerance time also scales quadratically with the length of the image
edge, the inference time remains lower than the tolerance time. Consequently, it does not
affect the running time rank.

• Our sliding window is non-overlapped, which means every pixel appears in only one patch.
This is the simplest and costs the least computation implementation but it suffers what
we call the edge effect: the phenomenon that cells lying on different patches are cut into
smaller fragments and ultimately recognized as many different cells which leads to the
model precision decrease.

Currently, our patch size selection algorithm is completely heuristic and described by the algorithm
2.1. Algorithm 2.1 parameters including threshold values and corresponding patch sizes were
determined by tuning on our validation dataset. Hence, this algorithm can be highly biased and prone
to this dataset. Finally, the overall sliding window technique is represented in the algorithm 2.1. In
the 2.1, two parameters tsize and tcell denote the minimum thresholds of the shortest edge and the
number of instances predicted initially. These values were 4000 pixels and 5 instances, selected by
tuning on the validation dataset

Algorithm 1 Patch size selection
Input: w, h - the width and height of the image, respectively.
Output: the patch size

1: α = min(w, h): the shortest edge
2: if α < 2000 then
3: return 1024
4: else if α ≥ 2000 and α ≤ 3000 then
5: return 256
6: else if α ≥ 3000 and α < 4000 then
7: return 512
8: else if α ≥ 4000 and α < 15000 then
9: return 1024

10: else
11: return 2048
12: end if

Algorithm 2 Sliding window
Input: w, h - the width and height of the image, respectively; tsize - the threshold image sizes;

tncell - the threshold number of cells.
1: ncell: the number of cells of the prediction without applying the sliding window technique.
2: α = min(w, h): the shortest edge
3: if α ≥ tsize or ncell < tncell then
4: Applying Algorithm 2.1 in order to find the patch size.
5: Dividing the image into non-overlapped patches.
6: Feeding these patches into the network and merging all predicted instances.
7: end if

2



2.2 Pseudo Labeling

The training set contains only 1000 labeled images, but more than 1500 images are unlabelled.
Hence, we can leverage the original dataset by implementing Pseudo-labelling. The main idea of
this approach is to use the predictions of a trained model as the ground truth annotations, which are
ultimately appended to the original dataset to push more information into the data set. Furthermore,
the Pseudo-labelling method can also be used as an ensemble method compressing multiple models’
knowledge into a single model. The pipeline of pseudo-labeling will be described in detail in section
3.4.

3 Experiments

3.1 Datasets and pre-trained models

The provided dataset contains 1000 labeled images with four microscopy modalities. The distribution
of each modality is illustrated in table 1. The unlabeled dataset which contains more than 1500
images is used for the pseudo-labeling task. We also use the external LIVECell dataset [1].

Our pre-trained models are Cascade Mask RCNN Resnest200 and Cellpose, pre-trained on the
LIVECell dataset, CBNetv2 and CenterMask pre-trained on the COCO dataset [2].

Table 1: Number of images per modality

Modality Number of images
Brightfield 300
Fluorescent 300
Phase-contrast 200
Differential interference contrast 200

3.2 Environment settings

The development environments and requirements are presented in Table 2.

Table 2: Development environments and requirements.

Environment Specification
CPU Intel(R) Core(TM) i9-7900X CPU@3.30GHz
RAM 128GB
GPU (number and type) One NVIDIA V100 32G
CUDA version 11.1
Programming language Python 3.7.11
Deep learning framework Pytorch (Torch 1.10.1, torchvision 0.11.2)

3.3 Model Experiments

We conducted experiments on different models with different architectures: anchor-based: Cascade
Mask RCNN Resnest200 [3], CBNetv2 [4], anchor-free: CenterMask [5] and cell-specific algorithm
CellPose [6]. The results are illustrated in Table 3. We observed that anchor-free models like
CenterMask struggled to detect small or non-convex cells and have much lower recall than anchor-
based models; CellPose outperformed other models in images with fluorescent modality but was not
stable in other modalities and required many hyperparameter-tuning and we were short in time and
cannot spend more effort for cellpose. Consequently, we only focused on improving Resnest200 and
CBNetv2.

We observed that anchor-free models like CenterMask struggled to detect small or non-convex cells
and have much lower recall than anchor-based models; CellPose outperformed other models in images
with fluorescent modality but was not stable in other modalities and required many hyperparameter-
tuning. Although these experiments were conducted without the sliding window technique and

3



the results might only indicate how well these models performed with our default settings, the
differences between CenterMask and the other two models Resnest200 and CBNetv2 are significant
(0.1002 and 0.1304 respectively) and overwhelm the bias of our settings toward models performance.
Consequently, we only focused on improving Resnest200 and CBNetv2. Our detailed implementation
will be described in sections 3.3.1, 3.3.2, 3.3.3, 3.3.4.

Table 3: F1 scores on Tuning Set

Model F1 (w/o sliding window)
CenterMask 0.6405
Cascade Mask RCNN Resnest200 0.7407
CBNetv2 0.7709
CellPose 0.7805

3.3.1 CBNetV2

In our approach, we leveraged the CBNetV2 repository by instantiating the CBNetV2 model with a
Swin-transformer backbone. We selected K = 2 as the hyperparameter value, in order to balance
the need for fast inference time and high accuracy. Notably, we utilized image input sizes from
(780,1333) and (1100, 1333) during training. Our hyperparameter settings are illustrated in table 4
.

Table 4: CBNevtV2 hyperparameters

hyperparameter value
number of nms input regions 4000
max number of nms output regions 3000
nms: iou-threshold 0.8
mask binary score threshold 0.3
nms: iou-threshold 0.3
max regions per image 1000

3.3.2 Resnest200

We use Detectron2-ResNeSt to implement Cascade Mask RCNN Resnest200 model. To improve
the accuracy of our model on current dataset, we conducted experiments with different pretraining
options (pretrained on imagenet, train from scratch, and pretrained Livecell) and found that using a
ResNeSt200 model pre-trained on the LIVECell dataset, yielded superior performance. During the
training phase, we set the minimum image size to 440 pixels. Detailed hyperparameters are illustrated
in table 5.

Table 5: Resnest200 hyperparameters

hyperparameter value
PRE_NMS_TOPK_TRAIN 12000
POST_NMS_TOPK_TRAIN 3000
PRECOMPUTED_PROPOSAL_TOPK_TEST 1000

3.3.3 CenterMask

We choose the version Centermask-lite V39 to balance the inference time and the accuracy. Hyperpa-
rameters are illustrated in Table 6.

The model achieves a good score on the valid dataset however it does not generalize well on the
tuning set. It performed poorly on the non-convex cell and its precision is lower than the anchor-based
model due to the variety of cell shapes. Additionally, it faces a severe problem of overlapping cells
in cases where cells are close to each other. In each modality, it faces the same problem as the
anchor-base model, especially on the modality DIC due to the noisiness in the dataset and in the
fluorescent where the cell’s appearances are dense. The visualization was shown in Figure 1 and 2.

4



Table 6: Centermask hyperparameters

hyperparameter value
detections-per-image 1600
post-nms-topk-test 5000
post-nms-top-train 2000

Figure 1: Centermask recognized a non-convex cell as many smaller and more convex cells

Figure 2: Centermask has low recall on "easy images", which were well recognized by other models.

5



Figure 3: Cellpose inference pipeline

3.3.4 CellPose

Cell pose is generalist models for cellular segmentation pre-trained on large datasets such as TissueNet,
and LiveCell. Cell pose is a segmentation base model that uses Unet as a backbone to extract features
from 1 channel input image. The neural network was trained to predict three outputs: horizontal
and vertical gradient of the topological maps, a binary map that indicate if a given pixel is inside or
outside a cell. Topological maps were generated from the instance segmentation label. The Center
of each cell is computed as the median of all pixels inside the cell. After that, simulated diffusion
was calculated for all pixels inside the cell, the value based on the distance to the cell center. Vertical
and horizontal gradients are finally calculated on simulated diffusion as the two outputs of the model.
Cell pose using the output feature in the immediate layer and call it style to predict the mean diameter
of the cell in the picture. Cell pose uses a binary segmentation map to filter all inside cell pixels and
then combined gradients for each inside cell pixel is an aggregate vector from the horizontal and
vertical gradient. Gradient tracking is an algorithm that finds a center cell for each pixel, all pixels
belonging to a given cell can be routed to its center. In the end, all pixels of each cell are grouped,
identified by this ID, and made into a final output instance segmentation mask. The overview of
training and inference flow is described in figure 3:

We trained the cellpose segmentation model using the Livecell Blue channel for 100 epochs, and used
that as a pre-trained size model and then trained size model for 15 epochs.

3.4 Pseudo-labeling Pipeline

3.4.1 Downsample unlabeled dataset

According to our experience, the number of pseudo-labeled images should not exceed the number of
labeled images. Besides, we observed duplicated patterns in many images, therefore a much smaller
number of images should be well representative of the whole dataset. Following that consideration,
we clustered the dataset by using bit-wised distance in hashed-image vector space and randomly
picked out a small fragment of images from each cluster. Ultimately, we received an additional 487
unlabeled images.

3.4.2 Allocate dataset to models

We trained our most three competitive models which are CBNetv2, Cascade Mask RCNN Resnest200,
and Cellpose on the labeled dataset (not including the external datasets). In the validation dataset,
we created some metadata which are combinations of image size and modality criteria, then divided
images into smaller partitions based on that metadata. By doing so, we figured out which model gave
the best validation results with particular metadata and used that model to make predictions on the
unlabeled dataset.

We then proceeded to filter out instances (cells) within an image that had low confidence scores and
kept only instances with a confidence score greater than a threshold, which we choose to be 0.9. We

6



Figure 4: Low recall image, 0.24 F1 score

suspect that deciding the value of this threshold might be crucial; a low value can create many false
positive instances and on the opposite, a high value can create false negative instances, both will
mislead the model. Finally, we inserted the processed pseudo-labeled images into the original dataset
to retrain our model.

4 Results and discussion

4.1 Quantitative results on tuning set

Table 7: Results on Tuning Set (F1)

CBNetv2 Cascade Mask RCNN Resnest200
w/o Sliding Window, Pseudo-labeling 0.7709 0.7407
w/o Sliding window 0.7205 0.7158
w/o Pseudo-labeling 0.8097 0.7971
Sliding window, Pseudo-labeling 0.7635 0.7497

Sliding window consistently enhanced the model’s performance by 0.0388 and 0.0564 F1 scores with
CBNetv2 and Cascade Mask RCNN Resnest200 respectively.

Whilst, our attempt to utilize unlabeled data was unsuccessful, inserting the unlabeled images made
the F1 score drop significantly. We only trained on the pseudo-labeled dataset once and did not have
the chance to correct any mistake that might occur, such as picking the threshold to filter instances
we mentioned in section 3.4.2.

Surprisingly, the more cumbersome and pre-trained on the microscopic dataset Cascade Mask RCNN
Resnest200 was consistently outperformed by CBNetv2, which was only pre-trained on COCO
dataset.

4.2 Qualitative results on validation set

One of the most challenging problems of cell segmentation task is high cell density images where
cells are not separated. Figure 4 illustrates the model struggled to segment cells in high cell density
images, which has fluorescent modality. In figure 5, having the same fluorescent modality but the cell
density is lower, our model achieved a much higher F1 score.

Figure 6 illustrates the effect of image resizing. Implementing sliding windows increases the
resolution of the image in comparison with not using sliding windows. In this case, the model
recognized the same image as two completely different types of cell. Thus, we believe that an ideal
sliding window strategy should be adaptive and dynamically change relative to cell type.

7



Figure 5: High recall image, 0.82 F1 score

Figure 6: Effect of image resizing

4.3 Segmentation efficiency results on validation set

Having a limited memory resource (10 GB GPU RAM while inferring), we had to prevent any
redundant usage. Initially, the segmentation mask is presented as a 3D tensor with the shape
C ×W ×H which is the default implementation of mmdetection library [7] where C is the number
of instances, and W and H are the width and the height of the image respectively, we paste instance
by instance into a W ×H mask. This can lead to cell overlapping but cost C times less memory.

The compact CBNetv2’s runtime is much faster than Cascade Mask RCNN and able to infer all the
images in the test dataset within the tolerance time while having better performance. Considering the
effect of different types of images, we observed no patterns about which images cost more runtime
than the others. We suspect the differences in runtime were completely random.

Table 8: Number of tolerance time exceeded images on Tuning Set

Model Number of images
CBNetv2 4
Cascade Mask RCNN Resnest200 12

4.4 Testing set result

There are significant differences between performances in the tuning set and test set, the F1 scores
dropped from 0.8097 to 0.6379. The Fluorescent modality was far below and dragged down the overall
average. We suspect that the differences were caused by the fact that our model was insufficiently
adapted to different sizes of the images especially the fluorescent images which have cells that vary
in size and shape.

8



Table 9: Testing result

Modality Mean F1 score
All 0.6379
Brightfield 0.8495
Fluorescent 0.249
Phase-contrast 0.7732
Differential interference contrast 0.7217

4.5 Limitation and future work

The model performance is extremely affected by the cell size and consequently affected by the image
size. Currently, we implemented a rule-based algorithm to choose patch size for sliding window
algorithm based on the image size. But we observed the patch size should be chosen not by the image
size but the cell size. Hence, we believe a sub-model which predicts the mean cell size within an
image to decide the patch size should enhance the performance.

Another limitation of our approach is the edge effect that we mentioned in section 2.1. The edge
effect can be resolved by implementing an overlapped sliding window, which is relevant to the stride
convolutional layer. Instead of dividing images into non-overlapped patches, now a pixel can be
captured in different patches and consequently, it increases the probability of the whole cell appearing
in only one patch and can be segmented as no edge effect exists. But on the other hand, it will also
cost redundant computation of feeding the same part of images multiple times. In addition, this
approach will require an algorithm to merge the mask of the patches, one possible solution is the
Non-maximum Suppression algorithm. Although this approach can resolve the edge effect, since
only a minor number of cells lie on the edges, it may not be worth the additional computation. An
alternative solution to the edge effect that does not require unnecessary computation as the overlapped
sliding window is to identify different fragments that belong to the same cell but this task is far from
trivial.

5 Conclusion

We conducted experiments on image cell segmentation with two techniques: sliding windows and
pseudo-labeling. The sliding windows method gained a significant performance improve, but on
the other hand this method is unstable and depends on hyperparameter tuning. The pseudo-labeling
method did not bring in any performance improvement and need further tuning.

6 Acknowledgement

Our implementation for participation in the NeurIPS 2022 Cell Segmentation challenge has not used
any private datasets other than those provided by the organizers and the official external datasets and
pre-trained models. The proposed solution is fully automatic without any manual intervention.

References
[1] Christoffer Edlund, Timothy R Jackson, Nabeel Khalid, Nicola Bevan, Timothy Dale, Andreas

Dengel, Sheraz Ahmed, Johan Trygg, and Rickard Sjögren. Livecell—a large-scale dataset for
label-free live cell segmentation. Nature methods, 18(9):1038–1045, 2021.

[2] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pages 740–755. Springer, 2014.

[3] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: high quality object detection and instance
segmentation. IEEE transactions on pattern analysis and machine intelligence, 43(5):1483–1498,
2019.

9



[4] Tingting Liang, Xiaojie Chu, Yudong Liu, Yongtao Wang, Zhi Tang, Wei Chu, Jingdong Chen,
and Haibing Ling. Cbnetv2: A composite backbone network architecture for object detection.
arXiv preprint arXiv:2107.00420, 2021.

[5] Youngwan Lee and Jongyoul Park. Centermask: Real-time anchor-free instance segmentation.
2020.

[6] Carsen Stringer, Tim Wang, Michalis Michaelos, and Marius Pachitariu. Cellpose: a generalist
algorithm for cellular segmentation. Nature methods, 18(1):100–106, 2021.

[7] K Chen, J Wang, J Pang, Y Cao, Y Xiong, X Li, S Sun, W Feng, Z Liu, J Xu, et al. Mmdetection:
Open mmlab detection toolbox and benchmark. arxiv 2019. arXiv preprint arXiv:1906.07155,
2019.

10


	Introduction
	Method
	Sliding Window
	Pseudo Labeling

	Experiments
	Datasets and pre-trained models
	Environment settings
	Model Experiments
	CBNetV2
	Resnest200
	CenterMask
	CellPose

	Pseudo-labeling Pipeline
	Downsample unlabeled dataset
	Allocate dataset to models


	Results and discussion
	Quantitative results on tuning set
	Qualitative results on validation set
	Segmentation efficiency results on validation set
	Testing set result
	Limitation and future work

	Conclusion
	Acknowledgement

