
Reinforcement Learning for Quantum Circuit Design:
Using Matrix Representations

Zhiyuan Wang, Chunlin Feng, Christopher Poon, Lijian Huang,
Xingjian Zhao, Yao Ma, Tianfan Fu, Xiao-Yang Liu
Department of Computer Science, Rensselaer Polytechnic Institute

Emails: {wangz60, fengc5, poonc3, huangl9, zhaox8, may13, fut2, liux33}@rpi.edu

Abstract

Quantum computing promises advantages over classical com-
puting. The manufacturing of quantum hardware is in the
infancy stage, called the Noisy Intermediate-Scale Quantum
(NISQ) era. A major challenge is automated quantum circuit
design that map a quantum circuit to gates in a universal gate
set. In this paper, we present a generic MDP modeling and
employ Q-learning and DQN algorithms for quantum circuit
design. By leveraging the power of deep reinforcement learn-
ing, we aim to provide an automatic and scalable approach
over traditional hand-crafted heuristic methods.

Introduction
Quantum computing has the potential to revolutionize com-
puting beyond the reach of classical computers (Gill et al.
2021). A major hurdle is the quantum circuit design that maps
a quantum circuit to gates in a universal gate set. Traditional
hand-crafted heuristic methods are often inefficient and not
scalable.

The automated design of quantum circuits remains a major
challenge. (Ali et al. 2015) and (Bhat, Khanday, and Shah
2022) used a method that utilizes the Toffoli gate decom-
position technique, reducing cost and enhancing efficiency.
Machine learning, in particular reinforcement learning, has
recently been applied. (Sogabe et al. 2022) explored a model-
free deep recurrent Q-network (DRQN) method for an entan-
gled Bell-GHZ circuit. Recently, (Liu and Zhang 2023) and
(Meirom et al. 2022) utilized tensor network representations
of Google’s Sycamore circuit (Arute et al. 2019) and studied
the Tensor Network Contraction Ordering (TNCO) problem.

In this paper, we explore reinforcement learning methods
to automate the task of quantum circuit search. Our contribu-
tions can be summarized as follows:

• We present three generic Markov Decision Process (MDP)
modelings for the quantum circuit design task.

• We study 10 quantum circuit design tasks: 4 Bell states,
SWAP gate, iSWAP gate, CZ gate, GHZ gate, Z gate and
Toffoli gate, respectively, given a universal gate set {H , T ,
CNOT}.

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

q0 : |0⟩

q1 : |0⟩

H

CNOT01

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩)

Figure 1: A quantum circuit to generate Bell state |Φ+⟩.

• We verify that both Q-learning and DQN algorithms could
find the target quantum circuits. Reinforcement learning
offers an automated solution.

Problem Formulation
Taking Bell state |Φ+⟩ 1 as an example, we formulate the
task of quantum circuit design as two versions of Markov
Decision Process (MDP). In particular, we specify the state
space, action set, reward function, and Q-table, respectively.

Task: Quantum Circuit Design
Given two qubits with initial state |q1q0⟩ = |00⟩ and a uni-
versal gate set G = {H,T,CNOT}, the goal is to find a
quantum circuit that generates the Bell state |Φ+⟩:∣∣Φ+

〉
=

1√
2
(|00⟩+ |11⟩) . (1)

The target quantum circuit to generate |Φ+⟩ is shown in
Fig. 1, whose matrix representation is:

U = CNOT01 · (H ⊗ I)

=

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 · ( 1√
2

(
1 1
1 −1

)
⊗

(
1 0
0 1

))

=
1√
2

1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

 .

(2)

Note that |Φ+⟩ = U |00⟩.

Modeling as Markov Decision Process (MDP)
We provide three types of MDP modelings.

1There are four Bell states, physically the two qubits are maxi-
mumly entangled.



Figure 2: State tree in matrix representation for searching the
circuit in Fig. 1.

Matrix Representation

• Actions A = {H0, H1, T0, T1,CNOT01}, since H and T
can be executed on either q0 or q1. An action a ∈ A is
represented as a matrix A ∈ C4×4.

• State space S: The initial state is U0 = I4 and the terminal
state is U given in (2). Let S be the current state (a node in
Fig. 2), A ∈ A be the action, then the resulting state at a
child node S

′
is given by

S
′
= A · S. (3)

The state space S is a tree in Fig. 2. The connecting lines
1, 2, 3, 4, and 5 correspond to the five actions in A. At the
initial state S0 = I4, taking an action a ∈ A will generate
5 states {S1, S2, S3, S4, S5}. Then, taking a second action
a ∈ A at a state S ∈ {S1, S2, S3, S4, S5} will generate 25
states {S6, S7, . . . , S30}. Thus, S has a total of 31 states.

• Reward function R: At state S1, taking action a =
CNOT01, the reward is R(s = S1, a = CNOT01) = 100;
otherwise, R(s, a) = 0.

Example for Fig. 1: Given initial state S0 = I4, let us con-
sider the optimal trajectory S0 → S1 → S10.
State after taking the first action a = H0,

S1 = (H0 ⊗ I)S0 =
1√
2

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 . (4)

Final state after taking the second action a = CNOT01,

S10 = CNOT01 · S1

=
1√
2

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 = U,
(5)

which corresponds to the target circuit in (2).
Advantage: Different sequences of quantum gates may

result in the same matrix state, thus this matrix representation
would reduce the state space.

Disadvantage: RL agent needs to be trained for each tar-
get matrix, even though different circuits may share similar
or identical intermediate states. This approach makes the
training process repetitive.

Figure 3: State tree in reverse matrix representation for search-
ing the circuit in Fig. 1.

Reverse Matrix Representation
• Actions A−1 = {H−1

0 , H−1
1 , T−1

0 , T−1
1 ,CNOT−1

01 }, since
H−1 and T−1 can be executed on either q0 or q1. An action
a ∈ A−1 is represented as a matrix A−1 ∈ C4×4.

• State space S: The initial state is S−1
0 = U given in (2) and

the terminal state is I4. Let S−1 be the current state (a node
in Fig. 3), A−1 ∈ A−1 be the action, then the resulting
state at a child node S′−1 is given by

S
′−1 = A−1 · S−1. (6)

The state space S−1 is a tree in Fig. 3. The connecting
lines 1, 2, 3, 4, and 5 correspond to the five actions in
A−1. At initial state S0 = U , taking an action a ∈
A−1 will generate 5 states {S−1

1 , S−1
2 , S−1

3 , S−1
4 , S−1

5 }.
Then, taking a second action a ∈ A−1 at a state
S−1 ∈ {S−1

1 , S−1
2 , S−1

3 , S−1
4 , S−1

5 } will generate 25
states {S−1

6 , S−1
7 , . . . , S−1

30 }. Thus, S−1 has a total of 31
states.

• Reward function R: At state S−1
5 , taking action a = H−1

0 ,
the reward R(s = S−1

5 , a = H−1
0 ) = 100; otherwise,

R(s, a) = 0.
Example for Fig. 1: Given initial state S−1

0 = U in (2), we
consider the optimal trajectory S−1

0 → S−1
5 → S−1

26 .
State after taking the first action a = CNOT−1

01 ,

S−1
5 = CNOT−1

01 · S
−1
0

=

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 1√
2

1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0


=

1√
2

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 .

(7)

Final state after taking the second action a = H−1
0 ,

S−1
26 = (H−1

0 ⊗ I)S−1
5

=
1

2

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 = I4.
(8)

To construct the target circuit, one can reverse the ordering
of actions and take the inverse of each action. In this example,
gate CNOT−1

01 is followed by gate H−1
0 . Therefore, the result

is H0 followed by CNOT01, which corresponds to the target
circuit in Fig. 1.



States H0 H1 T0 T1 CNOT01

0 90 0 0 0 0
1 0 0 0 0 100
2 0 0 0 0 0
... 0 0 0 0 0

30 0 0 0 0 0

Table 1: The learned Q-table for Bell state |Φ+⟩.

Figure 4: TN representation of Fig. 1.

Tensor Network Representation The Tensor Network
(TN) is a powerful representation for quantum circuits. A
tensor network is a collection of interconnected tensors. A
single-qubit gate can be represented as a 2-order tensor, while
a double-qubit gate can be represented as a 4-order tensor.
For example, we convert the circuit in Fig. 1 to Fig. 4.

Consider Fig. 1 and a universal gate set
G = {H,T,CNOT01}. The gate list is L =
{H0, H1, T0, T1,CNOT}. We allow up to two gates
for demonstration purpose.
• Actions A = {H0, H1, T0, T1,CNOT01,
(H0, H1), (H0, T1), (H1, T0), (T0, T1),
(T0,CNOT01), (CNOT01, T0), (T1,CNOT01), (CNOT01, T1),
(H0,CNOT01), (CNOT01, H0), (H1,CNOT01), (CNOT01, H1)}.
There are 17 different actions in total. Taking action
(H0,CNOT01) results in the TN representation in Fig. 4.

• State space S: The initial state is S0 = |00⟩, and the ter-
minal state is |Φ+⟩ given in (1). Let S be the current state
(a node in Fig. 5), A ∈ A be an action, then the resulting
state at a child node S

′
is given by:

S
′
= A · S. (9)

The state space S is represented as a tree in Fig. 5. The
connecting lines 1, 2, 3, . . . , 17 correspond to the 17 ac-
tions in A. At the initial state S0 = |00⟩, taking an action
A ∈ Awill generate 17 states {S1, S2, S3, . . . , S17}. Thus,
S contains a total of 18 states.

Figure 5: State tree in TN representation for searching the
circuit in Fig. 1.

States H−1
0 H−1

1 T−1
0 T−1

1 CNOT−1
01

0 0 0 0 0 90
... 0 0 0 0 0
5 100 0 0 0 0
... 0 0 0 0 0

30 0 0 0 0 0

Table 2: The learned Q-table of reverse representation for
Bell state |Φ+⟩.

States A1 A2 . . . A14 . . . A17

0 0 0 . . . 100 . . . 0
1 0 0 . . . 0 . . . 0
2 0 0 . . . 0 . . . 0
... 0 0 . . . 0 . . . 0

17 0 0 . . . 0 . . . 0

Table 3: The learned Q-table of TN representation for Bell
state |Φ⟩+.

• Reward function R: At state S0, taking action
a = (H0,CNOT01), the reward R(s = S0, a =
(H0,CNOT01)) = 100; otherwise, R(s, a) = 0.

Example for Fig. 1: Given the initial state S0 = |00⟩, we
consider the optimal trajectory S0 → S14.
State after the action: a = (H0,CNOT01)

S14 = CNOT01 · (H ⊗ I) · S0

= CNOT01 ·
(

1√
2
(|00⟩+ |10⟩)

)
=

1√
2
(|00⟩+ |11⟩) .

(10)

which corresponds to the target circuit in Equation (2).

Q-Learning and DQN Algorithms
Q-Learning Algorithm
The Q-learning algorithm updates a Q-table (Watkins and
Dayan 1992) in each step as follows

Qnew(St, At)← (1− α)︸ ︷︷ ︸
learning rate

· Q(St, At)︸ ︷︷ ︸
current value

+ α︸︷︷︸
learning rate

·

 Rt+1︸ ︷︷ ︸
reward

+ γ︸︷︷︸
discount factor

· max
a

Q(St+1, a)︸ ︷︷ ︸
estimate of optimal future value

 .

(11)

Q-Table for Bell State |Φ+⟩ The rows of the Q-table in
Table 1 and Table 2 correspond to 31 states in Fig. 2 and
Fig. 3, and the columns for five actions in A and A−1 for
Matrix and Reverse Matrix Representation. The rows of the
Q-table in Table 3 correspond to 18 states in Fig. 5, and the
columns for 17 actions in A for TN Representation. The Q-
table is initialized to all zeros and updated by (11). After 500
iterations, the results are given in Table 1, Table 2, and Table



3, respectively. Each entry represents the expected return
for taking an action in a given state. The parameters are as
follows: learning rate α = 0.5, reward for reaching the target
circuit R = 100, discount factor γ = 0.9, and exploration
rate ϵ = 0.2.

Using Table 1, at initial state S0, we take action a = H0

and obtain state S1. At state S1, we take action a = CNOT01

and reach the target circuit in Fig. 1.
Using Table 2, at initial state S−1

0 , we take action a =
CNOT−1

01 and obtain state S−1
5 . At state S−1

5 , we take action
a = H−1

0 and reach the target state I4. By reversing the
action ordering and taking the inverse of each action, the
target circuit in Fig. 1 is obtained.

Using Table 3, at initial state S0, we take action a =
{H0,CNOT01} and obtain the target state S14 in Fig. 1.

DQN Algorithm
Deep Q-Network (DQN) method (Mnih et al. 2013) uses a
neural network to approximate the Q-values for each state-
action pair. The DQN algorithm utilizes two neural networks:

• Policy network with parameter θ: It consists of three fully
connected layers, each with 128 neurons. The input is the
state and the outputs are Q-values for each action.

• Target network with parameter θ: A separate network that
stabilizes the training process. It is periodically updated
using θ = (1− α)θ + αθ, where α is the learning rate.

Experiences stored in the replay buffer are randomly sam-
pled to train the policy network, reducing correlations be-
tween consecutive samples. The loss function is defined as
the Mean Squared Error (MSE) between the predicted Q-
values from the policy network and the target Q-values (Mnih
et al. 2013):

Lθ = MSE
(
Q(s, a | θ), R+ γ ·max

a′
Q(s′, a′ | θ)

)
, (12)

where Q(s, a | θ) denotes the Q-value predicted by the pol-
icy network for the current state-action pair, and the target
Q-value is calculated as the immediate reward R plus the
discounted maximum next-step Q-value maxa′ Q(s′, a′ | θ),
which is estimated using the target network. The parameters
are as follows: α = 0.1, γ = 0.95, batch size = 64, replay
buffer size = 10000, and max gate count = 20.

Experiment Results

q0 :

q1 :

q2 :

=

H P P † P H

Figure 6: A design of Toffoli Gate with fewer gates.

We verify the above three MDP modelings for 10 well-
known quantum circuits, namely, circuits to generate 4 Bell
states, SWAP gate, iSWAP gate, CZ gate, GHZ Gate, Z gate,

and Toffoli gate. For Matrix and Reverse Matrix Representa-
tions, we apply both Q-learning and DQN algorithms, while
for TN Representation, we applied only Q-learning. Our
codes can be found at this link2.

Toffoli Gate: we used an action set with gates in Fig. 6,

A = {CNOT21, H0,CP10,CP−1
10 ,CP20},

where the CP gate refers to controlled-phase gate with a phase
shift of π

2 , and CP−1 with a phase shift of −π
2 .

An expert trajectory were stored in the replay buffer to
improve learning efficiency. For Matrix Representation, the
expert trajectory is:

{H0 → CP10 → CNOT21 → CP−1
10 →

CNOT21 → CP20 → H0}.
For Reverse Matrix Representation,

A−1 = {CNOT−1
21 , H

−1
0 ,CP−1

10 ,CP10,CP−1
20 },

and the expert trajectory becomes to:

{H−1
0 → CP−1

20 → CNOT−1
21 → CP10 →

CNOT−1
21 → CP−1

10 → H−1
0 }.

Each state expands in a branching factor (size of actions)
c across b+ 1 levels (length of the tasks+1), as in Fig. 2, the
size of the state space is given by a geometric series:

Size of state space = c0 + c1 + · · ·+ cb =
cb+1 − 1

c− 1
. (13)

The complexity of the task is measured by the size of the
states space, given in Table 4. To evaluate the effectiveness of
Q-learning and DQN, we conduct 100 rounds. In each round,
the agent is trained for 100 episodes, and we measure the
success ratio (in percentage) of correct testing results over
the 100 rounds. The results are summarized in Table 5.

From Table 5, we observe that both Q-learning and DQN
perform well on simpler tasks, such as generating the Bell
state |Φ+⟩. However, as task complexity increases, for ex-
ample, the iSWAP gate task with a state space size of 56,
the performance of both algorithms significantly degrades,
indicating the challenges of learning in large state spaces.

Conclusion and Future Work
In this paper, we applied Q-learning and Deep Q-Network
(DQN) algorithms to three MDP modelings of the quantum
circuit design task. We demonstrated that RL algorithms
successfully discovered the expected quantum circuits for 4
Bell states, SWAP gate, iSWAP gate, CZ gate, GHZ gate,
Z gate, and Toffoli gate. We noticed that Reverse Matrix
Representation and TN Representation have greater potential
in this problem. For more difficult tasks, both Q-learning
and DQN struggle to converge due to insufficient sampling
quality and efficiency.

In future work, we will improve sample quality and imple-
ment algorithms like Monte Carlo Tree Search (MCTS) to
increase efficiency and address the convergence challenge.
Finally, we will investigate the robustness of RL algorithms
by testing more complex quantum circuits.

2https://github.com/YangletLiu/CSCI4961_labs_projects/tree/
main



Task Name Qubits Actions Length Space Size Universal Gate Set
Bell state |Φ+⟩ 2 6 2 43 {H,CNOT, T}
Bell state |Φ−⟩ 2 6 3 259 {H,CNOT, T,X}
Bell state |Ψ+⟩ 2 6 3 259 {H,CNOT, T,X}
Bell state |Ψ−⟩ 2 8 5 37449 {H,CNOT, T,X,Z}
SWAP gate 2 6 3 259 {H,CNOT, T}
iSWAP gate 2 6 5 9331 {H,CNOT, T}
CZ gate 2 6 3 259 {H,CNOT, T}
GHZ gate 3 8 3 585 {H,CNOT, T}
Z gate 3 10 2 111 {H,CNOT, T, S}
Toffoli gate 3 5 7 97656 Special Case

Table 4: Task descriptions.

Gates Q-Learning Q-Learning (Reverse) DQN DQN (Reverse) Q-Learning (TN)
Bell state |Φ+⟩ 86% 85% 33% 39% 100%
Bell state |Φ−⟩ 41% 25% 18% 20% 94%
Bell state |Ψ+⟩ 55% 53% 21% 17% 95%
Bell state |Ψ−⟩ 5% 4% 6% 4% 15%

SWAP gate 10% 15% 21% 27% 3%
iSWAP gate 2% 1% 2% 5% 2%

CZ gate 69% 77% 16% 17% 19%
GHZ gate 34% 17% 13% 20% 45%

Z gate 50% 38% 17% 19% 13%
Toffoli gate 87% 91% 1% 3% -

Table 5: Success ratios (in percentage) over 100 training rounds, respectively.

References
Ali, M. B.; Hirayama, T.; Yamanaka, K.; and Nishitani, Y.
2015. Quantum cost reduction of reversible circuits using
new Toffoli decomposition techniques. In International Con-
ference on Computational Science and Computational Intel-
ligence (CSCI), 59–64. IEEE.
Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J. C.;
Barends, R.; Biswas, R.; Boixo, S.; Brandao, F. G.; Buell,
D. A.; et al. 2019. Quantum supremacy using a pro-
grammable superconducting processor. Nature, 574(7779):
505–510.
Bhat, H. A.; Khanday, F. A.; and Shah, K. A. 2022. Optimal
quantum circuit decomposition of reversible gates on IBM
quantum computer. In International Conference on Multi-
media, Signal Processing and Communication Technologies
(IMPACT), 1–4. IEEE.
Gill, S. S.; Kumar, A.; Singh, H.; Singh, M.; Kaur, K.; Usman,
M.; and Buyya, R. 2021. Quantum Computing: A Taxonomy,
Systematic Review and Future Directions. arXiv:2010.15559.
Liu, X.-Y.; and Zhang, Z. 2023. Classical Simulation of
Quantum Circuits: Parallel Environments and Benchmark.
In Advances in Neural Information Processing Systems, vol-
ume 36, 67082–67102.
Meirom, E.; Maron, H.; Mannor, S.; and Chechik, G. 2022.
Optimizing tensor network contraction using reinforcement
learning. In International Conference on Machine Learning,
15278–15292. PMLR.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing Atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.
Sogabe, T.; Kimura, T.; Chen, C.-C.; Shiba, K.; Kasahara, N.;
Sogabe, M.; and Sakamoto, K. 2022. Model-free deep recur-
rent Q-network reinforcement learning for quantum circuit
architectures design. Quantum Reports, 4(4): 380–389.
Watkins, C. J.; and Dayan, P. 1992. Q-learning. Machine
Learning, 8(3-4): 279–292.



Appendix: Task Description

Task Name Detailed Action Set
Bell state |Φ+⟩ {H0, H1, T0, T1,CNOT01,CNOT10}
Bell state |Φ−⟩ {H0, H1, T0, X0, X1,CNOT01}
Bell state |Ψ+⟩ {H0, H1, T0, X0, X1,CNOT01}
Bell state |Ψ−⟩ {H0, H1, T0, X0, X1, Z0, Z1,CNOT01}
SWAP gate {H0, H1, T0, T1,CNOT01,CNOT10}
iSWAP gate {H0, H1, T0, T1,CNOT01,CNOT10}
CZ gate {H0, H1, T0, T1,CNOT01,CNOT10}
GHZ gate {H0, H1, H2, T0, T1, T2,CNOT01,CNOT12}
Toffoli gate {CNOT21, H0,CP10,CP−1

10 ,CP20}

Table 6: Detailed action sets.

Two-Qubit Action Set (TN)
For tasks below in TN representation:

• Bell state |Φ−⟩,
• Bell state |Ψ+⟩,
• Bell state |Ψ−⟩,

They share the same action set:
{H0, H1, T0, T1, X0, X1,CNOT01,
(H0, H1), (H0, T1), (H1, T0), (T0, T1), (Z0, Z1),
(T0,CNOT01), (CNOT01, T0), (T1,CNOT01), (CNOT01, T1),
(H0,CNOT01), (CNOT01, H0), (H1,CNOT01), (CNOT01, H1)}

For tasks below in TN representation:

• SWAP gate,
• iSWAP gate,
• CZ gate,

They share the same action set:
{H0, H1, T0, T1,CNOT01,CNOT10, (H0, H1), (H0, T1),
(H1, T0), (T0, T1), (CNOT01,CNOT10), (CNOT10,CNOT01),
(T0,CNOT01), (CNOT01, T0), (T1,CNOT01), (CNOT01, T1),
(H0,CNOT01), (CNOT01, H0), (H1,CNOT01), (CNOT01, H1)}

Three-Qubit Action Set (TN)
For tasks below in TN representation:

• GHZ gate,
• Z gate,

They share the same action set:
{H0, H1, H2, T0, S0, S1, S2, T1, T2,CNOT01,CNOT12,CNOT02,
(H0, H1), (H0, T1), (T0, H1), (T0, T1),
(H0, H2), (H0, T2), (T0, H2), (T0, T2),
(H1, H2), (H1, T2), (T1, H2), (T1, T2),
(H0,CNOT01), (T0,CNOT01), (H1,CNOT01),
(T1,CNOT01), (H2,CNOT01), (T2,CNOT01),
(H0,CNOT02), (T0,CNOT02), (H1,CNOT02),
(T1,CNOT02), (H2,CNOT02), (T2,CNOT02),
(H0,CNOT12), (T0,CNOT12), (H1,CNOT12),
(T1,CNOT12), (H2,CNOT12), (T2,CNOT12),
(CNOT01,CNOT02), (CNOT01,CNOT12), (CNOT02,CNOT12)}

Appendix: Reward Calculation
The reward for all tasks in Q-Learning, Q-Learning (Reverse),
DQN, DQN (Reverse); and four tasks in TN Representation
(SWAP gate, iSWAP gate, CZ gate, Z gate) are calculated as
follows:
1. The quantum circuit is executed using a Qiskit simulator.
2. The unitary operator of the current circuit is compared

with the target unitary operator.
3. If the comparison results in a value greater than 0.99, a

reward of 100 is given.
The reward calculation can be expressed as:

Reward =

{
100, if |Tr(S′†U)|

2num_qubits > 0.99

0, otherwise
where S′ is the current unitary operator and U is the target
unitary operator.

The reward for the five tasks in TN representation (four
Bell states, GHZ gate) are calculated as follows:
1. The quantum state of the circuit is obtained using the

function _get_quantum_state.
2. The current state is compared with the target state.
3. If the comparison results in a value greater than 0.99, a

reward of 100 is given.
The reward calculation can be expressed as:

Reward =

{
100, if |⟨S′|U⟩|2 > 0.99

0, otherwise
where S′ is the current state vector and U is the target state
vector, and⟨S′|U⟩ represents the inner product between the
current state and the target state.

Appendix: Examples of Quantum Circuits

q0 : |0⟩

q1 : |0⟩

X H

|Φ−⟩ = 1√
2
(|00⟩ − |11⟩)

Figure 7: A quantum circuit to generate Bell state |Φ−⟩.

q0 : |0⟩

q1 : |0⟩

H

X

|Ψ+⟩ = 1√
2
(|01⟩+ |10⟩)

Figure 8: A quantum circuit to generate Bell state |Ψ+⟩.

q0 : |0⟩

q1 : |0⟩

H Z

X Z

|Ψ−⟩ = 1√
2
(|01⟩ − |10⟩)

Figure 9: A quantum circuit to generate Bell state |Ψ−⟩.



q0 : |0⟩

q1 : |0⟩
SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Figure 10: A quantum circuit to implement the SWAP gate
and its matrix form.

q0 : |0⟩

q1 : |0⟩

S H

S H

iSWAP =

1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1


Figure 11: A quantum circuit to implement the iSWAP gate
by Qiskit and its matrix form.3

q0 : |0⟩

q1 : |0⟩ T T
iSWAP =

1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1


Figure 12: Our circuit to implement the iSWAP gate.

Our design in Fig. 12 differs from Qiskit’s implementation in
Fig. 11:

• Our design uses 4 gates (note that S = T 2), while Qiskit’s
design used 6 gates.

• Our design uses 3 CNOT gates, while Qiskit’s design uses
2 CNOT gates.

q0 : |0⟩

q1 : |0⟩

H H

CZ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


Figure 13: A quantum circuit to implement the CZ gate and
its matrix form.

q0 : |0⟩

q1 : |0⟩

q2 : |0⟩

H

GHZ state = 1√
2
(|000⟩+ |111⟩)

Figure 14: A quantum circuit to generate a GHZ state.

3https://docs.quantum.ibm.com/api/qiskit/qiskit.circuit.library.
iSwapGate

q0 : |0⟩

q1 : |0⟩

q2 : |0⟩

S S

Z =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1


Figure 15: A quantum circuit to implement the Z gate in
3-qubits space and its matrix form.

Appendix: Q-learning and DQN Environment
(Example for Two Qubits)

Environments follow the training loop according to the ex-
ample code snippet (Listing 1).

Q-Learning Environment
• State Space: The environment consists of 100 discrete

states, each representing a unique configuration of the
system.

• Q-Table: A 100× 6 table is used to store the Q-values for
each state-action pair.

• Training Parameters:
– Learning Rate (α): 0.1
– Discount Factor (γ): 0.95
– Exploration Rate (ϵ): Initial value of 1.0, decays at a

rate of 0.99,with a minimum value of 0.05.

DQN Environment
• State Space: The state is represented as a feature vector

and passed to a neural network. The environment supports
continuous state spaces.

• Neural Network: The Q-values are approximated using a
3-layer fully connected neural network:
– Input Layer: Accepts the state vector as input.
– Two Hidden Layers: Each with 128 neurons and ReLU

activation.
– Output Layer: Produces Q-values for 6 actions.

• Training Parameters:
– Learning Rate (α): 0.1
– Discount Factor (γ): 0.95
– Exploration Rate (ϵ): Initial value of 0.9, decays at a

rate of 0.995, with a minimum value of 0.05.
– Batch Size: 64
– Replay Buffer Size: 10,000
– Target Network Update: Every 100 episodes.

Note: We designed our own custom environment
QuantumEnv built with gym4. The environment im-
plementation can be found in this link. 5

4For details on creating a custom gym environment, refer to
the official documentation: https://www.gymlibrary.dev/content/
environment_creation/

5https://github.com/YangletLiu/CSCI4961_labs_projects/tree/
main



1 def train_agent(agent, environment, episodes, max_steps_per_episode, method=’Q’):
2 for episode in range(episodes):
3 # Reset the environment and initialize variables
4 state_index = environment.reset()
5 total_reward = 0
6

7 for step in range(max_steps_per_episode):
8 # Select an action based on the current state
9 action, action_index = agent.choose_action(state_index)

10

11 # Execute the action and observe the result
12 next_state_index, reward, done = environment.step(action[0], action[1])
13 total_reward += reward
14

15 # Update logic based on the method
16 if method == ’Q’: # Q-Learning update
17 agent.update_q_table(state_index, action_index, reward, next_state_index)
18 elif method == ’DQN’: # DQN logic
19 agent.remember(state_index, action_index, reward, next_state_index, done)
20 agent.replay()
21

22 # Update the current state
23 state_index = next_state_index
24

25 # If the episode is done, exit the loop
26 if done:
27 break
28

29 # Additional updates for DQN
30 if method == ’DQN’ and (episode + 1) % 100 == 0:
31 agent.update_target_net()

Listing 1: Training loop for Q-learning and DQN.

Appendix: Expert Trajectories for Toffoli Gate
in Q-Learning and DQN

Both Q-Learning and DQN use an expert action sequence
to embed optimal behavior for constructing a Toffoli gate.
This sequence (Fig. 6) guides the agent’s learning process
by providing predefined state-action pairs that achieve the
desired result.

Similarities
• The expert trajectory is applied over multiple iterations,

starting with an environment reset.

• Selected actions are executed sequentially, returning the
next state, reward, and completion flag.

Differences
• Q-Learning:

– Applied over 10 iterations of the expert trajectory.
– The Q-Table is updated at the end of each iteration

using the transitions observed during the trajectory.

• DQN:

– Applied over 150 iterations of the expert trajectory.
– After every action in the trajectory, the transition is

stored in memory, and a small replay step is performed.

– At the end of each iteration, the target network is
updated using update_target_net() for stable
training.


