LeaPformer: Enabling Linear Transformers for Autoregressive and
Simultaneous Tasks via Learned Proportions

Anonymous ACL submission

Abstract

Position-based re-weighting functions have
been proposed recently as a promising ap-
proach to recover degraded model perfor-
mance from conventional linearized transform-
ers. However, state-of-the-art re-weighting
functions rely heavily on target sequence
lengths, making it difficult or impossible to
apply to autoregressive and simultaneous tasks
where the target and sometimes even the input
sequence length are unknown beforehand. To
resolve this issue and enable these re-weighting
functions for a wider range of tasks, we propose
Learned Proportions (LeaP) and LeaPformers.
Our contribution is built on two major compo-
nents. First, we generalize the dependence on
explicit positional representations and sequence
lengths into a dependence on sequence propor-
tions for re-weighting, removing theoretical de-
pendence on sequence lengths. Second, we
replace static positional representations with
dynamic proportions derived via a compact
module, enabling more flexible attention con-
centration patterns. We validate the potential
of LeaPformer against eight representative ef-
ficient transformers on the competitive Long-
Range Arena benchmark, where LeaPformer
achieves the best quality-throughput trade-off.
We also demonstrate, for the first time, that
position-based re-weighting functions can be
applied to simultaneous tasks, achieving com-
petitive results on speech-to-text translation for
two language pairs.

1 Introduction

Transformers (Vaswani et al., 2017) became domi-
nant in the natural language processing (NLP) solu-
tion space only a few years after inception, demon-
strating state-of-the-art performance for a range of
applications. With the advent of widely accessi-
ble large language models (LLM), transformers as
a class of models are being studied more closely
than ever. Unfortunately, the quadratic complexity

of the attention mechanisms of typical transform-
ers limits the lengths of the sequences that they
can process, rendering them sub-optimal or even
impossible to apply for tasks with long sequences.

Naturally, an active area of potential improve-
ment for classical transformers are efficient atten-
tion mechanisms that reduce the quadratic com-
plexity of typical softmax attention with respect
to sequence length. Many efficient transformer
variants have been proposed, including truly linear
attention mechanisms with no prior environmental
assumptions (Katharopoulos et al., 2020; Choro-
manski et al., 2020; Peng et al., 2021; Chen et al.,
2021; Qin et al., 2022). Such mechanisms not
only increase throughput for sufficiently long se-
quences, but also enable larger sequences via the
aforementioned throughput increase and, typically,
a reduction in a model’s peak memory footprint.
While the aforementioned linear transformers are
typically effective for specific tasks, they tend to ex-
hibit varying degrees of quality degradation when
generalized.

To address this issue, re-weighting functions
have been recently formalized (Qin et al., 2022)
in linear transformers and serve to concentrate at-
tention scores in a manner similar to the softmax
operator. Although promising, the state-of-the-art
position-based re-weighting functions rely on ex-
plicit token positions and sequence length (Su et al.,
2022; Qin et al., 2022). This reliance on knowing
the sequence length beforehand can make it dif-
ficult to apply those re-weighting functions and
linear transformers to autoregressive tasks with-
out employing specialized solutions (Agostinelli
and Chen, 2023) and renders it impossible to ap-
ply them to simultaneous tasks, such as simultane-
ous translation. Furthermore, existing re-weighting
functions’ reliance on explicit positional representa-
tions usually produce static attention concentration
patterns, which can severely limit their general ap-
plicability when an attention concentration pattern

is ill-suited to a given task.

To solve this reliance on explicit positional rep-
resentations and enable linear transformers for a
wider range of tasks, we propose a novel approach
that we refer to as Learned Proportions (LeaP) and
call models we apply it to LeaPformers. This con-
tribution is composed of two major aspects: pro-
portions and learned behavior. First, we generalize
the dependence on explicit positional representa-
tions and sequence lengths into a more direct, intu-
itive dependence on proportions of a sequence for
re-weighting. This elaborates on how proportion-
based re-weighting functions can be more effective
in concentrating attention behavior and removes
theoretical dependence on sequence length. Sec-
ond, instead of employing static positional rep-
resentations, we construct and deploy a compact
module that dynamically derives sequence propor-
tions for a given token during training and infer-
ence. These straightforward, but critical, contribu-
tions ultimately remove any reliance that current
position-based re-weighting functions may have
on sequence length, enabling them for tasks where
the sequence length is not known beforehand (and
cannot be estimated) and/or where attention con-
centration patterns are more complex.

To validate our proposed approach, we primarily
test our LeaPformer against cosFormer, the state-of-
the-art position-based linear transformer, by adapt-
ing cosFormer’s cosine-based re-weighting func-
tion via LeaP. We also evaluate and compare with
seven other representative attention mechanisms.
We apply our LeaPformer to the Long-Range Arena
(LRA) benchmark (Tay et al., 2021), a common
and competitive benchmark for efficient attention
mechanisms on long sequences, and to multiple lan-
guage pairs for simultaneous speech-to-text transla-
tion (SimulST) (Ma et al., 2020b). When compared
to popular, previously proposed efficient attention
mechanisms on the LRA benchmark, the proposed
LeaPformer achieves the best quality-efficiency
trade-off, balanced performance across tasks, small
memory footprint, and notably beats cosFormer’s
inference quality. Moreover, when applied to simul-
taneous translation, LeaPformer demonstrates com-
petitive results with a reasonable quality-efficiency
trade-off compared to classical softmax attention
for critical ablations, with some variations achiev-
ing quality loss of only 0.26 BLEU-4 (Post, 2018)
for English to German and 0.23 BLEU-4 for French
to English while being completely linear in com-
plexity. To our knowledge, this is the first time that

a position-based re-weighting function for linear
transformers is successfully applied to simultane-
ous tasks.

2 Background

2.1 Softmax Attention Mechanisms

As introduced by Vaswani et. al (2017), the multi-
headed self-attention in transformers can gener-
ally be described by Equations 1 and 2, where
query Qn = xWyy, key Kp = xWjyy, and
value Vj, = aW, p, with z € R"*dmodel being
the input sequence for each attention head that di-
vides the model embedding space d,;,oq4; into some
dheaq (denoted as d hereafter for simplicity) and
quh € Rdm"dele, Wkﬁ € Rmoderxd gpd Wv,h S
R¥medet*d In cases where the concatenation of
the attention head outputs differs in dimensionality
from d,,,04¢1, an optional output projection layer is
commonly applied via W,y € Rout Xdmoder

QnK}F

ap(x) = softmax(a YWV (1)
A(zx) = concat(ai(z),az(x), ... ,ag(x))Wou
()

For long sequences, the quadratic complexity
of the mechanism demonstrated in Equation 1 can
prove to be a throughput bottleneck both during
training and inference.

2.2 Efficient and Linear Transformers

Efficient and/or linear transformers have emerged
over the past few years as an active area of research
for particularly resource or latency-constrained en-
vironments, exhibiting notable inference speedups
and smaller memory footprints. These transformer
variants focus on alternative attention mechanisms
that reduce the quadratic complexity of typical
softmax attention. A plethora of efficient trans-
former options exist that can be classified into
a few groups: sliding-window or localized atten-
tion mechanisms (Dai et al., 2019; Parmar et al.,
2018; Wu et al., 2020; Beltagy et al., 2020), pat-
tern or sparsity-based attention mechanisms (Child
et al., 2019; Zaheer et al., 2020), kernel-based and
truly linear attention mechanisms with no priors
(Katharopoulos et al., 2020; Choromanski et al.,
2020; Qin et al., 2022; Peng et al., 2021; Chen
et al., 2021), and some unique outliers (Wang et al.,
2020c; Kitaev et al., 2020).

Truly linear transformers with no prior environ-
mental assumptions (i.e. no assumed sparsity, local

dependencies, etc.) are typically kernel-based sub-
stitutions for the softmax mechanism. This can be
described via row-wise outputs for each attention
head in Equations 3 to 5, with .S corresponding to
any similarity function that transforms the product
of the query and key matrices. When S' is equal
to exp, Equation 3 is an accurate representation of
softmax attention. Alternatively, when .S is decom-
posable via a S, and S}, as seen in Equation 4, com-
putation can be reordered such that the attention
complexity changes from O(N} Nad) in Equation
4 when multiplying QK7 first, to O(N1d? 4 Nad?)
to in Equation 5 when multiplying K 7'V first. Here,
Nj corresponds to the length of the query matrix
and N, corresponds to the lengths of the key and
value matrices. When N or N are significantly
larger than d, this rearrangement of the attention
calculation leads to linear complexity with respect
to the sequence length.

exp(QZKT)

ahz Z Z exp QzKT)VJ)

(QiK])
i(v
. Z Z S >, S(QiKT) 4)

(Qz’KJT) = Sq(Qi)Sk(K])

2.3 Position-Based Re-weighting Functions
for Linear Transformers

While achieving linearity, the aforementioned
works usually suffer from varying degrees of de-
graded model performance. To address this, re-
weighting functions have been recently proposed
that introduce an additional function to augment
S(Qi, K]T) with the express purpose of concen-
trating/adjusting the probability distribution of the
normalized QK™ (Qin et al., 2022). Re-weighting
functions are commonly based on token positions
and can be applied via Equation 6 as o(i, j):

S(Qi, K) = Sg(Q)Sk(K])o(i,j) (6)

Note that even though o (i, 7) in Equation 6 is
placed at the end of the sequence, that placement
is arbitrary. For example, placing o (7, j) in be-
tween or before the transformed query and key

matrices would also be valid as a re-weighting ad-
dition. o (4, j) can also map to any number of pos-
sible concentration methods, such as a matrix or
scalar value modifying S(Qi, K).

Elaborate position-based encoding schemes
(Raffel et al., 2020; Wang et al., 2020a; Wang and
Chen, 2020; Liutkus et al., 2021), using absolute or
relative token positions, have advanced the scheme
utilized by original transformers (Vaswani et al.,
2017) and many provide what can be intuited as
position-based re-weighting functions. However,
those schemes are specifically designed for the
S(Qi, KJT) formulation and do not work for the de-
composed S, (Q;)Sk (K]T) linearized formulation.

Rotary Positional Embeddings (RoPE) (Su et al.,
2022), with some minor modifications, is closest
to being a true position-based re-weighting func-
tion for linear transformers by using absolute token
positions. As demonstrated in Equation 7, R rep-
resents RoPE’s re-weighting function acting as a
rotational transform and 6 represents the set of ro-
tation constants defined by head dimensionality d.

o(i,j) = Rf ;_
S(Qi, KJ) = 8,(Q
S(Qi KJ) = (Sq(Qi)(Rg

T (Rgz)TRg]
i)o (2 7)SK(K])

DR SHK]))
(N
Notably, RoPE is unaware of the total sequence
length when it is applied, which can cause intuitive
qualitative problems. For example, RoPE would
treat two tokens that are 100 tokens apart in a 1k
length sequence and a 200 length sequence the
same, where the actual relationship of the two to-
kens could change drastically in the two sequences.
In practice, RoPE’s re-weighting function still
works reasonably well, as many sequences exhibit
locality (closer tokens are more related) which can
be captured by o (7, j). Nevertheless, the lack of
sequence length makes RoPE’s re-weighting abil-
ity inherently limited, especially for sequences that
exhibit more than the locality characteristic.
Recently introduced, cosFormer (Qin et al.,
2022) is the state-of-the-art in position-based lin-
ear transformers that utilizes sequence length in
addition to absolute token position. cosFormer’s
proposed mechanism, with common-sense modifi-
cations (Agostinelli and Chen, 2023), is described
by Equation 8. Here, S, and S}, are set to ReLU
and their cosine-based re-weighting function is
distributable via Ptolemy’s method for expanding
trigonometric expressions. Intuitively, when the

positions ¢ and j of two tokens are closer, the co-
sine’s response is increased, emphasizing locality.
Conversely, when the two positions are far apart,
the response approaches zero, representing maxi-
mum attenuation via re-weighting. In spite of its
inherent locality bias, cosFormer has been empir-
ically shown to form longer-range dependencies
than local attention implementations might allow.

S(Qi, KT) = S,(Q1)Su(E)eos(= (< — 1))

Unlike RoPE, cosFormer can recognize differ-
ences in token distances relative to the sequence
length, re-weighting more dynamically in practice.
Using our previous example, cosFormer would
treat two tokens that are 100 positions apart differ-
ently in a 1k length sequence versus a 200 length
sequence, an intuitive improvement.

2.4 Motivation for Further Investigation

Unfortunately, the reliance on sequence length
causes critical problems for autoregressive and
simultaneous tasks. For instance, it can be diffi-
cult to apply re-weighting functions to autoregres-
sive tasks where target sequence lengths are usu-
ally not known beforehand (e.g. translation, TTS).
Although some effort has been made to address
these issues (Agostinelli and Chen, 2023; Liu et al.,
2022), mostly via target sequence length predic-
tion based on the full input sequence, proposed
solutions are prone to some level of approximation
error. Furthermore, none of the proposed solutions
has addressed the impossibility of being applied
to simultaneous tasks, where even the full input
sequence is not available at decoding time-steps.
Moreover, the static nature of the state-of-the-
art’s re-weighting functionality can cause issues
from an inference quality standpoint. cosFormer’s
re-weighting function focuses on encouraging lo-
cality, but this can be problematic when locality
bias is not important to a given application. RoPE
and several similar schemes suffer from the same
problem. In such instances, more dynamic flexibil-
ity in the re-weighting function to encourage strong,
long-range connections would be preferred. An ex-
ample of when this flexibility may be desirable can
be found in a typical translation task, when encod-
ing or decoding in languages like German that tend
to exhibit subject-object-verb (SOV) structures as
opposed to subject-verb-object (SVO) structures
in languages like English and may require diverse
attention patterns and long-range dependencies. A

verb near the end of a German sentence may at-
tend strongly to the subject near the beginning of
the sentence, but static re-weighting functions like
the one employed by cosFormer would likely have
trouble enabling this relationship.

3 LeaPformer: Learned Proportions for
Linear Transformer Re-weighting

To address issues with the state-of-the-art re-
weighting functions for linear transformers for both
autoregressive and simultaneous tasks, we provide
two concrete contributions. First, we generalize the
reliance on absolute token position and sequence
length into a more direct, intuitive reliance on the
relative placement of a token in the sequence which
we refer to as a proportion. This generalization al-
lows for easier analysis of re-weighting function
behavior and removes theoretical dependence on se-
quence length. Additionally, we propose, construct,
and deploy a compact module to learn proportional
representations derived from each token, a tech-
nique that we call Learned Proportions (LeaP) and
call the models it is applied to LeaPformers. LeaP-
formers can be applied to tasks where sequence
lengths are unknown and, more importantly, are ca-
pable of capturing dynamic attention patterns over
static position-based re-weighting functions.

3.1 From Position and Sequence Length to
Proportion

We define proportion-based re-weighting in Equa-
tion 9, where P, and P}, represent proportions of
sequences from which queries and keys are derived
from and o (P, ;, P ;) represents the re-weighting
function with a reliance on the provided propor-
tions. Technically, P, and P can be set in any man-
ner, but for the most straightforward proportion-
based re-weighting implementations, they would
correspond to the proportion of a sequence that a
token is placed (e.g., at 20% of the sequence).

Pq:[Pq,la Pq72,... Pq,Nl]’ OS Pq7i§1
Py =[Pi1, Pra, ... PNy, 0< Pp; <1

S(Qi KT) = 5,(Q0)Sk(KT)o(Pyi, Pry)
©)
Under this definition, cosFormer’s formulation
in Equation 8 can be considered as a special case,
where we replace o (P, ;, Py j) in Equation 9 with
the cosine-based re-weighting function of cos-
Former and define P, and P, as being explicit to-

ken positions divided by the sequence length, as
shown in Equation 10:

1 1
Pq:[ﬁl’ ...7].], Pk:[m, ,1]
S(Qu KT) = Sy(Q0)Sk(K] eos(5(Pyi = Pry))

(10)

3.2 LeaP and LeaPformer: Learned
Proportions

In addition to determining the proportions statically
as in the case of cosFormer in Equation 10, we pro-
pose that models can actually learn to derive these
representative proportions via a module contain-
ing a compact network embedded within attention
blocks. We call this method Learned Proportions
(LeaP) and models utilizing this technique LeaP-
formers. The possible inference quality benefits of
LeaP can be understood intuitively. Suppose that
P, is set in a static manner in accordance with ex-
plicit positional representations, but F; is derived
via a small module based on the query matrix. The
module’s learned behavior could produce derived
elements of F; equal to classical positional repre-
sentations, thus replicating the behavior and perfor-
mance of attention mechanisms like cosFormer, but
could alternatively defer the inter-token relation-
ships that cosFormer might otherwise emphasize
(i.e. an emphasis on locality). Along these lines,
we can redefine the aforementioned proportions in
accordance with Equation 11, where Lea P and
Lea Py represent the proposed modules that derive
proportions based on the query and key matrices,
and P, and P, are redefined as P, (Q) and Py (K).

Py(Qi) = Pyi = LeaPo(Q)
Pk(KJ) = Pk,j = LeaPK(Kj)

Py(Q) = [LeaPy(Q1), ..., LeaPo(Qn,)]
Pk(K) = [LeaPK(Kl), ,LeaPK(KNQ)]
an

To demonstrate potential inference quality ben-
efits further, we can refer back to our example of
translation to or from German and the SOV struc-
ture that cosFormer would likely struggle to model
well. If P, is derived from a small LeaP module
in self-attention, models could effectively defer the
locality bias inherent to cosFormer to elsewhere in
the sequence. If correctly learned, this might allow
models to defer their attention concentration from

ﬁ LeaP Module Architecture
Output

Normalization

?

Learned
Proportion

MatMul
Sigmoid)
[—> MatMul <+— f i
Linear Layer
Token Token (step-down)
Position Position
Re-weighting Re-weighting
RelU
4
LeaP —— LeaP
Linear Layer
(Similarity | [Similarity | (it
| Function | . Function
Input Token
Query Key ‘ Value

Figure 1: Illustration of the proposed Learned Propor-
tions (LeaP) augmentation to linear transformer atten-
tion mechanisms. The LeaP module takes each token of
the query and key matrices and steps down their dimen-
sionality across two linear layers to a single proportion.

the verb at the end of the German sequence to the
beginning of the sequence, where we might expect
a typically strong attention score. Allowing deriva-
tions of both P, and P, would, naturally, afford
maximum flexibility in attention patterns produced
by the employed re-weighting function.

Beyond the possible benefits of LeaP in terms of
inference quality, this method removes any depen-
dence that proportion-based re-weighting functions
have on knowing the sequence length beforehand,
widely enabling them for autoregressive tasks with-
out target sequence length prediction and, for the
first time, rendering it possible to apply them to
simultaneous tasks.

3.3 Proposed LeaP Module Architecture

It is critical that the addition of LeaP does not sig-
nificantly affect the throughput of a given model or
its memory footprint, as it is intended for resource-
constrained and latency-sensitive environments.
Given that, we recommend a module composed
of a simple, two-layer feed-forward network that
steps down the attention head embedding dimen-
sion with a ReLU activation between the layers
and a sigmoid activation at the end of the network,
along the lines of the augmentation highlighted
in Figure 1. The choice of a ReL.U activation is
based on empirical tests on the Long-Range Arena
benchmark (Tay et al., 2021) which determined
that, as opposed to several other competitive op-
tions, ReLLU generalized well to multiple tasks.
While a separate LeaP module for each atten-
tion head would be natural, we found in our tests
that this made a very minor difference in terms

1000 1000 00
o 200 400 600 800 1000 o 200 400 600 800 1000

Figure 2: An example of re-weighting matrices across
all query (y-axis) and key (x-axis) token positions for
baseline cosFormer (left) and LeaPformer (right) on list-
operations in the Long-Range Arena benchmark. In this
example, LeaPformer has clearly learned to attenuate
more dynamically.

of quality. Indeed, even for English to German
SimulST, we observed that when replacing the de-
coder self-attention block with LeaPformer where
a separate LeaP module was provided for each at-
tention head the models were roughly equivalent
in quality. Given that, we share one module for all
heads.

3.4 Observed LeaP Module Expressivity

Given the activation functions chosen for the LeaP
module’s architecture, it is important to examine
the expressivity of the module, ensuring that it out-
puts a complex range of values as opposed to satu-
rating to values of O or 1. We provide an example
in Figure 2 that compares the re-weighting matri-
ces of baseline cosFormer and LeaPformer for the
list-operations task in the LRA benchmark, a fairly
difficult one. As can be observed in the example,
and as we generally found in practice, the baseline
cosFormer can only provide static re-weighting em-
phasizing locality (with the largest weights along
diagonal for the same position); in contrast, cos-
Former augmented with LeaP is capable of gener-
ating complex re-weighting matrices that lightly
attenuate between most positions while selectively
attenuating harshly or not at all. The fact that there
is wide-spread, light attenuation across several ex-
amples indicates that the module is very capable of
avoiding saturation.

4 [Experiments

We validate the potential of LeaP by applying it
to cosFormer on two major sets of tasks, and all
references to LeaPformers in the following sec-
tions refer to this augmentation of cosFormers. The
two sets of tasks include the popular Long-Range
Arena (LRA) benchmark (Tay et al., 2021), built

specifically for validating the capabilities of effi-
cient attention mechanisms. We also validate LeaP-
formers on speech-to-text simultaneous translation
(SimulST) via wait-k (Ma et al., 2019, 2020a,b)
across two language pairs. For our SimulST ex-
periments, we employ Fairseq (Ott et al., 2019)
for training and validation alongside SimulEval
(Ma et al., 2020c) for evaluation. LRA results are
compared via accuracy and SimulST results are
compared via detokenized BLEU-4 (called BLEU
later) using sacreBLEU (Post, 2018). Additional
details can be found in the Appendix.

4.1 Long-Range Arena Benchmark Setup

To better compare evaluated models, on top of the
Long-Range Arena (LRA) benchmark provided by
(Tay et al., 2021), our implementation follows Sky-
former’s (Chen et al., 2021) PyTorch framework
and reuses their architectures and hyperparameters,
which we hold static. We provide baseline results
for a number of architectures, including the clas-
sical transformer (Vaswani et al., 2017) alongside
several efficient transformers.

Regarding the LeaPformers tested on the LRA
benchmark, a minimal setup was initially employed
with around a maximum of a 0.2% increase on
the number of parameters for the LeaP module.
Additionally, a larger module was employed with
a maximum increase of 1.5% to the number of
parameters to investigate the effects of increased
size. Some very limited fine-tuning was employed
across a few possible module sizes on a per-task
basis for the larger LeaPformer, depending on the
perceived difficulty of the task.

4.2 Long-Range Arena Benchmark Results

A holistic view of overall performance is well-
described by Figure 3, with kernel-based lin-
ear transformers tending to provide an excellent
quality-throughput trade-off. As clearly demon-
strated in the figure, LeaPformer provides the best
trade-off, exhibiting significant quality increases
over Linear Transformer and overall supremacy
compared to Performer, Linformer, Reformer, and
Skyformer, with a minimal memory footprint. De-
tails on inference quality are showcased in Table
1, where both LeaPformer-0.2% and LeaPformer-
1.5% exhibit a balanced performance profile. While
classical softmax attention achieves the highest av-
erage score by a notable margin, it is beaten on a
number of tasks by other methods.

Compared to cosFormer, LeaPformer provides,

Attention Mechanism ListOps Text Cls. TextRtr. Path-32 Img. Cls. | Avg.
Softmax Attn. (Vaswani et al., 2017) 37.94 60.51 80.52 75.54 41.74 59.25
Linear Attn. (Katharopoulos et al., 2020) | 39.21 61.53 78.78 68.23 39.14 57.38
Linformer (Wang et al., 2020c) 37.04 57.65 77.61 57.91 37.85 53.61
Performer (Choromanski et al., 2020) 38.17 64.24 80.11 68.54 37.42 57.70
BigBird (Zaheer et al., 2020) 38.36 60.72 80.97 72.80 40.37 58.64
Reformer (Kitaev et al., 2020) 36.44 63.14 78.63 69.29 42.85 58.07
Skyformer (Chen et al., 2021) 38.66 65.38 81.77 68.74 36.07 58.12
RoPE w/ Linear Attn. (Su et al., 2022) 38.31 64.79 77.54 67.61 39.17 57.48
cosFormer (Qin et al., 2022) 38.96 61.66 79.29 68.96 38.26 57.43
LeaPformer-0.2% 38.26 64.70 79.88 70.76 38.26 58.37
LeaPformer-1.5% 38.96 64.90 80.62 68.99 40.00 58.69

Table 1: Quality results on the Long-Range Arena benchmark. All results are measures of accuracy (higher is
better) and are weighted evenly for the purpose of the average score. Best results are bolded, second best results are
underlined. Both LeaPformer variants showcase competitive performance across a range of tasks, with LeaPformer-

1.5% achieving the second best average score, beating all other non-quadratic transformers.

Attention Mechanism | Training Thrpt. (itr/sec)
1K 2K 4K
Softmax Attn. 14.08 6.03 1.64
Linear Attn. 68.00 2843 15.18
Linformer 4896 2049 11.36
Performer 38.83 17.72 9.02
BigBird 1597 6.76 3.52
Reformer 32.07 15.08 7.71
Skyformer 26.02 12.36 6.06
RoOPE w/ Linear Attn. | 4890 23.81 12.27
cosFormer 5891 25.64 13.13
LeaPformer-0.2% 56.30 24.72 12.81
LeaPformer-1.5% 53.58 2339 11.76

Table 2: Efficiency results on the Long-Range Arena
benchmark. Training throughput values (higher is better,
inference speed is identical) are provided for various
sequence lengths defined by the five tasks in the bench-
mark.

at a minor throughput and negligible memory foot-
print penalty, significant increases to scores across
some of cosFormer’s most problematic tasks, in-
cluding large improvements for text and image clas-
sification. Additionally, when compared to the
score profiles of other efficient attention mecha-
nisms, LeaPformer does not seem to specialize
nearly as much as other architectures (aside from
some difficulty on the pathfinding task), indicating
its balanced performance. In terms of inference
quality, BigBird is the closest to providing a simi-
larly balanced performance profile, but this comes
with significant throughput reductions as shown in
Table 2 and noticeable increases to memory foot-

LeaPformer-1.5% Better Tradeoff

Transformer 160 GB

10.77 GB

Bigbird skyformer
497GB 31568 @ @
Reformer o
2.99 GB performer ROPE
215G 1.24GB

®
LeaPformer-0.2%
1.42GB

cosFormer
1.38GB

Linear
Transformer
1.04 GB

Long-Range Arena Score

Linformer
1.89GB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Training Speed (itr/sec)

Figure 3: Performance of various linear attention mech-
anisms on the Long-Range Arena benchmark. Through-
put for 4k sequence length tasks (x-axis) is set against
average score (y-axis) across the five tasks in the bench-
mark with a provided maximum memory footprint.

print. LeaPformer matches the general inference
quality of task-balanced models with a massively
reduced memory footprint while still exhibiting
a minimum 1.52x throughput increase over those
mechanisms.

4.3 SimulST Setup

For the purposes of our SimulST related exper-
iments, we employed a model inspired by the
ESPnet-ST toolkit (Inaguma et al., 2020) that fo-
cused on end-to-end speech-to-text (S2T) transla-
tion with a modified cross-attention block for a
wait-k and fixed pre-decision paradigm (Ma et al.,

Attention Mechanism ppl(tr) | ppl(dev) Attention Mechanism BLEU | ppl(dev)
cosFormer Dec. Self-Attn. 8.44 9.86 Softmax Attention 14.51 9.99
LeaPformer Dec. Self-Attn. | 7.86 9.40 LeaPformer Enc. Self-Attn. | 11.18 12.50
LeaPformer Dec. Self-Attn. | 14.28 10.11
Table 3: Brief comparison of cosFormer and LeaP- LeaPformer Cross-Attn 13.25 11.64
former trained on MuST-C en-de. Perplexity (lower ' ' ’
. . . o LeaPformer All Attn. 9.69 16.28
is better) is generated on the training and validation sets.

BLEU scores are not provided for baseline cosFormer
as it is impossible to apply to simultaneous tasks (i.e.
BLEU scores of near zero) without augmentations.

Attention Mechanism BLEU | ppl(dev)
Softmax Attention 15.07 9.36
LeaPformer Enc. Self-Attn. | 12.00 11.50
LeaPformer Dec. Self-Attn. | 14.81 9.40
LeaPformer Cross-Attn. 13.95 11.02
LeaPformer All Attn. 11.19 14.67
ReLU Enc. Self-Attn. 11.55 11.98
ReLU Dec. Self-Attn. 14.67 9.55
ReLU Dec. Cross-Attn. 13.84 11.24
ReL.U All Attn. 10.38 15.48

Table 4: Results from SimulST for MuST-C en-de for
various LeaPformer and simple ReLU ablations with
softmax as a baseline. BLEU scores (higher is better)
are generated on the tst-COMMON split.

2019, 2020a,b). All model encoders were pre-
trained on automatic speech-recognition (ASR) and
were trained on a wait-k of 5 and a fixed predeci-
sion ratio of 9 and were evaluated on a wait-k of
3 (a slightly larger k for training is suggested by
several prior works) with greedy decoding. Mod-
els are evaluated via validation set perplexity and
by detokenized BLEU-4 (Post, 2018) via SimulE-
val (Ma et al., 2020c). Two language pairs and
two datasets were employed to test the application
of LeaPformer to simultaneous tasks. We utilized
MuST-C’s (Cattoni et al., 2021) English to Ger-
man (en-de) split and CoVoST 2’s (Wang et al.,
2020b) French to English (fr-en) split. More com-
prehensive evaluation is provided for the en-de pair,
comparing the results of LeaPformer to an ablation
without a re-weighting function.

4.4 SimulST Results

We first seek to showcase quality gains from LeaP-
former when compared to baseline cosFormer, jus-
tifying its inclusion not only from the perspective
of necessity but also as an overall improvement.
Table 3 demonstrates the results of a brief com-
parison on en-de simultaneous translation (note
that cosFormer can still be employed for training,

Table 5: Results from SimulST for CoVoST fr-en for
various LeaPformer ablations with softmax as a baseline.
BLEU scores are generated on the recommended, but
shortened, test split.

where sequence lengths are known), where signif-
icant quality improvement is observed. Having
established the capability of the proposed method,
we seek to validate it further on en-de simultane-
ous translation while also providing several abla-
tions for LeaPformer, representing a wide-range
of quality-throughput trade-offs. Additionally, we
seek to show that applying the LeaP-augmented re-
weighting function of LeaPformer is consistently
useful by testing models trained without any re-
weighting functionality, operating as a variation on
Linear Transformer (Katharopoulos et al., 2020).
Table 4 showcases the results of this study, where
LeaPformer ablations consistently beat their sim-
ple ReLU-based alternative. The most competitive
ablation in terms of translation quality emerges as
a model with the decoder self-attention block re-
placed by LeaPformer, achieving only a 0.26 BLEU
reduction compared to softmax attention.

Similar results are provided for the fr-en lan-
guage pair in Table 5, with trends from en-de gen-
erally persisting. The most competitive translation
quality ablations continue to be replacements of
the decoder self-attention blocks with LeaPformer,
where only a 0.23 BLEU reduction was observed.

5 Conclusion

In this paper, we made two concrete contributions.
We re-framed dependencies on explicit positional
representations and sequence lengths to dependen-
cies on sequence proportions, removing theoret-
ical dependence on sequence lengths. Addition-
ally, we proposed LeaPformers and applied them
to the state-of-the-art in proportion-based linear
transformers, cosFormer, achieving the best perfor-
mance trade-off on the Long-Range Arena bench-
mark. Moreover, we applied proportion-based
transformers for the first time to simultaneous trans-
lation, achieving minimal quality loss compared to
softmax attention for two language pairs.

6 Limitations

Regarding the limitations of this work, there are
a few areas that remain less explored and could
be elaborated upon. A direction for future work
might focus on a more exhaustive examination of
possible LeaP module architectures. While the pro-
posed structure works well in practice, the design
is simple and could likely be improved upon. Ad-
ditionally, a wider breadth of applications could be
explored to validate LeaPformers. While nothing
precludes our proposed LeaP module and LeaP-
formers from being applied elsewhere, we focused
on validating it on the competitive Long-Range
Arena benchmark and simultaneous speech-to-text
translation, especially given the associated novelty
of the latter task and our method’s application to it.

References

Victor Agostinelli and Lizhong Chen. 2023. Improv-
ing autoregressive nlp tasks via modular linearized
attention.

1z Beltagy, Matthew E. Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer.

Roldano Cattoni, Mattia Antonino Di Gangi, Luisa Ben-
tivogli, Matteo Negri, and Marco Turchi. 2021. Must-
c: A multilingual corpus for end-to-end speech trans-
lation. Computer Speech & Language, 66:101155.

Yifan Chen, Qi Zeng, Heng Ji, and Yun Yang. 2021.
Skyformer: Remodel self-attention with gaussian
kernel and nystrém method.

Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. 2019. Generating long sequences with
sparse transformers.

Krzysztof Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Andreea Gane, Tamas Sar-
los, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, David Belanger, Lucy Colwell, and
Adrian Weller. 2020. Rethinking attention with per-
formers.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc V. Le, and Ruslan Salakhutdinov. 2019.
Transformer-xI: Attentive language models beyond a
fixed-length context.

Hirofumi Inaguma, Shun Kiyono, Kevin Duh, Shigeki
Karita, Nelson Enrique Yalta Soplin, Tomoki
Hayashi, and Shinji Watanabe. 2020. Espnet-st: All-
in-one speech translation toolkit.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-
pas, and Francois Fleuret. 2020. Transformers are
rnns: Fast autoregressive transformers with linear
attention.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer.

Zexiang Liu, Dong Li, Kaiyue Lu, Zhen Qin, Weixuan
Sun, Jiacheng Xu, and Yiran Zhong. 2022. Neu-
ral architecture search on efficient transformers and
beyond.

Antoine Liutkus, Ondfej Cifka, Shih-Lun Wu, Umut
Simgekli, Yi-Hsuan Yang, and Gaél Richard. 2021.
Relative positional encoding for transformers with
linear complexity.

M. Ma, L. Huang, H. Xiong, R. Zheng, K. Liu, B. Zheng,
C. Zhang, Z. He, H. Liu, X. Li, H. Wu, and H. Wang.
2019. Stacl: Simultaneous translation with implicit
anticipation and controllable latency using prefix-to-
prefix framework. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3025-3036, Florence, Italy. Associa-
tion for Computational Linguistics (ACL).

X. Ma, J. Pino, J. Cross, L. Puzon, and J. Gu. 2020a.
Monotonic multihea attention. In International Con-
ference on Learning Representations.

X. Ma, J. Pino, J. Cross, L. Puzon, and J. Gu. 2020b.
Simulmt to simulst: Adapting simultaneous text
translation to end-to-end simultaneous speech trans-
lation. In Proceedings of 2020 Asia-Pacific Chapter
of the Association for Computational Linguistics and
the International Joint Conference on Natural Lan-
guage Processing.

Xutai Ma, Mohammad Javad Dousti, Changhan Wang,
Jiatao Gu, and Juan Pino. 2020c. Simuleval: An
evaluation toolkit for simultaneous translation.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz
Kaiser, Noam Shazeer, Alexander Ku, and Dustin
Tran. 2018. Image transformer.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy
Schwartz, Noah A. Smith, and Lingpeng Kong. 2021.
Random feature attention.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186—
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yun-
shen Wei, Baohong Lv, Junjie Yan, Lingpeng Kong,
and Yiran Zhong. 2022. cosformer: Rethinking soft-
max in attention. In International Conference on
Learning Representations.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits

http://arxiv.org/abs/2304.08453
http://arxiv.org/abs/2304.08453
http://arxiv.org/abs/2304.08453
http://arxiv.org/abs/2304.08453
http://arxiv.org/abs/2304.08453
https://doi.org/10.48550/ARXIV.2004.05150
https://doi.org/https://doi.org/10.1016/j.csl.2020.101155
https://doi.org/https://doi.org/10.1016/j.csl.2020.101155
https://doi.org/https://doi.org/10.1016/j.csl.2020.101155
https://doi.org/https://doi.org/10.1016/j.csl.2020.101155
https://doi.org/https://doi.org/10.1016/j.csl.2020.101155
http://arxiv.org/abs/2111.00035
http://arxiv.org/abs/2111.00035
http://arxiv.org/abs/2111.00035
https://doi.org/10.48550/ARXIV.1904.10509
https://doi.org/10.48550/ARXIV.1904.10509
https://doi.org/10.48550/ARXIV.1904.10509
https://doi.org/10.48550/ARXIV.2009.14794
https://doi.org/10.48550/ARXIV.2009.14794
https://doi.org/10.48550/ARXIV.2009.14794
https://doi.org/10.48550/ARXIV.1901.02860
https://doi.org/10.48550/ARXIV.1901.02860
https://doi.org/10.48550/ARXIV.1901.02860
https://doi.org/10.48550/ARXIV.2004.10234
https://doi.org/10.48550/ARXIV.2004.10234
https://doi.org/10.48550/ARXIV.2004.10234
https://doi.org/10.48550/ARXIV.2006.16236
https://doi.org/10.48550/ARXIV.2006.16236
https://doi.org/10.48550/ARXIV.2006.16236
https://doi.org/10.48550/ARXIV.2006.16236
https://doi.org/10.48550/ARXIV.2006.16236
https://doi.org/10.48550/ARXIV.2001.04451
http://arxiv.org/abs/2207.13955
http://arxiv.org/abs/2207.13955
http://arxiv.org/abs/2207.13955
http://arxiv.org/abs/2207.13955
http://arxiv.org/abs/2207.13955
http://arxiv.org/abs/2105.08399
http://arxiv.org/abs/2105.08399
http://arxiv.org/abs/2105.08399
https://doi.org/10.48550/ARXIV.2007.16193
https://doi.org/10.48550/ARXIV.2007.16193
https://doi.org/10.48550/ARXIV.2007.16193
https://doi.org/10.48550/ARXIV.1904.01038
https://doi.org/10.48550/ARXIV.1904.01038
https://doi.org/10.48550/ARXIV.1904.01038
https://doi.org/10.48550/ARXIV.1802.05751
https://doi.org/10.48550/ARXIV.2103.02143
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://openreview.net/forum?id=Bl8CQrx2Up4
https://openreview.net/forum?id=Bl8CQrx2Up4
https://openreview.net/forum?id=Bl8CQrx2Up4
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683

of transfer learning with a unified text-to-text trans-
former.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha,
Bo Wen, and Yunfeng Liu. 2021. Roformer: En-
hanced transformer with rotary position embedding.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha,
Bo Wen, and Yunfeng Liu. 2022. Roformer: En-
hanced transformer with rotary position embedding.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen,
Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang,
Sebastian Ruder, and Donald Metzler. 2021. Long
range arena : A benchmark for efficient transformers.
In International Conference on Learning Representa-
tions.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Benyou Wang, Donghao Zhao, Christina Lioma, Qiuchi
Li, Peng Zhang, and Jakob Grue Simonsen. 2020a.
Encoding word order in complex embeddings.

Changhan Wang, Anne Wu, and Juan Pino. 2020b. Cov-
ost 2: A massively multilingual speech-to-text trans-
lation corpus.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020c. Linformer: Self-attention with
linear complexity.

Yu-An Wang and Yun-Nung Chen. 2020. What do
position embeddings learn? an empirical study of
pre-trained language model positional encoding.

Qingyang Wu, Zhenzhong Lan, Kun Qian, Jing Gu, Al-
borz Geramifard, and Zhou Yu. 2020. Memformer:
A memory-augmented transformer for sequence mod-
eling.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey,
Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
and Amr Ahmed. 2020. Big bird: Transformers for
longer sequences.

10

A Appendix

A.1 Licensing Information

Fairseq (Ott et al., 2019) is MIT-licensed and
widely available for non-commercial use.

A.2 Codebase and Artifacts

The codebase used for our experiments and pro-
posed method will be released upon publication.

A.3 Hardware Details for Training and
Evaluation

All models were trained and evaluated on two
NVIDIA Tesla V100 GPUs, except for during eval-
uation via SimulEval where they operated on a Intel
Xeon Platinum 8168 CPU.

A.4 Computational Costs of Experimentation

We estimate that results related to the LRA bench-
mark required approximately 30 GPU hours to
gather with perhaps another 60 GPU hours related
to experimentation. Concerning SimulST, we es-
timate that approximately 18 GPU days were re-
quired to generate the results with another 4 GPU
days related to experimentation. The aforemen-
tioned values are normalized for single GPU-usage.

A.5 RoPE with Linear Attention Elaboration

While not fully elaborated upon in the paper, we
provide data for a single possible RoPE (Su et al.,
2021) linear transformer by augmenting the semi-
nal Linear Transformer (Katharopoulos et al., 2020)
with rotary positional embedding. The provided
results for this model are based on one with no
additional adaptations towards linear transformer
functionality beyond what is mentioned in the orig-
inal publication detailing RoPE. In our tests, addi-
tional assurances (e.g. summation to unity in rows
of attention matrix, were it to be calculated) did not
significantly affect results.

A.6 Model Architectures and

Hyperparameters

Below, we list all architectural details and relevant
training hyperparameters to reproduce our exper-
iments. Aside from models explicitly including
ROPE in our tests, all other models employed abso-
lute positional encoding (APE).

http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://doi.org/10.48550/ARXIV.2104.09864
https://doi.org/10.48550/ARXIV.2104.09864
https://doi.org/10.48550/ARXIV.2104.09864
http://arxiv.org/abs/2104.09864
http://arxiv.org/abs/2104.09864
http://arxiv.org/abs/2104.09864
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1912.12333
http://arxiv.org/abs/2007.10310
http://arxiv.org/abs/2007.10310
http://arxiv.org/abs/2007.10310
http://arxiv.org/abs/2007.10310
http://arxiv.org/abs/2007.10310
https://doi.org/10.48550/ARXIV.2006.04768
https://doi.org/10.48550/ARXIV.2006.04768
https://doi.org/10.48550/ARXIV.2006.04768
http://arxiv.org/abs/2010.04903
http://arxiv.org/abs/2010.04903
http://arxiv.org/abs/2010.04903
http://arxiv.org/abs/2010.04903
http://arxiv.org/abs/2010.04903
https://doi.org/10.48550/ARXIV.2010.06891
https://doi.org/10.48550/ARXIV.2010.06891
https://doi.org/10.48550/ARXIV.2010.06891
https://doi.org/10.48550/ARXIV.2010.06891
https://doi.org/10.48550/ARXIV.2010.06891
https://doi.org/10.48550/ARXIV.2007.14062
https://doi.org/10.48550/ARXIV.2007.14062
https://doi.org/10.48550/ARXIV.2007.14062

A.6.1 LRA: ListOps

Below are the architectural details for our ListOps
models on the LRA benchmark:

* Encoder Layers: 2
e Transformer Dim. d,,,dc1: 64
* Attention Heads: 2
* FFN Hidden Dim. d ¢,,: 128
* LeaP Downsample Factor: 1

The models for LRA ListOps, were optimized
with Adam with classical parameters. The models
were trained with batches of size 32, warmed up for
1000 updates and linearly climbing to a learning
rate of le-4. A linear learning rate decay was em-
ployed with 20000 updates in total. A CLS token
was used for classification. Dropouts of 0.1 were
employed when applicable.

A.6.2 LRA: Pathfinder-32

Below are the architectural details for our
Pathfinder-32 models on the LRA benchmark:

* Encoder Layers: 2
¢ Transformer Dim. d,,,,4e;: 64
* Attention Heads: 2
* FFN Hidden Dim. d¢,,: 128
* LeaP Downsample Factor: 1

The models for LRA Pathfinder-32, were opti-
mized with Adam with classical parameters. The
models were trained with batches of size 128,
warmed up for 300 updates and linearly climbing
to a learning rate of 2e-4. A linear learning rate
decay was employed with 50000 updates in total.
A CLS token was used for classification. Dropouts
of 0.1 were employed when applicable.

11

A.6.3 LRA: Text Retrieval

Below are the architectural details for our Text
Retrieval models on the LRA benchmark:

* Encoder Layers: 2
» Transformer Dim. d,,,,q4c1: 64
* Attention Heads: 2
* FFN Hidden Dim. d,: 128
* LeaP Downsample Factor: 2

The models for LRA Text Retrieval, were opti-
mized with Adam with classical parameters. The
models were trained with batches of size 16,
warmed up for 800 updates and linearly climbing
to a learning rate of 2e-4. A linear learning rate
decay was employed with 50000 updates in total.
A CLS token was used for classification. Dropouts
of 0.1 were employed when applicable.

A.6.4 LRA: Text Classification

Below are the architectural details for our Text
Classificaiton models on the LRA benchmark:

* Encoder Layers: 2
* Transformer Dim. d,,,qe;: 64
* Attention Heads: 2
* FFN Hidden Dim. dz,: 128
* LeaP Downsample Factor: 2

The models for LRA Text Classification, were
optimized with Adam with classical parameters.
The models were trained with batches of size 32,
warmed up for 100 updates and linearly climbing
to a learning rate of 2e-4. A linear learning rate
decay was employed with 20000 updates in total.
A CLS token was used for classification. Dropouts
of 0.1 were employed when applicable.

A.6.5 LRA: Image Classification

Below are the architectural details for our Image
Retrieval models on the LRA benchmark:

* Encoder Layers: 2
e Transformer Dim. d,,,dc1: 64
* Attention Heads: 2
* FFN Hidden Dim. d ¢,,: 128
* LeaP Downsample Factor: 1

The models for LRA Image Retrieval, were
optimized with Adam with classical parameters.
The models were trained with batches of size 256,
warmed up for 200 updates and linearly climbing
to a learning rate of le-4. A linear learning rate
decay was employed with 30000 updates in total.
A CLS token was used for classification. Dropouts
of 0.1 were employed when applicable.

12

A.6.6 SimulST Models

Below are the architectural details for our SimulST
models:

* Encoder Layers: 12
* Decoder Layers: 6
e Transformer Dim. d,,,oq4e1: 256

e Attention Heads: 8

FFN Hidden Dim. dyf,: 1024
* Conv. Pre-net Layers: 2

* Conv. Pre-net Kernel Size: 3
* Conv. Pre-net Stride: 2

* LeaP Downsample Factor: 4

The models for SimulST tasks were optimized
via Adam with classical parameters and a learn-
ing rate set to 6e-4 with an identical learning rate
scheduler. The models were trained with dynamic
batching, warmed up for 6000 updates, starting
with a learning rate of 1e-4, and trained for around
18000 updates in total with gradients clipped to
10.0. Dropouts of 0.1 were used for all linear lay-
ers and attention. SimulST models were trained
with a wait-k of 5 and pre-decision ratio of 9.

	Introduction
	Background
	Softmax Attention Mechanisms
	Efficient and Linear Transformers
	Position-Based Re-weighting Functions for Linear Transformers
	Motivation for Further Investigation

	LeaPformer: Learned Proportions for Linear Transformer Re-weighting
	From Position and Sequence Length to Proportion
	LeaP and LeaPformer: Learned Proportions
	Proposed LeaP Module Architecture
	Observed LeaP Module Expressivity

	Experiments
	Long-Range Arena Benchmark Setup
	Long-Range Arena Benchmark Results
	SimulST Setup
	SimulST Results

	Conclusion
	Limitations
	Appendix
	Licensing Information
	Codebase and Artifacts
	Hardware Details for Training and Evaluation
	Computational Costs of Experimentation
	RoPE with Linear Attention Elaboration
	Model Architectures and Hyperparameters
	LRA: ListOps
	LRA: Pathfinder-32
	LRA: Text Retrieval
	LRA: Text Classification
	LRA: Image Classification
	SimulST Models

