
LeaPformer: Enabling Linear Transformers for Autoregressive and
Simultaneous Tasks via Learned Proportions

Anonymous ACL submission

Abstract

Position-based re-weighting functions have001
been proposed recently as a promising ap-002
proach to recover degraded model perfor-003
mance from conventional linearized transform-004
ers. However, state-of-the-art re-weighting005
functions rely heavily on target sequence006
lengths, making it difficult or impossible to007
apply to autoregressive and simultaneous tasks008
where the target and sometimes even the input009
sequence length are unknown beforehand. To010
resolve this issue and enable these re-weighting011
functions for a wider range of tasks, we propose012
Learned Proportions (LeaP) and LeaPformers.013
Our contribution is built on two major compo-014
nents. First, we generalize the dependence on015
explicit positional representations and sequence016
lengths into a dependence on sequence propor-017
tions for re-weighting, removing theoretical de-018
pendence on sequence lengths. Second, we019
replace static positional representations with020
dynamic proportions derived via a compact021
module, enabling more flexible attention con-022
centration patterns. We validate the potential023
of LeaPformer against eight representative ef-024
ficient transformers on the competitive Long-025
Range Arena benchmark, where LeaPformer026
achieves the best quality-throughput trade-off.027
We also demonstrate, for the first time, that028
position-based re-weighting functions can be029
applied to simultaneous tasks, achieving com-030
petitive results on speech-to-text translation for031
two language pairs.032

1 Introduction033

Transformers (Vaswani et al., 2017) became domi-034

nant in the natural language processing (NLP) solu-035

tion space only a few years after inception, demon-036

strating state-of-the-art performance for a range of037

applications. With the advent of widely accessi-038

ble large language models (LLM), transformers as039

a class of models are being studied more closely040

than ever. Unfortunately, the quadratic complexity041

of the attention mechanisms of typical transform- 042

ers limits the lengths of the sequences that they 043

can process, rendering them sub-optimal or even 044

impossible to apply for tasks with long sequences. 045

Naturally, an active area of potential improve- 046

ment for classical transformers are efficient atten- 047

tion mechanisms that reduce the quadratic com- 048

plexity of typical softmax attention with respect 049

to sequence length. Many efficient transformer 050

variants have been proposed, including truly linear 051

attention mechanisms with no prior environmental 052

assumptions (Katharopoulos et al., 2020; Choro- 053

manski et al., 2020; Peng et al., 2021; Chen et al., 054

2021; Qin et al., 2022). Such mechanisms not 055

only increase throughput for sufficiently long se- 056

quences, but also enable larger sequences via the 057

aforementioned throughput increase and, typically, 058

a reduction in a model’s peak memory footprint. 059

While the aforementioned linear transformers are 060

typically effective for specific tasks, they tend to ex- 061

hibit varying degrees of quality degradation when 062

generalized. 063

To address this issue, re-weighting functions 064

have been recently formalized (Qin et al., 2022) 065

in linear transformers and serve to concentrate at- 066

tention scores in a manner similar to the softmax 067

operator. Although promising, the state-of-the-art 068

position-based re-weighting functions rely on ex- 069

plicit token positions and sequence length (Su et al., 070

2022; Qin et al., 2022). This reliance on knowing 071

the sequence length beforehand can make it dif- 072

ficult to apply those re-weighting functions and 073

linear transformers to autoregressive tasks with- 074

out employing specialized solutions (Agostinelli 075

and Chen, 2023) and renders it impossible to ap- 076

ply them to simultaneous tasks, such as simultane- 077

ous translation. Furthermore, existing re-weighting 078

functions’ reliance on explicit positional representa- 079

tions usually produce static attention concentration 080

patterns, which can severely limit their general ap- 081

plicability when an attention concentration pattern 082

1



is ill-suited to a given task.083

To solve this reliance on explicit positional rep-084

resentations and enable linear transformers for a085

wider range of tasks, we propose a novel approach086

that we refer to as Learned Proportions (LeaP) and087

call models we apply it to LeaPformers. This con-088

tribution is composed of two major aspects: pro-089

portions and learned behavior. First, we generalize090

the dependence on explicit positional representa-091

tions and sequence lengths into a more direct, intu-092

itive dependence on proportions of a sequence for093

re-weighting. This elaborates on how proportion-094

based re-weighting functions can be more effective095

in concentrating attention behavior and removes096

theoretical dependence on sequence length. Sec-097

ond, instead of employing static positional rep-098

resentations, we construct and deploy a compact099

module that dynamically derives sequence propor-100

tions for a given token during training and infer-101

ence. These straightforward, but critical, contribu-102

tions ultimately remove any reliance that current103

position-based re-weighting functions may have104

on sequence length, enabling them for tasks where105

the sequence length is not known beforehand (and106

cannot be estimated) and/or where attention con-107

centration patterns are more complex.108

To validate our proposed approach, we primarily109

test our LeaPformer against cosFormer, the state-of-110

the-art position-based linear transformer, by adapt-111

ing cosFormer’s cosine-based re-weighting func-112

tion via LeaP. We also evaluate and compare with113

seven other representative attention mechanisms.114

We apply our LeaPformer to the Long-Range Arena115

(LRA) benchmark (Tay et al., 2021), a common116

and competitive benchmark for efficient attention117

mechanisms on long sequences, and to multiple lan-118

guage pairs for simultaneous speech-to-text transla-119

tion (SimulST) (Ma et al., 2020b). When compared120

to popular, previously proposed efficient attention121

mechanisms on the LRA benchmark, the proposed122

LeaPformer achieves the best quality-efficiency123

trade-off, balanced performance across tasks, small124

memory footprint, and notably beats cosFormer’s125

inference quality. Moreover, when applied to simul-126

taneous translation, LeaPformer demonstrates com-127

petitive results with a reasonable quality-efficiency128

trade-off compared to classical softmax attention129

for critical ablations, with some variations achiev-130

ing quality loss of only 0.26 BLEU-4 (Post, 2018)131

for English to German and 0.23 BLEU-4 for French132

to English while being completely linear in com-133

plexity. To our knowledge, this is the first time that134

a position-based re-weighting function for linear 135

transformers is successfully applied to simultane- 136

ous tasks. 137

2 Background 138

2.1 Softmax Attention Mechanisms 139

As introduced by Vaswani et. al (2017), the multi- 140

headed self-attention in transformers can gener- 141

ally be described by Equations 1 and 2, where 142

query Qh = xWq,h, key Kh = xWk,h, and 143

value Vh = xWv,h, with x ∈ Rn×dmodel being 144

the input sequence for each attention head that di- 145

vides the model embedding space dmodel into some 146

dhead (denoted as d hereafter for simplicity) and 147

Wq,h ∈ Rdmodel×d, Wk,h ∈ Rdmodel×d and Wv,h ∈ 148

Rdmodel×d. In cases where the concatenation of 149

the attention head outputs differs in dimensionality 150

from dmodel, an optional output projection layer is 151

commonly applied via Wout ∈ Rdout×dmodel . 152

ah(x) = softmax(
QhK

T
h√

d
)Vh (1) 153

154
A(x) = concat(a1(x), a2(x), . . . , aH(x))Wout

(2) 155

For long sequences, the quadratic complexity 156

of the mechanism demonstrated in Equation 1 can 157

prove to be a throughput bottleneck both during 158

training and inference. 159

2.2 Efficient and Linear Transformers 160

Efficient and/or linear transformers have emerged 161

over the past few years as an active area of research 162

for particularly resource or latency-constrained en- 163

vironments, exhibiting notable inference speedups 164

and smaller memory footprints. These transformer 165

variants focus on alternative attention mechanisms 166

that reduce the quadratic complexity of typical 167

softmax attention. A plethora of efficient trans- 168

former options exist that can be classified into 169

a few groups: sliding-window or localized atten- 170

tion mechanisms (Dai et al., 2019; Parmar et al., 171

2018; Wu et al., 2020; Beltagy et al., 2020), pat- 172

tern or sparsity-based attention mechanisms (Child 173

et al., 2019; Zaheer et al., 2020), kernel-based and 174

truly linear attention mechanisms with no priors 175

(Katharopoulos et al., 2020; Choromanski et al., 176

2020; Qin et al., 2022; Peng et al., 2021; Chen 177

et al., 2021), and some unique outliers (Wang et al., 178

2020c; Kitaev et al., 2020). 179

Truly linear transformers with no prior environ- 180

mental assumptions (i.e. no assumed sparsity, local 181

2



dependencies, etc.) are typically kernel-based sub-182

stitutions for the softmax mechanism. This can be183

described via row-wise outputs for each attention184

head in Equations 3 to 5, with S corresponding to185

any similarity function that transforms the product186

of the query and key matrices. When S is equal187

to exp, Equation 3 is an accurate representation of188

softmax attention. Alternatively, when S is decom-189

posable via a Sq and Sk, as seen in Equation 4, com-190

putation can be reordered such that the attention191

complexity changes from O(N1N2d) in Equation192

4 when multiplying QKT first, to O(N1d
2+N2d

2)193

to in Equation 5 when multiplying KTV first. Here,194

N1 corresponds to the length of the query matrix195

and N2 corresponds to the lengths of the key and196

value matrices. When N1 or N2 are significantly197

larger than d, this rearrangement of the attention198

calculation leads to linear complexity with respect199

to the sequence length.200

ah,i(x) =
∑
j

exp(QiK
T
j )∑

j exp(QiKT
j )

Vj (3)201

ãh,i(x) =
∑
j

S(QiK
T
j )∑

j S(QiKT
j )

Vj

S(QiK
T
j ) = Sq(Qi)Sk(K

T
j )

(4)202

ãh,i(x) =
∑
j

Sq(Qi)(Sk(K
T
j )Vj)

Sq(Qi)
∑

j Sk(K
T
j )

(5)203

2.3 Position-Based Re-weighting Functions204

for Linear Transformers205

While achieving linearity, the aforementioned206

works usually suffer from varying degrees of de-207

graded model performance. To address this, re-208

weighting functions have been recently proposed209

that introduce an additional function to augment210

S(Qi,K
T
j ), with the express purpose of concen-211

trating/adjusting the probability distribution of the212

normalized QKT (Qin et al., 2022). Re-weighting213

functions are commonly based on token positions214

and can be applied via Equation 6 as σ(i, j):215

S(Qi,K
T
j ) = Sq(Qi)Sk(K

T
j )σ(i, j) (6)216

Note that even though σ(i, j) in Equation 6 is217

placed at the end of the sequence, that placement218

is arbitrary. For example, placing σ(i, j) in be-219

tween or before the transformed query and key220

matrices would also be valid as a re-weighting ad- 221

dition. σ(i, j) can also map to any number of pos- 222

sible concentration methods, such as a matrix or 223

scalar value modifying S(Qi,K
T
j ). 224

Elaborate position-based encoding schemes 225

(Raffel et al., 2020; Wang et al., 2020a; Wang and 226

Chen, 2020; Liutkus et al., 2021), using absolute or 227

relative token positions, have advanced the scheme 228

utilized by original transformers (Vaswani et al., 229

2017) and many provide what can be intuited as 230

position-based re-weighting functions. However, 231

those schemes are specifically designed for the 232

S(Qi,K
T
j ) formulation and do not work for the de- 233

composed Sq(Qi)Sk(K
T
j ) linearized formulation. 234

Rotary Positional Embeddings (RoPE) (Su et al., 235

2022), with some minor modifications, is closest 236

to being a true position-based re-weighting func- 237

tion for linear transformers by using absolute token 238

positions. As demonstrated in Equation 7, R rep- 239

resents RoPE’s re-weighting function acting as a 240

rotational transform and θ represents the set of ro- 241

tation constants defined by head dimensionality d. 242

σ(i, j) = Rd
θ,j−i = (Rd

θ,i)
TRd

θ,j

S(Qi,K
T
j ) = Sq(Qi)σ(i, j)Sk(K

T
j )

S(Qi,K
T
j ) = (Sq(Qi)(R

d
θ,i)

T )(Rd
θ,jSk(K

T
j ))

(7) 243

Notably, RoPE is unaware of the total sequence 244

length when it is applied, which can cause intuitive 245

qualitative problems. For example, RoPE would 246

treat two tokens that are 100 tokens apart in a 1k 247

length sequence and a 200 length sequence the 248

same, where the actual relationship of the two to- 249

kens could change drastically in the two sequences. 250

In practice, RoPE’s re-weighting function still 251

works reasonably well, as many sequences exhibit 252

locality (closer tokens are more related) which can 253

be captured by σ(i, j). Nevertheless, the lack of 254

sequence length makes RoPE’s re-weighting abil- 255

ity inherently limited, especially for sequences that 256

exhibit more than the locality characteristic. 257

Recently introduced, cosFormer (Qin et al., 258

2022) is the state-of-the-art in position-based lin- 259

ear transformers that utilizes sequence length in 260

addition to absolute token position. cosFormer’s 261

proposed mechanism, with common-sense modifi- 262

cations (Agostinelli and Chen, 2023), is described 263

by Equation 8. Here, Sq and Sk are set to ReLU 264

and their cosine-based re-weighting function is 265

distributable via Ptolemy’s method for expanding 266

trigonometric expressions. Intuitively, when the 267

3



positions i and j of two tokens are closer, the co-268

sine’s response is increased, emphasizing locality.269

Conversely, when the two positions are far apart,270

the response approaches zero, representing maxi-271

mum attenuation via re-weighting. In spite of its272

inherent locality bias, cosFormer has been empir-273

ically shown to form longer-range dependencies274

than local attention implementations might allow.275

S(Qi,K
T
j ) = Sq(Qi)Sk(K

T
j )cos(

π

2
(
i

N1
− j

N2
))

(8)276

Unlike RoPE, cosFormer can recognize differ-277

ences in token distances relative to the sequence278

length, re-weighting more dynamically in practice.279

Using our previous example, cosFormer would280

treat two tokens that are 100 positions apart differ-281

ently in a 1k length sequence versus a 200 length282

sequence, an intuitive improvement.283

2.4 Motivation for Further Investigation284

Unfortunately, the reliance on sequence length285

causes critical problems for autoregressive and286

simultaneous tasks. For instance, it can be diffi-287

cult to apply re-weighting functions to autoregres-288

sive tasks where target sequence lengths are usu-289

ally not known beforehand (e.g. translation, TTS).290

Although some effort has been made to address291

these issues (Agostinelli and Chen, 2023; Liu et al.,292

2022), mostly via target sequence length predic-293

tion based on the full input sequence, proposed294

solutions are prone to some level of approximation295

error. Furthermore, none of the proposed solutions296

has addressed the impossibility of being applied297

to simultaneous tasks, where even the full input298

sequence is not available at decoding time-steps.299

Moreover, the static nature of the state-of-the-300

art’s re-weighting functionality can cause issues301

from an inference quality standpoint. cosFormer’s302

re-weighting function focuses on encouraging lo-303

cality, but this can be problematic when locality304

bias is not important to a given application. RoPE305

and several similar schemes suffer from the same306

problem. In such instances, more dynamic flexibil-307

ity in the re-weighting function to encourage strong,308

long-range connections would be preferred. An ex-309

ample of when this flexibility may be desirable can310

be found in a typical translation task, when encod-311

ing or decoding in languages like German that tend312

to exhibit subject-object-verb (SOV) structures as313

opposed to subject-verb-object (SVO) structures314

in languages like English and may require diverse315

attention patterns and long-range dependencies. A316

verb near the end of a German sentence may at- 317

tend strongly to the subject near the beginning of 318

the sentence, but static re-weighting functions like 319

the one employed by cosFormer would likely have 320

trouble enabling this relationship. 321

3 LeaPformer: Learned Proportions for 322

Linear Transformer Re-weighting 323

To address issues with the state-of-the-art re- 324

weighting functions for linear transformers for both 325

autoregressive and simultaneous tasks, we provide 326

two concrete contributions. First, we generalize the 327

reliance on absolute token position and sequence 328

length into a more direct, intuitive reliance on the 329

relative placement of a token in the sequence which 330

we refer to as a proportion. This generalization al- 331

lows for easier analysis of re-weighting function 332

behavior and removes theoretical dependence on se- 333

quence length. Additionally, we propose, construct, 334

and deploy a compact module to learn proportional 335

representations derived from each token, a tech- 336

nique that we call Learned Proportions (LeaP) and 337

call the models it is applied to LeaPformers. LeaP- 338

formers can be applied to tasks where sequence 339

lengths are unknown and, more importantly, are ca- 340

pable of capturing dynamic attention patterns over 341

static position-based re-weighting functions. 342

3.1 From Position and Sequence Length to 343

Proportion 344

We define proportion-based re-weighting in Equa- 345

tion 9, where Pq and Pk represent proportions of 346

sequences from which queries and keys are derived 347

from and σ(Pq,i, Pk,j) represents the re-weighting 348

function with a reliance on the provided propor- 349

tions. Technically, Pq and Pk can be set in any man- 350

ner, but for the most straightforward proportion- 351

based re-weighting implementations, they would 352

correspond to the proportion of a sequence that a 353

token is placed (e.g., at 20% of the sequence). 354

Pq = [Pq,1, Pq,2, . . . Pq,N1 ], 0 ≤ Pq,i ≤ 1

Pk = [Pk,1, Pk,2, . . . Pk,N2 ], 0 ≤ Pk,j ≤ 1

S(Qi,K
T
j ) = Sq(Qi)Sk(K

T
j )σ(Pq,i, Pk,j)

(9) 355

Under this definition, cosFormer’s formulation 356

in Equation 8 can be considered as a special case, 357

where we replace σ(Pq,i, Pk,j) in Equation 9 with 358

the cosine-based re-weighting function of cos- 359

Former and define Pq and Pk as being explicit to- 360

4



ken positions divided by the sequence length, as361

shown in Equation 10:362

Pq = [
1

N1
, . . . , 1], Pk = [

1

N2
, . . . , 1]

S(Qi,K
T
j ) = Sq(Qi)Sk(K

T
j )cos(

π

2
(Pq,i − Pk,j))

(10)363

3.2 LeaP and LeaPformer: Learned364

Proportions365

In addition to determining the proportions statically366

as in the case of cosFormer in Equation 10, we pro-367

pose that models can actually learn to derive these368

representative proportions via a module contain-369

ing a compact network embedded within attention370

blocks. We call this method Learned Proportions371

(LeaP) and models utilizing this technique LeaP-372

formers. The possible inference quality benefits of373

LeaP can be understood intuitively. Suppose that374

Pk is set in a static manner in accordance with ex-375

plicit positional representations, but Pq is derived376

via a small module based on the query matrix. The377

module’s learned behavior could produce derived378

elements of Pq equal to classical positional repre-379

sentations, thus replicating the behavior and perfor-380

mance of attention mechanisms like cosFormer, but381

could alternatively defer the inter-token relation-382

ships that cosFormer might otherwise emphasize383

(i.e. an emphasis on locality). Along these lines,384

we can redefine the aforementioned proportions in385

accordance with Equation 11, where LeaPQ and386

LeaPK represent the proposed modules that derive387

proportions based on the query and key matrices,388

and Pq and Pk are redefined as Pq(Q) and Pk(K).389

Pq(Qi) = Pq,i = LeaPQ(Qi)

Pk(Kj) = Pk,j = LeaPK(Kj)

Pq(Q) = [LeaPQ(Q1), . . . , LeaPQ(QN1)]

Pk(K) = [LeaPK(K1), . . . , LeaPK(KN2)]

(11)390

To demonstrate potential inference quality ben-391

efits further, we can refer back to our example of392

translation to or from German and the SOV struc-393

ture that cosFormer would likely struggle to model394

well. If Pq is derived from a small LeaP module395

in self-attention, models could effectively defer the396

locality bias inherent to cosFormer to elsewhere in397

the sequence. If correctly learned, this might allow398

models to defer their attention concentration from399

Figure 1: Illustration of the proposed Learned Propor-
tions (LeaP) augmentation to linear transformer atten-
tion mechanisms. The LeaP module takes each token of
the query and key matrices and steps down their dimen-
sionality across two linear layers to a single proportion.

the verb at the end of the German sequence to the 400

beginning of the sequence, where we might expect 401

a typically strong attention score. Allowing deriva- 402

tions of both Pq and Pk would, naturally, afford 403

maximum flexibility in attention patterns produced 404

by the employed re-weighting function. 405

Beyond the possible benefits of LeaP in terms of 406

inference quality, this method removes any depen- 407

dence that proportion-based re-weighting functions 408

have on knowing the sequence length beforehand, 409

widely enabling them for autoregressive tasks with- 410

out target sequence length prediction and, for the 411

first time, rendering it possible to apply them to 412

simultaneous tasks. 413

3.3 Proposed LeaP Module Architecture 414

It is critical that the addition of LeaP does not sig- 415

nificantly affect the throughput of a given model or 416

its memory footprint, as it is intended for resource- 417

constrained and latency-sensitive environments. 418

Given that, we recommend a module composed 419

of a simple, two-layer feed-forward network that 420

steps down the attention head embedding dimen- 421

sion with a ReLU activation between the layers 422

and a sigmoid activation at the end of the network, 423

along the lines of the augmentation highlighted 424

in Figure 1. The choice of a ReLU activation is 425

based on empirical tests on the Long-Range Arena 426

benchmark (Tay et al., 2021) which determined 427

that, as opposed to several other competitive op- 428

tions, ReLU generalized well to multiple tasks. 429

While a separate LeaP module for each atten- 430

tion head would be natural, we found in our tests 431

that this made a very minor difference in terms 432

5



Figure 2: An example of re-weighting matrices across
all query (y-axis) and key (x-axis) token positions for
baseline cosFormer (left) and LeaPformer (right) on list-
operations in the Long-Range Arena benchmark. In this
example, LeaPformer has clearly learned to attenuate
more dynamically.

of quality. Indeed, even for English to German433

SimulST, we observed that when replacing the de-434

coder self-attention block with LeaPformer where435

a separate LeaP module was provided for each at-436

tention head the models were roughly equivalent437

in quality. Given that, we share one module for all438

heads.439

3.4 Observed LeaP Module Expressivity440

Given the activation functions chosen for the LeaP441

module’s architecture, it is important to examine442

the expressivity of the module, ensuring that it out-443

puts a complex range of values as opposed to satu-444

rating to values of 0 or 1. We provide an example445

in Figure 2 that compares the re-weighting matri-446

ces of baseline cosFormer and LeaPformer for the447

list-operations task in the LRA benchmark, a fairly448

difficult one. As can be observed in the example,449

and as we generally found in practice, the baseline450

cosFormer can only provide static re-weighting em-451

phasizing locality (with the largest weights along452

diagonal for the same position); in contrast, cos-453

Former augmented with LeaP is capable of gener-454

ating complex re-weighting matrices that lightly455

attenuate between most positions while selectively456

attenuating harshly or not at all. The fact that there457

is wide-spread, light attenuation across several ex-458

amples indicates that the module is very capable of459

avoiding saturation.460

4 Experiments461

We validate the potential of LeaP by applying it462

to cosFormer on two major sets of tasks, and all463

references to LeaPformers in the following sec-464

tions refer to this augmentation of cosFormers. The465

two sets of tasks include the popular Long-Range466

Arena (LRA) benchmark (Tay et al., 2021), built467

specifically for validating the capabilities of effi- 468

cient attention mechanisms. We also validate LeaP- 469

formers on speech-to-text simultaneous translation 470

(SimulST) via wait-k (Ma et al., 2019, 2020a,b) 471

across two language pairs. For our SimulST ex- 472

periments, we employ Fairseq (Ott et al., 2019) 473

for training and validation alongside SimulEval 474

(Ma et al., 2020c) for evaluation. LRA results are 475

compared via accuracy and SimulST results are 476

compared via detokenized BLEU-4 (called BLEU 477

later) using sacreBLEU (Post, 2018). Additional 478

details can be found in the Appendix. 479

4.1 Long-Range Arena Benchmark Setup 480

To better compare evaluated models, on top of the 481

Long-Range Arena (LRA) benchmark provided by 482

(Tay et al., 2021), our implementation follows Sky- 483

former’s (Chen et al., 2021) PyTorch framework 484

and reuses their architectures and hyperparameters, 485

which we hold static. We provide baseline results 486

for a number of architectures, including the clas- 487

sical transformer (Vaswani et al., 2017) alongside 488

several efficient transformers. 489

Regarding the LeaPformers tested on the LRA 490

benchmark, a minimal setup was initially employed 491

with around a maximum of a 0.2% increase on 492

the number of parameters for the LeaP module. 493

Additionally, a larger module was employed with 494

a maximum increase of 1.5% to the number of 495

parameters to investigate the effects of increased 496

size. Some very limited fine-tuning was employed 497

across a few possible module sizes on a per-task 498

basis for the larger LeaPformer, depending on the 499

perceived difficulty of the task. 500

4.2 Long-Range Arena Benchmark Results 501

A holistic view of overall performance is well- 502

described by Figure 3, with kernel-based lin- 503

ear transformers tending to provide an excellent 504

quality-throughput trade-off. As clearly demon- 505

strated in the figure, LeaPformer provides the best 506

trade-off, exhibiting significant quality increases 507

over Linear Transformer and overall supremacy 508

compared to Performer, Linformer, Reformer, and 509

Skyformer, with a minimal memory footprint. De- 510

tails on inference quality are showcased in Table 511

1, where both LeaPformer-0.2% and LeaPformer- 512

1.5% exhibit a balanced performance profile. While 513

classical softmax attention achieves the highest av- 514

erage score by a notable margin, it is beaten on a 515

number of tasks by other methods. 516

Compared to cosFormer, LeaPformer provides, 517

6



Attention Mechanism ListOps Text Cls. Text Rtr. Path-32 Img. Cls. Avg.
Softmax Attn. (Vaswani et al., 2017) 37.94 60.51 80.52 75.54 41.74 59.25
Linear Attn. (Katharopoulos et al., 2020) 39.21 61.53 78.78 68.23 39.14 57.38
Linformer (Wang et al., 2020c) 37.04 57.65 77.61 57.91 37.85 53.61
Performer (Choromanski et al., 2020) 38.17 64.24 80.11 68.54 37.42 57.70
BigBird (Zaheer et al., 2020) 38.36 60.72 80.97 72.80 40.37 58.64
Reformer (Kitaev et al., 2020) 36.44 63.14 78.63 69.29 42.85 58.07
Skyformer (Chen et al., 2021) 38.66 65.38 81.77 68.74 36.07 58.12
RoPE w/ Linear Attn. (Su et al., 2022) 38.31 64.79 77.54 67.61 39.17 57.48
cosFormer (Qin et al., 2022) 38.96 61.66 79.29 68.96 38.26 57.43
LeaPformer-0.2% 38.26 64.70 79.88 70.76 38.26 58.37
LeaPformer-1.5% 38.96 64.90 80.62 68.99 40.00 58.69

Table 1: Quality results on the Long-Range Arena benchmark. All results are measures of accuracy (higher is
better) and are weighted evenly for the purpose of the average score. Best results are bolded, second best results are
underlined. Both LeaPformer variants showcase competitive performance across a range of tasks, with LeaPformer-
1.5% achieving the second best average score, beating all other non-quadratic transformers.

Attention Mechanism Training Thrpt. (itr/sec)
1K 2K 4K

Softmax Attn. 14.08 6.03 1.64
Linear Attn. 68.00 28.43 15.18
Linformer 48.96 20.49 11.36
Performer 38.83 17.72 9.02
BigBird 15.97 6.76 3.52
Reformer 32.07 15.08 7.71
Skyformer 26.02 12.36 6.06
RoPE w/ Linear Attn. 48.90 23.81 12.27
cosFormer 58.91 25.64 13.13
LeaPformer-0.2% 56.30 24.72 12.81
LeaPformer-1.5% 53.58 23.39 11.76

Table 2: Efficiency results on the Long-Range Arena
benchmark. Training throughput values (higher is better,
inference speed is identical) are provided for various
sequence lengths defined by the five tasks in the bench-
mark.

at a minor throughput and negligible memory foot-518

print penalty, significant increases to scores across519

some of cosFormer’s most problematic tasks, in-520

cluding large improvements for text and image clas-521

sification. Additionally, when compared to the522

score profiles of other efficient attention mecha-523

nisms, LeaPformer does not seem to specialize524

nearly as much as other architectures (aside from525

some difficulty on the pathfinding task), indicating526

its balanced performance. In terms of inference527

quality, BigBird is the closest to providing a simi-528

larly balanced performance profile, but this comes529

with significant throughput reductions as shown in530

Table 2 and noticeable increases to memory foot-531

Figure 3: Performance of various linear attention mech-
anisms on the Long-Range Arena benchmark. Through-
put for 4k sequence length tasks (x-axis) is set against
average score (y-axis) across the five tasks in the bench-
mark with a provided maximum memory footprint.

print. LeaPformer matches the general inference 532

quality of task-balanced models with a massively 533

reduced memory footprint while still exhibiting 534

a minimum 1.52x throughput increase over those 535

mechanisms. 536

4.3 SimulST Setup 537

For the purposes of our SimulST related exper- 538

iments, we employed a model inspired by the 539

ESPnet-ST toolkit (Inaguma et al., 2020) that fo- 540

cused on end-to-end speech-to-text (S2T) transla- 541

tion with a modified cross-attention block for a 542

wait-k and fixed pre-decision paradigm (Ma et al., 543

7



Attention Mechanism ppl(tr) ppl(dev)
cosFormer Dec. Self-Attn. 8.44 9.86
LeaPformer Dec. Self-Attn. 7.86 9.40

Table 3: Brief comparison of cosFormer and LeaP-
former trained on MuST-C en-de. Perplexity (lower
is better) is generated on the training and validation sets.
BLEU scores are not provided for baseline cosFormer
as it is impossible to apply to simultaneous tasks (i.e.
BLEU scores of near zero) without augmentations.

Attention Mechanism BLEU ppl(dev)
Softmax Attention 15.07 9.36
LeaPformer Enc. Self-Attn. 12.00 11.50
LeaPformer Dec. Self-Attn. 14.81 9.40
LeaPformer Cross-Attn. 13.95 11.02
LeaPformer All Attn. 11.19 14.67
ReLU Enc. Self-Attn. 11.55 11.98
ReLU Dec. Self-Attn. 14.67 9.55
ReLU Dec. Cross-Attn. 13.84 11.24
ReLU All Attn. 10.38 15.48

Table 4: Results from SimulST for MuST-C en-de for
various LeaPformer and simple ReLU ablations with
softmax as a baseline. BLEU scores (higher is better)
are generated on the tst-COMMON split.

2019, 2020a,b). All model encoders were pre-544

trained on automatic speech-recognition (ASR) and545

were trained on a wait-k of 5 and a fixed predeci-546

sion ratio of 9 and were evaluated on a wait-k of547

3 (a slightly larger k for training is suggested by548

several prior works) with greedy decoding. Mod-549

els are evaluated via validation set perplexity and550

by detokenized BLEU-4 (Post, 2018) via SimulE-551

val (Ma et al., 2020c). Two language pairs and552

two datasets were employed to test the application553

of LeaPformer to simultaneous tasks. We utilized554

MuST-C’s (Cattoni et al., 2021) English to Ger-555

man (en-de) split and CoVoST 2’s (Wang et al.,556

2020b) French to English (fr-en) split. More com-557

prehensive evaluation is provided for the en-de pair,558

comparing the results of LeaPformer to an ablation559

without a re-weighting function.560

4.4 SimulST Results561

We first seek to showcase quality gains from LeaP-562

former when compared to baseline cosFormer, jus-563

tifying its inclusion not only from the perspective564

of necessity but also as an overall improvement.565

Table 3 demonstrates the results of a brief com-566

parison on en-de simultaneous translation (note567

that cosFormer can still be employed for training,568

Attention Mechanism BLEU ppl(dev)
Softmax Attention 14.51 9.99
LeaPformer Enc. Self-Attn. 11.18 12.50
LeaPformer Dec. Self-Attn. 14.28 10.11
LeaPformer Cross-Attn. 13.25 11.64
LeaPformer All Attn. 9.69 16.28

Table 5: Results from SimulST for CoVoST fr-en for
various LeaPformer ablations with softmax as a baseline.
BLEU scores are generated on the recommended, but
shortened, test split.

where sequence lengths are known), where signif- 569

icant quality improvement is observed. Having 570

established the capability of the proposed method, 571

we seek to validate it further on en-de simultane- 572

ous translation while also providing several abla- 573

tions for LeaPformer, representing a wide-range 574

of quality-throughput trade-offs. Additionally, we 575

seek to show that applying the LeaP-augmented re- 576

weighting function of LeaPformer is consistently 577

useful by testing models trained without any re- 578

weighting functionality, operating as a variation on 579

Linear Transformer (Katharopoulos et al., 2020). 580

Table 4 showcases the results of this study, where 581

LeaPformer ablations consistently beat their sim- 582

ple ReLU-based alternative. The most competitive 583

ablation in terms of translation quality emerges as 584

a model with the decoder self-attention block re- 585

placed by LeaPformer, achieving only a 0.26 BLEU 586

reduction compared to softmax attention. 587

Similar results are provided for the fr-en lan- 588

guage pair in Table 5, with trends from en-de gen- 589

erally persisting. The most competitive translation 590

quality ablations continue to be replacements of 591

the decoder self-attention blocks with LeaPformer, 592

where only a 0.23 BLEU reduction was observed. 593

5 Conclusion 594

In this paper, we made two concrete contributions. 595

We re-framed dependencies on explicit positional 596

representations and sequence lengths to dependen- 597

cies on sequence proportions, removing theoret- 598

ical dependence on sequence lengths. Addition- 599

ally, we proposed LeaPformers and applied them 600

to the state-of-the-art in proportion-based linear 601

transformers, cosFormer, achieving the best perfor- 602

mance trade-off on the Long-Range Arena bench- 603

mark. Moreover, we applied proportion-based 604

transformers for the first time to simultaneous trans- 605

lation, achieving minimal quality loss compared to 606

softmax attention for two language pairs. 607

8



6 Limitations608

Regarding the limitations of this work, there are609

a few areas that remain less explored and could610

be elaborated upon. A direction for future work611

might focus on a more exhaustive examination of612

possible LeaP module architectures. While the pro-613

posed structure works well in practice, the design614

is simple and could likely be improved upon. Ad-615

ditionally, a wider breadth of applications could be616

explored to validate LeaPformers. While nothing617

precludes our proposed LeaP module and LeaP-618

formers from being applied elsewhere, we focused619

on validating it on the competitive Long-Range620

Arena benchmark and simultaneous speech-to-text621

translation, especially given the associated novelty622

of the latter task and our method’s application to it.623

References624

Victor Agostinelli and Lizhong Chen. 2023. Improv-625
ing autoregressive nlp tasks via modular linearized626
attention.627

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.628
Longformer: The long-document transformer.629

Roldano Cattoni, Mattia Antonino Di Gangi, Luisa Ben-630
tivogli, Matteo Negri, and Marco Turchi. 2021. Must-631
c: A multilingual corpus for end-to-end speech trans-632
lation. Computer Speech & Language, 66:101155.633

Yifan Chen, Qi Zeng, Heng Ji, and Yun Yang. 2021.634
Skyformer: Remodel self-attention with gaussian635
kernel and nyström method.636

Rewon Child, Scott Gray, Alec Radford, and Ilya637
Sutskever. 2019. Generating long sequences with638
sparse transformers.639

Krzysztof Choromanski, Valerii Likhosherstov, David640
Dohan, Xingyou Song, Andreea Gane, Tamas Sar-641
los, Peter Hawkins, Jared Davis, Afroz Mohiuddin,642
Lukasz Kaiser, David Belanger, Lucy Colwell, and643
Adrian Weller. 2020. Rethinking attention with per-644
formers.645

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-646
bonell, Quoc V. Le, and Ruslan Salakhutdinov. 2019.647
Transformer-xl: Attentive language models beyond a648
fixed-length context.649

Hirofumi Inaguma, Shun Kiyono, Kevin Duh, Shigeki650
Karita, Nelson Enrique Yalta Soplin, Tomoki651
Hayashi, and Shinji Watanabe. 2020. Espnet-st: All-652
in-one speech translation toolkit.653

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-654
pas, and François Fleuret. 2020. Transformers are655
rnns: Fast autoregressive transformers with linear656
attention.657

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. 658
2020. Reformer: The efficient transformer. 659

Zexiang Liu, Dong Li, Kaiyue Lu, Zhen Qin, Weixuan 660
Sun, Jiacheng Xu, and Yiran Zhong. 2022. Neu- 661
ral architecture search on efficient transformers and 662
beyond. 663

Antoine Liutkus, Ondřej Cífka, Shih-Lun Wu, Umut 664
Şimşekli, Yi-Hsuan Yang, and Gaël Richard. 2021. 665
Relative positional encoding for transformers with 666
linear complexity. 667

M. Ma, L. Huang, H. Xiong, R. Zheng, K. Liu, B. Zheng, 668
C. Zhang, Z. He, H. Liu, X. Li, H. Wu, and H. Wang. 669
2019. Stacl: Simultaneous translation with implicit 670
anticipation and controllable latency using prefix-to- 671
prefix framework. In Proceedings of the 57th Annual 672
Meeting of the Association for Computational Lin- 673
guistics, pages 3025–3036, Florence, Italy. Associa- 674
tion for Computational Linguistics (ACL). 675

X. Ma, J. Pino, J. Cross, L. Puzon, and J. Gu. 2020a. 676
Monotonic multihea attention. In International Con- 677
ference on Learning Representations. 678

X. Ma, J. Pino, J. Cross, L. Puzon, and J. Gu. 2020b. 679
Simulmt to simulst: Adapting simultaneous text 680
translation to end-to-end simultaneous speech trans- 681
lation. In Proceedings of 2020 Asia-Pacific Chapter 682
of the Association for Computational Linguistics and 683
the International Joint Conference on Natural Lan- 684
guage Processing. 685

Xutai Ma, Mohammad Javad Dousti, Changhan Wang, 686
Jiatao Gu, and Juan Pino. 2020c. Simuleval: An 687
evaluation toolkit for simultaneous translation. 688

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, 689
Sam Gross, Nathan Ng, David Grangier, and Michael 690
Auli. 2019. fairseq: A fast, extensible toolkit for 691
sequence modeling. 692

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz 693
Kaiser, Noam Shazeer, Alexander Ku, and Dustin 694
Tran. 2018. Image transformer. 695

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy 696
Schwartz, Noah A. Smith, and Lingpeng Kong. 2021. 697
Random feature attention. 698

Matt Post. 2018. A call for clarity in reporting BLEU 699
scores. In Proceedings of the Third Conference on 700
Machine Translation: Research Papers, pages 186– 701
191, Belgium, Brussels. Association for Computa- 702
tional Linguistics. 703

Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yun- 704
shen Wei, Baohong Lv, Junjie Yan, Lingpeng Kong, 705
and Yiran Zhong. 2022. cosformer: Rethinking soft- 706
max in attention. In International Conference on 707
Learning Representations. 708

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 709
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 710
Wei Li, and Peter J. Liu. 2020. Exploring the limits 711

9

http://arxiv.org/abs/2304.08453
http://arxiv.org/abs/2304.08453
http://arxiv.org/abs/2304.08453
http://arxiv.org/abs/2304.08453
http://arxiv.org/abs/2304.08453
https://doi.org/10.48550/ARXIV.2004.05150
https://doi.org/https://doi.org/10.1016/j.csl.2020.101155
https://doi.org/https://doi.org/10.1016/j.csl.2020.101155
https://doi.org/https://doi.org/10.1016/j.csl.2020.101155
https://doi.org/https://doi.org/10.1016/j.csl.2020.101155
https://doi.org/https://doi.org/10.1016/j.csl.2020.101155
http://arxiv.org/abs/2111.00035
http://arxiv.org/abs/2111.00035
http://arxiv.org/abs/2111.00035
https://doi.org/10.48550/ARXIV.1904.10509
https://doi.org/10.48550/ARXIV.1904.10509
https://doi.org/10.48550/ARXIV.1904.10509
https://doi.org/10.48550/ARXIV.2009.14794
https://doi.org/10.48550/ARXIV.2009.14794
https://doi.org/10.48550/ARXIV.2009.14794
https://doi.org/10.48550/ARXIV.1901.02860
https://doi.org/10.48550/ARXIV.1901.02860
https://doi.org/10.48550/ARXIV.1901.02860
https://doi.org/10.48550/ARXIV.2004.10234
https://doi.org/10.48550/ARXIV.2004.10234
https://doi.org/10.48550/ARXIV.2004.10234
https://doi.org/10.48550/ARXIV.2006.16236
https://doi.org/10.48550/ARXIV.2006.16236
https://doi.org/10.48550/ARXIV.2006.16236
https://doi.org/10.48550/ARXIV.2006.16236
https://doi.org/10.48550/ARXIV.2006.16236
https://doi.org/10.48550/ARXIV.2001.04451
http://arxiv.org/abs/2207.13955
http://arxiv.org/abs/2207.13955
http://arxiv.org/abs/2207.13955
http://arxiv.org/abs/2207.13955
http://arxiv.org/abs/2207.13955
http://arxiv.org/abs/2105.08399
http://arxiv.org/abs/2105.08399
http://arxiv.org/abs/2105.08399
https://doi.org/10.48550/ARXIV.2007.16193
https://doi.org/10.48550/ARXIV.2007.16193
https://doi.org/10.48550/ARXIV.2007.16193
https://doi.org/10.48550/ARXIV.1904.01038
https://doi.org/10.48550/ARXIV.1904.01038
https://doi.org/10.48550/ARXIV.1904.01038
https://doi.org/10.48550/ARXIV.1802.05751
https://doi.org/10.48550/ARXIV.2103.02143
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://openreview.net/forum?id=Bl8CQrx2Up4
https://openreview.net/forum?id=Bl8CQrx2Up4
https://openreview.net/forum?id=Bl8CQrx2Up4
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683


of transfer learning with a unified text-to-text trans-712
former.713

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha,714
Bo Wen, and Yunfeng Liu. 2021. Roformer: En-715
hanced transformer with rotary position embedding.716

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha,717
Bo Wen, and Yunfeng Liu. 2022. Roformer: En-718
hanced transformer with rotary position embedding.719

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen,720
Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang,721
Sebastian Ruder, and Donald Metzler. 2021. Long722
range arena : A benchmark for efficient transformers.723
In International Conference on Learning Representa-724
tions.725

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob726
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz727
Kaiser, and Illia Polosukhin. 2017. Attention is all728
you need.729

Benyou Wang, Donghao Zhao, Christina Lioma, Qiuchi730
Li, Peng Zhang, and Jakob Grue Simonsen. 2020a.731
Encoding word order in complex embeddings.732

Changhan Wang, Anne Wu, and Juan Pino. 2020b. Cov-733
ost 2: A massively multilingual speech-to-text trans-734
lation corpus.735

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang,736
and Hao Ma. 2020c. Linformer: Self-attention with737
linear complexity.738

Yu-An Wang and Yun-Nung Chen. 2020. What do739
position embeddings learn? an empirical study of740
pre-trained language model positional encoding.741

Qingyang Wu, Zhenzhong Lan, Kun Qian, Jing Gu, Al-742
borz Geramifard, and Zhou Yu. 2020. Memformer:743
A memory-augmented transformer for sequence mod-744
eling.745

Manzil Zaheer, Guru Guruganesh, Avinava Dubey,746
Joshua Ainslie, Chris Alberti, Santiago Ontanon,747
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,748
and Amr Ahmed. 2020. Big bird: Transformers for749
longer sequences.750

A Appendix 751

A.1 Licensing Information 752

Fairseq (Ott et al., 2019) is MIT-licensed and 753

widely available for non-commercial use. 754

A.2 Codebase and Artifacts 755

The codebase used for our experiments and pro- 756

posed method will be released upon publication. 757

A.3 Hardware Details for Training and 758

Evaluation 759

All models were trained and evaluated on two 760

NVIDIA Tesla V100 GPUs, except for during eval- 761

uation via SimulEval where they operated on a Intel 762

Xeon Platinum 8168 CPU. 763

A.4 Computational Costs of Experimentation 764

We estimate that results related to the LRA bench- 765

mark required approximately 30 GPU hours to 766

gather with perhaps another 60 GPU hours related 767

to experimentation. Concerning SimulST, we es- 768

timate that approximately 18 GPU days were re- 769

quired to generate the results with another 4 GPU 770

days related to experimentation. The aforemen- 771

tioned values are normalized for single GPU-usage. 772

A.5 RoPE with Linear Attention Elaboration 773

While not fully elaborated upon in the paper, we 774

provide data for a single possible RoPE (Su et al., 775

2021) linear transformer by augmenting the semi- 776

nal Linear Transformer (Katharopoulos et al., 2020) 777

with rotary positional embedding. The provided 778

results for this model are based on one with no 779

additional adaptations towards linear transformer 780

functionality beyond what is mentioned in the orig- 781

inal publication detailing RoPE. In our tests, addi- 782

tional assurances (e.g. summation to unity in rows 783

of attention matrix, were it to be calculated) did not 784

significantly affect results. 785

A.6 Model Architectures and 786

Hyperparameters 787

Below, we list all architectural details and relevant 788

training hyperparameters to reproduce our exper- 789

iments. Aside from models explicitly including 790

RoPE in our tests, all other models employed abso- 791

lute positional encoding (APE). 792

10

http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://doi.org/10.48550/ARXIV.2104.09864
https://doi.org/10.48550/ARXIV.2104.09864
https://doi.org/10.48550/ARXIV.2104.09864
http://arxiv.org/abs/2104.09864
http://arxiv.org/abs/2104.09864
http://arxiv.org/abs/2104.09864
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1912.12333
http://arxiv.org/abs/2007.10310
http://arxiv.org/abs/2007.10310
http://arxiv.org/abs/2007.10310
http://arxiv.org/abs/2007.10310
http://arxiv.org/abs/2007.10310
https://doi.org/10.48550/ARXIV.2006.04768
https://doi.org/10.48550/ARXIV.2006.04768
https://doi.org/10.48550/ARXIV.2006.04768
http://arxiv.org/abs/2010.04903
http://arxiv.org/abs/2010.04903
http://arxiv.org/abs/2010.04903
http://arxiv.org/abs/2010.04903
http://arxiv.org/abs/2010.04903
https://doi.org/10.48550/ARXIV.2010.06891
https://doi.org/10.48550/ARXIV.2010.06891
https://doi.org/10.48550/ARXIV.2010.06891
https://doi.org/10.48550/ARXIV.2010.06891
https://doi.org/10.48550/ARXIV.2010.06891
https://doi.org/10.48550/ARXIV.2007.14062
https://doi.org/10.48550/ARXIV.2007.14062
https://doi.org/10.48550/ARXIV.2007.14062


A.6.1 LRA: ListOps793

Below are the architectural details for our ListOps794

models on the LRA benchmark:795

• Encoder Layers: 2796

• Transformer Dim. dmodel: 64797

• Attention Heads: 2798

• FFN Hidden Dim. dffn: 128799

• LeaP Downsample Factor: 1800

The models for LRA ListOps, were optimized801

with Adam with classical parameters. The models802

were trained with batches of size 32, warmed up for803

1000 updates and linearly climbing to a learning804

rate of 1e-4. A linear learning rate decay was em-805

ployed with 20000 updates in total. A CLS token806

was used for classification. Dropouts of 0.1 were807

employed when applicable.808

A.6.2 LRA: Pathfinder-32809

Below are the architectural details for our810

Pathfinder-32 models on the LRA benchmark:811

• Encoder Layers: 2812

• Transformer Dim. dmodel: 64813

• Attention Heads: 2814

• FFN Hidden Dim. dffn: 128815

• LeaP Downsample Factor: 1816

The models for LRA Pathfinder-32, were opti-817

mized with Adam with classical parameters. The818

models were trained with batches of size 128,819

warmed up for 300 updates and linearly climbing820

to a learning rate of 2e-4. A linear learning rate821

decay was employed with 50000 updates in total.822

A CLS token was used for classification. Dropouts823

of 0.1 were employed when applicable.824

A.6.3 LRA: Text Retrieval 825

Below are the architectural details for our Text 826

Retrieval models on the LRA benchmark: 827

• Encoder Layers: 2 828

• Transformer Dim. dmodel: 64 829

• Attention Heads: 2 830

• FFN Hidden Dim. dffn: 128 831

• LeaP Downsample Factor: 2 832

The models for LRA Text Retrieval, were opti- 833

mized with Adam with classical parameters. The 834

models were trained with batches of size 16, 835

warmed up for 800 updates and linearly climbing 836

to a learning rate of 2e-4. A linear learning rate 837

decay was employed with 50000 updates in total. 838

A CLS token was used for classification. Dropouts 839

of 0.1 were employed when applicable. 840

A.6.4 LRA: Text Classification 841

Below are the architectural details for our Text 842

Classificaiton models on the LRA benchmark: 843

• Encoder Layers: 2 844

• Transformer Dim. dmodel: 64 845

• Attention Heads: 2 846

• FFN Hidden Dim. dffn: 128 847

• LeaP Downsample Factor: 2 848

The models for LRA Text Classification, were 849

optimized with Adam with classical parameters. 850

The models were trained with batches of size 32, 851

warmed up for 100 updates and linearly climbing 852

to a learning rate of 2e-4. A linear learning rate 853

decay was employed with 20000 updates in total. 854

A CLS token was used for classification. Dropouts 855

of 0.1 were employed when applicable. 856

11



A.6.5 LRA: Image Classification857

Below are the architectural details for our Image858

Retrieval models on the LRA benchmark:859

• Encoder Layers: 2860

• Transformer Dim. dmodel: 64861

• Attention Heads: 2862

• FFN Hidden Dim. dffn: 128863

• LeaP Downsample Factor: 1864

The models for LRA Image Retrieval, were865

optimized with Adam with classical parameters.866

The models were trained with batches of size 256,867

warmed up for 200 updates and linearly climbing868

to a learning rate of 1e-4. A linear learning rate869

decay was employed with 30000 updates in total.870

A CLS token was used for classification. Dropouts871

of 0.1 were employed when applicable.872

A.6.6 SimulST Models 873

Below are the architectural details for our SimulST 874

models: 875

• Encoder Layers: 12 876

• Decoder Layers: 6 877

• Transformer Dim. dmodel: 256 878

• Attention Heads: 8 879

• FFN Hidden Dim. dffn: 1024 880

• Conv. Pre-net Layers: 2 881

• Conv. Pre-net Kernel Size: 3 882

• Conv. Pre-net Stride: 2 883

• LeaP Downsample Factor: 4 884

The models for SimulST tasks were optimized 885

via Adam with classical parameters and a learn- 886

ing rate set to 6e-4 with an identical learning rate 887

scheduler. The models were trained with dynamic 888

batching, warmed up for 6000 updates, starting 889

with a learning rate of 1e-4, and trained for around 890

18000 updates in total with gradients clipped to 891

10.0. Dropouts of 0.1 were used for all linear lay- 892

ers and attention. SimulST models were trained 893

with a wait-k of 5 and pre-decision ratio of 9. 894

12


	Introduction
	Background
	Softmax Attention Mechanisms
	Efficient and Linear Transformers
	Position-Based Re-weighting Functions for Linear Transformers
	Motivation for Further Investigation

	LeaPformer: Learned Proportions for Linear Transformer Re-weighting
	From Position and Sequence Length to Proportion
	LeaP and LeaPformer: Learned Proportions
	Proposed LeaP Module Architecture
	Observed LeaP Module Expressivity

	Experiments
	Long-Range Arena Benchmark Setup
	Long-Range Arena Benchmark Results
	SimulST Setup
	SimulST Results

	Conclusion
	Limitations
	Appendix
	Licensing Information
	Codebase and Artifacts
	Hardware Details for Training and Evaluation
	Computational Costs of Experimentation
	RoPE with Linear Attention Elaboration
	Model Architectures and Hyperparameters
	LRA: ListOps
	LRA: Pathfinder-32
	LRA: Text Retrieval
	LRA: Text Classification
	LRA: Image Classification
	SimulST Models



