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Abstract

As Large Language Models (LLMs) rapidly
advance, increasing concerns arise regarding
risks about the actual authorship of texts we
see online and in the real world. The task of
distinguishing LLM-authored texts is compli-
cated by the nuanced and overlapping behav-
iors of both machines and humans. In this pa-
per, we challenge the current practice of con-
sidering the LLM-generated text detection a
binary classification task of differentiating hu-
man from Al. Instead, we introduce a novel
ternary text classification scheme, adding an
“undecided” category for texts that could be at-
tributed to either source, and we show that this
new category is crucial to understand how to
make the detection result more explainable to
lay users. This research shifts the paradigm
from merely classifying to explaining machine-
generated texts, emphasizing the need for de-
tectors to provide clear and understandable ex-
planations to users. Our study involves creat-
ing four new datasets comprised of texts from
various LLMs and human authors. Based on
the new datasets, we performed binary clas-
sification tests to ascertain the most effective
state-of-the-art (SOTA) detection methods and
identified SOTA LLMs capable of producing
harder-to-detect texts. Then, we constructed
a new dataset of texts generated by the two
top-performing LLMs and human authors, and
asked four human annotators to produce ternary
labels with explanation notes. This dataset was
used to investigate how three top-performing
SOTA detectors behave in the new ternary clas-
sification context. Our results highlight why the
“undecided” category is much needed from the
viewpoint of explainability. Additionally, we
conducted an analysis of explainability of the
three best-performing detectors and the expla-
nation notes of the human annotators, revealing
insights about the complexity of explainable
detection of machine-generated texts. Finally,
we propose guidelines for developing future
detection systems with improved explanatory

power.
1 Introduction

With the rapid evolution of Large Language Mod-
els (LLMs) such as ChatGPT-4 (OpenAl, 2023),
the sophistication and human-like quality of texts
generated by these models have notably increased,
enabling them to produce diverse content in re-
sponse to specific prompts. These advancements
bring not only numerous practical applications but
also raise significant challenges including poten-
tial academic fraud and actual authorship. Exten-
sive research has been undertaken to differenti-
ate between machine-generated texts (MGTs) and
human-generated texts (HGTs), primarily employ-
ing model-based approaches (Wang et al., 2023;
Bhattacharjee et al., 2023; Rezaei et al., 2024) and
statistical methods that analyze inherent text char-
acteristics (Hans et al., 2024; Bao et al., 2024,
Zhang et al., 2024; Ma and Wang, 2024). Sev-
eral online platforms such as GPTZero (Tian et al.,
2023) and Sapling (Sapling Al Team, 2023) have
also demonstrated robust capabilities in differenti-
ating MGTs from HGTs.

Traditionally, the detection of MGTs has relied
on a binary classification framework that discerns
between MGTs and HGTs. However, the bound-
aries between MGTs and HGTs are increasingly
ambiguous due to the rapid enhancements in LLMs,
thereby complicating the effectiveness of simple
binary classification systems. For instance, in statis-
tical detection, the characteristics of a given MGT
might deviate significantly from typical MGTs pat-
terns and mirror those of HGTs, leading to a mis-
classification. Model-based methods often struggle
with generalization as they tend to learn features
that are specific to the data they are trained on
(usually limited to one or more specific LLMs),
which may not necessarily work as new models
emerge. Moreover, many existing detection sys-
tems lack an explainability component. Recent



studies have emphasized the importance of inter-
pretability, introducing methods like LIME-based
explanations (Joshi et al., 2024) and SHAP (Mitro-
vi¢ et al., 2023) to enhance user understanding.
However, their effectiveness in providing mean-
ingful insights appears limited according to our
evaluations of one such methods (an online closed-
source detector) GPTZero (Tian et al., 2023). This
shortfall emphasizes a critical gap: the need for en-
hanced explainability in MGT detectors to improve
end users’ trust in such systems.

In order to address these limitations, our study
introduces a novel ternary classification system for
analyzing texts. Recognizing that some texts may
simultaneously share characteristics of both MGTs
and HGTs, we have added an “undecided” category
to our classification framework. This category ac-
counts for several complex cases, including stylis-
tically blended texts co-authored by humans and
LLMs, inherently ambiguous writing that plausibly
fits either class, and borderline cases where weak
signals exist but lack robustness. To support this
classification, we developed a ternary dataset and
designed experiments to test the validity of this
approach. Our methodology not only includes rig-
orous statistical and model-based analyses, but also
incorporates detailed human evaluations to provide
a nuanced understanding of the new ternary text
classification task and the complexity of producing
human-understandable explanations. By compar-
ing the explanatory power of human assessments
with that of automated detectors, we highlight the
current explanatory limitations faced by MGT de-
tectors.

Through some binary classification experiments
based on four new datasets covering multiple
state-of-the-art (SOTA) LLMs, we established that
the most advanced LLMs currently available are
ChatGPT-4 and ChatGPT-3.5, in terms of defeat-
ing multiple SOTA MGT detectors. The detec-
tors that performed the best in our experiments are
GPTZero (Tian et al., 2023), Sapling (Sapling Al
Team, 2023) and Binoculars (Hans et al., 2024).
Building on these findings, we crafted a ternary
classification dataset using texts from the aforemen-
tioned top-performing LLMs. We organized human
coders to annotate these texts, applying the ternary
classification framework and providing detailed
explanations for their decisions. Subsequent exper-
iments with the top three detectors proved the limi-
tations of binary classification so that the new “un-
decided” category should be seriously considered

in future research on MGT detection. Our compar-
ative analysis between the human-provided expla-
nations and those offered by the detector GPTZero
illuminated significant gaps in current automated
explanations. While human explanations provide
valuable insights, they also exhibit inherent limi-
tations and imply the complexity and challenges
behind developing more explainable MGT detec-
tors.

In conclusion, our research not only challenges
existing paradigms in MGT detection but also sets a
foundation for future innovations in detector design,
particularly in enhancing explainability. This work
suggests new directions for the development of
detection systems that are not only effective but
also transparent and interpretable to users.

2 Related Work

2.1 Open-Source Detectors

Zero-shot detection. This approach leverages
unique statistical properties distinguishing MGT's
from HGTs. Past studies have employed various
linguistic model-derived characteristics, such as
entropy (He et al., 2023), average log-probability
scores (Solaiman et al., 2019), perplexity (Wu et al.,
2023), and token cohesiveness (Ma and Wang,
2024) as useful statistical properties for detection.
With the evolution of LLMs that generate increas-
ingly sophisticated texts, more recent zero-shot de-
tection strategies (Gehrmann et al., 2019; Mitchell
et al., 2023; Su et al., 2023; Wu and Xiang, 2023;
Bao et al., 2024; Kumari et al., 2024) have adapted
to discern high-order features of advanced text gen-
erators. Notably, the Binoculars model (Hans et al.,
2024) leverages LLMs to perform next-token pre-
dictions at each text position, utilizing the log per-
plexity ratio compared to the baseline text as a
distinguishing statistic.

Model-based detection. This approach involves
adapting existing models to learn from specific
datasets for MGT detection (OpenAl, 2021; He
et al., 2023). It often includes sentence-level de-
tection and analyses different LLM outputs (Wang
et al., 2023; Bhattacharjee et al., 2023; Antoun
et al., 2023; Rezaei et al., 2024). However, these
methods can suffer from overfitting and gener-
ally exhibit limited effectiveness in detecting texts
across various domains.

Other approaches. There are also other ap-
proaches based on watermarking, adversarial learn-



ing based training, and human assistance (Wu et al.,
2024). These approaches are more complicated and
are often a mixture of different approaches, so in
this paper we consider two basic approaches only
to make our work more focused.

2.2 Online Close-Source Detection Systems

Despite their closed-source nature, online de-
tectors are of significant interest in academic
research (Yang et al.,, 2023). For instance,
GPTZero (Tian et al., 2023) integrates several an-
alytical components that predict if a piece of text
is generated by machine or human with a confi-
dence score, together with a sentence-by-sentence
analysis capability. Similarly, Sapling (Sapling Al
Team, 2023) utilizes a transformer-based architec-
ture akin to those found in generative Al systems.
Moreover, various platforms offer an online MGT
detection tool for all to use (Originality.Al, 2024;
Copyleaks Technologies Ltd., 2023; Inspera, 2023;
ZeroGPT.com, 2023).

2.3 Explainability in Current Detectors

Recent studies have introduced methods to enhance
the interpretability of detection models. For in-
stance, the HULLMI framework employs LIME
to provide insights into model predictions (Joshi
et al., 2024). According to its official documenta-
tion (Tian et al., 2023), GPTZero uses the following
six features to achieve explainability: readability,
percent SAT, simplicity, perplexity, burstiness, and
average sentence length. However, it does not pro-
vide clarity on how these features influence its final
judgments. Other efforts have focused on inte-
grating explanatory modules into detectors. One
study (Mitrovi€ et al., 2023) implemented Shapley
Additive Explanations (SHAP) (Lundberg and Lee,
2017), which assigns importance values to each
feature, enhancing the interpretability of decisions
in text source detection. Another investigation (An-
dré et al., 2023) computed textual attributes such
as perplexity, grammar, and n-gram distributions to
measure their effects on detection outcomes. De-
spite these advancements, the current state of detec-
tor explainability remains challenging for lay users
to comprehend.

3 Binary Classification Evaluation of
Detectors on MGTs and HGTs

This section outlines the assessment of state-of-the-
art (SOTA) MGT detectors through binary classi-
fication tests on datasets containing both MGTs

and HGTs. Our objective is to identify the most
effective and consistently accurate detectors across
various datasets and to pinpoint LLMs that exhibit
the strongest generative abilities and human-like
output. This process will involve binary classifica-
tion trials using custom-built datasets. The selected
detectors and LL.Ms will then be utilized in further
experimental investigations.

3.1 Experimental Design

We conducted our experiments using four datasets
specifically constructed for this study. It is cru-
cial to carefully select LLMs for text generation
and appropriate sources of HGTs to assemble the
dataset. We chose a mix of open-source and closed-
source SOTA MGT detectors for evaluation and
used standard performance metrics for the binary
classification tests.

LLMs. For text generation, we have opted for
widely recognized models including the closed-
source GPT-40 (OpenAl, 2024), known for its
robust performance. Additionally, we selected
Google’s Gemini Pro (Hassabis and the Gem-
ini Team, 2023), renowned for its ability to pro-
duce coherent and high-quality natural language
outputs. From the open-source domain, we have
chosen LLaMA3.3-70B (Dubey et al., 2024), and
Qwen2-72B (Yang et al., 2024)

HGT sources. To ensure a diverse and repre-
sentative collection of HGTs, we included se-
lections from public datasets such as the HC3
dataset (Guo et al., 2023), which contains texts
from four other public Q&A datasets and data
crawled from Wikipedia. Notably, it includes a cat-
egory of texts, similar to the ELI5 (“Explain Like
I’m Five”) format (Fan et al., 2019), where com-
plex issues are explained in simple terms. We also
extracted short texts from the IDMGSP dataset (Ab-
dalla et al., 2023), which comprises titles, abstracts,
introductions and conclusions of human-authored
scientific papers, alongside texts manually selected
from X/Twitter using tag searches to cover topics
of everyday discourse. This blend of sources pro-
vides a broad spectrum of topics and writing styles
in the human-generated texts within our dataset.

MGT Detectors. Initially, we chose GPTZero
and Sapling as the leading commercial (online and
closed-source) detectors from the proprietary sec-
tor. We then extended our selection to include sev-
eral notable open-source detectors such as Binoc-



Machine as Positive

Human as Positive

Models Accuracy Macro F1
Precision Recall F1 Precision Recall F1

GPTZero 93.90% 92.87% 95.10% 93.97% 94.98% 92.70% 93.83% 93.90%
Sapling 92.65% 89.82% 96.20% 92.90% 95.91% 89.10% 92.38% 92.64%
Binoculars 86.75% 80.35% 97.30% 88.01% 96.58% 76.20% 85.19% 86.60%
Fast-DetectGPT 76.45% 86.38% 62.80% 72.73% 70.78% 90.10% 79.28% 76.00%
MMD-MP 74.05% 95.81% 50.30% 65.97% 66.31% 97.80% 79.03% 72.50%
DEMASQ 61.75% 57.60% 89.10% 69.96% 75.94% 34.40% 47.35% 58.66%
DetectGPT 54.80% 81.58% 12.40% 21.53% 52.60% 97.20% 68.26% 44.89%

Table 1: Binary classification performance of different detectors on the dataset of GPT-40
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Figure 1: Comparison of detector performance across the four datasets produced by various LLMs, with MGTs as
positive samples. The x-axis represents different datasets, while different bars represent different detectors.

ulars (Hans et al., 2024), Fast-DetectGPT (Bao
et al.,, 2024), MMD-MP (Zhang et al., 2024),
DEMASQ (Kumari et al., 2024), and Detect-
GPT (Mitchell et al., 2023).

Custom-built Datasets. Four datasets were built
using the selected LLMs and HGT sources, as de-
tailed in Table 2. To control variables in subse-
quent analyses, the HGTs within these datasets
were maintained consistently across all experi-
ments. This standardization can help isolate the
variable effects of different LLM outputs on detec-
tor performance.

Evaluation metrics. The detectors are expected
to maximize MGT detection accuracy while min-
imizing false positives among HGTs. Therefore,
Precision, Recall, and F1 scores for MGTs are se-
lected as primary evaluation metrics. Other metrics,
such as the macro F1 score across two classification
situations (MGTs and HGTs as positive samples,
respectively), have also been used to provide a com-
prehensive assessment of detector performance.

3.2 Results

We evaluated various detectors on datasets, as de-
tailed in Table 1, focusing on the dataset generated
by GPT-40. This table highlights the performance

Dataset MGTs HGTs
D1 1000 (generated by GPT-40) 1000
D2 1000 (generated by Gemini Pro) 1000
D3 1000 (generated by LLaMA3.3-70B) 1000
D4 1000 (generated by Qwen2-72B) 1000

Table 2: Composition of the four datasets. The texts
cover a wide range of topics including economics,
healthcare, science, literature, sports, and daily life.

of detectors using both humans and machines as
the positive label. The results indicate that online
detectors, GPTZero and Sapling, significantly out-
perform local open-source counterparts. Specifi-
cally, DEMASQ effectively identifies MGTs but
struggles with HGT detection. Conversely, Detect-
GPT shows limited capability in detecting MGT's
while performing adequately with HGTs. See Ap-
pendix A for extended results for other datasets.

Figure 1 visually compares F1 scores of all tested
MGT detectors across all four datasets, confirming
the superior performance of GPTZero and Sapling
over local models. Among the latter, Binoculars
ranks the highest, demonstrating a consistent per-
formance across all datasets, suggesting its being
less susceptible to overfitting compared to other
local models. Further analysis reveals that texts



generated by GPT-40 and Qwen2-72B are gener-
ally more challenging to classify across all detec-
tors, compared to those generated by Gemini Pro
and LLaMA3.3-70B, implying that GPT-40 and
Qwen2-72B can produce texts that more closely re-
semble human writing. Based on these findings, for
the further experiments and discussions about the
new ternary classification framework and the com-
plexity of explainability, we chose to use a mixed
dataset with texts generated by GPT-40 and Qwen2-
72B, and HGTs. Similarly, on the selection of MGT
detectors, we focused on three top-performing ones,
GPTZero, Sapling, and Binoculars.

4 Ternary Classification Tests for Selected
MGT Detectors

4.1 Manual Annotation and Explanations

Following the outcomes from binary classification
experiments, we compiled a new dataset contain-
ing texts from GPT-40, Qwen2-72B and human
authors. The dataset consists of 400 texts, with
100 from GPT-40, 100 from Qwen2-72B, and 200
from human authors. We recruited four individuals
from the English-speaking community to annotate
400 texts to categorize each text into one of three
groups: human, machine, and undecided. The occu-
pations of the four English-native speakers are a se-
nior master student of computer science, a lecturer
of English Language and Literature at a UK Univer-
sity, a senior PhD student of NLP and a lecturer of
Law at a UK University, respectively, which indi-
cates the great diversity and qualifications of those
human annotators. They also provided explanatory
notes to justify their annotation results. Each anno-
tator first independently annotated the whole 400
texts and provided their explanations.

After all four annotators finished their work, we
calculated Fleiss’ kappa (Fleiss, 1971), which was
0.3760, indicating fair agreement among the an-
notators. To address the disagreements, all anno-
tators entered into a collaborative discussion on
the texts with different opinions, without revealing
the ground truth to the annotators, and the annota-
tors were asked to refine their annotations. After
the annotations were updated, we calculated Fleiss’
kappa again, which increased to 0.9875, reflecting
a near-complete consensus among all annotators.
Any texts that remain to have no consensus were
labeled as “undecided”. The explanation notes of
the four annotators were merged and refined to be
more consistent after the first author discussed with

Human Annotation  Total GT: Machine  GT: Human
Machine 162 159 3
Human 182 8 174
Undecided 56 33 (58.93%) 23 (41.07%)

Table 3: Comparison between human annotations and
ground truth (GT) labels.

the four annotators and other co-authors. More de-
tails of the dataset can be found in Table 3, which
shows that all human annotated MGTs and HGT's
are 96.80% correct according to the ground truth
labels. The high percentage of undecided texts
itself is indicative and already shows that the tra-
ditional binary classification approaches may be
problematic. More information about how the hu-
man annotators’ work is given in Appendix H.

The human annotation results revealed that,
although some automated MGT detectors have
achieved very good performance in predicting
ground truth labels, human annotators were clearly
not convinced by the cases falling into the “un-
decided” category. This can be partly explained
by what an ideal machine-based text generator is
supposed to do — to produce texts that are HGTs.
Although we may argue that SOTA LLM-based
generators are still far from ideal, the human anno-
tators clearly have seen many example MGTs that
are sufficiently human-like so that there is no con-
vincing way to label them as just MGTs or HGTs,
so “undecided” would be a better class to describe
them.

4.2 Method

Using the new dataset with ternary labels, we inves-
tigated how the three top-performing binary MGT
detectors performed in the context of the ternary
classification task. We generated 3 x 2 confusion
matrices to observe how the three different types
of texts, particularly those in the new “undecided”
category, are classified by the MGT detectors.

4.3 Results

The confusion matrices for the detectors GPTZero,
Sapling, and Binoculars, detailed in Fig. 2, reveal
that, while the detection accuracy is high for clearly
defined MGTs and HGTs (which was expected
based on the results of the binary classification
experiments reported in the previous section), chal-
lenges persist with the “undecided” texts. The most
interesting pattern is that all three detectors are
clearly biased on texts labeled as “undecided’: they
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Figure 2: Confusion matrices of three binary detectors (GPTZero, Sapling, and Binoculars) applied to a ternary
classification task with labels Machine, Human, and Undecided. All input texts were sufficiently long to meet the
minimum input length required by all detectors, so no predictions were skipped.

Source: ChatGPT-4

Text: Sweating itself does not directly cause colds. Colds are caused by viruses, not by being cold or sweating. However, if you
sweat and then get chilled, this might weaken your immune system temporarily, making you more susceptible to catching a cold
virus. Additionally, the belief that sweating leads to colds might stem from confusing the symptoms of a cold, which can include
sweating, with the cause of the cold.

GPTZero result: Al
GPTZero explanations: Readability: 72.3 (Medium) | Percent SAT: 1.7 (Medium) | Simplicity: 35.2 (Medium) | Perplexity:
45.3 (Medium) | Burstiness: 37.9 (Medium) | Average sentence length: 22.3 (Medium)

Human labels: undecided

Human explanations: The text is free from grammatical and spelling errors. This passage elucidates the relationship between
sweating and colds, maintaining an objective and rigorous tone. It encompasses both common knowledge and scientific principles.
The structure of the text is clear, with adverbial usage enhancing the clarity and fluency of the sentences. The text avoids
unnecessary repetition, making it readily comprehensible. Therefore, it should be categorized as “undecided.”

Table 4: Comparison between abstract scores from GPTZero and human-readable explanations

all have a clear tendency to classify such texts as
MGTs. This bias is largely aligned with the biased
percentage of MGTs in the “undecided” category
as shown in Table 3. Considering that human an-
notators considered such texts difficult to judge,
it is likely also difficult for the MGT detectors to
explain why they consider such texts generated by
either machines or humans. Another interesting
observation is that, both Sapling and Binoculars
have a much higher error rate for HGTs than for
MGTs labeled by our human annotators, imply-
ing HGTs may be generally harder to detect than
MGTs for most detectors. GPTZero does not seem
to suffer from this problem, but due to its closed-
source nature it is unclear how it achieved such a
performance.

5 Explainability of Detectors

The results in the previous section indicate the im-
portance for binary MGT detectors to explain their
results to human users, which is particularly im-
portant for texts in the “undecided” category since
human users may not agree on binary labels for
such texts, not mentioning the results from an auto-
mated MGT detector. In this section, we report our
analysis of explanation notes given by the four hu-

man annotators who constructed the ternary dataset
we used.

5.1 Analysis of GPTZero’s Explainability

Different from Sapling and Binoculars, which do
not provide any explanation for their results, earlier
versions of GPTZero (as of March 2024) offered
six concrete metrics to support a degree of explain-
ability: readability, percent SAT words, simplicity,
perplexity, burstiness, and average sentence length.
However, these features have since been removed,
and GPTZero now provides no explanation for its
decisions, leaving users with binary or scalar out-
puts without interpretability.

Table 4 shows an example, comparing the six
explainability metrics used by GPTZero and the
explanation notes given by our human annotators.
As can be seen, the metrics used by GPTZero has
limited explanatory power because they are too ab-
stract. For instance, all the six metrics are marked
as “Medium”, which does not explain why the fi-
nal judgment is Al Instead, “Medium” may better
fit into the “undecoded” category of our ternary
classification framework, as what the human anno-
tators stated in their more human-understandable
explanation notes.



A further empirical analysis was performed to
study how the six explainability metrics claimed by
GPTZero affect the final results. We constructed a
dataset using texts in the datasets we used in previ-
ous sections, and used the six metrics as the input
features and the GPTZero’s detection results as
the target class labels. We used an 80-20 training-
testing split and applied various traditional machine
learning models including logistic regression (Cox,
1958), SVC (Cortes and Vapnik, 1995), percep-
tron (Rosenblatt, 1958), and decision tree (Breiman
et al., 1984). The results showed that two metrics,
Readability and Perplexity, significantly affect the
GPTZero’s decision-making, while other metrics
played a minor role. Yet, the accuracy rates of all
models stayed below 80%, implying that GPTZero
uses other features and/or mechanisms to achieve
its much higher performance observed in Section 3.
For a comprehensive breakdown of these results,
refer to Appendix B.

5.2 Explanation Categories Provided by
Human Annotators

Our analysis of human annotators’ explanation
notes revealed six primary categories, each detailed
in Appendix C.

Linguistic fluency and coherence. This refers to
the correctness and naturalness of language, includ-
ing grammar, phrasing, punctuation, and sentence
variety. HGTs may include occasional errors or
awkward expressions, reflecting human fallibility.
In contrast, MGTs often produce technically cor-
rect but overly polished language, which may lack
the irregularities typical of human writing.

Stylistic register and tone. This refers to the
emotional tone and formality of a text, includ-
ing the use of personal pronouns, colloquial lan-
guage, or conversational expressions. HGTs are
more likely to display personal or emotional voice,
while MGTs tend to maintain a neutral, impersonal
tone, avoiding subjective stance or interpersonal
language.

Structural or formal patterning. This refers to
the overall organization and formatting of a text,
such as the use of lists, repeated sentence structures,
or rigid paragraph symmetry. MGTs often rely on
highly formulaic patterns and structural templates,
whereas HGTs usually follow more flexible and
varied writing conventions.

Content depth and specificity. This refers to the
degree of detail, conceptual clarity, and domain-
specific insight within a text. HGTs tend to pro-
vide richer context and nuanced discussion, while
MGTs often remain general, vague, or overly sim-
plistic due to limited reasoning depth or training
data generalization.

Personal or narrative elements. This refers to
the presence of storytelling, analogies, humor, or
personal reflection. HGTs frequently include such
elements to convey experience or emotion, whereas
MGTs typically avoid subjective expression and
may struggle to produce authentic narrative voice.

Bias. This indicates the presence of prejudicial
or favoring tendencies in a text. HGTs are more
likely to reflect personal or societal biases, while
MGTs generally show fewer biases, though they
can still mirror biases present in their training data.

These categories helped our human annotators to
be more certain on some HGTs and MGTs. How-
ever, texts lacking definitive features were catego-
rized as “undecided” based on the absence of clear
human or machine indicators.

6 Further Discussions

6.1 Justification for Ternary Classification

The introduction of the “undecided” category has
sparked a considerable debate concerning its valid-
ity. For instance, a text in Table 4 was categorized
as “undecided” by our human annotators, whereas
detection tools like GPTZero, Sapling, and Binoc-
ulars identified it as MGT — a classification that
is technically correct. However, according to our
human annotators, these texts were aptly placed in
the “undecided” category, arguing that there was
no definitive reason to label them strictly as MGTs,
suggesting instances where LLLMs might merely be
mimicking human-like output. More examples of
this kind can be found in Appendix F.

Upon reviewing the explanation notes provided
by our human annotators, we observed that charac-
teristics of MGTs and HGTs often overlap across
several categories. This overlap creates a gray area
in determining the origin of the text, as the bound-
aries between MGT and HGT are not always clear-
cut. Moreover, since MGTs are trained on and
derive from HGTs, they can produce texts that are
indistinguishable from human writings.

Although it is apparent that human annotators
struggled with accurately distinguishing the “unde-



cided” category from the other two, this ambiguity
also underscores the complexity of text generation
origins. Despite these challenges, the ternary clas-
sification provides a framework that can guide fur-
ther refinement in identifying and differentiating
these text categories. Future efforts should focus
on establishing more precise criteria to discern the
unique characteristics and distinctions among these
three labels.

6.2 Explainability of Detectors

In our recent experiments, human annotators cate-
gorized texts into three groups and provided expla-
nation notes for their classifications. The types of
explanation notes identified align with findings in
past research, highlighting key factors like errors,
perplexity, repetition, and readability as crucial
in distinguishing between MGTs and HGTs. For
instance, studies such as those by Mindner et al.
(2023) and Munoz-Ortiz et al. (2023) have doc-
umented similar observations regarding language
usage differences between MGTs and HGTs.

Human annotators’ explanation notes are pre-
dominantly qualitative, yet quantitative measures
can also be applied, particularly for aspects like
spelling and grammatical errors, perplexity, and
readability. For instance, tools such as Grammarly
can assist in evaluating spelling and grammatical
errors, while NLP tools can be used to calculate
text perplexity. Readability can be assessed us-
ing existing formalas such as the Flesch Read-
ing Ease (Flesch, 1948) and Flesch-Kincaid Grade
Level (Kincaid et al., 1975). Our experiments
demonstrate a gradual decline in readability and
perplexity scores from texts in the “human” cate-
gory to the “undecided” category, and finally to the
“machine” category. More detailed experimental
results can be found in Appendix G.

Despite the robustness of human explanations,
which are grounded in common sense and sup-
ported by the literature, discrepancies still exist.
For example, Hans et al. (2024) introduced the
“capybara problem”, where both prompts and re-
sponses with high perplexity can lead to misjudg-
ments about text origin, both by humans and auto-
mated detectors, particularly when prompt details
are unknown. Addressing the “capybara problem’
involves creating prompts that encourage LLMs
to produce features typical of HGTs, as detailed
by our annotators. Effective strategies for this are
outlined in Appendix D.

Currently, detector explainability is very limited,

B

and there are instances where provided explana-
tions do not accurately reflect the underlying rea-
soning of decisions. Future research should aim
to enhance the credibility and transparency of de-
tectors by incorporating explainability modules or
integrating explainable Al (XAI) components into
existing and future MGT detectors.

Future studies should also focus on a better un-
derstanding of the nuances between HGTs and
MGTs, possibly through user studies that assess
perception and comprehension. Technologically,
efforts could be directed towards improving the
user interfaces of MGT detectors to provide more
user-friendly explanations, potentially in an inter-
active, personalized and contextualized manner.
For example, models could indicate whether sen-
tences are derived from what training data or newly
generated, potentially using a confidence scale to
differentiate between entirely new creations and
slight modifications of existing data. Such trans-
parency could greatly enhance the explainability of
Al-generated content.

7 Conclusion

This paper explores the effectiveness and chal-
lenges associated with current text detection sys-
tems. We initially set up a binary classification
experiment to identify the top-performing detec-
tors and LLMs that excel in resisting such top-
performing detectors. The study was then extended
to include a ternary classification framework involv-
ing datasets from ChatGPT-4, ChatGPT-3.5, and
human sources, where human annotators assessed
and explained their classification decisions. The
results affirm the relevance of our ternary classifi-
cation approach, particularly as LLMs continue to
advance and produce increasingly human-like texts,
making traditional binary classification approaches
less meaningful. Our analysis indicates that while
current detectors are lacking in explainability, the
insights provided by human annotators are valu-
able for guiding future researcher on MGT detec-
tion. These outcomes lead us to recommend en-
hancements for future detection systems and their
explanatory components.



Limitations

This study is subject to several limitations. While
the human-produced explanations from our study
contribute valuable perspectives, they predomi-
nantly serve as recommendations and pointers for
further research on improving detection systems.
Additionally, given the ongoing advancements in
LLM technology, new research opportunities and
directions are likely to emerge, necessitating con-
tinual updates and revisions to our approach.

Ethics Statements

All experiments were conducted using publicly
available LLMs and datasets. For the datasets we
constructed as part of this work, no personal or pri-
vate information was included. Human annotation
was carried out by recruited contributors who are
not co-authors of this paper. The annotation proce-
dure was approved through an institutional research
ethics review. More details about the annotation
process can be found in Appendix H.
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A Detailed Results of Binary
Classification Experiments

In the binary classification experiments, the perfor-
mance of various detectors on datasets consisting of
texts generated by GPT-40 and humans is presented
in Table 1. Tables 5, 6 and 7 show the specific per-
formance of different detectors on texts generated
by ChatGPT-3.5, LLaMA-13B, and Gemini Pro,
respectively.

B More about Explanatory Power of the
Six Metrics of GPTZero

In the explanations provided by GPTZero, six ex-
plainability metrics are identified: Readability, Per-
cent SAT, Simplicity, Perplexity, Burstiness, and
Average Sentence Length. For all texts evaluated
by GPTZero and their corresponding six feature
values, we created a new dataset to analyze the
explainability provided by GPTZero. The ground
truth is based on GPTZero’s evaluation results. We
partitioned the dataset into training and test sets
with an 8:2 ratio. We trained four classifiers: Lo-
gistic Regression, SVC, Perceptron, and Decision
Tree. The weights and accuracy of the different fea-
tures obtained from these classifiers are presented
in Table 8. From the weights, it is evident that
the two most effective metrics in GPTZero’s ex-
plainability are perplexity and readability scores.
The remaining metrics contribute minimally to the
final results. Additionally, the trained classifier
exhibits relatively low accuracy, suggesting that
GPTZero employs more complex calculations or
utilizes additional sophisticated features that are
not disclosed.

C Examples of Different Types of
Explanations Given by Human
Annotators

Our revised analysis categorized human annota-
tors’ explanations into six main types. Below we
present representative examples and analyses for
each category to illustrate how annotators use spe-
cific textual features to inform their classification
judgments.

Linguistic fluency and coherence. In the text
in Table 9, grammatical inconsistencies, awkward
syntax, and unusual punctuation patterns led anno-
tators to classify the text as human-written. These
traits suggest natural writing imperfection and re-
duced language monitoring, common in informal
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human communication.

Stylistic register and tone. The text in Table 10
uses informal and emotionally expressive language
such as “pretend you’re sculpting clay” and direct
address (“you’), which suggests a conversational
and subjective tone typical of human writing.

Structural or formal patterning. The response
in Table 11 is structurally rigid and formulaic, with
repeated sentence patterns and list-based phrasing.
These traits led annotators to label it as machine-
generated.

Content depth and specificity. The text in Ta-
ble 12 was flagged as vague and overly general,
lacking topic-specific insight. Annotators viewed
this lack of depth as indicative of Al generation.

Personal or narrative elements. The text in Ta-
ble 13 includes metaphorical language and subjec-
tive reflection. Annotators noted the analogy (“like
sculpting clay”) as a human-like creative touch,
contributing to their “human’ label.

Bias. The statement in Table 14 casually specu-
lates on romantic interest in an offhand, possibly
inappropriate manner. This reflects personal bias
or humor, leading annotators to see it as human-
written due to its subjectivity.

D Counterexamples to Explanations
Provided by Human Annotators

Although human annotators often rely on specific
cues, these cues are not always reliable. Here we
present counterexamples for each explanation cate-
gory, illustrating cases where the expected correla-
tion between feature and authorship fails.

Linguistic fluency and coherence. In Table 15,
the machine-generated text intentionally includes
grammar and syntax errors (e.g., “I goes to school”)
to simulate human imperfection, misleading anno-
tators into labeling it as “human”.

Stylistic register and tone. The Al-generated
text in Table 16 uses casual tone and first-person
voice (“I love my family”), which might be inter-
preted as human traits. However, it was generated
by ChatGPT with stylistic prompts.

Structural or formal patterning. The text in
Table 17 follows a fragmented and inconsistent
structure with weak transitions, yet it was generated
by an Al system using low-cohesion prompts.



Machine as Positive

Human as Positive

Models Accuracy Macro F1
Precision Recall F1 Precision Recall F1
GPTZero 94.95% 93.01% 97.20% 95.06% 97.07% 92.70% 94.83% 94.95%
Sapling 93.20% 89.93% 97.30% 93.47% 97.06% 89.10% 92.91% 93.19%
Binoculars 86.80% 80.36% 97.40% 88.07% 96.70% 76.20% 85.23% 86.65%
Fast-DetectGPT 85.20% 89.02% 80.30% 84.44% 82.06% 90.10% 85.89% 85.16%
MMD-MP 81.25% 96.71% 64.70% 77.53% 73.48% 97.80% 83.91% 80.72%
DEMASQ 60.80% 57.07% 87.20% 68.99% 72.88% 34.40% 46.74% 57.86%
DetectGPT 69.05% 93.59% 40.90% 56.92% 62.19% 97.20% 75.85% 66.39%
Table 5: Binary classification performance of different detectors on the dataset of Gemini Pro
Models Accuracy Machine as Positive Human as Positive Macro F1
Precision Recall F1 Precision Recall F1
GPTZero 93.15% 92.77% 93.60% 93.18% 93.54% 92.70% 93.12% 93.15%
Sapling 93.60% 90.00% 98.10% 93.88% 97.91% 89.10% 93.30% 93.59%
Binoculars 87.55% 80.60% 98.90% 88.82% 98.58% 76.20% 85.96% 87.39%
Fast-DetectGPT 83.25% 88.53% 76.40% 82.02% 79.24% 90.10% 84.32% 83.17%
MMD-MP 83.55% 96.92% 69.30% 80.82% 76.11% 97.80% 85.60% 83.21%
DEMASQ 62.70% 58.11% 91.00% 70.93% 79.26% 34.40% 47.98% 59.45%
DetectGPT 65.55% 92.37% 33.90% 49.60% 59.52% 97.20% 73.83% 61.71%

Table 6: Binary classification performance of different detectors on the dataset of LLaMA3.3-70B

Content depth and specificity. Despite its rich
vocabulary and abstract ideas, the text in Table 18
was generated by a language model. Annotators
may misattribute such conceptual depth to human
authorship.

Personal or narrative elements. The Al-written
paragraph in Table 19 includes personal anecdotes
and humor, but was generated by prompt engineer-
ing. Such surface-level narrative signals can mis-
lead annotators.

Bias. In Table 20, the Al-generated text contains
exaggerated and biased descriptions of environmen-
tal conditions. Despite being generated, its opinion-
ated stance might be mistaken for human-authored
satire or emotional expression.

E Examples of Changed Judgments in
GPTZero Evaluations

Regarding the test results of GPTZero versions
from December 1, 2023, and May 1, 2024, the
judgment outcomes for the two texts have changed.
Both texts were machine-generated but were la-
beled as “undecided” by our human coders. Ini-
tially, GPTZero classified these texts as “human”,
but in the updated version, the classification has
changed to “Al”.

The feature values of the two texts in Tables 21
and 22 remained completely consistent across both
tests. However, the evaluation results were entirely
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opposite. This indicates that GPTZero operates
with a more complex mechanism, and the explana-
tions provided may not be highly interpretable.

F Examples of “Undecided”” and Human
Annotators’ Explanations

Due to space limitations in the main text, we pro-
vide additional examples here to illustrate texts
categorized as “undecided” along with the expla-
nation notes given by human annotators. These
examples demonstrate cases where human readers
identified stylistic or structural signals consistent
with either authorship type, but lacked decisive fea-
tures pointing strongly toward human or machine
generation.

G Quantitative Representation of
Explanations from Human Annotators

We quantified the perplexity and readability of ex-
planations provided by human coders. Text perplex-
ity was computed using scripts from the Natural
Language Toolkit (NLTK) with the GPT-2 model,
while readability was measured using the Flesch
Reading Ease and Flesch-Kincaid Grade Level for-
mulas.

Table 25 presents the average values of these
measures for texts in each category. It is evident
that texts classified as “Al” by human coders ex-
hibit lower perplexity and lower readability scores.
Specifically, a higher Flesch-Kincaid Grade Level



Machine as Positive

Human as Positive

Models Accuracy Macro F1
Precision Recall F1 Precision Recall F1
GPTZero 92.05% 92.60% 91.40% 92.00% 91.51% 92.70% 92.10% 92.05%
Sapling 92.90% 89.87% 96.70% 93.16% 96.43% 89.10% 92.62% 92.89%
Binoculars 85.70% 80.00% 95.20% 86.94% 94.07% 76.20% 84.20% 85.57%
Fast-DetectGPT 78.00% 86.94% 65.90% 74.97% 72.54% 90.10% 80.37% 77.67%
MMD-MP 76.05% 96.11% 54.30% 69.39% 68.15% 97.80% 80.33% 74.86%
DEMASQ 62.50% 58.00% 90.60% 70.73% 78.54% 34.40% 47.84% 59.29%
DetectGPT 55.35% 82.82% 13.50% 23.22% 52.91% 97.20% 68.52% 45.87%
Table 7: Binary classification performance of different detectors on the dataset of Qwen2-72B
Classifier Feature Importances Accuracy (%)
Readability PSAT Simplicity Perplexity Burstiness ASL
LR 3.094 -0.857 1.821 -2.517 0.036 0.713 75.76
SvC 2.637 -0.671 2.677 -2.189 0.051 0.654 77.27
Perceptron 4.109 -0.991 8.148 -4.437 0.417 1.039 78.79
Decision Tree 0.289 0.016 0.199 0.205 0.183 0.109 75.76

Table 8: Weights and accuracy of different classifiers using GPTZero’s six explainability metrics as features. LR
stands for Logistic Regression. PSAT stands for Percent SAT. ASL stands for Average Sentence Length.

value indicates a higher required English profi-
ciency level, which corresponds to a lower read-
ability score. Texts classified as “undecided” fall
between the “human” and “AI” categories. Thus,
our annotations by human coders are validated.

H More Details about Human
Annotators’ Work

The three human annotators we used are all co-
authors of the work. We did not recruit any other
human participants for the annotation task because
the construction of the ternary dataset required two
rounds of iteration, including a second round of
discussions among all authors to help the three an-
notators reach a consensus. We considered this
approach more appropriate for our study than using
external annotators. Since the annotation work was
conducted by co-authors and did not involve exter-
nal participants, the study did not require approval
from our institution’s research ethics review board.
The annotators were not financially compensated,
as their contribution was considered part of their
technical involvement in the research.

To minimize bias in the annotation results, each
annotator first completed the task independently.
Afterward, they convened to resolve any disagree-
ments through discussion. For the independent
annotation phase, we provided each annotator with
the unlabeled dataset and detailed instructions, as
shown in Table 26. During the discussion phase,
the first author facilitated the process and consulted
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with other co-authors regarding borderline cases to
support fair and consistent final decisions.



Text: Quite difficult to follow. A single long paragraph without much sense of structure. Odd layout and some errors.

Table 9: An example of human annotators using linguistic fluency and coherence to judge authorship. This text is
human-written, and the annotators labeled it “human”.

Text: Errors, colloquialisms, use of “you”. “Pretend you’re sculpting clay” sounds human.

Table 10: An example of stylistic register and tone guiding human judgment. The text is human-written and was
labeled “human”.

Text: Too formulaically structured to be human. The explanation is basically a list of facts with headings.

Table 11: An example of structural/formal cues leading to a machine classification. This text is machine-generated
and was labeled “machine”.

Text: It’s the list of themes. It feels mechanical and overly systematic. And it’s very vague and general.

Table 12: An example of annotators using content specificity as an indicator. This text is machine-generated and
labeled “machine”.

Text: The comparison with sculpting clay feels like the sort of comparison that would be made by a person who understands the
tactile similarities.

Table 13: An example of personal or narrative elements used in human-authored text. Annotators labeled this as
“human”.

Text: That, or they just want to bone you.

Table 14: An example where personal/social bias is interpreted as evidence of human authorship. The text was
written by a human and labeled “human”.

Al-generated text (with prompt to include grammar errors): Hello! My name is Li Wei. I lives in a small family. My father
he is a teacher and my mother works in a hospital. I goes to school every day. I liking to read books and playing games after
school...

Table 15: An Al-generated text with grammatical errors designed to mimic human mistakes.

Al-generated text (prompted to sound informal): I very love my family. We likes to go to the park. I happy to share about
them.

Table 16: An example where Al mimics informal and personal tone. Annotators might misclassify this as human.

Al-generated text (with low structure prompt): Machine learning is all about teaching computers to learn from data. Imagine
a music app... Self-driving cars... Bias can be a problem...

Table 17: An Al-generated text with disrupted structure, simulating informal human writing.

Al-generated text (high-perplexity prompt): In the penumbra of the quantum foam, time and space convolute into a symphony
of probabilities...

Table 18: An Al-generated text with high conceptual density, potentially misclassified as human.

Al-generated text (prompted for personal tone): I watched it because I love Keanu Reeves. I should get the points for being
the only guy with the balls to say I like this movie.

Table 19: An example of Al mimicking subjective narrative expression. Annotators may mislabel it as human.

Al-generated text (bias prompt): The sanitary conditions are so deplorable that even wildlife struggles to survive...

Table 20: An Al-generated text that expresses subjective bias in a way similar to human satire.
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Source: ChatGPT-4

Text: Sweating itself does not directly cause colds. Colds are caused by viruses, not by being cold or sweating. However, if you
sweat and then get chilled, this might weaken your immune system temporarily, making you more susceptible to catching a cold
virus. Additionally, the belief that sweating leads to colds might stem from confusing the symptoms of a cold, which can include
sweating, with the cause of the cold.

GPTZero result: Al
GPTZero explanations: Readability: 61.8(Medium) Percent SAT: 2.5(Medium) Simplicity: 40.0(Medium) Perplexity:
34.4(Medium) Burstiness: 36.0(Medium) Average sentence length: 17.3(Medium)

Table 21: Comparison between abstract scores from GPTZero and human-readable explanations

Source: ChatGPT-4

Text: "Imagine sending a toy camera tied to a super long string into a deep, dark well (like a black hole). If you try to pull it
back, the string would probably break because the well is so strong it can even pull light inside and not let it escape! So, the
camera wouldn’t come back.

Also, the camera would stop working as it gets closer to the black hole because the black hole’s super-strong pull (gravity) would
break it. Even if the camera somehow kept working and came back, the pictures or videos it took would be all strange and
stretched, not like anything we see around us. This is because black holes bend light and time in weird ways.

Right now, this idea is more like a fun science fiction story because we don’t have the technology to do it, and black holes are
really, really far away from us."

GPTZero result: Al
GPTZero explanations: Readability: 72.3(High) Percent SAT: 1.7(Medium) Simplicity: 35.2(low) Perplexity: 45.3(Medium)
Burstiness: 37.9(Medium) Average sentence length: 22.3(Medium)

Table 22: Comparison between abstract scores from GPTZero and human-readable explanations

Text: Listen, I've been in your shoes before, and the best advice I can give you is to embrace change. Life is unpredictable, and
sometimes we get comfortable in our routines, but growth happens when we step out of our comfort zones. Don’t be afraid
to take on new challenges, explore different opportunities, and learn from every experience, even if it seems daunting at first.
Remember, the magic happens outside your comfort zone. So, be open to change, embrace the unknown, and trust in your ability
to adapt. You’ll be amazed at the personal and professional development that follows.

Human explanation: The language is clear, smooth, and well-structured, with no surface-level mistakes. The tone is encouraging
and empathetic, employing rhetorical strategies like direct address and motivational phrasing. These features suggest human
authorship, but the overall clarity and polish could also reflect advanced model output. Because neither the personal voice nor
the linguistic imperfections are strong enough to determine origin, the annotator considered it “undecided”.

Table 23: An “undecided” text where both interpersonal tone and formal consistency coexist.

Text: To conclude, we empirically show that a significant number of later layers of CNNs are robust to the absence of the spatial
information, which is commonly assumed to be important for object recognition tasks. Modern CNNs are able to tolerate the
loss of spatial information from the last 30% of layers at around 1% accuracy drop; and the test accuracy only decreases by less
than 7% when spatial information is removed from the last half of layers on CIFAR100 and Small-ImageNet-32x32. Though
depth of the network is essential for good performance, the later layers do not necessarily have to be convolutions.

Human explanation: The writing is technically accurate and domain-specific, using precise numerical details and scientific
phrasing typical of expert authorship. The logical flow and factual completeness indicate deep knowledge. However, the dense
and impersonal tone, along with consistent structure and polished syntax, resembles model-generated summaries. Given the lack
of strongly distinctive human voice or error, the annotator classified it as “undecided”.

Table 24: An “undecided” text where technical correctness and neutral tone lead to ambiguity.

Category Perplexity  Flesch Reading Ease  Flesch-Kincaid Grade Level

Human 52.72 69.42 7.95
Undecided 34.21 57.44 9.28
Al 21.62 48.02 10.72

Table 25: Average perplexity and readability scores for different classes labeled by human coders. A higher Flesch
Reading Ease score indicates greater readability, while a higher Flesch-Kincaid Grade Level score indicates lower
readability.
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The file in the experiment folder is a spreadsheet where we record the text, detection results, and explanation of detection results.
Your task is to determine the likely source of the text in the first column and provide an explanation for your judgment.

The file contains three columns:

The first column is “text,” which contains the text to be analyzed. Each piece of text should be categorized as one of the following:
“human,” “machine,” or “undecided.”

The second column is “detection result,” where you indicate your judgment on the source of the text. Label the text as “human’
if you believe it was written by a person, “machine” if you believe it was generated by a model, and “undecided” if the source
cannot be clearly determined.

The third column is “explanation,” where you briefly explain your reasoning behind the label in “detection result.”

Below is an example for illustration:

Text: A fan is an electrical appliance used for cooling and air circulation. It operates by rotating blades, which create a breeze to
cool down a room or space. Fans come in various types, including ceiling fans, table fans, and pedestal fans, each designed for
specific needs. They are energy-efficient and provide a cost-effective way to stay cool, especially during hot weather. Fans also
help in ventilating areas by moving stale air and introducing fresh air.

Detection result: undecided

Explanation: This text discusses the topic of electric fans in a neutral, factual manner. The structure is clear and free from
grammatical or logical issues. It shows characteristics common to both human- and machine-generated writing, making it
difficult to confidently determine the source. Therefore, I marked it as “undecided.”

Note: The labeled results are intended solely for academic research.

)

Table 26: Human Annotation Instructions
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