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Abstract
The current relationship modeling paradigm, grounded in the observational i.i.d assumption,
fundamentally misaligns with our causal knowledge understanding due to two key oversights:
1) the unobservable relations, which lead to undetectable hierarchical levels of knowledge,
driving the need for model generalizability; 2) the counterfactual relative timings, which
fundamentally support our structural knowledge comprehension, resulting in inherent biases
under this Observation-Oriented paradigm. Adopting a novel Relation-Oriented perspective,
this paper proposes a new framework to unify the various confusions surrounding causality
learning, ranging from traditional causal inference to modern language models.
Also, relation-indexed representation learning (RIRL) is raised as a baseline implementation
method of the proposed new paradigm, alongside comprehensive experiments demonstrating
its efficacy in autonomously identifying dynamical effects in relationship learning.

1 Introduction
The concept of Artificial General Intelligence (AGI) has prompted extensive discussions over the years Newell
(2007), with the target toward facilitating human-like causal reasoning and knowledge comprehension in AI
systems Marcus (2020). In recent years, the large language models (LLMs) have risen as notable achievements
in language-understanding tasks and accordingly evoked debates about whether LLMs have edged us closer
to realizing AGI Rylan (2023). Some studies point to their shortcomings in truly comprehending causality
Pavlick (2023), while others argue in favor of LLMs’ ability to represent complex spatial and temporal
features Wes (2023). Notably, the use of meta-learning in language models has shown potential in achieving
human-like generalization capabilities, at least to a certain extent Lake (2023).

These debates are anchored in a fundamental question: What underpins the distinction between two types
of generalization? One is how humans generalize learned causal knowledge to diverse scenarios, and another
is how AI systems generalize captured associative knowledge among texts and images.

It appears that classical causal inference has offered a clear delineation among causality, correlations, and
mere associations Pearl et al. (2000); Peters et al. (2017). Moreover, it has provided a robust theoretical
groundwork for representing causality in computational models. Based on that, causal learning has been
widely utilized and yielded significant contributions to causal knowledge accumulation in various fields Wood
(2015); Vuković (2022); Ombadi (2020). It is thus logical to incorporate well-established causal knowledge,
often represented as causal DAGs (Directed Acyclic Graphs), into AI model architectures Marwala (2015);
Lachapelle et al. (2019). While this integration has greatly enhanced learning efficiency, it has not yet
achieved the level of generalizability that constitutes a success Luo (2020); Ma (2018).

This likely circles us back to the initial question, as causal inference cannot directly bridge the gap between
human-like causal reasoning and current AI systems. However, it does offer a different perspective: How
would humans conduct causal reasoning based solely on DAGs? A task that evidently challenges AI.

Even within the realm of causal inference, the process of converting DAGs into operational causal models
is rigorous Elwert (2013). Tailored adjustments and interpretations are often required, reliant on human
discernment across varied applications Sanchez (2022); Crown (2019). Key challenges include establishing
the basic causal assumptions Sobel (1996), addressing confounding effects Greenland (1999), ensuring model
interpretability Pearl et al. (2000), etc. These achievements constitute the cornerstone of the value provided
by causal inference methodologies. It stands to reason that the answer to this fundamental question may be
gleaned from examining the challenges that causal inference has faced and partially overcome.
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From an applicational standpoint, Scholkopf (2021) have synthesized the development of current causal
models, underscoring the pivotal role of realizing “causal representations” to achieve the generalizability of
AI-based causal models across different “levels of knowledge” learning. They propose the potential need
for a “new learning paradigm” - an idea we find both logical and thought-provoking. Our current models,
ranging from causal to AI, are chiefly based on the assumption of independent and identically distributed
(i.i.d.) observations, a paradigm that may be hindering their ability to autonomously realize generalizable
causal reasoning. On the other hand, Zhang (2012) points out the “identifiability difficulty” when facing
nonlinear effects, an inherent obstacle under the i.i.d observational effect setting.

For clarity, we designate the prevailing paradigm as Observation-Oriented modeling. In this study, we
propose a novel paradigm, termed Relation-Oriented modeling, inspired by the relation-indexing nature of
human cognition processes Pitt (2022). Through this new lens, we seek to pinpoint the intrinsic limitations
of the existing paradigm. Accordingly, to validate the proposed new paradigm, it must shed light on the
array of questions that have emerged from the outset. To encapsulate these queries:

❖ Firstly, causal inference challenges such as confounding effects, dependency on causal assumptions, and
interpretative complexities call for a foundational explanation.

❖ Secondly, To integrate causal reasoning within AI models, we need a nuanced understanding of “levels
of knowledge,” the essential role of causal representation, its relevance to the difficulty of identifying
nonlinear effects, and potential resolutions to these issues.

❖ Thirdly, in the context of Large Language Models (LLMs), we must discern the distinction between the
“spatial and temporal” conceptions in language versus causality comprehension, and critically interpret
what meta-learning has accomplished in terms of generalizability.

While these questions might seem disparate, they are intrinsically linked to the fundamental requirement by
the Observation-Oriented paradigm: it necessitates the prior specification of observable entities (including
temporal events). In solely observational learning tasks (like image recognition), these entities serve as the
modeling target. In causal relationship learning, they are priorly identified as causes and effects, with their
interrelation acting as the primary learning objective.

This requirement introduces two primary limitations: 1) the inability to account for unobservable relations
in knowledge, which leads to undetectable hierarchical levels to challenge the model’s generalizability, and 2)
the prior obligation to identify effects, potentially leading to the overlook of relative timings, which underpin
the structure of dynamics within our causal knowledge, and essentially introducing inherent biases.

Undetectable Hierarchy by 𝜔

Overlooked Temporal Space ℝ𝑇

Limitations

Dynamical Generalizability Required

Significant Inherent Biases

Impacts

Dynamical Variables

Relation-Indexed Representation

Resolutions

L1

L2

Neglected Effect Dynamics Inverse Learning

Figure 1: Overview of the Observation-Oriented paradigm’s primary limitations (labeled as L1 and L2 ).
See section 1.2 for the concept of hidden relation ω, and 2.1 for temporal space RT with relative timing axes.

This paper consists of four principal parts:

1. the Introduction, which sets the foundation for the proposed Relation-Oriented perspective in section
1.1, and analyze the roles of unobservable relational knowledge in modeling, using an illustrative
example to explain its resulting undetectable hierarchy in section 1.2 (i.e., the limitation L1 ).

2. Chapter I, including Sections 2 through 4, establishes the Relation-Oriented framework to decompose
relationship modeling from a more precise perspective, and through this framework, examines the
fundamental impacts of the outlined limitations, and addresses the queries listed above.

3. Chapter II, from Sections 5 to 7, introduces the Relation-Indexed Representation Learning (RIRL)
methodology as a baseline realization of the Relation-Oriented paradigm and evaluates the efficacy
of relation-indexed autonomous effect identification.

4. the Conclusion in Section 8 summarizes the insights and findings of this study.
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1.1 Relation-Oriented Perspective

Typically, experiments with n trials produce instances xn = x1, . . . , xn from sequential random variables
Xn = X1, . . . , Xn, which are usually assumed to be independent and identically distributed (i.i.d.). When
these variables evolve over time, n is often replaced by the timestamp t to get temporal sequence Xt =
X1, . . . , Xt, maintaining the i.i.d assumption, and the relationship function is in shape Y = f(Xt; θ).

In our research, we abandon the i.i.d. assumption over {Xi | i = 1, . . . , t} on the temporal dimension t,
instead treat their sequence Xt as a single entity, denoted by variable X ∈ Rd+1, with d representing the
observational dimension of each instance Xi. For clarity, we use X ∈ Rd to represent a solely observational
variable, and let X = ⟨X, t⟩ ∈ Rd+1 derived by incorporating the t-dimension to encompass features across
both observational and temporal dimensions. It is worth noting that variables such as X are conventionally
referred to as spatial-temporal Andrienko (2003). However, in this context, “spatial” is broadly interpreted
to mean “observational” and is not restricted to physical spatial data, such as geographic coordinates.

Consider the functional relationship Y = f(X ; θ), where Y = ⟨Y, τ⟩ ∈ Rb+1 with τ representing the temporal
evolution of Y ∈ Rb. We employ the Fisher Information IX (θ) Ly et al. (2017) of X about θ, to define the
component of Y (signified as Ŷ) that is sufficiently identified by indexing through θ:

Definition 1. the Relation-Indexed Representation Ŷθ in Relationship Modeling.
Let the relation θ adequately represents the influence of X on Y, denoted as X θ−→ Y, then Ŷθ = f(X ; θ)
represents the sufficient component of Y about θ, which is, IŶθ

(θ) = max IŶ(θ) = IX (θ).

Consequently, Ŷθ encapsulates the information within Y that is entirely derived from X , thus defined as the
relation-indexed representation. Accordingly, the remaining component of Y, expressed as Y − Ŷθ, does not
depend on θ. The Relation-Oriented perspective focuses on building models by concentrating on θ.

The notation “→” typically denotes causality, although a directional relationship does not always imply
causality in logic. Nonetheless, for clarity, we will adopt terminology consistent with causal inference:
for relationship X θ−→ Y, we refer to X as the cause and Y as the effect, with a relation θ connecting
them. Accordingly, the definition of Ŷθ is aligned with the “causal representation” concept Scholkopf (2021).
Crucially, in this research, both causality and correlation denote types of relationships with a relation θ (their
difference will be discussed later), while association refers to statistical dependency (typically nonlinear)
between entities without an informative θ, expressed as (X ,Y).

Remark 1. Given X θ−→ Y with observables X and Y, the relationship model Y = f(X ; θ) becomes
informative due to the unobservable θ.

The principle outlined in Remark 1 has its origins in the concept of Common Cause Dawid (1979); Scholkopf
(2021), suggesting that any nontrivial (i.e., informative) conditional independence between two observables
requires a third, mutual cause (i.e., the unobservable “relation” in our context).

X and Y can be either solely observational entities, equal to X and Y (e.g., images, spatial coordinates of
a quadrotor, etc.), or observational-temporal entities (e.g., trends of stocks, a quadrotor’s trajectory, etc.).
Regardless of their characterization, the primary goal of utilizing the function Y = f(X ; θ) is to encapsulate
the unobservable relational knowledge represented by θ, rather than merely associative distribution (X ,Y).

To clarify the concept of informative θ, let’s consider a simple example. In the relationship “Bob (represented
as X) has a son named Jim (represented as Y )”, the father-son relation information I(θ) between them is
evident to human cognition but unobservable to AI provided sufficiently observed social activities. Also, θ
can be seen as the common cause of X and Y that makes their connection unique, rather than any random
pairing of “Bob” and “Jim”. Through the observational data, AI might deduce a particular associative
pattern over (X, Y ), but cannot internalize the unobservable information I(θ) between them.
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Drawing on the symbolization provided in Definition 1, a comprehensive Relation-Oriented framework is
introduced in Section 2, offering more complete insights into the modeling of causal relationships.

1.2 Unobservable Relational Knowledge

Unobservable knowledge may not directly serve as the learning objective relation θ, but it can still be relative
to and profoundly impact the modeling process. We elucidate this with the following example: It is notable
that on social media, AI-created personas can have realistic faces but seldom showcase hands. This is
because AI for visual tasks struggles with the intricate structure of hands, instead treating them as arbitrary
assortments of finger-like items. Figure 2(a) provides AI-created hands with faithful color but unrealistic
shapes, while humans can effortlessly discern hand gestures from the grayscale sketches in (b).

Humans intuitively employ informative relations as the indices, guiding us to specific mental representations
Pitt (2022). As illustrated in Figure 2(b), our cognition operates hierarchically, progressing through a series
of relations, denoted as θ = {θi, θii, θiii}. Each higher-level understanding builds upon conclusions drawn at
preceding levels. Specifically, Level I identifies individual fingers; Level II distinguishes gestures based on
the positions of the identified fingers, incorporating additional information from our understanding of how
fingers are arranged to constitute a hand, denoted by ωi; and Level III grasps the meanings of these gestures
from memory, given additional information ωii from knowledge.

(a) AI-generated faces accompanied with hands (b) How human understand images of hands  

Observation 𝑿 Recognition 𝒀

Level 𝑰    Knuckles, Nails, …
Level 𝑰𝑰   Relative Positions
Level 𝑰𝑰𝑰 Gestures

Identification of Fingers
Left/Right & Gestures
Intentions  𝜽𝒊𝒊𝒊

𝝎𝒊

𝝎𝒊𝒊

𝜽𝒊𝒊

𝜽𝒊

Figure 2: Unobservable relations θ = {θi, θii, θiii} and ω = {ωi, ωii}. AI can generate reasonable faces but
treat hands as arbitrary mixtures of fingers; while human cognition processes observations hierarchically to
avoid this mess, by indexing through a series of relations {θi, θii, θiii}.

Typically, these visual learning tasks do not aim to model relations, neither θ nor ω. Instead, they focus on
capturing observational entities (pertaining solely to X). Without relation-indexing through θ, AI systems
may not distinguish entities across different levels but only capture their associative dependence, like (XII |
XI) and (XIII | XI , XII), without deeper, informative insights into ω.

However, for such solely observational learning, the hidden ω may not always be essential. If entities across
levels are observationally distinct and non-overlapping, AI can accurately differentiate them. For instance,
AI can generate convincing faces because the appearance of eyes strongly indicates facial angle, removing
the need to distinguish “eyes” = XII from “faces” = XI . Additionally, based on fully-captured levels, AI can
inversely uncover the hidden ω using methods such as reinforcement learning Sutton (2018); Arora (2021) -
In this case, approvals of generated five-fingered hands may lead AI to identify fingers autonomously.

Definition 2. Hidden Relation ω and its resulting Undetectable Hierarchy.
Different from the indexing relation θ, the hidden relation ω can constitute undetectable hierarchical
levels of knowledge, requiring model generalizable to be effective across.

A generalizable model enables the learned lower-level relationships to be reusable for higher-level learning
tasks Scholkopf (2021), which mirrors our inherent capability to generalize knowledge in cognition. For
example, our ability to identify fingers can be applied regardless of the types of medium, like images, photos,
or videos. Conversely, generalizability also denotes the capacity to individualize from higher to lower levels,
accommodating different ω values.
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The illustration in Figure 2 highlights the distinct roles of unobservable relations (θ and ω) in modeling. Our
central concern, however, is modeling relationships with θ as the primary objective relation for learning. In
this context, ω stratifies unobservable θ into hierarchical levels, culminating in a completely imperceptible
joint distribution of (θ, ω), which precludes methods like inverse reinforcement learning.

For instance, consider family incomes X influence grocery shopping frequencies Y through relation θ. Here,
the cultural background ω emerges as an important factor, such that an effective model Y = f(X; θ) has
to be individualizable, i.e., conditioned on a specific country (represented by a particular ω value) to ensure
practical utility. On the opposite, a generalization would imply ω = ∅.

For the sake of clarity, hereafter in this paper, unless explicitly stated otherwise, the hidden relation ω

represents two hierarchical modeling levels: the generalized level Xo
θo−→ Yo with θo implying ω = ∅, and the

individualized level Xω
θω−→ Yω given θo with a specific ω value, collectively notated as (θ, ω) =

(
θo

θω

)
.

Chapter I: Limitations of Current Observation-Oriented Paradigm

The prevalent Observation-Oriented modeling paradigm inherently misaligns with the relation-centric human
comprehension Pitt (2022). This misalignment may not have been critical in the past. In traditional causal
inference, challenges could be addressed through intended adjustments due to the limited scale of questions.
Nonetheless, with the advancements in AI-based large models, the consequences of this misalignment have
become increasingly significant across various applications.

Section 2 establishes a Relation-Oriented dimensionality framework to symbolize causal relationship models;
through which, we recognize the critical role of relative timings (highlighted as limitation L2 ), and explore
the essence of dynamical generalizability for a structuralized relationship model. Subsequently, Section 3
delves into the critical implications of the frequently overlooked effect dynamics (the secondary impact of
L2 ), and accordingly reevaluates present causal learning challenges based on the new framework. Lastly,

Section 4 elucidates the inherent biases that Observation-Oriented causal models essentially introduced into
structural causal relationship learning (the primary impact of L2 ).

2 Relation-Oriented Dimensionality Framework

In the intense debates surrounding AGI, a pivotal question persists: Can AI systems, based on conceptual
symbolizations, truly embody human-like understanding in empirical inquiries Newell (2007); Pavlick (2023)?
We propose to focus on representing unobservable elements within knowledge, such as abstractly meaningful
relations, which are vital for the informativeness of our causal reasoning. By indexing through these relations,
AI models have the potential to reflect our logical deductions, symbolize the cognitive concepts they lead
to, and ultimately construct their representations. As aligning with causal knowledge, these representations
can yield generalizable models, critical for actualizing causal reasoning in AGI.

By Definitions 1 and 2, representing a directional relationship in modeling necessitates two types of variables:
the observables {X ,Y}, and the unobservables θ and ω. As specified, X and Y include both observational and
temporal features. In response, we adopt the concept of a hyper-dimension to integrate these unobservable
features. Consequently, we establish a framework, as illustrated in Figure 3, to represent relationships as
joint distributions across three distinct types of dimensions. For clarity, “feature” refers to the potential
variable fully representing a certain distribution of interest.

Figure 3 aims to decompose our cognitive space where relational knowledge is stored. The hyper-dimensional
space RH is constructed by aggregating all unobservable relations in our knowledge, such as (θ, ω) ∈ RH .
Conversely, the observational-temporal joint space, RO ∪ RT , is considered as the observable space. In
both RO and RT , a temporal dimension consistently signifies the evolution of timing but represents distinct
concepts, as outlined in section 2.1. Within such a dimension, linear and nonlinear distributions correspond
to static and dynamical features, respectively, a distinction further explained in section 2.2.
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Definition 3. The Relationship Symbolization within the proposed Dimensionality Framework.
For the relationship X ϑ−→ Y, where {X ,Y} ∈ RO and ϑ ∈ RT ∪ RH , the structuralized relation ϑ can
be decomposed as:

ϑ =
−−−−−→
θ1 . . . θT , where (θi, θj) ∈ RH for any i ̸= j ∈ {1, . . . , T}. Accordingly,

(ϑ, ω) =
(

ϑo

ϑω

)
=

(
θ1

o . . . θT
o

θ1
ω . . . θT

ω

)
with any (θi

o, θj
o) ∈ RH and (θi

ω, θj
ω) ∈ RH .

Figure 3: Relation-Oriented Dimensionality Framework: splitting the knowledge-storing cognitive space by
their accommodated features, where {Xt, Y t} ∈ RO−1, {X ,Y} ∈ RO, and (X ,Y | ϑ) ∈ RO−1 ∪ RT .

2.1 Absolute Timing vs. Relative Timings

In spatial-temporal data, the attribute recording observed timestamp t typically reflects the absolute timing
of reality. However, from a modeling view, the temporally meaningful t values are indistinguishable from
other attributes. As shown in Figure 3, the absolute timing t serves as a standard dimension within the
observational space RO, along which, X and Y are invariably observed as data sequences Xt and Y t.

Contrarily, in our cognition, relative timings inherently exist Wulf (1994) to support the “what if” thinking
and form structualized relational knowledge. We thereby designate a distinct “temporal space” RT , composed
of T relative timings as axes (i.e., T cognitive timelines Shea (2001)), to accommodate the knowledge-aligned
temporal distributions. Instead of treating {X ,Y} ∈ RO as individual variables, under ϑ (as per Definition
3), they are jointly distributed across RO−1 and RT , represented as (X ,Y | ϑ) ∈ RO−1 ∪ RT .

ϑ can span up to T timing dimensions in RT , with the effect Y =
∑T

i=1 Ŷi decomposed into T components,
each residing in a distinct timing. Crucially, defining ϑ as a “structuralized” relation not only recognizes its
multi-dimensionality but also highlights the potential nonlinear dependence among these timings, manifested
as (Ŷi, Ŷj) ∈ RO−1 ∪ RT , while more precisely represented by (θi, θj) ∈ RH in Definition 3. We term these
nonlinear temporal dependences as dynamical interactions for clarity, which necessitate the establishment
of RT space, rather than additional temporal dimensions within RO (detailed in section 2.3).

For instance, patients’ vital signs are recorded daily in a hospital with absolute chronological timestamps.
However, to assess a medical intervention Y, a uniform series of post-medication events must be selected,
for example, spanning from the day after medication to the 30th day. This creates a timeline represented
by the axis ticked as [1, 30] to denote the relative timing, regardless of absolute timestamps of the selected
records. Yet, if the intervention involves two distinct aspects, such as the primary effect Ŷ1 and the side
effect Ŷ2, and their mutual influences are of interest, then two separate relative timings, t1 and t2, must be
considered for their individual evolutions, even though both may be labeled as [1, 30].

Remark 2. Although Y ∈ RO is observed as a sequence along the absolute timing t, it may represent
an underlying structure determined by X ϑ−→ Y, spinning multiple relative timing axes in RT space.
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Conventionally, the concept of “temporal dimension” is often simplified as the single absolute timing t,
evident from the traditional “spatial-temporal” analysis Alkon (1988); Turner (1990); Andrienko (2003), to
recent advancements in language models Wes (2023). However, as emphasized in Remark 2, our cognitive
perception of “time” is more complex, fundamentally enabling our causal reasoning Coulson (2009).

For an intuitive insight into the implications of neglecting relative timings in RT , let’s consider an analogy:
Imagine ants dwelling on a floor’s two-dimensional plane. To predict risks, the scientists among them create
two-dimensional models and instinctively adopt the nearest tree as a height reference. They noticed increased
disruptions at the tree’s first branch, which indeed correlates to the children’s heights, given their curiosity.
However, without understanding humans as three-dimensional beings, they can only interpret it by adhering
to the first branch. One day, after relocating to another tree with a lower height, the ants found the risk
presenting at the second branch instead, making their model ineffective. They may conclude that human
behaviors are too complex, highlighting the model generalizability issue.

As three-dimensional beings, we inherently lack the capacity to fully integrate the fourth dimension - time
- into visual perception. Instead, we conceptualize “space” in three dimensions to incorporate features of
the temporal dimension along a timeline within the space, analogous to our “tree”. Yet, ants do not need
to fully comprehend the three-dimensional world to build a generalizable model; instead, they need only
recognize the “forest” out of their vision (i.e., counterfactual), which consists of all “possible trees” with
relatively different branch locations. Similarly, in our modeling, we must include the RT space, composed of
all potential relative timings within our causal knowledge, although they cannot be directly observed.

Remark 3. Counterfactuals can be considered as posterior distributions within RO ∪ RT .

Addressing counterfactual queries, such as “What effect would be if the cause were changed”, differentiates
causality from mere correlations Scholkopf (2021). Within the proposed framework, counterfactuals can
be more intuitively interpreted by distributions, possibly offering valuable insights in fields like quantum
computing. In particular, the observed prior conditions can be viewed as features in RO; then, all subsequent
possibilities can be collectively considered as a conditional distribution in RO−1 ∪ RT .

2.2 Dynamical vs. Sequential Static

The distributions along a dimension can be broadly classified into linear and nonlinear categories. Within
the temporal dimension, these correspond to static and dynamical temporal features, respectively, and can
be represented by corresponding variables. Static features are typically linked to specific timestamps. For
instance, consider the statement “rain leads to wet floors”; here “wet floors” represents a state that can be
identified at a particular point in time. Therefore, it can be denoted as a static variable Xt with a specified
timestamp t. In contrast, the expression “floors becoming progressively wetter” necessitates a representation
that captures the temporal distribution, to account for changes over time, like Xt = X1, . . . , Xt. However,
this raises the question: Is Xt a dynamical variable or a sequence of static variables?

Within the current machine learning paradigm, the distinction between “static” and “dynamical” is typically
made between “models” instead of “variables” PGMadhavan (2016), which refers to whether time is a factor
in the model’s equations. However, this essentially requires the function f(Xt; θ) to represent the dynamics of
effect, inherently encompassed by Y. As a result, the model selection for f(; θ), as well as the identification of
a static outcome Yt+1, become crucial in determining how much effect dynamics can be captured Weinberger
& Allen (2022), or potentially neglected, which will be discussed in detail in Section 3.

Definition 4. A Dynamical Outcome Y compared to a sequential static Y τ .
As a dynamical variable, Y = ⟨Y, τ⟩ ∈ RO permits nonlinear computational freedom over τ , whereas
a sequential static variable Y τ ∈ RO−1 assumes i.i.d or linear changes along τ . They samely appear
to be sequential instances yτ = y1, . . . , yτ , while the dynamical significance of Y is model-dependent.

Definition 4 is based on the proposed Relation-Oriented paradigm, wherein the relation θ ∈ RH and the
outcome Y ∈ RO are considered individually. Here, θ represents certain unobservable information within RH ,
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lacking an explicit distributional representation. This allows Y to be an individual variable that encompasses
the dynamical effects caused by X . Similarly, the cause X = ⟨X, t⟩ ∈ RO can also be a dynamical variable,
depending on specific models. For example, RNN models typically formulate Yt+1 = f(X ; θ) with a dynamical
cause represented by latent space features, but remaining the outcome static.

Accordingly, the statement “floors becoming progressively wetter” can be roughly considered as “linearly
increasing from 0% to 100% in 10 minutes” to be a sequential static feature. It can also be depicted as a
continuous nonlinear distribution, a dynamical feature for finer granularity. The latter can cover variances in
the former, such as varying progression speeds, which the former cannot. In essence, implementing dynamical
variables is crucial for achieving model generalizability across temporal dimensions.

Level II: Different 
Sequences 𝑥𝐴

𝑡  and 𝑥𝐵
𝑡

𝒕
Observed Absolute 

Timing

0 𝑨 𝑩
𝝉

Logical Absolute 
Timing

0

Level I: the Same
Sequence 𝑥𝑜

𝑡

Observed Relative 
Timing

Observed 
Relative 
Timing𝒕𝟐

𝒕𝟏 𝑦𝐵
1

𝑦𝐵
2

𝑥

𝑦𝐴
1

𝑦𝐴
2

Logical Relative 
Timings 𝝉𝟏 and 𝝉𝟐 

are Omitted 

𝑦1

𝑦2

𝑥

𝜃1

𝜃2

(c) Observed-View (with 𝜔 = 𝐴/𝐵) DAG                                             (d) Logic-View (𝜔 = ∅) DAG

(a) Observed-View (with 𝜔 = 𝐴/𝐵) Distribution                                (b) Logic-View (𝜔 = ∅) Distribution

Figure 4: Comparisons of the individualized dynamics from the model’s Observed-View, and the generalized
dynamics from humans’ Logic-View. In (c) and (d), the structuralized relation ϑ =

−−→
θ1θ2 with T = 2.

When considering a structuralized relation ϑ, a valid generalization process requires the model to remain
effective over all temporal dimensions at any level, no matter for the absolute timing within RO, or the relative
timings in counterfactual RT . In our cognition, the generalized causal knowledge (ω = ∅) can be instinctively
extracted from individualized varied scenarios (with varying ω values). However, the undetectability of (ϑ, ω)
implies our models cannot autonomously fulfill this process, irrespective of whether they are AI-based.

Figure 4 showcases models’ and humans’ perspectives, distinguished as the “Observed-View” and “Logic-
View”. (a) and (b) compare a simple dynamical distribution within RO, while (c) and (d) display a DAG
structure across two relative timings in RT , which exhibits a typical dynamical confounding scenario. In (c),
the static instances y1

A and y1
B indicate that the two individualized dynamical effects YA and YB reach the

same status value y1 in dimension t1, signifying that they attain an equivalent magnitude; this is similarly
observed in another timing dimension t2. Notably, the edge from y1 to y2 may highlight a dynamical
interaction between effect components Ŷ1 and Ŷ2, beyond a mere linear dependence.

Definition 5. The Dynamical Interaction Confounding Phenomenon.
For relationship X ϑ−→ Y, when effect Y encompasses multiple dynamics over distinct relative timings,
the dynamical interaction among them can lead to dynamical confounding within Y ∈ RO−1 ∪ RT .

2.3 Informative Hyper-Dimensional Space

In summary, the human-like causal reasoning can be represented as (ϑ, ω) ∈ RT ∪RH . Accordingly, AGI that
meets our expectations should adequately encapsulate informative ϑ and ω. Here, ϑ ∈ RT ∪RH denotes the
structuralized causality within our knowledge, while ω ∈ RH indicates the ability to capture nonlinearities
in all dimensions (including temporal dynamics), to achieve model generalizability.
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Figure 5 provides a fundamental overview of the prevailing relationship modeling methods, highlighting
their primary limitations, as briefly summarized in Figure 1. Within this context, ϑω is used to represent
generalizable causal structures in AGI, and we identify the two major obstacles in our pursuit of it.

Absolute Timing 𝒕 with 𝜃 Relative Timings with  𝜗 = 𝜃1…𝜃𝑇

Individualized 
Observed-
View with
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RNNs 𝒳
𝜃𝜔
𝑌𝑡 :

Generalizable Dynamical Cause only, 
Neglected Effect Dynamics; Inherent Biases

LLMs (𝒳,𝒴, 𝜔) : 
Hierarchical Dynamical Associations

Generalizable over 𝒕 alone

AGI with Generalizable 
Structural 𝜗𝜔

Generalized 
Logic-View 
𝜔 = ∅

Regular Functional 𝑋𝑡՜
𝜃
𝑌𝑡 :

Correlation between Static Entities
Ungeneralizable; Inherent Biases

Causal Inference DAGs 𝜗𝑜:
Overlooked Nonlinear Dynamics
 Ungeneralizable Structural 𝜗𝑜

L1

Obstructed 
by

L2Obstructed by

(In Section 3)
Neglected Effect Dynamics
Further Lead to:

• Identification Difficulty

• Imbalanced Model

• Interpretation Complexity

• Assumption Reliance 

Figure 5: Overview of major obstacles toward AGI (referring to Figure 1). L1 = Undetectable hierarchy by
ω that requires dynamical generalizability. L2 = Overlooked multi-dimensional RT with relative timings.

Regular relationship models derive the functional parameter θ from the correlation between static cause
and effect events, priorly identified within absolute timestamps. Notably, Granger causality Granger (1993),
a method well-regarded in economics Maziarz (2015), introduces separate temporal sequences for cause
(Xt) and effect (Y τ ), suggesting the allowance for multiple timings. However, the significance of recognizing
temporal dimensions lies in capturing their featured dynamical evolutions. Without nonlinear computations,
distinguishing between t and τ for static sequential timestamps offers limited meaning.

Likewise, causal inference often omits explicit relative-timing axes in causal DAGs due to the typical exclusion
of nonlinear dynamics in modeling, as depicted in Figure 4 (d). While inherently adopting a Relation-Oriented
perspective based on the Logic-View knowledge (ϑo), it tends to overlook the Observed-View with varied ω,
thus failing to visualize the model generalization needs. To address this, we suggest enhancing conventional
DAGs to illustrate dynamical variations across relative timings, as further detailed in Section 4.

Unsurprisingly, AI-based RNNs are increasingly favored in modern relationship learning Xu et al. (2020),
considering their proficiency in handling nonlinear causes. RNNs transform the observational sequence Xt

into a feature representation in latent space, enabling nonlinear computation over t to effectively implement
dynamical X . However, potential dynamics of the effect Y are often overlooked, resulting in imbalanced
causal function Yt+1 = f(X ; θ) with a static outcome Yt+1. This accordingly motivates the emerging trend
in inverse learning methods Arora (2021). Further details will be discussed in Section 3.

On the other hand, large language models (LLMs) have facilitated the autonomous identification of different
dynamics under various conditions (ω values) in the semantic space Wes (2023). However, “multiple temporal
dimensions” accommodating different dynamics do not necessarily equate to “multiple relative timings”.

Remark 4. Temporal Dimensions implying mutual nonlinear independence can be simultaneously
identified from absolute timing t within RO; Relative Timings suggest potential nonlinear dependence,
i.e., dynamical interactions, which require a distinct RT space to reflect their counterfactual structure.

In essence, current LLMs primarily focus on semantic associations along an absolute timing t, which indicates
the order of phrases. Given the consistent sequential semantics in words, the omission of relative timings is
reasonably justifiable for the scope of today’s context-associative learning tasks. Even along the t dimension,
instead of explicitly extracting θ, most language models implicitly reflect it through the association (X ,Y).
This might contribute to AI’s ability to generate intelligent responses without truly “understanding” in a
human sense, due to the absence of an informatively extracted θ.

9
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Integrating meta-learning with LLMs could potentially enhance the associative model generalizability Lake
(2023), over the t timing alone. Particularly, given meta-learning’s adaptability to diverse conditions in solely
observational tasks Hospedales et al. (2021), its application could lead to improved hierarchical association
(X ,Y, ω) to better reflect hierarchical relations (θ, ω). Given our goal of achieving informative structural
knowledge as represented by ϑω or (ϑ, ω), which encapsulates (θi, θj) ∈ RH for any distinct i, j ∈ {1, . . . , T},
discussing AGI within the current LLM framework might still be premature. We suggest that enabling
Relation-Oriented meta-learning could potentially bring us closer to this target.

3 Neglected Effect Dynamics in Causality

Traditional causal inference often highlights the interpretability of causal models, notably to be distinguished
from mere correlations. In essence, these distinctions are not inherently embedded in the modeling context
but are mainly evident in model interpretations, which can potentially guide further causally meaningful
improvements for the model. Given the statistical basis of causal inference, the significance of nonlinear
temporal dynamics has not been fully embraced yet. This section concentrates on these often overlooked
dynamics, aiming to provide a more intuitive understanding of causal learning.

Definition 6. Causality vs. Correlation in the modeling context.
• Causality X ϑ−→ Y is the relationship neccessitating dynamical effect Y ∈ RO−1 ∪ RT .
• Correlation Xt θ−→ Y t only requires static cause and effect, possibly sequential static Xt and Y t.

Timestamp t was first introduced by the Picard-Lindelof theorem in the 1890s, initiating the functional form
Yt+1 = f(Xt) to represent time evolution. Subsequently, the time series learning methods, like autoregressive
models Hyvärinen (2010), facilitate the form of Yt+1 = f(Xt) with a sequential causal variable Xt, where the
time progress from t to t+1 is predetermined. For RNNs, the latent space optimization over the representation
of Xt is driven by predicting the observed Yt+1 through the parameterized relation θ. Consequently, the
significant temporal nonlinearity within Xt over t can be captured, enabling the form of Yt+1 = f(X ; θ) with
a dynamical cause X . However, the effect Yt+1 remains static, leaving its potentially significant dynamics
completely managed by the function f . While f can be selected as nonlinear to enable X , the time evolution
from Xt to Yt+1 is always left as linear, resulting in static outcome sequence Y t = Y1, . . . , Yt.

Timeline 𝒕 
(# of Days)

30 Days20 Days 40 Days

Generalized 
Dynamical Effect ℬ𝑜

Effect of 𝑷𝒊 

Specify D30 Static Effect 
for all patients

Daily Effect 
Sequence 𝑩𝒕

0 Day

𝑑𝑜(𝑨)

Effect of 𝑷𝑗  

𝑑𝑜(𝑨) = Initial Use of Medication 𝑀𝐴 𝑩 = the Measured Vital Sign ( = Blood Lipid in this Case)

D1

(𝝎 = ∅)
(𝝎 =

 𝑃𝑖 , 𝑃𝑗 , …)

(a) Observed Temporal Distribution ℬ𝜔                                           (b) Complete Two-Level Effect Dynamics

Figure 6: do(A) denotes the initial use of medication MA for reducing blood lipid B. The goal is to estimate
the generalized effect of MA, i.e., Bo. By the rule of thumb, Bo needs around 30 days to fully release (t = 30
at the black curve elbow). Patient Pi and Pj achieve the same static effect by 20 and 40 days instead.

Figure 6(a) illustrates the often overlooked effect dynamics in traditional causal models. The action do(A)
causes dynamical Bω (observed as sequence Bt), disentangled by two levels in (b): Level I, the generalized
standard sequence Bo of length 30; Level II, the individualized variations Bω −Bo. Assume the unobserved
individualized characteristics linearly impact Bo, making ω = Pi, Pj , . . . simply represent speeds.
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A typical clinical model, like Bt+30 = f(do(At)) that averages all patients’ D30 static effects as the outcome,
turns to neglect D1-D29 within Bo. However, even adopting a sequential outcome Bt (e.g., Granger causality),
it remains challenging to accurately estimate Bo by linear averaging, not to mention further reaching Bω.
Particularly, it requires the selected records to meet certain criteria, essentially equal to manually defining
the boundary of Bo by exploring all possible ω values.

Such hierarchical dynamical effects are prevalent in fields like epidemic progression, economic fluctuations,
and strategic decision-making. They often rely on similar preprocessing to identify specific levels, such as
the group-specific learning methodology Fuller et al. (2007). These approaches have become impractical in
AI-based applications and may lead to notable information loss in large-scale structural models.

3.1 Identification Difficulty of Dynamical Effect

In a relationship X θ−→ Y, an Observation-Oriented model can be ideally formulated as Y t = f(X ; θ) based
on existing knowledge, to derive θ and generate the static sequential estimations Ŷ t

θ = Ŷ1, . . . , Ŷt with high
accuracy. Yet, two types of errors may present challenges: the discrepancy between the specified outcome
sequence and the targeted dynamical effect | Y − Y t |; and the modeling error from predetermined function
f(; θ). They contribute to the difficulty of identifying nonlinear effects Y Zhang (2012).

Specifically, due to the static sequence Y t, the task of representing neglected dynamics of Y shifts either to
f(; θ) or to X . In the former scenario, a factor σ representing “disturbance” is integrated into the function,
resulting in f(; θ + σ) Zhang (2012). In the latter case, as illustrated in do-calculus Pearl (2012); Huang
(2012), the dynamics of X need to be manually discretized as identifiable temporal events to ensure their
observational effects. This enables a fluid transformation from dynamical cause to observational effect, but
the identifiability relies on non-experimental data (controllable θ) and can introduce additional complexities.

Considering the differential essence of do-calculus, we provide a streamlined reinterpretation of its three core
rules from an integral viewpoint. Let do(xt) = (xt, xt+1) indicate the occurrence of an instantaneous event
do(x) at time t, with the time step ∆t appropriate to ensure the interventional effect of do(xt) identifiable
as a function of the resultant distribution at t + 1. Meanwhile, a separate observational effect is provoked
by the static xt. Then, the dynamical cause X can be discretized as below:

Given X θ−→ Y, where X = ⟨X, t⟩ ∈ Rd+1 with the augmented t dimension residing a l-length sequence,

X =
∫ l

0
do(xt) · xt dt with


(do(xt) = 1) | θ, Observational only (Rule 1)
(xt = 1) | θ, Interventional only (Rule 2)
(do(xt) = 0) | θ, No interventional (Rule 3)
otherwise Associated observational and interventional

The effect of X can be derived as f(X ) =
∫ l

0
ft

(
do(xt) · xt

)
dt =

l−1∑
t=0

(yt+1 − yt) = yl − y0

Based on a controllable θ, it addresses three criteria that can preserve conditional independence between
observational and interventional effects, completing the chain rule, but sidesteps more generalized cases. If
oppositely defining Y = ⟨Y, τ⟩ as a dynamical effect, discretizing the dynamics in do(y) remains necessary.

3.2 Imbalance between Cause and Effect

For the model itself, causal directionality (i.e., the roles of cause and effect) may not impose restrictions,
although it is often emphasized in model interpretations. Specifically, when selecting a model for a directional
relationship X → Y , one could use Y = f(X; θ) to predict the effect Y , or X = g(Y ; ϕ) to inversely infer
the cause X. Both parameters, θ and ϕ, are obtained from the joint probability P(X, Y ) without imposing
modeling constraints. We refer to this as symmetric directionality for clarity.

The empirical concerns for modeling directions mainly arise for two reasons: 1) to comply with our intuitive
understanding of temporal progression; 2) the current causal modeling exhibits an imbalance in capturing
dynamics between the cause and the effect, with a typical example as RNNs, represented by Y = f(X ; θ).

11



Under review as submission to TMLR

Given the symmetric directionality, and to capitalize on the imbalance, inverse learning methodology Arora
(2021) has recently garnered increasing attention, to achieve autonomous dynamical effect identification by
inversely assigning the effect as the cause within RNNs. However, this approach is unsuitable for addressing
the structuralized relation ϑ. Specifically, the overlooked relative timings within ϑ may introduce inherent
bias; due to stemming from an implicitly assumed nonlinear independence, it cannot be eliminated even by
inverting the model. This will be further detailed in Section 4.

Another factor contributing to the imbalance is the increased difficulty when specifying effect sequence Y t

compared to cause sequence Xt. While organizing sequential data around a major causal event (e.g., days of
heavy rain) is feasible, pinpointing the precise onset of subsequent effects (e.g., the exact day a flood began
due to the rain) remains a more complex task.

Remark 5. By indexing through θ, simultaneous optimization of X and Y can be achieved, mitigating
their imbalance and enabling autonomous identification of both dynamical variables.

The Relation-Oriented modeling approach seeks to autonomously derive θ from the feature representations
of X and Y within the latent space. Specifically, the initial sequences Xt and Y t are transformed into
a latent space, RL, which allows nonlinear computational freedom in their temporal dimensions. Then, a
neural network representing θ can be trained between them in RL without relying on prior assumptions.

The training process uses X as the input and Y as the output, indexed through θ, facilitating the concurrent
optimization of both dynamical representations. Consequently, this yields sequentially associated (X , θ, Ŷθ),
with each individual representation maintaining. The implementation will be outlined in Chapter II.

3.3 Interpretation Complexity

Since effect dynamics are often partially overlooked, traditional causal inference introduces the concept of
“hidden confounder” to enhance model interpretability. For example, the node E in Figure 7 (a) symbolizes
the unobserved individualized characteristics in the scenario depicted in Figure 6.

However, this approach does not necessarily require collecting additional data to identify E. This might
lead to an illogical implication: “Our model is biased due to some unknown factors we don’t intend to
explore.” Indeed, this strategy employs a solely observational causal variable, E, to account for the overlooked
dynamical effect features. While E remains unknown, its inclusion can complete the model interpretation.
Yet, from the modeling perspective, as illustrated in Figure 7(b), the associative cause do(A) ∗ E remains

unknown, failing to provide a modelable relationship for addressing (θ, ω) =
(

θo

θω

)
.

𝑑𝑜(𝑨)

𝑩

the Unobserved 
Characteristics  

of Patient

(a) DAG with Hidden Confounder

Correlation Model 𝑩𝒕+𝟑𝟎 = 𝑓(𝑑𝑜 𝑨𝒕 )

(b) Relation-Indexing Disentanglement (c) Latent Space Architecture of (b)

𝑑𝑜 𝑨 ∗ 𝑬 = {𝑑𝑜 𝑨 ∗ 𝑬𝒊 , 𝑑𝑜 𝑨 ∗ 𝑬𝒋, … } Patient ID = {𝑖, 𝑗, … } 

Decode

Encode

ID Sequences

ID

Sequences

∗ →

Sequences

𝒇(𝒅𝒐(𝑨))  
𝑑𝑜(𝑨) 𝑬

ID
𝑬 = {𝑬𝒊, 𝑬𝒋, … }

Figure 7: (a) Traditional causal inference DAG. (b) Hierarchical disentanglement of effect dynamics through
relation-indexing. (c) Autoencoder-based generalized and individualized reconstruction processes.

Fundamentally, incorporating a hidden confounder can improve the model’s interpretability but not its
generalizability. In contrast, the Relation-Oriented approach does not require extra modeling; it leverages θ
as indices to extract Ŷθ, enabling the use of any observed identifier associated with ω, such as patient IDs.
As illustrated in (c), this hierarchical disentanglement of representations in the latent space can effectively
encapsulate effect dynamics to achieve generalizability.
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3.4 Causal Assumptions Reliance

Due to the frequently overlooked effect dynamics, traditional causal learning typically relies on foundational
causal assumptions to validate practical applications. In Figure 8, we categorize causal model applications
into four distinct scenarios based on two aspects: Firstly, depending on whether the predetermination for θ
is based on knowledge, they are divided into Causal Discovery and Causation Buildup. Secondly, they are
further differentiated by the dynamical significance of their effects.

Modeled Relation Modeled Directionality

❶

Observational Only.
Undiscovered Dynamics 
covered by Faithfulness 

Assumption.

Observational Data Determined.
Not Logically Meaningful.

❷
Observational Only.

Aligned with Knowledge.
Observational Data Determined.

Maybe Logically Suggestive.

❸

Knowledge Determined.
Unmodeled Dynamics covered 

by Hidden Confounders or 
Sufficiency Assumption.

Knowledge Determined.

❹ Knowledge Determined. Knowledge Determined.

Relationship still 
Unknown

Relationship 
in Knowledge

No Dynamically 
Significant Effects

Include Dynamically 
Significant Effects

Causal Modeling 

Causal 
Discovery

Causation 
Buildup

Figure 8: Categories of currently prevalent causal learning applications. The left rectangular cube illustrates
causally meaningful relationships in logic, with the potentially modelable scope highlighted in blue.

As depicted in Figures 6 and 7, the individualized dynamical features are easily overlooked in a generalized
causation buildup process. Based on existing knowledge, some unobserved entities may be identified as hidden
confounders, thereby enriching model interpretations. Nonetheless, if such identification is not easy, the
foundational Causal Sufficiency assumption may lead to the complete neglect of these dynamics, presuming
that all potential “hidden confounders” have been observed in the system.

On the other hand, causal discovery typically unearths structural relationships by detecting dependence
among observables, but is usually confined to observational attributes, excluding their temporal features.
If their dynamical features are not crucial, discovered associations can provide valuable insights into the
underlying correlations; if they are essential, significant dynamics might be overlooked due to the Causal
Faithfulness assumption, which suggests that captured observables can fully represent the causal reality.

Furthermore, although the discovered relationships are directional, these directions frequently lack a logical
causal implication. Consider X and Y with predetermined directional models Y = f(X; θ) and X = g(Y ; ϕ).
The direction X → Y would be favored if L(θ̂) > L(ϕ̂). Let IX,Y (θ) denote the Fisher information about θ
given P(X, Y ). Use p(·) as the density function, and

∫
X

p(x; θ)dx remains constant in this context. Then:

IX,Y (θ) = E[( ∂

∂θ
log p(X, Y ; θ))2 | θ] =

∫
Y

∫
X

( ∂

∂θ
log p(x, y; θ))2p(x, y; θ)dxdy

= α

∫
Y

( ∂

∂θ
log p(y; x, θ))2p(y; x, θ)dy + β = αIY |X(θ) + β, with α, β being constants.

Then, θ̂ = arg max
θ

P(Y | X, θ) = arg min
θ
IY |X(θ) = arg min

θ
IX,Y (θ), and L(θ̂) ∝ 1/IX,Y (θ̂).

The inferred directionality indicates how informatively the observational data distribution reflects the two
predetermined parameters. Consequently, such directionality is not logical but could be dominated by the
data collection process, with the predominant entity deemed the “cause”, consistent with existing conclusions
Reisach (2021); Kaiser (2021). Even when informative θ and ϕ are incorporated based on knowledge, they
might not provide insights for dynamically significant causal relations.
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4 Relative Timings in Structural Causality

Consider a structural relationship Y θ1←− do(X) θ2−→ Z, where two dynamical effects of do(X) progress along
distinct relative timings t1 and t2. Initially, Y and Z are identified as sequences Y t and Zt according to
absolute timing t. Regarding the interaction between Y and Z, three distinct scenarios are possible: 1) no
interaction, implying θ1 ⊥ θ2 ∈ RH ; 2) Y and Z are confounded dynamics but with linear dependence
only; 3) they form dynamical confounding with nonlinear dynamical interactions.

In scenario 2), AI models like inverse RNNs can accurately capture ϑ =
−−→
θ1θ2 by using do(X) = f

(
(Y, Z)t; ϑ

)
with associative identification (Y, Z)t =

(
(Y, Z)1, . . . , (Y, Z)t

)
. Yet, if a conventional Structural Causal Model

(SCM) lacking dynamical capture capability is used, or if inverse RNNs are employed under the conditions
of scenario 3), the associated (Y, Z)t might introduce inherent bias, consequently reducing the model’s
robustness and generalizability. Instead, it is necessary to initialize Y t and Zt individually, and then engage
in a two-step relation-indexed learning to sequentially obtain Y = f1(do(X); θ1), and Z = f2(do(X) | Y; θ2).

This section will first demonstrate the inherent bias through an intuitive example (section 4.1), explore its
impact on the generalizability of structural causal models (section 4.2), and finally discuss the advancements
and challenges on our path toward incorporating structural causal knowledge within AI (section 4.3).

4.1 Scheme of the Inherent Bias

Timeline of Days

𝑡 𝑡 + 30𝑡 + 20 𝑡 + 40…

𝑩

𝑑𝑜(𝑨)

𝑩 𝑩

𝑷𝒊 is 1/3 Faster 𝑷𝒋 is 1/3 Slower𝑑𝑜(𝑨)

𝑩

the Unobserved 
Characteristics  

of Patient 𝑬 = {𝑬𝒊, 𝑬𝒋, … }

(a) (b)

Figure 9: (a) Initial DAG introducing hidden E. (b) Enhanced DAG (Directed Acyclic Graph).

Figure 9(a) revisits the hidden-confounder inclusion depicted in Figure 6. To clearly visualize the dynamical
variations across multi-dimensional relative timings, we propose an enhancement to the conventional causal
DAGs. This enhancement, as shown in (b), is carried out through two steps:

1. Consider dynamically significant effects and integrate their relative timings as individual axes.
2. Use edge lengths to signify timespans needed for reaching a certain effect magnitude in a static value.

Figure 10(a) depicts a structural relationship B θ1←− A
θ2−→ C, extending from the scenario in Figure 9(b),

with A succinctly replacing do(A). It features two distinct dynamical effects: the primary effect B via θ1,
represented by the edge −−→AB leading to a static value for vital sign B; and a side effect C via θ2 on another
vital sign C, indicated by edge −→AC. Notably, C can influence B, creating confounded dynamics across two
timing axes t1 and t2. For simplicity, we assume dynamical independence, by fixing the timespan of −→AC at
10 days for all patients, which is in scenario 2), and focus on modeling the static outcome B to predict the
average fully-released medical effect in this population.

𝒕𝟏

𝒕𝟐

𝑩 𝑩𝑨 𝑩

𝑪

𝑩𝒕+𝟐𝟎𝑨𝒕 𝑩𝒕+𝟑𝟎

𝑪𝒕+𝟏𝟎

𝑩𝒕+𝟑𝟎 𝑩𝒕+𝟒𝟎𝑨𝒕

𝑪𝒕+𝟏𝟎

(b) (c)

20 30 400

𝐵𝑡+30 ≠ 𝑓(𝐴𝑡 , 𝐶𝑡+10) 𝐵𝑡+30 ≠ 𝑓(𝐴𝑡 , 𝐶𝑡+10) (a) Valid Individualization = Linear Transformation

𝜃1

𝜃2

Figure 10: (a) The enhanced DAG with two relative timing axes. (b) (c) Violations of the Markov condition,
when timestamps are specified for static effects identification, to construct Structural Causal Models (SCMs).
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From a geometrical view, the triangle over nodes {A, B, C} should remain closed across all populations and
individuals to represent the same relationship, as supported by the Causal Markov condition. Accordingly,
the generalization (and also individualization) process can be geometrically viewed as a linear transformation
of the causal DAG, depicted as “stretching” the triangle along t1 at various ratios, as in Figure 10(a).

In conventional SCMs, the status of B is typically derived by setting an average timespan for the full release
of medicine along −−→AB, say 30 days in this case. As illustrated in (b) and (c), the SCM function fails to shape
a valid DAG for individual patients, represented by Pi in red and Pj in blue. Consequently, sequential biases
would be implied when extending to estimate a sequential outcome like Bt = (B1, . . . , B30).

Definition 7. Inherent Biases in SCMs assuming temporal linear independence.
The inherent bias may occur within priorly identified causal effects if containing: 1) confounded
dynamics across multiple relative timings, and 2) undetectable hierarchy represented by ω.

In this simplified scenario, an inverse RNN model, formulated as A = f
(
(B, C)t

)
, could be effective due to

the assumed dynamical independence. However, it is impractical to assume independence or the absence of
confounded dynamics for all effects. This is particularly true in large models dealing with complex causal
structures, where inherent biases can accumulate, ultimately jeopardizing the model’s robustness.

4.2 Inherently Restricted Generalizability
To address the issues of confounded dynamics, traditional causal inference uses various methods to perform
“de-confounding”, to cut off the interaction (typically linear) through propensity score matching Benedetto
(2018), backdoor adjustment Pearl (2009), etc. However, these techniques often require intended tailoring
for specific applications, necessitating manual identifications. Given the black-box nature and large scale of
AI models, such adjustments have become increasingly impractical.

Moreover, these methods primarily focus on adapting to statistical linear models, which may not effectively
contribute to dynamical generalizability. Subsequently, we will use a practical scenario to clearly illustrate
how the specification of timestamps for effects inherently hinders the generalizability of the formulated SCMs.

A B
C

S

A’ B’

C’
A

B

CS A B C

S

A’ B’ C’

T2D: Type II Diabetes
LDL: Blood Lipid

Statin: Medicine to Reduce LDL
BP: Blood Pressure

Figure 11: A DAG with two relative timing exes TY and TZ . The formulated SCM B′ = f(A, C, S) evaluates
the effect of using S to reduce T2D risks at B′. On TY , the step ∆t from t to (t + 1) allows A and C to fully
influence B. The step ∆τ on TZ , from (τ + 1) to (τ + 2), let S fully release to forward status A to A′.

Figure 11 displays an enhanced 3D view DAG, where ∆t and ∆τ signify actual time spans, particularly
within the current population, to support the causal reasoning represented by this structure. Consider the
triangle SA′B′: As each unit of effect from S delivered to A′ (spent ∆τ), it immediately starts to impact
B′ through

−−−→
A′B′ (∆t needed); meanwhile, the next unit begins generation at S. This dual action runs

concurrently until S’s effect fully reaches B′, representing the single edge
−−→
SB′ within the SCM.

Due to the equation
−−→
SB′ =

−−→
SA′ +

−−−→
A′B′, specifying the time span of

−−→
SB′ inherently determines the ∆t : ∆τ

ratio based on the current population’s performance, thereby fixing the shape of the ASB′ triangle in the
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DAG space. If we focus solely on the accuracy of the estimated mean effect for this population, the SCM
function B′ = f(A, C, S) can be effective. However, given that the preset ∆t : ∆τ ratio is not universally
applicable, the generalizability of the established SCM to other populations becomes questionable.

4.3 Developments Toward Causal Reasoning AI

To pursue causal reasoning in machine learning, model techniques have evolved from merely capturing
associations to learning observational correlations, ultimately advancing to structural causality modeling
spinning the counterfactual temporal space RT . Figure 12 summarizes this evolution in an upward trajectory.

Model Principle Cause Relation & Direction Effect
Handle 

Undetectable 
Hierarchy

Capture 
Dynamics

Mechanistic or 
Physical

𝒴 = 𝑓(𝒳; 𝜃)
Dynamical 
𝒳 = 𝑋, 𝒕

by Knowledge
Dynamical 
𝒴 = 𝑌, 𝝉

Yes Yes

Relation-Indexing 
Approach Given 𝑷(𝒳, 𝒴) & 𝒳 ՜

𝜗
𝒴

Dynamical 
𝒳 = 𝑋, 𝒕

by Representation 
= 𝑓(𝒳, 𝜗, ෠𝒴𝜗)

Dynamical 
𝒴 = 𝑌, 𝝉

Yes Yes

Structural Causal 
Learning

Given 𝑷(𝑋, 𝑌) & 𝑋 ՜ 𝑌 
𝑌 = 𝑓(𝑋; 𝜃)

Observational 
Sequence 𝑋𝑡

𝑋 ՜ 𝑌 with 
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Static 𝑌𝜏 ? ?

Graphical Causal 
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Given 𝑷(𝑋, 𝑌) 
Find ℒ 𝑌 𝑋; 𝜃 > ℒ 𝑋 𝑌; 𝜃
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Figure 12: Simple taxonomy of models (partially refer to Scholkopf (2021) Table 1), from more data-driven
upward to more knowledge-driven . “?” means depending on the practice.

Given AI’s capability to learn temporal dynamics, the present challenge involves addressing the dynamical
interactions within causal structures. As shown in sections 4.1 and 4.2, conventional SCMs lack the ability to
capture dynamics. Even with dynamical independence, where only linear dependence is present, specifying
timestamps to identify outcomes can still risk introducing inherent biases. Therefore, it is crucial to develop
a new structural knowledge-aligned modeling paradigm, transitioning away from the current Observation-
Oriented approach. Physical models, explicitly incorporated in temporal dimensional computation, may
offer valuable insights into this prospect.

Under the observational i.i.d. assumption, initial models only approximate associations, proved unreliable for
causal reasoning Pearl et al. (2000); Peters et al. (2017). Subsequently, the common cause principle highlights
the significance of the nontrivial condition, to distinguish a relationship from statistical dependencies Dawid
(1979); Geiger (1993), providing a basis for constructing graphical models Peters et al. (2014). The initial
graphical model relies on conditional dependencies to construct Bayesian networks, with limited causal
relevance Scheines (1997). Then, causally significance emphasizes the capability of addressing counterfactual
queries Scholkopf (2021), like the structural equation models (SEMs) and functional causal models (FCMs)
Glymour et al. (2019); Elwert (2013), which leverage prior knowledge to establish causal structures.

State-of-the-art deep learning on causality encodes the discrete, DAG-structural constraint into continuous
optimization functions Zheng et al. (2018; 2020); Lachapelle et al. (2019), enabling advanced efficiency,
but without noticeable generalizability, evident from the restricted successes in applications like the neural
architecture search (NAS) Luo (2020); Ma (2018). This is reasonable, since the neglected relative timings
can lead to inherent biases amplified through complex structures to become significant.

Scholkopf (2021) summarized our confronting key challenges toward generalizable causal-reasoning AI: 1)
limited model robustness, 2) insufficient model reusability, and 3) inability to handle data heterogeneity (i.e.,
undetectable hierarchies). They are intrinsically linked to the demonstrated inherent biases.
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Chapter II: Realization of Proposed Relation-Oriented Paradigm

This chapter introduces the proposed Relation-Indexed Representation Learning (RIRL) method, a baseline
realization of the raised Relation-Oriented modeling paradigm. RIRL primarily focuses on autonomously
identifying dynamical effects, in the form of relation-indexed representations in the latent space. In the
context of structural modeling, RIRL enables hierarchical disentanglement of effects, according to given
DAGs, as a manner of realizing dynamical generalizability across undetectable levels within knowledge. As
a baseline realization, RIRL is suitable for applications with mature structural causal knowledge, and plenty
of data to support neural network training on each known causal relationship.

First, Section 5 details the technique for extracting relation-indexed representations. Then, building on this,
Section 6 presents the RIRL method of establishing structural causal models in the latent space. Lastly,
Section 7 provides experiments to validate RIRL’s efficacy in autonomously identifying effects.

5 Relation-Indexed Representation

In the relationship X → Y, we define dynamical X = ⟨X, t⟩ ∈ Rd+1 ⊆ RO and Y = ⟨Y, τ⟩ ∈ Rb+1 ⊆ RO,
given their solely observational variables, X ∈ Rd and Y ∈ Rb. X is observed as a data sequence, represented
by Xt = X1, . . . , Xt with a pre-determined length lx. For clarity, hereafter in this chapter, its instance xt will
be considered as a (d ∗ lx)-dimensional vector, denoted by −→x (or x for briefty). Similarly, Y is observed as
the data sequence Y t with a pre-determined length ly, and its instance is referred to as a (b∗ ly)-dimensional
vector −→y (or y for briefty).

The relation-indexed representation aims to formulate (X , θ, Ŷθ) in the latent space RL, beginning with an
initialization to transform Xt and Y t to be latent space features. For the sake of clarity, we use H ∈ RL

and V ∈ RL to refer to the latent representations of X ∈ RO and Y ∈ RO, respectively.

The modeling process is to optimize the neural network function f(; θ) in RL, with H as its input and V as
the output. This process simultaneously refines H, θ, and V, for ultimately achieving (H, θ, V̂θ) = (X , θ, Ŷθ).
The refining will present as the distance minimization between H and V within RL. Consequently, the
dimensionality L of the latent feature space must satisfy L ≥ rank(X , θ,Y), raising a technical challenge
that L is larger than the dimensionality of −→x or −→y .

Remark 6. The variable initialization necessitates a higher-dimensional representation autoencoder.

5.1 Higher-Dimensional Autoencoder

Encoder Decoder

Fully 
Connect

Relu

…

Expander

Latent Space 
Representation

Copy

Input 

𝒙

Reducer

Output 

𝒙

Keys

Figure 13: Invertible autoencoder architecture for extracting higher-dimensional representations.

Autoencoders are commonly used for dimensionality reduction, especially in structural modeling that involves
multiple variables Wang (2016). In contrast, RIRL aims to model individual causal relationships sequentially
within a higher-dimensional latent space RL, as to hierarchically construct the entire causal structure. As
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Figure 14: Expander (left) and Reducer (right).
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Figure 15: Relationship model architecture.

illustrated in Figure 13, the designed autoencoder architecture is featured by the symmetrical Expander and
Reducer layers (source code is available 1). The Expander magnifies the input vector −→x by capturing its
higher-order associative features, while the Reducer symmetrically diminishes dimensionality and reverts to
its initial state. For precise reconstruction, the invertibility of these processes is essential.

The Expander showcased in Figure 13 implements a double-wise expansion. Here, every duo of digits from
−→x is encoded into a new digit using an association with a random constant, termed the Key. This Key is
generated by the encoder and replicated by the decoder. Such pairwise processing of −→x expands its length
from (d∗ lx) to be (d∗ lx−1)2. By leveraging multiple Keys and concatenating their resultant vectors, −→x can
be considerably expanded, ready for the subsequent dimensionality-reduced representation extraction. The
four blue squares with unique grid patterns represent expansions by four distinct Keys, with the grid patterns
acting as their “signatures”. Each square symbolizes a (d ∗ lx − 1)2 length vector. Similarly, higher-order
expansions, like triple-wise across three digits, can be achieved with adapted Keys.

Figure 14 illustrates the encoding and decoding processes within the Expander and Reducer, targeting the
digit pair (xi, xj) for i ̸= j ∈ 1, . . . , d. The Expander function is defined as ηϕ(xi, xj) = xj⊗exp(s(xi))+t(xi),
which hinges on two elementary functions, s(·) and t(·). The Key parameter, ϕ, embodies their weights,
ϕ = (ws, wt). Specifically, the Expander morphs xj into a new digit yj utilizing xi as a chosen attribute. In
contrast, the Reducer symmetrically uses the inverse function η−1

ϕ , defined as (yj − t(yi))⊗ exp(−s(yi)).

This approach circumvents the need to compute s−1 or t−1, thereby allowing more flexibility for nonlinear
transformations through s(·) and t(·). This is inspired by the groundbreaking work in Dinh et al. (2016) on
invertible neural network layers employing bijective functions.

5.2 Optimization Steps

Consider instances x and y of X and Y, with corresponding representations h and v in RL. The latent
dependency P(v|h) is used to train the relation function f(; θ), as illustrated in Figure 15. In each iteration,
the modeling process undergoes three optimization steps:

1. Optimizing the cause-encoder by P(h|x), the relation model by P(v|h), and the effect-decoder by
P(y|v) to reconstruct the relationship x→ y, represented as h→ v in RL.

2. Fine-tuning the effect-encoder P(v|y) and effect-decoder P(y|v) to accurately represent y.
3. Fine-tuning the cause-encoder P(h|x) and cause-decoder P(x|h) to accurately represent x.

During this process, the values of h and v are iteratively adjusted to reduce their distance in RL, with
f(; θ) serving as a bridge to span the distance. Here, the hyper-dimensional variable θ ∈ RH acts as the
index, guiding the output of f(; θ) to encapsulate associated representations (H, θ, V̂θ). From V̂θ, the effect
component Ŷθ can be reconstructed. Within the system, for each effect, a series of such relation functions
{f(; θ)} is maintained, indexing diverse levels of causal inputs for sequentially building the structural model.

1https://github.com/kflijia/bijective_crossing_functions/blob/main/code_bicross_extracter.py
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6 RIRL: Building Structural Models in Latent Space
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Figure 16: How Relation-Indexed Representation Learning (RIRL) contributes to traditional models.

By sequentially constructing relation-indexed representations for each pairwise relationship within the causal
DAG, we can achieve the hierarchically disentangled representation for each node, according to its levels
defined by the global structure. Simultaneously, the entire structualized causality has also been constructed.
Subsequently, section 6.1 details the method for stacking relation-indexed representations, enabling the
construction of higher-level representations based on previously established lower-level ones; section 6.2
provides the complete factorization process for hierarchical disentanglement; finally, section 6.3 discusses a
causal discovery algorithm within the latent space among initialized variable representations.

Figure 16 demonstrates how the RIRL method can encapsulate the black-box nature of AI within the
latent space while simultaneously generating interpretable observations. This characteristic can be utilized
to enhance conventional Observation-Oriented models, for instance, by simulating counterfactual values
on demands. Meanwhile, in the latent space, these cryptic representations, although opaque to human
interpretation, play a crucial role in achieving model generalization and individualization. These processes
are latently managed by AI and remain exclusive to human comprehension.

6.1 Stacking Hierarchical Representations
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Figure 17: Stacking relation-indexed representations to construct hierarchy.

A structural relationship can be represented by a causal graph, denoted as G. To construct models in the
latent space, the latent dimensionality L must be sufficiently large to adequately represent G. Let’s denote
a data matrix augmented by all observational attributes in G as X. Given the need to include informative
relations {θ} for the edges in G, it is essential that L > rank(X) + T , where T indicates the number of
dynamically significant variables (i.e., nodes) within G.
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The PCA principle posits that the space RL learned by the autoencoder is spanned by the top principal
components of X Baldi (1989); Plaut (2018); Wang (2016). Hypothetically, reducing L below rank(X)
may yield a less adequate but causally more significant latent space through better alignment of dimensions
Jain (2021) (Further exploration in this direction is warranted). Bypassing a deep dive into dimensionality
boundaries, we rely on empirical fine-tuning for the experiments in this study (reducing L from 64 to 16).

Consider a causal structural among {X ,Y,Z}, with their corresponding representations {H,V,K} ∈ RL

initialized by three autoencoders, respectively. Figure 17 illustrates the hierarchical representations buildup.
Here, two stacking scenarios are displayed based on varying causal directions. With the established X → Y
relationship in RL, the left-side architecture finalizes the X → Y ← Z structure, while the right-side focuses
on X → Y → Z. Through the addition of a representation layer, hierarchical disentanglement is formed,
allowing for various input-output combinations (denoted as 7→) according to specific requirements.

For example, on the left, P(v|h) 7→ P(α) represents the X → Y relationship, whereas P(α|k) implies Z → Y.
Conversely, on the right, P(v) 7→ P (β|k) denotes the Y → Z relationship with Y as input. Meanwhile,
P(v|h) 7→ P (β|k) captures the causal sequence X → Y → Z.

6.2 Factorizing the Effect Disentanglement

Consider Y = ⟨X, τ⟩ ∈ Rb+1 ⊆ RO having a T -level hierarchy, with each level built up using a representation
function, labeled as gt for the t-th level. For simplicity, here, we use ωt to represent the t-th level component
of Y in the latent space RL, while its counterpart in Rb+1 is denoted as Ωt. Let the feature vector ωt

in RL primarily spans a sub-dimensional space, RLt , resulting in the spatial disentanglement sequence
{RL1 , . . . ,RLt , . . . ,RLT }, which hierarchically represents Y with T relative timings. Function gt maps from
Rb+1 to RLt , taking into account features from all previous levels as attributes. This gives us:

Y =
n∑

t=1
Ωt, where Ωt = gt

(
ωt; Ω1, . . . , Ωt−1

)
with Ωt ∈ Rb+1 and ωt ∈ RLt ⊆ RL (1)

In the context of a purely observational hierarchy, with Y substituted by Y ∈ Rb, The example depicted in
Figure 2 (b) can be interpreted as follows: Consider three feature levels represented as ω1 ∈ RL1 , ω2 ∈ RL2 ,
and ω3 ∈ RL3 . For simplicity, assume each subspace is mutually exclusive, such that L = L1 + L2 + L3.
In the latent space, the triplet ⟨ω1, ω2, ω3⟩ ∈ RL comprehensively depicts the image. Their observable
counterparts, Ω1, Ω2, and Ω3, are three distinct full-scale images, each showcasing different content. For
example, Ω1 emphasizes finger details, while the combination Ω1 + Ω2 reveals the entire hand.

6.3 Causal Discovery in Latent Space

Algorithm 1: Latent Space Causal Discovery
Result: ordered edges set E = {e1, . . . , en}
E = {} ; NR = {n0 | n0 ∈ N, P arent(n0) = ∅} ;
while NR ⊂ N do

∆ = {} ;
for n ∈ N do

for p ∈ P arent(n) do
if n /∈ NR and p ∈ NR then

e = (p, n); β = {};
for r ∈ NR do

if r ∈ P arent(n) and r ̸= p then
β = β ∪ r

end
end
δe = K(β ∪ p, n) − K(β, n);
∆ = ∆ ∪ δe;

end
end

end
σ = argmine(δe | δe ∈ ∆);
E = E ∪ σ; NR = NR ∪ nσ ;

end

G = (N, E) graph G consists of N and E
N the set of nodes
E the set of edges
NR the set of reachable nodes
E the list of discovered edges
K(β, n) KLD metric of effect β → n
β the cause nodes
n the effect node
δe KLD Gain of candidate edge e
∆ = {δe} the set {δe} for e
n,p,r notations of nodes
e,σ notations of edges
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Algorithm 1 outlines the heuristic procedure for investigating edges among the initialized variable representa-
tions. We use Kullback-Leibler Divergence (KLD) as a metric to evaluate the strength of causal relationships.
Specifically, as depicted in Figure 15, KLD evaluates the similarity between the relation output P(v|h) and
the prior P(v). Lower KLD values indicate stronger causal relationships due to closer alignment with the
ground truth. Conversely, while Mean Squared Error (MSE) is a frequently used evaluation metric, its
sensitivity to data variances Reisach (2021) leads us to utilize it as a supplementary measure in this study.
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Figure 18: An example of causal discovery in the latent space.

Figure 18 illustrates the causal structure discovery process in latent space over four steps. Two edges, (e1
and e3), are sequentially selected, with e1 setting node B as the starting point for e3. In step 3, edge e2
from A to C is deselected and reassessed due to the new edge e3 altering C’s existing causal conditions. The
final DAG represents the resulting causal structure.

7 Efficacy Validation Experiments

The experiments aim to validate the efficacy of the RIRL method from three aspects: 1) the performance of
the proposed higher-dimensional representations, evaluated by reconstruction accuracy, 2) the construction
of a clear effect hierarchy through the stacking of relation-indexed representations, and 3) the identification of
DAG structures within the latent space through discovery. A full demonstration of the conducted experiments
in this chapter is available online 2, while with two primary limitations detailed as follows:

Firstly, the dataset employed in this study may not be the most suitable for evaluating the effectiveness of
RIRL. Ideally, real-world data featuring rich structuralized causality across multiple relative timings, like
clinical records, would be preferable. However, due to practical constraints, access to such optimal data is
limited for this study, leading us to use the current synthetic data and focus solely on feasibility verification.
For experimental validation regarding the inherent bias, please refer to prior research Li et al. (2020).

Secondly, the time windows designated for cause and effect, lx and ly, are fixed at 10 and 1, respectively.
This constraint arose from an initial oversight in the experimental design stage, wherein the pivotal role of
effect dynamics has not been fully recognized, consequently limited by the RNN pattern. It manifests as
restricted successes in building causal chains like X → Y → Z; while the model can adeptly capture single-
hop causality, it struggles with multi-hop ones since the dynamics in Y have been segmented by ly = 1.
However, extending the length of ly does not pose a significant technical challenge to future works.

7.1 Hydrology Dataset

The dataset chosen for our experiments is a widely-used synthetic resource in the field of hydrology, aimed
at enhancing streamflow predictions based on observed environmental conditions such as temperature and
precipitation. In hydrology, deep learning, particularly RNN models, has gained favor for extracting observa-
tional representations and predicting streamflow Goodwell (2020); Kratzert (2018). We focus on a simulation
of the Root River Headwater watershed in Southeast Minnesota, covering 60 consecutive virtual years with
daily updates. The simulated data is from the Soil and Water Assessment Tool (SWAT), a comprehensive
system grounded in physical modules, to generate dynamically significant hydrological time series.

Figure 19 displays the causal DAG employed by SWAT, complete with node descriptions. The hydrological
routines are color-coded based on their contribution to output streamflow. Surface runoff (1st tier) signif-

2https://github.com/kflijia/bijective_crossing_functions.git
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Table 1: Characteristics of node attributes and their variable representation test results.
Variable Dim Mean Std Min Max Non-Zero Rate% RMSE on Scaled RMSE on Unscaled BCE of Mask

A 5 1.8513 1.5496 -3.3557 7.6809 87.54 0.093 0.871 0.095
B 4 0.7687 1.1353 -3.3557 5.9710 64.52 0.076 0.678 1.132
C 2 1.0342 1.0025 0.0 6.2145 94.42 0.037 0.089 0.428
D 3 0.0458 0.2005 0.0 5.2434 11.40 0.015 0.679 0.445
E 2 3.1449 1.0000 0.0285 5.0916 100 0.058 3.343 0.643
F 4 0.3922 0.8962 0.0 8.6122 59.08 0.326 7.178 2.045
G 4 0.7180 1.1064 0.0 8.2551 47.87 0.045 0.81 1.327
H 4 0.7344 1.0193 0.0 7.6350 49.93 0.045 0.009 1.345
I 3 0.1432 0.6137 0.0 8.3880 21.66 0.035 0.009 1.672
J 1 0.0410 0.2000 0.0 7.8903 21.75 0.007 0.098 1.088

icantly impacts rapid streamflow peaks, followed by lateral flow (2nd tier). Baseflow dynamics (3rd tier)
have a subtler influence. Our causal discovery experiments aim to reveal these underlying tiers.

1st tier causality

2nd tier causality

3rd tier causality

A

B

C

D

E

F

G

H

I

J

ID Variable Name Explanation

A Environmental set I Wind Speed, Humidity, Temperature

B Environmental set II Temperature, Solar Radiation, Precipitation

C Evapotranspiration Evaporation and transpiration

D Snowpack The winter frozen water in the ice form

E Soil Water Soil moisture in vadose zone

F Aquifer Groundwater storage

G Surface Runoff Flowing water over the land surface

H Lateral Vadose zone flow

I Baseflow Groundwater discharge

J Streamflow Sensors recorded outputs

Figure 19: Hydrological causal DAG: routine tiers organized by descending causal strength.

7.2 Higher-Dimensional Variable Representation Test

In this test, we have a total of ten variables (i.e., nodes), with each requiring an individual autoencoder for
initialization. Table 1 lists the statistical characteristics of their post-scaled (i.e., normalized) attributes,
along with their autoencoders’ reconstruction accuracies. Accuracy is assessed in the root mean square error
(RMSE), where a lower RMSE indicates higher accuracy for both scaled and unscaled data.

The task is challenging due to the limited dimensionalities of the ten variables - maxing out at just 5 and
the target node, J , having just one attribute. To mitigate this, we duplicate the input vector to a consistent
12-length and add 12 dummy variables for months, resulting in a 24-dimensional input. A double-wise
extension amplifies this to 576 dimensions, from which a 16-dimensional representation is extracted via the
autoencoder. Another issue is the presence of meaningful zero-values, such as node D (Snowpack in winter),
which contributes numerous zeros in other seasons and is closely linked to node E (Soil Water). We tackle
this by adding non-zero indicator variables, called masks, evaluated via binary cross-entropy (BCE).

Despite challenges, RMSE values ranging from 0.01 to 0.09 indicate success, except for node F (the Aquifer).
Given that aquifer research is still emerging (i.e., the 3rd tier baseflow routine), it is likely that node F in
this synthetic dataset may better represent noise than meaningful data.

7.3 Hierarchical Disentanglement Test

Table 2 provides the performance comparison of stacking relation-indexed representations on each node. The
term “single-effect” is to describe the accuracy of a specific effect node when reconstructed from a single cause
node (e.g., B → D and C → D), and “full-effect” for the accuracy when all its cause nodes are stacked (e.g.,
BC → D). To provide context, we also include baseline performance scores based on the initialized variable
representations. During the relation learning process, the effect node serves two purposes: it maintains its

22



Under review as submission to TMLR

own accurate representation (as per optimization no.2 in 5.2) and helps reconstruct the relationship (as per
optimization no.1 in 5.2). Both aspects are evaluated in Table 2.

Figure 20: Reconstructed dynamical effects, via hierarchically stacked relation-indexed representations.

The KLD metrics in Table 2 indicate the strength of learned causality, with a lower value signifying stronger.
For instance, node J ’s minimal KLD values suggest a significant effect caused by nodes G (Surface Runoff),
H (Lateral), and I (Baseflow). In contrast, the high KLD values imply that predicting variable I using D
and F is challenging. For nodes D, E, and J , the “full-effect” are moderate compared to their “single-effect”
scores, suggesting a lack of informative associations among the cause nodes. In contrast, for nodes G and H,
lower “full-effect” KLD values imply capturing meaningful associative effects through hierarchical stacking.
The KLD metric also reveals the most contributive cause node to the effect node. For example, the proximity
of the C → G strength to CDE → G suggests that C is the primary contributor to this causal relationship.

Figure 20 showcases reconstructed time series, for the effect nodes J , G, and I, in the same synthetic year
to provide a straightforward overview of the hierarchical representation performances. Here, black dots
represent the ground truth; the blue line indicates reconstruction via the initial variable representation, and
the “full-effect” representation generates the red line. In addition to RMSE, we also employ the Nash–Sutcliffe
model efficiency coefficient (NSE) as an accuracy metric, commonly used in hydrological predictions. The
NSE ranges from -∞ to 1, with values closer to 1 indicating higher accuracy.

The initial variable representation closely aligns with the ground truth, as shown in Figure 20, attesting to
the efficacy of our proposed autoencoder architecture. As expected, the “full-effect” performs better than the
“single-effect” for each effect node. Node J exhibits the best prediction, whereas node I presents a challenge.
For node G, causality from C proves to be significantly stronger than the other two, D and E.
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Table 2: Effect Reconstruction Performances of RIRL sorted by effect nodes.
Variable Representation
(Initial)

Variable Representation
(in Relation Learning) Relationship Reconstruction

RMSE BCE RMSE BCE RMSE BCE KLDResult
Node on Scaled

Values
on Unscaled

Values Mask

Cause
Node on Scaled

Values
on Unscaled

Values Mask on Scaled
Values

on Unscaled
Values Mask (in latent

space)
C 0.037 0.089 0.428 A 0.0295 0.0616 0.4278 0.1747 0.3334 0.4278 7.6353

BC 0.0350 1.0179 0.1355 0.0509 1.7059 0.1285 9.6502
B 0.0341 1.0361 0.1693 0.0516 1.7737 0.1925 8.5147D 0.015 0.679 0.445
C 0.0331 0.9818 0.3404 0.0512 1.7265 0.3667 10.149
BC 0.4612 26.605 0.6427 0.7827 45.149 0.6427 39.750
B 0.6428 37.076 0.6427 0.8209 47.353 0.6427 37.072E 0.058 3.343 0.643
C 0.5212 30.065 1.2854 0.7939 45.791 1.2854 46.587

F 0.326 7.178 2.045 E 0.4334 8.3807 3.0895 0.4509 5.9553 3.0895 53.680
CDE 0.0538 0.9598 0.0878 0.1719 3.5736 0.1340 8.1360
C 0.1057 1.4219 0.1078 0.2996 4.6278 0.1362 11.601
D 0.1773 3.6083 0.1842 0.4112 8.0841 0.2228 27.879G 0.045 0.81 1.327

E 0.1949 4.7124 0.1482 0.5564 10.852 0.1877 39.133
DE 0.0889 0.0099 2.5980 0.3564 0.0096 2.5980 21.905
D 0.0878 0.0104 0.0911 0.4301 0.0095 0.0911 25.198H 0.045 0.009 1.345
E 0.1162 0.0105 0.1482 0.5168 0.0097 3.8514 39.886
DF 0.0600 0.0103 3.4493 0.1158 0.0099 3.4493 49.033
D 0.1212 0.0108 3.0048 0.2073 0.0108 3.0048 75.577I 0.035 0.009 1.672
F 0.0540 0.0102 3.4493 0.0948 0.0098 3.4493 45.648
GHI 0.0052 0.0742 0.2593 0.0090 0.1269 0.2937 5.5300
G 0.0077 0.1085 0.4009 0.0099 0.1390 0.4375 5.2924
H 0.0159 0.2239 0.4584 0.0393 0.5520 0.4938 15.930J 0.007 0.098 1.088

I 0.0308 0.4328 0.3818 0.0397 0.5564 0.3954 17.410

Table 3: Brief summary of the latent space causal discovery test.
Edge A→C B→D C→D C→G D→G G→J D→H H→J B→E E→G E→H C→E E→F F→I I→J D→I
KLD 7.63 8.51 10.14 11.60 27.87 5.29 25.19 15.93 37.07 39.13 39.88 46.58 53.68 45.64 17.41 75.57
Gain 7.63 8.51 1.135 11.60 2.454 5.29 25.19 0.209 37.07 -5.91 -3.29 2.677 53.68 45.64 0.028 3.384

7.4 Latent Space Causal Discovery Test

The discovery test initiates with source nodes A and B and proceeds to identify potential edges, culminating
in the target node J . Candidate edges are selected based on their contributions to the overall KLD sum (less
gain is better). Table 6 shows the order in which existing edges are discovered, along with the corresponding
KLD sums and gains after each edge is included. Color-coding in the cells corresponds to Figure 19, indicating
tiers of causal routines. The arrangement underscores the efficacy of this latent space discovery approach.

A comprehensive list of candidate edges evaluated in each discovery round is provided in Table 4 in Appendix
A. For comparative purposes, we also performed a 10-fold cross-validation using the conventional FGES
discovery method; those results are available in Table 5 in Appendix A.

8 Conclusions

This paper introduces a dimensionality framework from a Relation-Oriented perspective to decompose our
cognitive space, where relational causal knowledge is stored. Specifically, it conceptualizes the unobservable
relations between cause and effect as informative distributions in RH . Moreover, the causal DAG structure in
knowledge is interpreted as nonlinear distributions within counterfactual RT , across multiple relative timing
axes and indicating nonlinear dependence. This highlights key oversights in the current Observation-Oriented
modeling paradigm, which is reliant on the observational i.i.d. assumption and confined to RO.

Classical causal inference, adopting a Relation-Oriented viewpoint, identifies vital counterfactual structures
for causal reasoning but overlooks the RT space due to neglecting nonlinear dynamics. Contemporary causal
learning methods often encounter issues with incomplete effect dynamics, mainly because they fail to consider
the indexing role of unobservable relational information within the RH space. In the case of modern LLMs,
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while AI-based methods enable the autonomous identification of diverse effect dynamics, they often fail to
consider the underlying dynamical structures that are central to causal inference.

Recalling the queries presented in the Introduction, we systematically summarize these application-related
restrictions in the pursuit of AGI, offering new insights as follows:

❖ Firstly, challenges in causal inference primarily arise from overlooking dynamics, due to linear modeling
constraints. This oversight leads to compensatory efforts in various aspects, such as dealing with
hidden confounders and relying on the causal sufficiency assumption. Causal DAGs inherently provide
a Relation-Oriented view. With the proposed enhancement incorporating them into the counterfactual
RT space, they can offer essential support.

❖ Secondly, our knowledge inherently contains undetectable hierarchical levels due to hidden relations
ω ∈ RH , necessitating model generalizability. Considering AI’s capability to capture dynamics, the
main challenge in achieving causal reasoning lies in incorporating their underlying causal structures.
The new paradigm we propose introduces a relation-indexing methodology, enabling the autonomous
construction of causal representations for nonlinear effects.

❖ Thirdly, while existing language models have made strides in generalizability through meta-learning,
they are still limited to absolute timing within RO, implicitly assuming nonlinear independence among
temporal dimensions. Additionally, their neglect of extracting informative θ prevents them from truly
“understanding” relationships. However, LLMs have demonstrated the effectiveness of meta-learning
in addressing temporal dimensional hierarchies, suggesting a promising prospect for Relation-Oriented
meta-learning in advancing towards AGI.

We also introduce a baseline implementation of the Relation-Oriented paradigm, primarily to validate the
efficacy of the “relation-indexing” methodology in implementing causal representations and constructing
knowledge-aligned hierarchies. Similar approaches have been effectively attempted in certain domains with
well-established structural knowledge, such as the introduction of hierarchical temporal memory in neuro-
science Wu (2018). The pursuit of AGI is a historically extensive and complex endeavor, requiring a wide
array of knowledge-aligned AI model constructions. This study aims to provide foundational insights for
future developments in this field.
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