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Figure 1: We propose GaussianFlow, a dense 2D motion flow created by splatting 3D Gaussian dynamics,
which significantly benefits tasks such as 4D generation and 4D novel view synthesis. (a) Based on monocular
videos generated by Lumiere Bar-Tal et al. (2024) and Sora Brooks et al. (2024), our model can generate 4D
Gaussian Splatting fields that represent high-quality appearance, geometry and motions. (b) For 4D novel
view synthesis, the motions in our generated 4D Gaussian fields are smooth and natural, even in highly
dynamic regions where other existing methods suffer from undesirable artifacts.
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Creating 4D fields of Gaussian Splatting from images or videos is a challenging task due to
its under-constrained nature. While the optimization can draw photometric reference from
the input videos or be regulated by generative models, directly supervising Gaussian motions
remains underexplored. In this paper, we introduce a novel concept, Gaussian flow, which
connects the dynamics of 3D Gaussians and pixel velocities between consecutive frames.
The Gaussian flow can be obtained efficiently by splatting Gaussian dynamics into the image
space. This differentiable process enables direct dynamic supervision from optical flow. Our
method significantly benefits 4D dynamic content generation and 4D novel view synthesis
with Gaussian Splatting, especially for contents with rich motions that are hard to handle
by existing methods. The common color drifting issue that occurs in 4D generation is also
resolved with improved Guassian dynamics. Superior visual quality in extensive experiments
demonstrates the effectiveness of our method. As shown in our evaluation, GaussianFlow can
drastically improve both quantitative and qualitative results for 4D generation and 4D novel
view synthesis. Project page: https://zerg-overmind.github.io/GaussianFlow.github.io/

1 Introduction

4D dynamic content creation from monocular or multi-view videos has garnered significant attention from
academia and industry due to its wide applicability in virtual reality/augmented reality, digital games, and
movie industry. Studies (Li et al., 2022; Pumarola et al., 2021; Park et al., 2021a;b) model 4D scenes using
4D dynamic Neural Radiance Fields (NeRFs) and optimize them based on input multi-view or monocular
videos. Once optimized, the 4D field can be viewed from novel camera poses at preferred time steps through
volumetric rendering. A more challenging task is generating 360 degree 4D content based on uncalibrated
monocular videos or synthetic videos generated by text-to-video or image-to-video models. Since monocular
input cannot provide enough multi-view cues and unobserved regions are not supervised due to occlusions,
studies (Singer et al., 2023; Jiang et al., 2023; Zhao et al., 2023) optimize 4D dynamic NeRFs by lever-
aging generative models to create plausible and temporally consistent 3D structures and appearance. The
optimization of 4D NeRFs requires volumetric rendering, which makes the process time-consuming. And
real-time rendering of optimized 4D NeRFs is also hardly achieved without special designs. A more efficient
alternative is to model 4D radiance fields by 4D Gaussian Splatting (GS) (Wu et al., 2023; Luiten et al.,
2023), which extends 3D Gaussian Splatting (Kerbl et al., 2023) with a temporal dimension. Using the
efficient rendering of 3D GS, the lengthy training time of a 4D Radiance Field can be drastically reduced
(Yang et al., 2023c; Ren et al., 2023) and rendering can achieve real-time speed during inference.

The optimization of 4D Gaussian fields takes photometric loss as the major supervision. As a result, the
scene dynamics are usually under-constraint. Similarly to 4D NeRFs (Li et al., 2023; Park et al., 2021a;
Pumarola et al., 2021), the radiance properties and the time-varying spatial properties (location, scales, and
orientations) of Gaussians are both optimized to reduce the photometric Mean Squared Error (MSE) between
the rendered frames and the input video frames. The ambiguities of appearance, geometry, and dynamics
have been introduced in the process and become prominent with sparse-view or monocular video input. Per-
frame Score Distillation Sampling (SDS) (Tang et al., 2023) reduces the appearance-geometry ambiguity to
some extent by involving multi-view supervision in the latent domain. However, both monocular photometric
supervision and SDS supervision do not directly supervise scene dynamics.

To avoid temporal inconsistency caused by fast motions, Consistent4D (Jiang et al., 2023) leverages a
video interpolation block, which imposes a photometric consistency between the interpolated frame and
the generated frame, at the cost of involving more frames as pseudo ground truth for fitting. Similarly,
AYG (Ling et al., 2023) uses the text-to-video diffusion model to balance motion magnitude and temporal
consistency with a preset frame rate. 4D NeRF model (Li et al., 2023) has proven that optical flows in
reference videos are strong motion cues and can significantly benefit scene dynamics. However, for 4D GS,
connecting 4D Gaussian motions with optical flows has the following two challenges. First, a Gaussian motion
is in 3D space, but it is its 2D splat that contributes to rendered pixels. Second, multiple 3D Gaussians
might contribute to the same pixel in rendering, and each pixel’s flow does not equal to any one Gaussian’s
motion.
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To overcome these challenges, we introduce a novel concept, Gaussian flow, bridging the dynamics of 3D
Gaussians and pixel velocities between consecutive frames. Specifically, we assume that the optical flow of
each pixel in the image space is influenced by the Gaussians that cover it. The Gaussian flow of each pixel is
considered to be the weighted sum of these Gaussian motions in 2D. To obtain the Gaussian flow value on each
pixel without losing the speed advantage of Gaussian Splatting, we splat 3D Gaussian dynamics, including
scaling, rotation, and translation in 3D space, onto the image plane along with its radiance properties. As
the whole process is end-to-end differentiable, the 3D Gaussian dynamics can be directly supervised by
matching Gaussian flow with optical flow on input video frames. We apply such flow supervision to both 4D
content generation and 4D novel view synthesis to showcase the benefit of our proposed method, especially for
contents with rich motions that are hard to handle by existing methods. The flow-guided Guassian dynamics
also resolve the color drifting artifacts that are commonly observed in 4D Generation. We summarize our
contributions as follows:

• We introduce a novel concept, Gaussian flow, that first bridges the 3D Gaussian dynamics to resulting
pixel velocities, enabling flow supervision for Gaussian Splatting based representations. Matching
Gaussian flows with optical flows, 3D Gaussian dynamics can be directly supervised.

• The Gaussian flow can be obtained by splatting Gaussian dynamics into the image space. Following
the tile-based design by original 3D Gaussian Splatting, we implement the dynamics splatting in
CUDA with minimal overhead. The operation to generate dense Gaussian flow from 3D Gaussian
dynamics is highly efficient and end-to-end differentiable.

• With Gaussian flow to optical flow matching, our model drastically improves over existing Gaussian
Splatting based-methods, especially on scene sequences of fast motions. Color drifting is also resolved
with our improved Gaussian dynamics.

2 Related Works

3D Generation. 3D generation has attracted tremendous attention with the progress of various 2D or 3D-
aware diffusion models (Liu et al., 2023b; Rombach et al., 2022; Shi et al., 2023b; Liu et al., 2023c) and large
vision models Radford et al. (2021); Jun & Nichol (2023); Nichol et al. (2022). Thanks to the availability of
large-scale multi-view image datasets (Deitke et al., 2023; Yu et al., 2023; Downs et al., 2022), object-level
multi-view cues can be encoded in generative models and are used for generation purpose. Pioneered by
DreamFusion (Poole et al., 2022) that first proposes Score Distillation Sampling (SDS) loss to lift realistic
content from 2D to 3D via NeRFs, 3D content creation from text or image input has flourished. This progress
includes approaches based on online optimization (Tang et al., 2023; Lin et al., 2023; Wang et al., 2024c;
Raj et al., 2023) and feedforward methods (Hong et al., 2023; Liu et al., 2023a; 2024; Xu et al., 2023; Wang
et al., 2023c) with different representations such as NeRFs Mildenhall et al. (2021), triplane (Chan et al.,
2022; Chen et al., 2022; Gao et al., 2023) and 3D Gaussian Splatting (Kerbl et al., 2023). 3D generation
becomes more multi-view consistent by involving multi-view constraints (Shi et al., 2023b) and 3D-aware
diffusion models (Liu et al., 2023b) as SDS supervision. Not limited to high-quality rendering, studies (Sun
et al., 2023; Long et al., 2023) also explore enhancing the quality of generated 3D geometry by incorporating
normal cues.
4D Novel View Synthesis and Reconstruction. By adding timestamp as an additional variable, recent
4D methods with different dynamic representations such as dynamic NeRF (Park et al., 2021a;b; Li et al.,
2021; Wang et al., 2023a; Li et al., 2022; Tretschk et al., 2021; Gao et al., 2021), dynamic triplane Fridovich-
Keil et al. (2023); Cao & Johnson (2023); Shao et al. (2023) and 4D Gaussian Splatting Huang et al.
(2024); Wu et al. (2023); Yang et al. (2023c); Lin et al. (2024); Yang et al. (2024); Duan et al. (2024);
Guo et al. (2024) are proposed to achieve high quality 4D motions and scene contents reconstruction from
either calibrated multi-view or uncalibrated RGB monocular video inputs. Some works (Newcombe et al.,
2011; 2015; Zollhöfer et al., 2014) reconstruct rigid and non-rigid scene contents with RGB-D sensors, which
help to resolve 3D ambiguities by involving depth cues. Different from static 3D reconstruction and novel
view synthesis, 4D novel view synthesis consisting of both rigid and non-rigid deformations is notoriously
challenging and ill-posed with only RGB monocular inputs. Some progress (Li et al., 2021; Gao et al.,
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Figure 2: We illustrate our GaussianFlow formulation using two Gaussian primitives. Flow Composition
(Left): the two Gaussians, indexed by i and j are shown at two consecutive time steps t1 and t2. The
Gaussian flow on the yellow pixel xt1 is defined as the weighted sum of the shift contributions from all
Gaussians (i and j) covering the pixel. The weighting factor utilizes alpha composition weights the same
as in the volume rendering. The Gaussian flow of the entire image can be obtained efficiently by splatting
3D Gaussian dynamics and rendering with alpha composition. Flow from Single Gaussian (Right):
Between two consecutive frames, the yellow pixel xt1 will be pushed towards xt1 → xi,t2 by the 2D Gaussian
i’s motion it1 → it2 , where we denote this shift contribution from Gaussian i as flowG

i,t1,t2
. We can track

xt1 in Gaussian i by normalizing it to canonical Gaussian space as x̂i and unnormalize it to image space to
obtain xi,t2 . A similar process applies for Gaussian j.

2021; Tretschk et al., 2021; Wang et al., 2021; 2025) involves temporal priors and motion cues (e.g. optical
flow) to better regularize temporal photometric consistency and 4D motions. One of recent works (Wang
et al., 2023a) provides an analytical solution for flow supervision on deformable NeRF without inverting the
backward deformation function from the world coordinate to the canonical coordinate. Several works (Yang
et al., 2021a;b; 2023a;b) explore object-level mesh recovery from monocular videos with optical flow.

4D Generation. Similar to 3D generation from text prompts or single images, 4D generation from text
prompts or monocular videos also relies on frame-by-frame multi-view cues from pre-trained diffusion models.
Besides, 4D generation methods yet always rely on either video diffusion models or video interpolation block
to ensure the temporal consistency. Animate124 (Zhao et al., 2023), 4D-fy (Bahmani et al., 2023) and one
of the earliest works Singer et al. (2023) use dynamic NeRFs as 4D representations and achieve temporal
consistency with text-to-video diffusion models, which can generate videos with controlled frame rates.
Instead of using dynamic NeRF, Align Your Gaussians (Ling et al., 2023) DreamGaussian4D (Ren et al.,
2023) and L4GM Ren et al. (2024) generate vivid 4D contents with 3D Gaussian Splatting, but again relying
on video diffusion models for free frame rate control. Without the use of text-to-video diffusion models,
Consistent4D (Jiang et al., 2023) achieves coherent 4D generation with an off-the-shelf video interpolation
model (Huang et al., 2022). Our method benefits 4D Gaussian representations by involving flow supervision
and without the need of specialized temporal consistency networks.

3 Methodology

To better illustrate the relationship between Gaussian motions and corresponding pixel flow in image space,
we first recap the rendering process of 3D Gaussian Splatting and then investigate its 4D case.
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3.1 Preliminary

3D Gaussian Splatting. From a set of initialized 3D Gaussian primitives, 3D Gaussian Splatting aims
to recover the 3D scene by minimizing the photometric loss between input m images {I}m and rendered
images {Ir}m. For each pixel, its rendered color C is the weighted sum of multiple Gaussians’ colors ci in
depth order along the ray by point-based α-blending as in Eq. 1,

C =
N∑

i=1
Tiαici, (1)

with weights specifying as

αi = oie
− 1

2 (x−µi)T Σ−1
i

(x−µi) and
i−1∏
j=1

(1 − αj). (2)

where oi ∈ [0, 1], µi ∈ R2×1, and Σi ∈ R2×2 are the opacity, 2D mean, and 2D covariance matrix of i-th
2D Gaussian projected from 3D space, respectively. And x is the intersection between a pixel ray and i-th
Gaussian. As shown in Eq. 1, the relationship between a rendered pixel and 3D Gaussians is not bijective.

3D Gaussian Splatting in 4D. Modeling 4D motions with 3D Gaussian Splatting can be done frame-by-
frame via either directly multi-view fitting (Luiten et al., 2023) or moving 3D Gaussians with a time-variant
deformation field (Ling et al., 2023; Ren et al., 2023) or parameterizing 3D Gaussians with time (Yang et al.,
2023c). While with monocular inputs, Gaussian motions are under-constrained because different Gaussian
motions can lead to the same rendered color, and thus long-term persistent tracks are lost (Luiten et al.,
2023). Though Local Rigidity Loss (Luiten et al., 2023; Ling et al., 2023) is proposed to reduce global
freedom of Gaussian motions, it sometimes brings severe problems due to poor or challenging initialization
and lack of multi-view supervision. As shown in Fig. 6, 3D Gaussians initialized with the skull mouth closed
are hard to be split when the mouth open with Local Rigidity Loss.

3.2 GaussianFlow

We consider the full freedom of each Gaussian motion in a 4D field, including 1) scaling, 2) rotation, and 3)
translation at each time step. As time changes, Gaussians covering the queried pixel at t = t1 will move to
other places at t = t2, as shown in Fig. 2(left). To specify new pixel location xt2 at t = t2, we first project
all the 3D Gaussians into 2D image plane as 2D Gaussians and calculate their motion’s influence on pixel
shifts.

Flow from Single Gaussian. To track pixel shifts (flow) contributed by Gaussian motions, we let the rel-
ative position of a pixel in a deforming 2D Gaussian remain the same. This setting preserves the mahalanobis
distance between the pixel locations under two consecutive time steps and the 2D Gaussian unchanged. Ac-
cording to Eq. 2, this preservation will grant the pixel with the same radiance and α contribution from the
2D Gaussian, albeit the 2D Gaussian is deformed.

The pixel shift (flow) is the image space distance of the same pixel at two time steps. We first calculate the
pixel shift influenced by a single 2D Gaussian that covers the pixel. As shown in Fig. 2(right), we can find a
pixel x’s location at t2 by normalizing its image location at t1 to canonical Gaussian space and unnormalizing
it to the image space in t2:

1) normalize. A pixel xt1 following i-th 2D Gaussian distribution can be written as xt1 ∼ N(µi,t1Σi,t1).
And in i-th Gaussian coordinate system with 2D mean µi,t1 ∈ R2×1 and 2D covariance matrix Σi,t1 ∈ R2×2.
After normalizing the i-th Gaussian into the standard normal distribution, we denote the pixel location in
canonical Gaussian space as

x̂t1 = B−1
i,t1

(xt1 − µi,t1), (3)

which follows Σi,t1 = Bi,t1BT
i,t1

, x̂t1 ∼ N(0, I) and I ∈ R2×2 is identity matrix.
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2) unnormalize. When t = t2, the new location along with the Gaussian motion denotes xi,t2 on the image
plane.

xi,t2 = Bi,t2 x̂t1 + µi,t2 , (4)

and Σi,t2 = Bi,t2BT
i,t2

, xt2 ∼ N(µi,t2 , Σi,t2). Eq. 3 and Eq. 4 preserve the Mahalanobis distance between the
tracked pixel and the 2D Gaussian, leading to a consistent value of α (see Eq.2) for this pixel over consecutive
time steps. The pixel shift contribution from each Gaussian therefore can be calculated as:

flowG
i,t1t2

= xi,t2 − xt1 (5)

Flow Composition. In the original 3D Gaussian Splatting, a pixel’s color is the weighted sum of the 2D
Gaussians’ radiance contribution. Similarly, we define the Gaussian flow value at a pixel as the weighted
sum of the 2D Gaussians’ contributions to its pixel shift, following alpha composition. With Eq. 3 and Eq. 4,
the Gaussian flow value at pixel xt1 from t = tt1 to t = tt2 is

flowG
t1t2

=
K∑

i=1
wiflowG

i,t1t2
(6)

=
K∑

i=1
wi

[
Bi,t2B−1

i,t1
(xt1 − µi,t1) + µi,t2 − xt1)

]
, (7)

where K is the number of Gaussians along each camera ray sorted in depth order and each Gaussian has
weight wi = Tiαi

ΣiTiαi
according to Eq. 1, but normalized to [0,1] along each pixel ray. The intuition behind

the use of the same weight as α-blending is that, if a pixel color is contributed by a weighted sum of a set
of Gaussians, then its corresponding pixel shift i.e. pixel-wised optical flow should also be contributed by
the same set of Gaussians with the same weights by nature, since optical flow is calculated based on the
pixel-wised correspondences as well.

In some cases Ling et al. (2023); Keetha et al. (2023); Yugay et al. (2023); Matsuki et al. (2023), each
Gaussian is assumed to be isotropic, and its scaling matrix S = σI, where σ is the scaling factor. And its 3D
covariance matrix RSST RT = σ2I. If the scaling factor of each Gaussian does not change too much over
time, Bi,t2B−1

i,t1
≈ I. Therefore, to pair with this line of work, the formulation of our Gaussian flow as in

Eq. 7 can be simplified as

flowG
t1t2

=
K∑

i=1
wi(µi,t2 − µi,t1). (8)

In other words, for isotropic Gaussian fields, Gaussian flow between two different time steps can be approx-
imated as the weighted sum of individual translation of 2D Gaussian.

Following either Eq. 7 or Eq. 8, the Gaussian flow can be densely calculated at each pixel. The flow
supervision at pixel xt1 from t = t1 to t = t2 can then be specified as

Lflow = ||flowo
t1t2

(xt1) − flowG
t1t2

||, (9)

where optical flow flowo
t1t2

can be calculated by off-the-shelf methods as pseudo ground-truth. Our method
also allows for camera motions, please refer to our experiments on NeRF-DS dataset (Yan et al., 2023) for
more details.

3.3 4D Content Generation

As shown in Fig. 3, 4D content generation with Gaussian representation takes an uncalibrated monocular
video either by real capturing or generating from text-to-video or image-to-video models as input and output
a 4D Gaussian field. 3D Gaussians are initialized from the first video frame with photometric supervision
between rendered image and input image and a 3D-aware diffusion model (Liu et al., 2023b) for multi-view
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Figure 3: Overview of our 4D content generation pipeline. An uncalibrated monocular video or video
generated from an image is taken as the input. We optimize a 3D Gaussian field initialized by the first frame
with both photometric and SDS supervision (Liu et al., 2023b) (for 4D generation only). Then, we optimize
the dynamics of the 3D Gaussians with the same two losses for each frame. Most importantly, we calculate
Gaussian flows with our novel design on reference view for each consecutive two time steps and match it
with a pre-computed optical flow of the input video. The gradients from the flow matching will propagate
back through dynamics splatting and rendering process, resulting in a 4D Gaussian field with natural and
smooth motions.

SDS supervision. In our method, 3D Gaussian initialization can be done by One-2-3-45 (Liu et al., 2024)
or DreamGaussian (Tang et al., 2023). After initialization, a 4D Gaussian field is optimized with per-frame
photometric supervision, per-frame SDS supervision, and our flow supervision as in Eq. 9. The loss function
for 4D Gaussian field optimization can be written as:

L = Lphotometric + λ1Lflow + λ2Lsds + λ3Lother, (10)

where λ1, λ2 and λ3 are hyperparameters. Lother is optional and method-dependent. Though not used in
our method, we leave it for completeness.

3.4 4D novel view Synthesis

Unlike 4D content generation that has multi-view object-level prior from the 3D-aware diffusion model, 4D
novel view synthesis takes only multi-view or monocular input video frames for photometric supervision
without any scene-level prior. 3D Gaussians are usually initialized by sfm (Snavely et al., 2006; Schonberger
& Frahm, 2016) from input videos. After initialization, the 4D Gaussian field is optimized with per-frame
photometric supervision and our flow supervision. We adopt the 4D Gaussian field from (Yang et al., 2023c).
The loss function for 4D Gaussian field optimization can be written as:

L = Lphotometric + λ1Lflow + λ2Lother, (11)

where Lother is optional and method-dependent (please refer to Yang et al. (2023c)).

4 Experiments

In this section, we first provide implementation details of the proposed method and then validate our method
on 4D Gaussian representations with (1) 4D novel view synthesis and (2) 4D generation. We tested on
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the Plenoptic Video Datasets (Li et al., 2022) and the Consistent4D Dataset (Jiang et al., 2023) for both
quantitative and qualitative evaluation. Our method achieves state-of-the-art results in both tasks. To obtain
dense Gaussian flow, we efficiently splatting the Gaussian dynamics along with the original 3DGS(Kerbl et al.,
2023) CUDA pipeline. Please refer to our supplemental materials for implementation details.

4.1 Dataset

Plenoptic Video Dataset. A high-quality real-world dataset consists of 6 scenes with 30FPS and 2028
× 2704 resolution. There are 15 to 20 camera views per scene for training and 1 camera view for testing.
The cameras are distributed to face the frontal part of scenes from different angles.

NeRF-DS Dataset. This dataset (Yan et al., 2023) consists of 8 scenes in everyday environments with
various types of moving or deforming specular objects. Each scene contains two videos captured by two
rigidly mounted forward-facing cameras.

Consistent4D Dataset. This dataset (Jiang et al., 2023) includes 14 synthetic and 12 in-the-wild monoc-
ular videos. All the videos have only one moving object with a white background. 7 of the synthetic videos
are provided with multi-view ground-truth for quantitative evaluation. Each input monocular video with
a static camera is set at an azimuth angle of 0◦. Ground-truth images include four distinct views at az-
imuth angles of -75◦, 15◦, 105◦, and 195◦, respectively, while keeping elevation, radius, and other camera
parameters the same with input camera.

4.2 Results and Analysis

4D Novel View Synthesis. We visualize rendered images and depth maps of a very recent state-of-the-art
4D Gaussian method RT-4DGS (Yang et al., 2023c) with (yellow) and without (red) our flow supervision in
Fig. 4. According to zoom-in comparisons, our method can consistently model realistic motions and correct
structures. These regions are known to be challenging (Verbin et al., 2022; Liu et al., 2023d) for most
methods, even under adequate multi-view supervision. Our method can reduce ambiguities in photometric
supervision by involving motion cues and is shown to be consistently effective across frames. By using an
off-the-shelf optical flow algorithm (Shi et al., 2023a), we found that only a small portion of image pixels
from the Plenoptic Video Dataset have optical flow values larger than one pixel. Since our method benefits
4D Gaussian-based methods more on the regions with large motions, we report PSNR numbers on both
full scene reconstruction and dynamic regions (optical flow value > 1) in Tab. 1. With the proposed flow
supervision, our method shows improved performance on all scenes and the gains are prominent on dynamic
regions. Consequently, our 4D novel view synthesis results achieve state-of-the art quality. Both qualitative
and quantitative comparisons on the NeRF-DS dataset in Fig. 10 and Tab. 2 show the effectiveness of the
proposed method on scenes with complex camera motions. We also report PSNR, D-SSIM, LPIPS averaged
over all scenes of the DyNeRF dataset (Li et al., 2022) in Tab. 5. More comparisons are shown in the Fig.
11-13 and the video in our supplemental material.

4D Generation. We evaluate and compare our method with DreamGaussian4D (Ren et al., 2023), a recent
4D Gaussian-based state-of-the-art generative model with open-sourced code, and dynamic NeRF-based
methods D-NeRF (Pumarola et al., 2021), K-planes (Fridovich-Keil et al., 2023) and Consistent4D (Jiang
et al., 2023) in Tab. 3 on Consistent4D dataset. Scores on individual videos are calculated and averaged
over four novel views mentioned above. Note that flow supervision is effective and helps with 4D generative
Gaussian representation. Compared to DreamGaussian4D, our method shows better quality as shown in
Fig. 6 after the same number of training iterations. For the two challenging cases shown in Fig. 6, our method
benefits from flow supervision and generates desirable motions, while DG4D shows prominent artifacts on
the novel views. Furthermore, flow supervision helps our method avoid color drifting, compared with the
dynamic NeRF-based method Consistent4D(Jiang et al., 2023) (Fig. 5). Our results are more consistent in
terms of texture and geometry. We also show more generation results in Fig. 8 of the supplemental material.
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Table 1: Quantitative evaluation between ours and other methods on the DyNeRF dataset Li et al. (2022).
We report PSNR numbers on both full-scene novel view synthesis and dynamic regions where the ground-
truth optical flow value is larger than one pixel. “Ours” denotes RT-4DGS with the proposed flow supervision.
We also achieve the best results on D-SSIM and LPIPS (see the Tab. 5 and 4 in the supplemental material).

Method Coffee Martini Spinach Cut Beef Flame Salmon Flame Steak Sear Steak Mean
HexPlane Cao & Johnson (2023) - 32.04 32.55 29.47 32.08 32.39 31.70
K-Planes Fridovich-Keil et al. (2023) 29.99 32.60 31.82 30.44 32.38 32.52 31.63
MixVoxels Wang et al. (2023b) 29.36 31.61 31.30 29.92 31.21 31.43 30.80
NeRFPlayer Song et al. (2023) 31.53 30.56 29.35 31.65 31.93 29.12 30.69
HyperReel Attal et al. (2023) 28.37 32.30 32.92 28.26 32.20 32.57 31.10
4DGS Wu et al. (2023) 27.34 32.46 32.90 29.20 32.51 32.49 31.15
RT-4DGS Yang et al. (2023c) 28.33 32.93 33.85 29.38 34.03 33.51 32.01
Ours 28.42 33.68 34.19 29.37 34.22 34.06 32.32

Dynamic Region Only
RT-4DGS Yang et al. (2023c) 27.36 27.47 34.48 23.16 26.04 29.52 28.00
Ours 28.02 28.71 35.18 23.36 27.53 31.14 28.99

Figure 4: Qualitative comparisons on DyNeRF dataset (Li et al., 2022). The left column shows the novel
view rendered images and depth maps of RT-4DGS (Yang et al., 2023c), which suffers from artifacts in
the dynamic regions. The right column shows the results of RT-4DGS optimized with our flow supervision
during training. We refer to our supplementary material (Fig. 11-13, including the video) for more visual
comparisons.

5 Ablation Study

We validate our flow supervision through qualitative comparisons shown in Fig. 6. Compared with Ours (no
flow) and Ours, the proposed flow supervision shows its effectiveness on moving parts. For the skull, 3D
Gaussians in the teeth region initialized at t = t1 are very close to each other and it is hard to split apart
completely when t = t2 as Gaussians can move freely as long as they look photometrically correct from view
0, while SDS supervision applied from novel views works on latent domains and cannot provide pixel-wised
supervision. This problem becomes more severe when involving Local Rigidity Loss (comparing Ours-r and
Ours) because the motions of 3D Gaussians initialized at t = t1 are constrained by their neighbors and the
Gaussians are harder to split apart at t = t1. Similarly, for bird, regions consisting of thin structures such as
the bird’s beak cannot be perfectly maintained across frames without our flow supervision. While originally
utilized in 4D Gaussian fields (Luiten et al., 2023) to maintain structure consistency during motion, Local
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Table 2: Quantitative comparisons on NeRF-DS dataset (Yan et al., 2023). “Ours" denotes Deformable-
3DGS with the proposed flow supervision. Please refer to section D. of our supplementary material for more
details and qualitative results.

PSNR ↑ SSIM ↑ LPIPS↓
3DGS (Kerbl et al., 2023) 20.79 0.78 0.29
TiNeuVo (Fang et al., 2022) 21.60 0.83 0.28
HyperNeRF (Park et al., 2021b) 23.45 0.85 0.19
NeRF-DS (Yan et al., 2023) 23.60 0.85 0.18
Deformable-3DGS (Yang et al., 2024) 23.89 0.84 0.18
Ours 24.23 0.85 0.17

Table 3: Quantitative comparisons between ours and others on Consistent4D dataset.

Method
Pistol Guppie Crocodile Monster Skull Trump Aurorus Mean

LPIPS↓ CLIP↑ LPIPS↓ CLIP↑ LPIPS↓ CLIP↑ LPIPS↓ CLIP↑ LPIPS↓ CLIP↑ LPIPS↓ CLIP↑ LPIPS↓ CLIP↑ LPIPS↓ CLIP↑
D-NeRF 0.52 0.66 0.32 0.76 0.54 0.61 0.52 0.79 0.53 0.72 0.55 0.60 0.56 0.66 0.51 0.68
K-planes 0.40 0.74 0.29 0.75 0.19 0.75 0.47 0.73 0.41 0.72 0.51 0.66 0.37 0.67 0.38 0.72
Consistent4D 0.10 0.90 0.12 0.90 0.12 0.82 0.18 0.90 0.17 0.88 0.23 0.85 0.17 0.85 0.16 0.87
DG4D 0.12 0.92 0.12 0.91 0.12 0.88 0.19 0.90 0.18 0.90 0.22 0.83 0.17 0.86 0.16 0.87
Ours 0.10 0.94 0.10 0.93 0.10 0.90 0.17 0.92 0.17 0.92 0.20 0.85 0.15 0.89 0.14 0.91

Table 4: SSIM, MSSIM, D-SSIM and LPIPS of our method on the DyNeRF dataset breakdown by scenes.

Coffee Martini Spinach Cut Beef Flame Salmon Flame Steak Sear Steak Mean
SSIM ↑ 0.9185 0.9578 0.9598 0.9248 0.9643 0.9645 0.9483
MSSIM ↑ 0.9544 0.9786 0.9808 0.9597 0.9816 0.9808 0.9726
D-SSIM ↓ 0.0228 0.0107 0.0096 0.0202 0.0092 0.0096 0.0137
LPIPS ↓ 0.0708 0.0389 0.0378 0.0639 0.0337 0.0354 0.0468

Table 5: Overall quantitative comparisions between ours and other methods on the DyNeRF dataset (Li
et al., 2022). We report PSNR, D-SSIM, LPIPS averaged over all scenes. “Ours” denotes RT-4DGS with
the proposed flow supervision.

Mean PSNR ↑ Mean D-SSIM ↓ Mean LPIPS ↓
HexPlane Cao & Johnson (2023) 31.70 0.014 0.075
K-Planes Fridovich-Keil et al. (2023) 31.63 0.018 -
MixVoxels Wang et al. (2023b) 30.80 0.02 0.126
NeRFPlayer Song et al. (2023) 30.69 0.034 0.111
HyperReel Attal et al. (2023) 31.10 0.036 0.096
4DGS Wu et al. (2023) 31.15 0.016 0.150
RT-4DGS Yang et al. (2023c) 32.01 0.014 0.055
Ours 32.32 0.014 0.047

Rigidity Loss as a motion constraint can incorrectly group Gaussians and is less effective than our flow
supervision.

We also visualize optical flow flowo
t1t2

and Gaussian flow flowG
t1t2

with and without our flow supervision
in Fig. 7. In both cases, the optical flow flowo

t1t2
between rendered images on the input view are very

similar to each other (shown in #1 and # 4 column) and align with ground-truth motion because of direct
photometric supervision on input view. However, comparing optical flows on novel view as shown in #3 and
#6, without photometric supervision on novel views, inconsistent Gaussian motions are witnessed without
our flow supervision. Gaussian flow flowG

t1t2
in #2 column also reveals the inconsistent Gaussian motions.
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𝑡=𝑡1

𝑡=𝑡2

𝑡=𝑡3

Con4D OursInputs Con4D OursInputs

Figure 5: Comparisons between Consistent4D (Jiang et al., 2023) (a dynamic NeRF-based method) and
ours. The flow supervision help us avoid the “bubble like” texture and non-consistent geometry on novel
views.

𝑡=𝑡1

𝑡=𝑡2

Ours (no flow) Ours-r Ours

𝑡=𝑡1

𝑡=𝑡2

view 1 view 2 view 1 view 2 view 1 view 2view 0

Input DG4D

view 1 view 2

Figure 6: Qualitative comparisons among DreamGaussian4D (Ren et al., 2023), our method without flow
loss, our method without flow loss but with Local Rigidity Loss (Ours-r) and ours.

Incorrect Gaussian motion can still hallucinate correct image frames on input view. However, this motion-
appearance ambiguity can lead to unrealistic motions from novel views (the non-smooth flow color on moving
parts in #3). While #5 shows consistent Gaussian flow, indicating consistent Gaussian motions with flow
supervision.

6 More Discussions

By aligning with the optical flow, our Gaussian flow effectively optimizes the motion of Gaussian splats.
However, if the optical flow cannot be reliably estimated, our method cannot provide a beneficial signal for
optimization. For similar reason, this supervision is less helpful for modeling dynamic objects with constantly
changing textures, which remains a challenge for current 4D generation methods. Unlike commonly used
motion priors as optical flow, recent advances in dynamic scene reconstruction propose more compact and
robust scene representations and regularizations, such as graph-based representations in MoSca (Lei et al.,
2024), depth priors for 3D-aware tracking in SpatialTracker (Xiao et al., 2024), low-rank motion bases in
Shape of Motion Wang et al. (2024a), and motion-aware point map representations in MonST3R (Zhang
et al., 2024), leveraging Dust3R (Wang et al., 2024b). All of these techniques tightly couple the learnable
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Input Video

𝑡=𝑡1 𝑡=𝑡2

Ours (no flow) Ours (flow)

𝑓𝑙𝑜𝑤𝑡1𝑡2
𝐺 𝑓𝑙𝑜𝑤𝑡1𝑡2

𝐺𝑓𝑙𝑜𝑤𝑡1𝑡2
𝑜 𝑓𝑙𝑜𝑤𝑡1𝑡2

𝑜 𝑓𝑙𝑜𝑤𝑡1𝑡2
𝑜𝑓𝑙𝑜𝑤𝑡1𝑡2

𝑜

novel view novel viewinput viewinput view input viewinput viewinput view

#1 #2 #3 #4 #5 #6

Figure 7: Visualization of optical and Gaussian flows on the input view and a novel view. “Ours (no flow)”
denotes our model without flow supervision while “Ours” is our full model. The optical flow values of
the background should be ignored because dense optical flow algorithms calculate correspondences among
background pixels. We calculate optical flow flowo

t1t2
on rendered sequences by autoflow (Sun et al., 2021).

From column #1 and #4, we can see that both rendered sequences from input view have high-quality optical
flow, indicating correct motions and appearance. Comparing Gaussian flow flowG

t1,t2
at column #2 and #5

, we can see that the underlining Gaussians move inconsistently without flow supervision. It is due to the
ambiguity of appearance and motions while only being supervised by photometric loss on a single input
view. Aligning Gaussian flow to optical flow can drastically improve irregular motions(column #3) and
create high-quality dynamic motions (column #6) on novel views.

representations with the objective in an end-to-end fashion, making them more effective than integrating
off-the-shelf optical flow into dynamic scene reconstruction, as done in our work. However, our proposed
GaussianFlow can be seamlessly applied to any pixel-wise 2D-3D supervision, as our formulation establishes
a general relationship between motions observed in 2D frames and the dynamics of 3D Gaussian primitives.

7 Conclusion and Future Work

We present GaussianFlow, an analytical solution for supervising 3D Gaussian dynamics including scaling,
rotation, and translation with 2D optical flow. Extensive qualitative and quantitative comparisons demon-
strate that our method is general and beneficial to Gaussian-based representations for both 4D generation
and 4D novel view synthesis with motions. In this paper, we only consider the short-term flow supervision
between every two neighbor frames in all our experiments. Long-term flow supervision across multiple frames
is expected to be better and smoother, which we leave as future work. Another promising future direction
is to explore view-conditioned flow SDS to supervise Gaussian flow on novel view in the 4D generation task.
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A Appendix

A.1 Implementation Details

We take t2 as the next time step of t1 and calculate the optical flow between every two neighbor
frames in all experiments. In our CUDA implementation of Gaussian dynamics splatting, although the
number of Gaussians K along each pixel ray is usually different, we use K = 20 to balance speed and
effectiveness. A larger K means more number of Gaussians and their gradient will be counted through
backpropagation. For video frames with size H × W × 3, we track the motions of Gaussians between
every two neighbor timesteps t1 and t2 by maintaining two H × W × K tensors to record the indices
of the top-K Gaussians sorted in depth order, top-K Gaussians’ rendered weights wi for each pixel and
another tensor with size H × W × K × 2 denotes the distances between the pixel coordinate and 2D
Gaussian means xt1 − µi,t1 , respectively. In addition, the 2D mean µi,t1 and 2D covariance matrices Σi,t1

and Σi,t2 of each Gaussian at different two timesteps are accessible via camera projection (Kerbl et al., 2023).

Algorithm 1: Detailed pseudo code for GaussianFlow
Input:
flowo

tk,tk+1
: Pseudo ground-truth optical flow from off-the-shelf optical flow algorithm;

Igt
tk

: ground-truth images , where k = 0, 1, ..., T ;
renderer: A Gaussian renderer;
Gaussianstk

, Gaussianstk+1 : n Gaussians with learnable parameters at tk and tk+1;
camtk

and camtk+1 : Camera parameters at tk and tk+1;
# Loss init
L = 0
for timestep k ≤ T − 1 do

// renderer outputs at tk

renderertk
= renderer(Gaussianstk

, camtk
);

Irender
tk

= renderertk
[“image”]; # H × W × 3

idxtk
= renderertk

[“index”]; # H × W × K, Gaussian indices that cover each pixels
wtk

= renderertk
[“weights”]; # H × W × K

wtk
= wtk

/sum(wtk
, dim = −1); # H × W × K, weight normalization

x_µtk
= renderertk

[“x_mu”]; # H × W × K × 2, denotes xtk
− µtk

µtk
= renderertk

[“2D_mean”]; # n × 2
Σtk

= renderertk
[“2D_cov”]; # n × 2 × 2

Btk
= Σ

1
2
tk

;
# renderer outputs at tk+1
renderertk+1 = renderer(Gaussianstk+1 , camtk+1);
µtk+1 = renderertk+1 [“2D_mean”]; # n × 2
Σtk+1 = renderertk+1 [“2D_cov”]; # n × 2 × 2
Btk+1 = Σ

1
2
tk

;
# Eq.8 while ignoring resize operations for simplicity
flowG

tk,tk+1
= wtk

∗
(
Btk+1 [idxtk

] ∗ inv(Btk
)[idxtk

] ∗ x_µtk
+ (µtk+1 [idxtk

] − µtk
[idxtk

] − x_µtk
)
)

# Eq.10
Lflow = norm(flowo

tk,tk+1
, sum(flowG

tk,tk+1
, dim = 0))

# (1) Loss for 4D novel view synthesis
L = L + Lphotometric(Irender

tk
, Igt

tk
) + λ1Lflow + λ3Lother

# (2) Loss for 4D generation
L = L + Lphotometric(Irender

tk
, Igt

tk
) + λ1Lflow + λ2Lsds + λ3Lother

end

19



Published in Transactions on Machine Learning Research (06/2025)

A detailed pseudo code for our flow supervision can be found in Algorithm 1. We extract the projected
Gaussian dynamics and obtain the final Gaussian flow by rendering these dynamics. Variables including
the weights and top-K indices of Gaussians per pixel (as mentioned in implementation details of our main
paper) are calculated in CUDA by modifying the original CUDA kernel codes of 3D Gaussian Splatting
(Kerbl et al., 2023). And Gaussian flow flowG is calculated by Eq.8 with PyTorch.

In our 4D generation experiment, we run 500 iterations of static optimization to initialize 3D Gaussian fields
with a batch size of 16. The Tmax in SDS is linearly decayed from 0.98 to 0.02. For dynamic representation,
we run 600 iterations with batch size of 4 for both DG4D (Ren et al., 2023) and ours. The flow loss weight
λ1 in Eq. 11 of our main paper is 1.0.

Our method slightly decreases speed and increases memory only in training stage but not in the inference
stage because our flow supervision is only for training a better/robust deformation field or other 4DGS
designs and then will not be needed in inference stage. The training speed for DG4D is around 1.4it/s while
it then becomes around 2.2it/s with our flow supervision. And the difference between training speeds with
(around 2.5s/it) and without (around 2.2s/it) our flow supervision for RT-4DGS is marginal. Even with
more memory footprint by tracking per-pixel gradients for Gaussians, a single 30GB GPU is adequate for
reproducing all our results. In our 4D novel view synthesis experiment, we follow RT-4DGS(Yang et al.,
2023c) except that we add our proposed flow supervision for all cameras. The flow loss weight λ1 in Eq. 11
of our main paper is 0.5.

A.2 More Visualization and Comparison in 4D Generation.

More comparisons between Gaussian flow flowG and optical flow flowo on rendered images are shown in
Fig. 9. The first row of each example is the rgb frames rendered from a optimized 4D Gaussian field. We
rotate our cameras for each time step so that the object can move as optimized and the camera is moving at
the same time to show the scene from different angles. The second row of each example shows the visualized
Gaussian flows. These Gaussian flows are calculated by the rendered images of consecutive time steps at each
camera view, therefore, containing no camera motion in the flow values. The third row shows the estimated
optical flows between the rendered images of consecutive time steps in each camera view. We use off-the-shelf
AutoFlow (Sun et al., 2021) for the estimation. We can see that, enhanced by the flow supervision from the
single-input view, our 4D generation pipeline can model fast motion such as the explosive motion of the gun
hammer (see the last example in Fig. 9).

Figure 8: Qualitative results on Consistent4D dataset.
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Figure 9: Visualization of Gaussian flow flowG and optical flow flowo on rendered sequences from different
views.

A.3 More Qualitative Results on the DyNeRF Dataset.

More qualitative results on DyNeRF dataset Li et al. (2022) can be found in Fig. 11, Fig. 12, Fig. 13 and
our video.

A.4 More Quantitative Ablations on the DyNeRF Dataset.

More quantitative ablations on the DyNeRF dataset Li et al. (2022) can be found in Tab. 6. If λ1 is too
small (e.g., 103), the performance closely matches that of the baseline without flow supervision. Conversely,
if λ1. is too large (e.g., 103), it leads to a performance drop in quantitative metrics such as PSNR. However,
our flow supervision remains robust and effective when λ1 is set within a moderate range. Another tunable
parameter is the number of Gaussian K tracked per-pixel, we observed that increasing its value does not lead
to significant performance gains, but it does slow down training due to the need to track a larger number
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of Gaussians. Therefore, as mentioned in our Implementation Details, we use K = 20 to balance speed and
effectiveness.

Table 6: Quantitative ablations on DyNeRF dataset Li et al. (2022). We report PSNR of our method with
different number of Gaussians K tracked per-pixel and the flow loss weight λ1.

PSNR ↑
Ours (K=0, λ1=0.5) 28.00
Ours (K=10, λ1=0.5) 28.54
Ours (K=40, λ1=0.5) 29.12
Ours (K=20, λ1=1e−3) 28.23
Ours (K=20, λ1=1e3) 27.35
Ours (default:K=20, λ1=0.5) 28.99

A.5 Flow Visualization in Dynamic Gaussian Fields

Note that dynamic 3D Gaussian (Luiten et al., 2023) provided a way to visualize 3D scene motions between
consecutive frames, however, by tracking one “most influential" 3D Gaussian per pixel. This is neither
efficient nor effective to be used in flow supervision, because the “most influential" 3D Gaussian for each
pixel is determined by searching the nearest 3D Gaussian’s center from tens of thousands of 3D Gaussian
candidates with a virtual 3D point along pixel ray lifted with corresponding rendered depth. Also, the “most
influential" Gaussian of a pixel might not even cover the same pixel but still be considered just because this
Gaussian’s center is the nearest one to the virtual point among all 3D Gaussians. We have also applied
flow supervision in this way, but we find it has no observable benefit for rendering quality while resulting
in slower training speed due to the per-pixel nearest search. On the other hand, RT-4DGS showed “render
flow" in their paper only for visualization purpose and the detail were not clarified and the function was not
enabled, please refer to their code, issue 1 and issue 2.

A.6 Quantitative Results on the NeRF-DS Dataset.

When considering the cases with both camera motions and object motions, we have the relationship
warp(flowo) = flowG, where warp is the view warping of optical flow cased by camera motion and flowG

is still the foreground object Gaussian dynamics. Therefore, we supervise the Gaussian flow with the warped
optical flow by following camera and scene motion warping as (Li et al., 2021). We present qualitative
comparisons of Deformable-3DGS (Yang et al., 2023d) with and without our flow supervision in Fig. 10.
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Figure 10: Qualitative comparisons on NeRF-DS dataset (Yan et al., 2023).
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Figure 11: Qualitative comparisons on DyNeRF dataset (Li et al., 2022). The left column shows the novel
view rendered images and depth maps of a 4D Gaussian method Yang et al. (2023c), which suffers from
artifacts in the dynamic regions. The right column shows the results of the same method while optimized
with our flow supervision during training.
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Figure 12: Qualitative comparisons on DyNeRF dataset Li et al. (2022). The left column shows the novel
view rendered images and depth maps of a 4D Gaussian method (Yang et al., 2023c). While The right
column shows the results of the same method while optimized with our flow supervision during training.
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Figure 13: Qualitative comparisons on DyNeRF dataset (Li et al., 2022). Since the details of depth maps on
Flame Salmon are hard to be recognized, we only compare the rendered images. The left column shows the
novel view rendered images of a 4D Gaussian method (Yang et al., 2023c). While The right column shows
the results of the same method while optimized with our flow supervision during training.

26


	Introduction
	Related Works
	Methodology
	Preliminary
	GaussianFlow
	4D Content Generation
	4D novel view Synthesis

	Experiments
	Dataset
	Results and Analysis

	Ablation Study
	More Discussions
	Conclusion and Future Work
	Appendix
	Implementation Details
	More Visualization and Comparison in 4D Generation.
	More Qualitative Results on the DyNeRF Dataset.
	More Quantitative Ablations on the DyNeRF Dataset.
	Flow Visualization in Dynamic Gaussian Fields
	Quantitative Results on the NeRF-DS Dataset.


