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Abstract

Despite the breakthroughs achieved by Reinforce-
ment Learning (RL) in recent years, RL agents
often fail to perform well in unseen environments.
This inability to generalize to new environments
prevents their deployment in the real world. To
help measure this gap in performance, we intro-
duce model-advantage - a quantity similar to the
well-known (policy) advantage function. First, we
show relationships between the proposed model-
advantage and generalization in RL — using
which we provide guarantees on the gap in perfor-
mance of an agent in new environments. Further,
we conduct toy experiments to show that even a
sub-optimal policy (learnt with minimal interac-
tions with the target environment) can help predict
if a training environment (say, a simulator) helps
learn policies that generalize. We then show con-
nections with Model Based RL.

1. Introduction
Reinforcement Learning (RL) has emerged as a promising
learning paradigm owing to its successes in applications
like strategy games (Mnih et al., 2015; Silver et al., 2016;
2017) and robotics (Levine et al., 2016; Gu et al., 2016).
Due to the high cost of interacting with the real world – e.g.
accidents in the case of physical robots or loss of revenue in
recommendation systems – it is common to train RL agents
in a more accessible environment. For example, if we want
to train a self-driving agent to drive in Maine, a good starting
point is to train using a simulator or in a different environ-
ment which is more accessible such as Nevada. However, an
agent with good performance in this training environment
may or may not achieve similar performance in the test envi-
ronment (the real world). This lack of generalization of RL
agents prevents its reliable deployment in the real world.
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Intuitively, better performance can be expected when the
training environment informs the agent of the trajectories it
is likely to take in the target environment. Ideally, we would
like that in both the training and target MDP, taking actions
at states lead to the same transitions as well as rewards. To
formalize this notion, we introduce model-advantage – a
quantity similar to the well-known advantage function in
RL. The standard advantage function – which we refer to
as policy-advantage – evaluates the advantage of playing a
particular action as opposed to the action of a reference pol-
icy. Similarly, we define model-advantage as the advantage
of transitioning to a state as opposed to transitioning accord-
ing to an MDP M , while acting according to some policy.
Specifically, we are interested in the expected advantage of
transitioning according to one MDP with respect to another
one as reference, which allows us to evaluate the effective-
ness of using one model in lieu of the other – much like how
policy-advantage helps compare two different policies.

2. Model-Advantage
In this section, we formally introduce model-advantage
and definitions associated with it. Recall that Aπ(s, a) i.e.
policy-advantage defined over states s ∈ S and actions a ∈ A
measures the utility of taking action a as opposed to acting
according to policy π. However, unlike policy-advantage
that measures the difference in utility of taking an action,
we are interested in knowing the utility difference of transi-
tioning to a particular state, while following a single policy.
Specifically, model-advantage denoted by Aπ

M(s, s′) com-
pares the utility of moving to state s′ and following the
trajectory governed by model M as opposed to doing it
from state s; both under policy π.

We define the model-dependent value function as follows,
where we make explicit the MDP M (and hence, the transi-
tion function PM ) used to generate trajectories.

V πM(s) = Eρπ
M

[
∞
∑
t=0
γtRM(st, at) ∣ π,M, s0 = s]

Here, ρπ is the distribution of trajectories (s0, a0, s1, . . . ),
s0 ∼ P0, when acting according to policy π. Now, the
intuition of model-advantage 1 is given by:

1A Q(s, s′) function can also be defined; however, it requires
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Aπ
M(s, s′) = γ [V πM(s′) −Es′′∼PM (s,π)V

π
M(s′′)] (1)

Analogous to policy-advantage that compares different poli-
cies in the same environment, model-advantage helps com-
pare the same policy acting in two different environments.
For such a comparison, we need to look at the quantity
Es′∼M ′ [Aπ

M(s, s′)] – the expected model-advantage (eval-
uated at π) when the next state s′ is obtained from the MDP
M ′. We formalize this by the following (model) perfor-
mance difference lemma. The proof resembles the proof by
(Kakade & Langford, 2002) and is provided in Appendix A.

Lemma 2.1. (Model Performance Difference Lemma) Let
M and M ′ be two different MDPs. Further, defineRπ(s) =
Ea∼π(⋅∣s)[R(s, a)],Rπε (s) =R

π
M(s)−RπM ′(s) and J(π) =

Es∼P0[V
π(s)]. For any policy π ∈ Π we have:

JM(π) − JM ′(π) = Es∼dM,π [Rε(s)]

+
1

1 − γ
Es∼dM,πEs′∼PM (s′∣s,π) [A

π
M ′(s, s′)] (2)

Here, we use a model-dependent stationary state distribution
dM,π(s) where the dynamics PM are used, assuming a start
state distribution P0. Compared to its policy counterpart
the (model) performance difference lemma involves an ad-
ditional reward error term EdM,πRε that vanishes when the
two MDPs differ only in the transition probabilities.
We can also use the Bellman evaluation operator for policy
π to obtain an equivalent formalization (see Appendix A):

JM(π) = JM ′(π) +
1

1 − γ
EdM,π [T

π
MV

π
M − T

π
M ′V πM ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
deviation error

(3)

The term T πMV
π
M − T πM ′V πM , which we denote by δπM,M ′

2

represents the deviation in the value function when acted
upon by Bellman operators corresponding to two different
MDPs. This term is exactly equal to model-advantage when
the reward functions of the two MDPs are the same. We can
form an upper bound on the extrinsic error as:

JM(π) − JM ′(π) ≤
1

1 − γ
∣∣T

π
MV

π
− T

π
M ′V π ∣∣∞

≤
1

1 − γ
[εR + γεP ∣∣V π ∣∣∞ ] (4)

where the rewards and the dynamics themselves are individu-
ally bounded i.e. maxsmaxa ∣RM(s, a) −R′

M ′(s, a)∣ ≤ εR

additional formalism not necessary for our exposition. See concur-
rent work (Edwards et al., 2020) for a detailed discussion.

2Optionally, when using the optimality operators corresponding
to MDPs M and M ′, we drop the π and denote the deviation error
as δM,M ′(V (s)).

and maxsmaxa ∣∣PM(s, a) − PM ′(s, a)∣∣1 ≤ εP . Of course,
note that ∣∣V π ∣∣∞ is trivially bounded by 1

1−γRmax, assuming
rewards are bounded by Rmax.

3. Generalization in RL
An RL problem is characterized by an MDP M and is con-
sidered solved when a policy π ∈ Π that maximizes the
expected (discounted) return is found. However, in practice,
the RL agent may then be deployed in a slightly different en-
vironment characterized by an MDP M ′. Therefore, we are
interested in how well an RL agent performs in an unseen
environment – in other words, its ability to generalize.

Related Work. Studying and benchmarking generalization
properties of RL agents via large-scale experiments has
been the focus of many works in the recent years (Zhang
et al., 2018a;b; Cobbe et al., 2018). Additionally, (Slaoui
et al., 2019) derives a lemma comparable to lemma 2.1 for
policies that are Lipschitz continuous over a set of state-
representations. Importantly, (Wang et al., 2019a) formally
define generalization gap which we adopt in this work (see
eq. (5)) They give formal bounds on this gap in the setting of
reparametrizable RL while making additional assumptions
like Lipschitz continuity on value functions. While we do
not require any such assumptions, it is important to note that
it is not possible to guarantee tighter bounds without them.

3.1. Generalization Gap.

Let J(π) ∶= E[∑tR(st, at)] denote the cost function,
where the stochasticity is due to the policy and transition
dynamics; let Ĵn(π) denote its empirical estimate with n
samples. Given an RL agent trained in MDP M with finite
data, we are interested in its performance in a different MDP
M ′. We can formally write this generalization gap as:

Φ = ∣Ĵn(π) − J
′
(π)∣

≤ ∣Ĵn(π) − J(π)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

intrinsic error

+ ∣J(π) − J ′(π)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

extrinsic error

(5)

The generalization gap can be bounded with two different
sources of error as indicated in eq. (5). Following (Wang
et al., 2019a), we call them intrinsic error and extrinsic
error to denote the error due to learning from finite samples
and the error due to mismatch in training and deployment
environments. The intrinsic error decreases, typically
as O(1/

√
n), with more samples; this is well-studied in

RL literature (Kakade et al., 2003; Azar et al., 2012; Jin
et al., 2018). The extrinsic error on the other hand is an
artifact of training and deploying the RL agent in different
environments and therefore, cannot be avoided.

When does π generalize? Observe that the extrinsic
error is nothing but the difference in performance due to
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model mismatch. From lemma 2.1, we know that this
is equal to the model-advantange, allowing us to both
estimate and bound this error term. In other words, if the
model-advantage is bounded by ε (see eq. (4)) i.e.

∣JM(πM) − JM ′(πM)∣ ≤ ε

we can say that πM , the policy learnt with experiences from
MDP M achieves similar performance in the target MDP
M ′. As model of the “test” environment is not known, a
reasonable estimate of the model-advantage can be obtained
with enough samples – allowing one to predict the extent to
which the policy performs in the novel environment.

How good is π really? However, note that the above
generalization gap still does not provide the complete
picture. Ideally, we would like the policy πM to have
performance comparable to π∗M ′ , the optimal policy in the
target MDP M ′ i.e.

∣JM ′(πM) − JM ′(π∗M ′)∣

≤ ∣JM ′(πM) − JM(πM)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

term-I

+ ∣JM(πM) − JM ′(π∗M ′)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

term-II

(6)

It is easy to see that term-I is nothing but the extrinsic error
in eq. (5) and is related to the model-advantage (evaluated
under policy πM ) through lemma 2.1. Intuitively, this this
term corresponds to the cost of transfering πM learnt in the
seen MDP M to the novel MDP M ′.

In the rest of this section, we will bound term-II for specific
instantiations of obtaining policy πM – specifically, Value
Iteration (VI) and Fitted Q-Iteration (FQI), with the former
being a model-based and the latter, a model-free approach
to solve MDPs.

3.2. Generalization with Value Iteration and Fitted Q
iteration

Value Iteration. When the dynamics and the reward func-
tions are known, Value Iteration (VI) and its variants are
often employed to arrive at the optimal policy. VI is an
iterative algorithm that applies the Bellman optimality oper-
ator TM 3 at each step i.e. V (n) = TMV (n−1). The obtained
iterates converge to V ∗

M , the value function of π⋆M , asymp-
totically as TM is a contraction in the infinity-norm. We can
bound the difference in value from training on another MDP
with the following theorem:

Theorem 3.1. Let M,M ′ be two MDPs
s.t.maxsmaxa ∣RM(s, a) −RM ′(s, a)∣ ≤ εR and
maxsmaxa ∣∣pM(s, a) − pM ′(s, a)∣∣1 ≤ εP . Let πn+1 be the
policy obtained after n VI iterations on MDP M and let

3Assume optimality operator by default if policy is not explic-
itly defined

∣∣V
(n+1)
M − V

(n)
M ∣∣

∞
≤ ε(n) Then we have,

∣∣V πn+1

M ′ − V ⋆
M ′ ∣∣∞ ≤

1

1 − γ
[γε(n) + 2εR +

2εPRmax

1 − γ
]

We provide a similar bound when following a Fitted Q iter-
ation (FQI) method, which is more effective when dealing
with a large (or infinite) state space or unknown dynam-
ics/reward functions. The statement and proof of the bound
can be found in Appendix B.2.

3.3. Sim2Real: Is My Simulator Good?

The fundamental bottleneck preventing the usage of RL to
train agents in the real-world is exploration. As the model
of the environment is not available, finding the optimal pol-
icy not only requires exploring a large search space but is
also costly. A common strategy to avoid this issue is to
learn a coarse policy using a simulator and then fine-tune
it upon deployment. But how does one build the simulator
in the first place? It either requires considerable domain
expertise or a large number of samples from the real-world,
and we must know a priori that the simulator can express
all variations feasible in the real world. We are left with the
question: Given a set of simulators, which one is likely to

“generalize” best to the real-world? Predicting Gen-
eralization with Model-Advantage. Recall that (model)
performance difference lemma 2.1 allows us to compare
two models given a policy. Given M , the simulator MDP
and M ′, the real-world MDP and πexp, an expert policy for
M ′, we can write:

∣JM(πexp) − JM ′(πexp)∣ = ∣E(s,s′)∼M [A
πexp

M ′ (s, s′)] ∣

To compute the advantage function A
πexp

M ′ , the expert policy
has to be executed in the real-world. Alternately, such an
“expert” policy and its corresponding value function in MDP
M ′ can be learnt by collecting a finite set of data from the
real-world – for instance, by running FQI on the collected
dataset 4. After paying this one-time cost of interacting
with the real-world, the model-advantage can be estimated
in an inexpensive manner for every simulator with finite
samples. In our experiments we will show that using an
approximately optimal policy is sufficient for comparing
model advantage across simulators, alleviating the need for
an expert policy.

Grid World Experiments. We consider the toy environ-
ment of FrozenLake available as part of OpenAI Gym 5 to
illustrate the effectiveness of the proposed model-advantage

4Note that convergence to optimal value-function is guaranteed
only if the distribution used to sample states is exploratory. While
the “tax” of exploration cannot be waived, the hope here is that a
small amount if data is sufficient to learn a sub-optimal expert.

5https://gym.openai.com/

https://gym.openai.com/
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Figure 1. Generalization gap on sub-optimal real world policies
on FrozenLake environments (FrozenLake 4x4 on the left and 8x8
on the right). Even a sub-optimal policy obtained with minimal in-
teractions with the real-world is sufficient to use model-advantage
and compare different training environments or simulators.

term in evaluating simulators. We treat the original setting
as M , the real-world MDP and then, corrupt the transition
dynamics with various levels of random noise to obtain a set
of “simulators” {M ′

i}
K
i=1. We then run DQN (Mnih et al.,

2013) that uses a single hidden-layer MLP to learn Q-values
in M and obtain a sub-optimal “expert” Q-function by not
running the training to completion. As can be seen from
Figure 1, we see that even for Q-values far from optimal, the
model-advantage increases with increasing modeling error
εP – the same trend exhibited by the optimal Q-function in
the real-world.

3.4. Connections to Model-Based RL

Model Based Reinforcement Learning (MBRL) is a domi-
nant RL framework that first learns an approximate model of
the real-world, and then runs standard planning algorithms
like VI to find a suitable policy. Variants of the model per-
formance difference lemma (see lemma 2.1) involving the
approximated model have been derived in this context – for

e.g. see (Kearns & Singh, 2002; Kakade et al., 2003) and
concurrent works, (Rajeswaran et al., 2020; Kidambi et al.,
2020; Xu et al., 2018). In this section, we introduce a novel
perspective of MBRL and MBRL techniques.
The objective of MBRL is to construct a model that mim-
ics the dynamics and reward functions of the real-world as
accurately as possible. As seen from eq. (4), the model-
advantage is upper bounded as a function of εR and εP , the
error in reward and transition dynamics functions. There-
fore, many previous works minimize this upper bound (Azar
et al., 2012; 2013; 2017). The drawback is that when the
upper bound is fairly loose, it leads to a “dynamics bottle-
neck”(Wang et al., 2019b; Lambert et al., 2020).

Directly Minimizing Model-Advantage. From lemma 2.1
and eq. (4), a tighter bound on the model-advantage can be
minimized (Wang et al., 2019b; Lambert et al., 2020) –

∣JM(π) − JM ′(π)∣ = ∣E(s,s′)∼M [AπM ′(s, s′)] ∣

≤
εR

1 − γ
+
γεPRmax

1 − γ

This is explored by the Value-Aware Model Learning frame-
work (Farahmand, 2018a;b); specifically, they minimize the

E ∣δπ(M,M ′)∣
2

for a worst-case policy that seeks to maximize
the deviation. The crux of MBRL algorithms is to assume
access to the real-world – either through trajectories col-
lected by running a policy or with a generative model of
the MDP. These samples correspond to expert dynamics (or
rewards) and can be learnt by using the Imitation Learning
(IL) framework. This naturally leads to an algorithm that
alternately updates a model to minimize the dynamics and
reward error with imitation learning, and updates a policy to
maximize reward and further collect samples from the true
MDP. We defer the reader to Appendix C for guarantees of
such an algorithm with MBRL and IL.

4. Conclusion
In this work, we proposed model-advantage that helps com-
pare two models, similar to policy advantage that can be
used to compare two policies. This term provides a theo-
retical framework for understanding generalization in RL
– specifically, we provide formal guarantees on the gener-
alization ability of policies learnt via Value Iteration (VI)
and Fitted Q-Iteration (FQI). Further, we conduct toy exper-
iments to show that even a sub-optimal policy, learnt from
minimal interactions with the target environment, can help
identify the training environment that facilitates maximum
generalization. Finally, we discuss connections between
model-advantage and Model Based Reinforcement Learn-
ing (MBRL), and formally establish connections between
MBRL and Imitation Learning using the proposed model-
advantage terms.
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Appendix

A. Performance Difference
A.1. Proof of Lemma 2.1

Restating Lemma 2.1:

Lemma A.1. (Model Performance Difference Lemma) Let M
and M ′ be two different MDPs. Further, define Rπ(s) =

Ea∼π(⋅∣s)[R(s, a)] and Rπε (s) = R
π
M(s) − RπM ′(s). For any

policy π ∈ Π we have:

JM(π) = JM ′(π) + Es∼dM,π [Rε(s)]

+
1

1 − γ
Es∼dM,πEs′∼PM (s′ ∣s,π) [A

π
M ′(s, s′)]

Proof. Let P0 be the start state distribution for both MDPs, PπM,t

be the state distribution at time t, starting from s0 ∼ P0 in M
and dM,π denote the stationary state distribution under MDP M ,
policy π and start state s0 ∼ P0. We use the following slightly
modified version of the definition of value function which has a
normalization of 1 − γ:

V πM(s0) = (1 − γ)
∞
∑
t=0

γtEat,st∼πPM,t[RM(st, at)]

Then, we have:

JM(π) − JM ′(π)

= Es0∼P0 [V πM(s0) − V
π
M ′(s0)]

= (1 − γ)
∞
∑
t=0

γtEst∼PπM,tEat∼π(⋅∣st) [RM(st, at)]

− Es0∼P0 [V πM ′(s0)]

= (1 − γ)
∞
∑
t=0

γtEst∼PπM,t [R
π
M(st)] − Es0∼P0 [V πM ′(s0)]

=
∞
∑
t=0

γtEst∼PπM,t [(1 − γ)R
π
M(st) + V

π
M ′(st) − V

π
M ′(st)]

− Es0∼P0 [V πM ′(s0)]

Cancelling the first element in the summation, and shifting the
series by 1 step:

=
∞
∑
t=0

γt E
st∼PπM,t

st+1∼PπM,t+1

[(1 − γ)RπM(st) + γV
π
M ′(st+1) − V

π
M ′(st)]

Expanding V πM ′(st) with a one-step bellman evaluation operator:

=
∞
∑
t=0

γt E
st∼PπM,t

st+1∼PπM,t+1

[(1 − γ)RπM(st) + γV
π
M ′(st+1)

− ((1 − γ)RπM ′(st) + γEs′′∼Pπ
M′
(st,π) [V

π
M ′(s′′)]) ]

=
∞
∑
t=0

γt E
st∼PπM,t

st+1∼PπM,t+1

[(1 − γ)(RπM(st) −R
π
M ′(st))

+ γV πM ′(st+1) − γEs′′∼Pπ
M′
(st,π) [V

π
M ′(s′′)] ]

Using definition ofRπε :

=
∞
∑
t=0

γt E
st∼PπM,t

st+1∼PπM,t+1

[(1 − γ)Rπε (st)

+ γV πM ′(st+1) − γEs′′∼Pπ
M′
(st,π) [V

π
M ′(s′′)] ]

Using definition of Aπ
M ′ :

=
∞
∑
t=0

γt E
st∼PπM,t

st+1∼PπM,t+1

[(1 − γ)Rπε (st) +Aπ
M ′(st, st+1)]

=
1

1 − γ
Es∼dM,πEs′∼PM (s,π) [A

π
M ′(s, s′)] + Es∼dM,π [R

π
ε (s)]

A.2. Corollary: Deviation Error

The following is a useful corollary for subsequent proofs.
Corollary A.2. Let M and M ′ be two different MDPs. For any
policy π ∈ Π we have:

JM(π) = JM ′(π) +
1

1 − γ
Es∼dM,π [T

π
MV

π
M(s) − T πM ′V πM(s)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
deviation error

(7)

Proof.

JM(π) − JM ′(π)

= Es0∼P0 [V πM(s0) − V
π
M ′(s0)]

= ⋯

Proceeding similar to the previous proof upto the following line:

=
∞
∑
t=0

γt E
st∼PπM,t

st+1∼PπM,t+1

[(1 − γ)RπM(st) + γV
π
M ′(st+1)

− ((1 − γ)RπM ′(st) + γEs′′∼Pπ
M′
(st,π) [V

π
M ′(s′′)]) ]

Using definition of the bellman operator T πM

=
∞
∑
t=0

γtEst∼PπM,t[T
π
MV

π
M ′(st)

− ((1 − γ)RπM ′(st) + γEs′′∼Pπ
M′
(st,π) [V

π
M ′(s′′)]) ]

Using definition of the bellman operator T πM ′

=
∞
∑
t=0

γtEst∼PπM,t [T
π
MV

π
M ′(st) − T

π
M ′V πM ′(st)]

=
1

1 − γ
Es∼dπ,M [T

π
MV

π
M ′(s) − T πM ′V πM ′(s)]

Note that we can further upper bound the difference in values
across MDPs for a policy as follows, which will be useful in
subsequent proofs. We compute this bound at an arbitrary start
state s0, and it will then hold for any start state. Let dM,s0,π be
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the stationary state distribution of following policy π in MDP M ,
starting at state s0.

V πM(s0) − V
π
M ′(s0)

= ⋯ (8)

Proceeding similar to the proof in Appendix A.1, we get the fol-
lowing:

=
1

1 − γ
EdM,s0,π [T

π
MV

π
M ′ − T

π
M ′V πM ′]

≤
1

1 − γ
∣∣T

π
MV

π
M ′ − T

π
M ′V πM ′ ∣∣∞ (9)

≤
1

1 − γ
[ ∣∣R

π
M ′ −R

π
M ∣∣∞ (10)

+ γmax
s
∑
s′∈S

V πM ′(s′)Ea∼π(s) [pM ′(s′∣s, a) − pM(s′, a)] ]

≤
1

1 − γ
[εR (11)

+ γ ∣∣V πM ′ ∣∣∞ max
s

max
a

∣∣pM ′(s′∣s, a) − pM(s′, a)∣∣
1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
εP

]

≤
1

1 − γ
[εR + γ ∣∣V πM ′ ∣∣∞ εP ]

≤
1

1 − γ
[εR +

γεPRmax

1 − γ
] (12)

B. Generalization with VI & FQI
B.1. Value Iteration: Proof of Theorem 3.1

Restating Theorem 3.1:
Theorem B.1. Let M,M ′ be two MDPs
s.t.maxsmaxa ∣RM(s, a) −RM ′(s, a)∣ ≤ εR and
maxsmaxa ∣∣pM(s, a) − pM ′(s, a)∣∣1 ≤ εP . Let πn+1 be
the policy obtained after n VI iterations on MDP M . Then we
have,

∣∣V πn+1

M ′ − V ⋆
M ′ ∣∣∞ ≤

1

1 − γ
[γε(n) + 2εR +

2εPRmax

1 − γ
]

Proof. In the main paper, we derived the following results:

∣∣V πn+1

M ′ − V π
′⋆

M ′ ∣∣
∞
≤ ∣∣V πn+1

M ′ − V πn+1
M ∣∣∞ + ∣∣V πn+1

M − V π
′⋆

M ′ ∣∣
∞

(13)

∣∣V πn+1
M − V π

′⋆

M ′ ∣∣
∞
≤
γεn
1 − γ

+
δn+1 (V πn+1

M )

1 − γ
(14)

Now, the first term in the RHS of eq. (13), we use the upper bound
derived in Equation (12):

V πM ′ − V πM ≤
1

1 − γ
[εR +

γεPRmax

1 − γ
] (15)

Notice that δM,M ′ occurs in eq. (9), and using the same proof as
that of eq. (12), we get the following bount on δM,M ′ for any V .

δM,M ′(V ) ≤ εR + γεP ∣∣V ∣∣∞

≤ εR +
γεPRmax

1 − γ
(16)

Putting together eqs. (14) to (16), we get the desired bound.

B.2. Fitted-Q Iteration

Recall thatD = {(s, a, r, s′)i}
n
i=1 is a dataset of experiences where

(s, a) ∼ µ × U for some state-distribution µ and policy U , s′ ∼
PM(s′ ∣ s, a) and r ∼ RM(s, a). FQI is an iterative algorithm
that learns a function f in the model-class F that approximates
the Q-function. At each iteration fk = T̂Mfk−1 where T̂M is the
empirical Bellman operator defined as follows:

T̂Mf ∶ = argmin
f∈F

LD(f, f ′)

LD(f, f ′) ∶ =
1

∣D∣
∑

(s,a,r,s′)∈D
(f(s, a) − r − γVf ′ (s

′
))

2

We define norms for functions over S ×A, similar to (Munos &
Szepesvári, 2008), as follows: ∣∣g∣∣ν×π ∶= (Es∼ν,a∼π [∣g∣2])

1/2
for

ν × π ∈ ∆ (S ×A) and g ∶ S ×A→ R

Theorem B.2. Let M,M ′ be two MDPs
s.t.maxsmaxa ∣RM(s, a) −RM ′(s, a)∣ ≤ εR and
maxsmaxa ∣∣pM(s, a) − pM ′(s, a)∣∣1 ≤ εP . Let
D = {(s, a, r, s′)i}

n
i=1 be generated as (s, a) ∼ µ × U , where

µ is exploratory and U is uniform over actions, r ∼ RM(s, a),
s′ ∼ PM(s, a). Let πfk be the greedy policy w.r.t. fk, obtained
after k iterations of FQI on D. Then we have,

∣∣Q
πfk
M ′ −Q

⋆
M ′ ∣∣

ν×π

≤
1

1 − γ
[γkRmax +O (

√
∣A∣ ε(n)) + 2εR +

2εPRmax

1 − γ
]

Proof. Let π̂ ∶= πfk , let v′∗, π′∗ denote the optimal value function
and policy in the second MDP M ′, and Q⋆

M ′ ∶= Qπ
′⋆

M ′ . Let

vπ
′⋆

M ′ − vπ̂M ′ ≤
∞
∑
t=1

γt−1Es∼P π̂
M′,t

[Q⋆
M ′(s, π′⋆) −Q⋆

M ′(s, π̂)]

≤
∞
∑
h=1

γh−1
[ ∣∣Q⋆

M ′ −Qπ̂M ′ ∣∣
P π̂
M′,t

×π′∗

+ ∣∣Q⋆
M ′ −Qπ̂M ′ ∣∣

P π̂
M′,t

×π̂
]

≤ (
2

1 − γ
) max
ν×π∈∆(S×A)

∣∣Q⋆
M ′ −Qπ̂M ′ ∣∣

ν×π

Now, it remains to bound ∣∣Qπ̂M ′ −Q⋆
M ′ ∣∣

ν×π for any ν×π ∈ ∆(S×

A). First we look at the term ∣∣Qπ̂M −Q⋆
M ′ ∣∣

ν×π = ∣∣fk −Q
⋆
M ′ ∣∣ν×π
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below. Recall that fk = T̂Mfk−1.

∣∣fk −Q
⋆
M ′ ∣∣

ν×π

= ∣∣fk − TMfk−1 + TMfk−1 −Q
⋆
M ′ ∣∣

ν×π

≤ ∣∣fk − TMfk−1∣∣ν×π

+ ∣∣TMfk−1 − TM ′fk−1 + TM ′fk−1 −Q
⋆
M ′ ∣∣

ν×π

≤
√

∣A∣C ∣∣fk − TMfk−1∣∣µ×U

+ ∣∣TMfk−1 − TM ′fk−1∣∣ν×π
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Deviation error

+ ∣∣TM ′fk−1 −Q
⋆
M ′ ∣∣

ν×π

≤
√

2∣A∣Cεn + δ
(k−1)
M,M ′ + γ ∣∣V

πfk−1
M − V ⋆

M ′ ∣∣
P ′(ν×π)

Defining πf,fk(s) ∶= argmaxa∈Amax{f(s, a), fk(s, a)}, it is
easy to verify that ∣∣Vf − Vfk ∣∣ν ≤ ∣∣f − fk ∣∣ν×πf,fk

≤
√

2∣A∣Cεn + δ
(k−1)
M,M ′ + γ ∣∣fk−1 −Q

⋆
M ′ ∣∣

P ′(ν×π)×πfk−1,Q
′∗

⇒ ∣∣fk −Q
⋆
M ′ ∣∣

ν×π ≤
1 − γk

1 − γ

√
2∣A∣Cεn

+
k

∑
i=1

γiδ
(i−1)
M,M ′ + γ

k
∣∣f0 −Q

⋆
M ′ ∣∣

P ′(ν×π)×πf0,Q
′∗

Following (Munos & Szepesvári, 2008), we denote εn as a bound
on the error of using an empirical bellman operator (with a finite
dataset) as opposed to the true bellman operator.

≤
1 − γk

1 − γ

√
2∣A∣Cεn +

k

∑
i=1

γiδ
(i−1)
M,M ′ +

γkRmax

1 − γ

Now, we can use this to bound ∣∣Qπ̂M ′ −Q⋆
M ′ ∣∣

ν×π as follows, where
fk ∶= Q

π̂
M :

∣∣Qπ̂M ′ −Q⋆
M ′ ∣∣

ν×π
= ∣∣Qπ̂M ′ −Qπ̂M +Qπ̂M −Q⋆

M ′ ∣∣
ν×π

≤ ∣∣Qπ̂M ′ −Qπ̂M ∣∣
ν×π

+ ∣∣fk −Q
⋆
M ′ ∣∣

ν×π

≤ ∣∣Qπ̂M ′ −Qπ̂M ∣∣
ν×π

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Transfer Error

+
1 − γk

1 − γ

√
2∣A∣Cεn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
FQI finite data error

+
k

∑
i=1

γiδ
(i−1)
M,M ′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Deviation Error

+
γkRmax

1 − γ
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

FQI finite iterations error

We can write the deviation error:

δ
(k−1)
M,M ′

= ∣∣TMfk−1 − TM ′fk−1∣∣ν×π (17)
= E(s,a)∼ν×π [(TMfk−1)(s, a) − (TM ′fk−1)(s, a)]

= E(s,a)∼ν×π[(RM(s, a) −RM ′(s, a)+

γ (Es′∼PM (s,a) [Vfk−1
(s′)] − Es′∼PM′ (s,a) [Vfk−1

(s′)]) )]

≤ εR + ∣∣γ(Es′∼PM (s,a) [Vfk−1
(s′)]

− Es′∼PM′ (s,a) [Vfk−1
(s′)] )∣∣

ν×π

Considering the term on the right (squared):

∣∣γ (Es′∼PM (s,a) [Vfk−1
(s′)] − Es′∼PM′ (s,a) [Vfk−1

(s′)]) )∣∣
2

ν×π

= E(s,a)∼ν×π[

γ2
(∫

s′∈S
Vfk−1

(s′)[pM(s′∣s, a) − pM ′(s′∣s, a)]ds′)

2

]

Using Holder’s with 1/q1 + 1/q2 = 1:

≤ E(s,a)∼ν×π[γ2
(∫

s′∈S
∣Vfk−1

(s′)∣
q2 ds′)

2/q2

(∫
s′∈S

∣pM(s′∣s, a) − pM ′(s′∣s, a)∣
q1 ds′)

2/q1
]

Setting q1 ∶= 1, q2 ∶= ∞, and using
maxsmaxa ∣∣pM(s, a) − pM ′(s, a)∣∣1 ≤ εP

= E(s,a)∼ν×π [γ2ε2P ∣∣Vfk−1
∣∣
2

∞]

= γ2ε2P ∣∣Vfk−1
∣∣
2

∞

Now, we get the following relation for δ(k−1)
M,M ′ :

⇒ δ
(k−1)
M,M ′ ≤ εR + γεP ∣∣Vfk−1

∣∣∞

≤ εR +
γεPRmax

1 − γ
(18)

Now, we derive a bound on the transfer error as follows:

∣∣Qπ̂M ′ −Qπ̂M ∣∣
ν×π

≤ ∣∣Qπ̂M ′ −Qπ̂M ∣∣
∞

Using the fact that Qπ̂M ′ is the fixed point of T π̂M ′ :

= ∣∣(T
π̂
M ′)

∞
Qπ̂M −Qπ̂M ∣∣

∞

Using the fact that Qπ̂M is the fixed point of T π̂M :

= ∣∣(T
π̂
M ′)

∞
Qπ̂M − T

π̂
MQ

π̂
M ∣∣

∞

Adding and subtracting, followed by triangle inequality

≤ ∣∣(T
π̂
M ′)

∞
Qπ̂M − T

π̂
M ′Qπ̂M ∣∣

∞
+ ∣∣T

π̂
M ′Qπ̂M − T

π̂
MQ

π̂
M ∣∣

∞

Using contraction property

≤ γ ∣∣(T
π̂
M ′)

∞
Qπ̂M −Qπ̂M ∣∣

∞
+ ∣∣T

π̂
M ′Qπ̂M − T

π̂
MQ

π̂
M ∣∣

∞
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Deviation Error

Bounding the deviation error same way as eq. (17) to eq. (18):

≤ γ ∣∣(T
π̂
M ′)

∞
Qπ̂M −Qπ̂M ∣∣

∞
+ εR +

γεPRmax

1 − γ

Using the fact that Qπ̂M ′ is the fixed point of T π̂M ′ :
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Algorithm 1 Imitation Learning for MBRL

Input: Generative model of PM ′ , reward functionRM ′ ,
exploratory policy µ, initial model P̂M,1, parameters
N ,m, online learner OLALGORITHM, policy learning
algorithm POLICYUPDATE
Output: Sequence of policies π1∶N

Initialize D ← ∅

Initialize π1 ← POLICYUPDATE(P̂M,1,RM ′)

for i = 2 to N do
Collect m samples of (s, a) using a mixture of dπ,PM′

and dµ,PM′
(with equal probabilities)

Create dataset Di = {(s, a,PM ′(s, a))
Aggregate datasets D ← D⋃Di
Train P̂M,i over D using a first order oracle of loss
`i(P̂M,i) and OLALGORITHM

πi ← POLICYUPDATE(RM ′ , P̂M,i)

end for

≤ γ ∣∣Qπ̂M ′ −Qπ̂M ∣∣
∞
+ εR +

γεPRmax

1 − γ

⇒ ∣∣Qπ̂M ′ −Qπ̂M ∣∣
∞

≤ γ ∣∣Qπ̂M ′ −Qπ̂M ∣∣
∞
+ εR +

γεPRmax

1 − γ

⇒ ∣∣Qπ̂M ′ −Qπ̂M ∣∣
∞
≤

1

1 − γ
[εR +

γεPRmax

1 − γ
]

Substituting back the deviation error, we get the desired bound.

∣∣Qπ̂M ′ −Q⋆
M ′ ∣∣

ν×π
(19)

≤
1

1 − γ
[γkRmax + (1 − γk)

√
2∣A∣Cεn (20)

+ 2(
γεPRmax

1 − γ
+ εR)(1 − γk) ]

≤
1

1 − γ
[γkRmax +O (

√
∣A∣ ε(n)) + 2εR +

2εPRmax

1 − γ
]

C. Connections to Imitation Learning
Consider the following algorithm. Note that this algorithm has
been presented by (Ross & Bagnell, 2012) where they show analy-
sis with DAGGER as their online learner.
Theorem C.1. Let `i(PM) ∶= EdM,πiEPM [c̃] where c̃ ∶ S ×
S → R is a surrogate loss satisfying: ∀s ∈ S,π ∈ Π, ∃ constant
CM ′ > 0 s.t. EPM′

[∣Aπ
M ∣] ≤ CM ′EPM′

[c̃]. Assume access
to a sampling distribution ν ∈ ∆(S × A) which is exploratory

and cπν ∶= sups,a
dM′,π(s,a)
ν(s,a) . Given a no-regret online learner

that plays {PM,i}
N
i=1 and a corresponding sequence of policies

{πi}
N
i=1 s.t. πi = planner(PM,i), then we have

1

N
[
N

∑
i=1

JM ′(πn)] − JM ′(π⋆M ′)

≤ ε̄
π⋆
M′

planner +
2c
π⋆
M′

ν CM ′

1 − γ
(εmodel + εregret)

where ε̄
π⋆
M′

planner = 1
N ∑

N
i=1 [JM,i(πi) − JM,i(π

⋆
M ′)], εmodel =

infP̂ E(s,a)∼dM′,ρ̄
[`i(P̂)] and εregret = O(1/

√
N).

Proof. Let ρi ∶= 1
2
ν + 1

2
Dµ,πi and ρ̄ ∶= ∑Ni=1 ρi

min
π∈π1∶N

JM ′(π) − JM ′ (π′)

≤
1

N

N

∑
i=1

[JM ′ (πi) − JM ′ (π′)]

≤
1

N

N

∑
i=1

[JM ′ (πi) − JM (πi)

+ JM (πi) − JM (π′)

+ JM (π′) − JM ′ (π′) ]

Using the model performance difference lemma 2.1

≤
1

N

N

∑
i=1

[JM (πi) − JM (π′)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
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Adding and substracting the best loss in hindsight
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ν
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[εregret + εmodel]

Now, the proof for εregret = O(1/
√
N) is the same as that of any

no-regret online learner. For example, one may use Algorithm 1
with DAGGER (Ross et al., 2011) as the OLALGORITHMto get
the desired εregret.


